

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ESCAPING THE HOMOPHILY TRAP: A THRESHOLD-FREE GRAPH OUTLIER DETECTION FRAMEWORK VIA CLUSTERING-GUIDED EDGE REWEIGHTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph outlier detection is a critical task for identifying rare, deviant patterns in graph-structured data. However, prevalent methods based on graph convolution are fundamentally challenged by the “Homophily Trap”: the aggregation of features from neighboring nodes inadvertently contaminates the representations of normal nodes near anomalies, blurring their distinctions. To overcome this limitation, we propose a Clustering-guided Edge Reweighting framework for Graph Outlier Detection (CER-GOD), which jointly optimizes a self-discriminative masking spoiler with an adaptive clustering-based outlier detector. The masking spoiler learns to selectively weaken the influence of heterogeneous neighbors, preserving the discriminative power of node embeddings. This process is guided by the clustering detector, which generates pseudo-labels in an unsupervised manner, thereby eliminating the need for predefined anomaly thresholds. To ensure robust optimization and prevent class collapse—a failure mode exacerbated by the homophily trap—we introduce a diversity loss that stabilizes the clustering process. Our end-to-end framework demonstrates superior performance on multiple benchmark datasets, establishing a new state-of-the-art by effectively dismantling the homophily trap.

1 INTRODUCTION

Graph outlier detection, which aims to identify anomalous data (*e.g.*, nodes, subgraphs) deviating from dominant patterns, is a critical unsupervised learning task with significant real-world applications in areas like financial fraud detection, (Kim et al., 2024; Wang et al., 2019; Cheng et al., 2025), traffic monitoring (Wawrowski et al., 2023; Le et al., 2011; Zhou et al., 2009), and biological analysis (Zhou et al., 2025; Xu et al., 2024), *etc.* Over the past decades, a variety of detection strategies have emerged, achieving remarkable success, such as reconstruction-based measurements (Ding et al., 2019; Fan et al., 2020), contrastive learning based strategies (Liu et al., 2021b; Dillon et al., 2024), or statistical characteristic-based methods (Chen et al., 2020; Breunig et al., 2000).

Despite their diverse approaches, a foundational component in many state-of-the-art models is the graph convolutional (GC) operation, which learns node representations by aggregating information from local neighborhoods (Xu et al., 2019; Kipf & Welling, 2019; Sun et al., 2019). However, the effectiveness of GC operations is rooted in the principle of homophily—the assumption that nearby nodes are similar. This very principle creates a fundamental conflict in outlier detection. When normal and anomalous nodes are neighbors, the convolution process blurs their distinctions, a problem recently termed the “Homophily Trap” (He

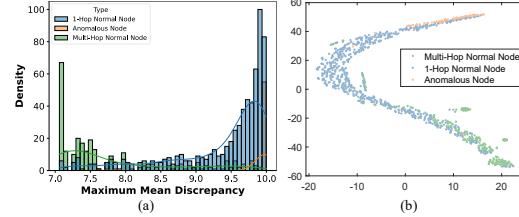


Figure 1: The histograms of maximum mean discrepancy distances and the t-SNE visualization between standard Gaussian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ and three types of node embeddings (normal node multi-hop away from anomalies, normal node 1-hop away from anomalies, and anomalous nodes) for real-world anomaly on Email dataset. Note that the embeddings are obtained via a single-layer graph convolution operation.

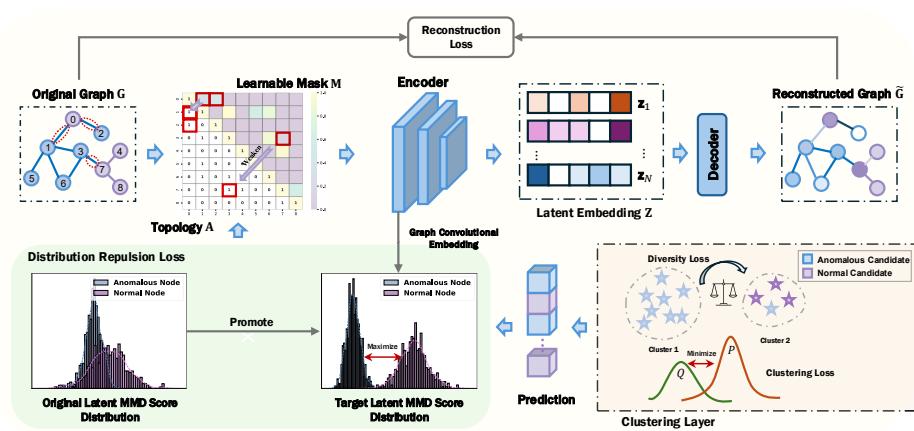


Figure 2: The architecture of graph outlier detection. The model takes an input graph with its topology, applies a learnable mask to suppress noisy or irrelevant connections, and encodes the refined structure using graph convolutional layers. The latent embeddings are then used for graph reconstruction and clustering-based anomaly prediction. **Based on these predictions, normal and anomalous candidate groups are generated and optimized through distribution repulsion loss.** The framework is jointly optimized with three objectives: reconstruction loss, clustering loss (with a diversity regularization term), and a distribution repulsion loss.

This contamination of node embeddings obscures the discriminative features essential for identifying anomalies, thereby undermining the performance of existing detectors.

To facilitate the understanding of the adverse effect of “Homophily Trap” in graph outlier detection, here we show empirical evidence of “Homophily Trap” in Figure 1. **Formally, a ‘normal node 1-hop away from anomalies’ denotes a normal node with a direct edge (1-hop distance) to at least one anomalous node, while a ‘normal node multi-hop away from anomalies’ is a normal node at a distance of two or more hops from its nearest anomalous neighbor.** The embeddings of neighboring normal nodes are noticeably altered after graph convolution, with minimal distinction between 1-hop normal and anomalous nodes. This illustrates that: (1) anomalous neighbors can weaken the discriminability of normal nodes; and (2) this contamination effect decreases with increasing path. For example, when normal nodes are surrounded by anomalous ones (or vice versa), the aggregation process can blur the distinction between them, thereby weakening the model’s ability to detect outliers. This issue is especially severe when the nodes are closely connected, as anomalous neighbors exert stronger influence through short-range paths. In contrast, the contamination effect diminishes as the path length increases, suggesting that distant neighbors contribute less to the node’s final representation.

To address this fundamental challenge, we propose a novel framework, termed **CER-GOD** (Clustering-guided Edge Reweighting for Graph Outlier Detection), which dismantles the homophily trap through the joint optimization of two synergistic components: 1) **Self-Discriminative Masking Spoiler**, and 2) **Clustering-based Outlier Detector**, where the architecture is shown in Figure 2. Specifically, the masking spoiler adaptively fine-tunes the edge weights of the original topology, thereby weakening or strengthening the degree of information aggregation in GC operations. As a result, the discriminability between the aggregated embeddings of normal and abnormal nodes is then enhanced. However, this becomes particularly challenging when node labels are unavailable. Thus, we further introduce a clustering-based outlier detector, which eliminates the need for predefined thresholds when identifying anomalies and ensures that nodes aggregate information only from semantically similar (intra-cluster) neighbors. This enables the identification of candidate normal and anomalous nodes, which are then jointly optimized with the masking spoiler to further prevent the aggregation of heterogeneous node types.

Nevertheless, the “Homophily Trap” may potentially lead to class collapse (*i.e.*, all instances are clustered into a single group) due to incomplete or suboptimal optimization in the early learning process. To counter this, we further develop a diversity loss that is triggered when class collapse occurs and gradually reallocates a portion of samples from the dominant cluster to another cluster.

108 This ensures the anomalous candidate group remains populated. Finally, we design a new anomalous
 109 score according to the probability confidence learned via the clustering layer. We demonstrate the
 110 superiority of the proposed method over state-of-the-art graph outlier baselines through comprehensive
 111 experiments on multiple benchmark datasets. The main contributions of this paper are summarized
 112 as follows:

- 114 • **A Novel Approach to Counter the Homophily Trap:** We provide a rigorous analysis of the
 115 “Homophily Trap” and introduce a self-discriminative masking spoiler that adaptively re-weights
 116 the graph topology to mitigate the contaminating influence of heterogeneous neighbors.
- 117 • **Threshold-Free Anomaly Detection:** We propose an adaptive clustering-based detector that
 118 generates pseudo-labels to guide the masking process in a fully unsupervised manner, eliminating
 119 the reliance on arbitrary, predefined thresholds for outlier identification.
- 120 • **Robust Optimization with Diversity Loss:** We introduce a diversity loss function that effec-
 121 tively prevents class collapse during clustering, ensuring the stability and reliability of the joint
 122 optimization framework.

124 2 METHODOLOGY

125 2.1 PRELIMINARY AND MOTIVATION

128 Given a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$, where $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$ denotes the set of nodes and \mathcal{E} denotes the
 129 set of edges, each node is associated with an attribute matrix $\mathbf{x} \in \mathbb{R}^{1 \times d}$, and the graph structure
 130 is represented by an adjacency matrix $\mathbf{A} \in \{0, 1\}^{N \times N}$, where $\mathbf{A}_{ij} = 1$ if the presence of an edge
 131 between node v_i and node v_j . In graph outlier detection tasks, the objective is to learn a discriminative
 132 embedding in a latent space that effectively separates normal nodes from anomalous ones, which can
 133 be initially formulated as follows:

$$134 \max_f \ell(f(\mathcal{G}_{\text{normal}}), f(\mathcal{G}_{\text{abnormal}})), s(f(\mathcal{G})) = \begin{cases} 0, & s_i \leq \tau, \\ 1, & \text{otherwise,} \end{cases} \quad (1)$$

137 where $\ell(\cdot)$, $f(\cdot)$ and $s(\cdot)$ denote distribution measurement, the graph representation learner, and the
 138 anomaly detector that assigns an anomaly score s_i to each node, respectively. If s_i exceeds the
 139 threshold τ , the i -th node is classified as anomalous, and its label y_i is set to 1.

140 To facilitate the learning of graph embeddings, an L -layer Graph Convolutional Network is utilized
 141 to learn the node representations at each l -th layer:

$$143 \mathbf{z}_i^{(l)} = \text{Aggr}(\mathbf{z}_i^{(l-1)}, \mathbf{z}_j^{(l-1)} : j \in \mathcal{N}(i)), \quad (2)$$

145 where $\mathcal{N}(i)$ is the neighbor node set of the i -th node, $\text{Aggr}(\cdot)$ illustrates to update the representation of
 146 a node by aggregating the information of its neighbors. $\mathbf{z}_i \in \mathbb{R}^{1 \times k}$ denotes the latent representation of
 147 node v_i , initialized as $\mathbf{z}_i^{(0)} = \mathbf{x}_i$. Although aggregating information along with the graph structure has
 148 achieved success in all kinds of fields, for the outlier detection task, it still brings several challenges:

- 149 • The aggregation operation along graph edges may propagate anomalous information from anom-
 150 aalous nodes to neighboring normal nodes, thereby contaminating their representations.
- 152 • According to the over-squashing phenomenon (Topping et al., 2022), as the shortest path distance
 153 between anomalous and normal nodes increases, the extent of information propagation (which is
 154 also known as the degree of contamination) diminishes.

155 Towards illustrating these challenges, let the shortest distance between node i and j be r , we use
 156 Jacobian matrix $\frac{\partial \mathbf{z}_j^{(r)}}{\partial \mathbf{x}_i}$ to quantify the influence of the node representation $\mathbf{z}_j^{(r)}$ to a specific input
 157 feature \mathbf{x}_i in the node i .

159 **Proposition 1.** If $|\nabla \sigma_l| \leq \alpha$ and $|\nabla \text{Aggr}_l| \leq \beta$ for $0 \leq l \leq r$, then holds

$$161 \left| \frac{\partial \mathbf{z}_j^{(r+1)}}{\partial \mathbf{x}_i} \right| \leq (\alpha \beta)^{r+1} (\mathbf{A}^{r+1})_{ji}. \quad (3)$$

162 The proof of Proposition 1 can be found in Appendix A. Given the implications of it, we recognize
 163 that as the shortest path distance increases, the upper bound on the influence exerted by the i -th node's
 164 attributes on the target node embedding $\mathbf{z}_j^{(r)}$ progressively diminishes. It indicates that the sensitivity
 165 between them exhibits an exponentially decreasing trend with respect to their shortest path distance.
 166

167 In the challenging unsupervised context of outlier detection, the “homophily trap” issue severely
 168 hinders the separation of normal nodes from nearby anomalies. Our approach directly confronts
 169 this by integrating a self-discriminative masking spoiler with an adaptive clustering-based detector.
 170 The masking spoiler aggregates information exclusively within intra-cluster samples and designs a
 171 penalty strategy to resist cluster collapse. Different from existing methods (please refer to Section
 172 3), the proposed masking spoiler selectively weakens existing edges without altering the original
 173 message passing paths. This design preserves the structural integrity of the graph while encouraging
 174 the aggregated embeddings of the two clusters to become as discriminative as possible.
 175

2.2 SELF-DISCRIMINATIVE MASKING SPOILER

177 We first present a mathematical formulation of the proposed candidate filter strategy. To begin with, a
 178 reconstruction-based Graph Auto-Encoder (GAE) is utilized to learn low-dimensional embeddings
 179 for each node:

$$180 \quad \ell_r = \frac{1}{N} \sum_{i=1}^N (\|\hat{\mathbf{x}}_i - \mathbf{x}_i\|^2 + \|\hat{\mathbf{A}}_i - \mathbf{A}_i\|^2). \quad (4)$$

183 Here, $\hat{\mathbf{A}} = \text{sigmoid}(\mathbf{Z}^\top \mathbf{Z})$ denotes the reconstructed adjacency matrix, with $\mathbf{Z} = f_{\mathcal{W}}^{\text{enc}}(\mathbf{X}, \mathbf{A})$
 184 representing the learning node embeddings obtained from the graph encoder function parameterized
 185 by $\mathcal{W} = \{\mathbf{W}_l, \mathbf{b}_l\}_{l=1}^L$.

186 Then we adopt a learnable variable $\tilde{\mathbf{M}}$, and constrain it at each epoch on the original topology \mathbf{A} :

$$187 \quad \tilde{\mathbf{A}} = \tilde{\mathbf{M}} \odot \mathbf{A}, \quad \text{subject to } \tilde{\mathbf{M}} \in [0, 1]^{N \times N}, \quad (5)$$

189 where \odot denotes the Hadamard product and $\tilde{\mathbf{M}}$ is obtained through $\tilde{\mathbf{M}}_{ij} = \text{sigmoid}(\mathbf{M}_{ij})$. Following
 190 this, the normalization operation of the adjacency matrix $\tilde{\mathbf{A}} + \mathbf{I}_N$ is adopted to ensure that each
 191 node's ego-information is preserved. We define \mathbf{I}_N as the identity matrix of shape $N \times N$.
 192

193 The objective of this spoiler is to let the distributions of predicted normal nodes and anomalous
 194 nodes be as discriminative as possible. Here we first collect all predicted normal instances with label
 195 $y_i = 0$ into the normal candidate node set \mathcal{D}_{pos} , and the remaining instances into the anomalous
 196 candidate node set \mathcal{D}_{neg} . The maximum mean discrepancy (MMD) (Gretton et al., 2012) is then used
 197 to measure the aggregated distribution distance between the two groups. Based on this, we can define
 198 the distribution repulsion loss as follows:

$$199 \quad \text{MMD}^2[\mathcal{F}, \mathcal{D}_{\text{pos}}, \mathcal{D}_{\text{neg}}] = \frac{1}{m(m-1)} \sum_{i=1}^m \sum_{j=1, j \neq i}^m \kappa(\mathbf{z}_i^{\text{pos}}, \mathbf{z}_j^{\text{pos}}) \\ 200 \quad + \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \kappa(\mathbf{z}_i^{\text{neg}}, \mathbf{z}_j^{\text{neg}}) - \frac{2}{mn} \sum_{i=1}^m \sum_{j=1}^n \kappa(\mathbf{z}_i^{\text{pos}}, \mathbf{z}_j^{\text{neg}}), \quad (6)$$

205 where $\kappa(\cdot, \cdot)$ represents a certain kernel function and $\mathcal{D} = \{\mathbf{z}_i^{(0)}\}_{i=1}^N$. Note that \mathcal{D} can be taken as the
 206 graph convolutional outputs of each layer when considering computational limits, though this may
 207 reduce the optimization strength. Besides, we use the Gaussian kernel via the Chebyshev distance,
 208 which can be defined as:

$$209 \quad \kappa_{\text{Chebyshev}}(x, y) = \exp \left(-\frac{d_{\text{Chebyshev}}(x, y)^2}{2\sigma^2} \right) = \exp \left(-\frac{(\max_i |x_i - y_i|)^2}{2\sigma^2} \right). \quad (7)$$

212 Since we apply it to the first graph convolution layer in high-dimensional space, it is more effective
 213 to focus on the maximum difference in any dimension, which makes it less sensitive to noise in the
 214 other dimensions. Then we define the distribution repulsion loss as follows:
 215

$$\ell_{\text{dr}} = -\text{MMD}^2(\mathcal{D}_{\text{pos}}, \mathcal{D}_{\text{neg}}). \quad (8)$$

Maximizing the separation between normal and anomalous points is straightforward in a supervised setting, where labels are available. However, in the absence of labels, achieving this goal becomes significantly more challenging, as obtaining reliable labels itself is a difficult task. To assist in optimizing the mask M , we design a clustering-based outlier detector to generate temporary predicted labels. Based on these pseudo labels, we raise a new outlier score function to guide the optimization process. The entire architecture operates in an end-to-end manner, allowing the model to learn both the optimal connections and the superior detected results simultaneously.

2.3 CLUSTERING-BASED OUTLIER DETECTOR

Learnable Clustering Layer. To preliminarily separate the normal cluster from the anomalous candidate cluster, we introduce a clustering layer (Guo et al., 2017) that incorporates learnable cluster centroids into our model. Specifically, the similarity between the latent representations $\mathbf{Z} = \{\mathbf{z}_0, \dots, \mathbf{z}_N\}$ and the cluster centroids $\boldsymbol{\mu}$ is measured using the Student’s t -distribution, yielding the soft clustering assignment probabilities q for each sample across all clusters:

$$q_{ij} = \frac{(1 + \|\mathbf{z}_i - \boldsymbol{\mu}_j\|^2)^{-1}}{\sum_{j'=1}^c (1 + \|\mathbf{z}_i - \boldsymbol{\mu}_{j'}\|^2)^{-1}}, \quad (9)$$

where we assume that the N samples are partitioned into c classes. The soft assignment probabilities q_{ij} form a distribution matrix Q . To further refine the clustering process and improve the compactness of cluster assignments, the target distribution P is defined as follows:

$$p_{ij} = \frac{q_{ij}^2 / \sum_{i=1}^N q_{ij}}{\sum_{j'=1}^c q_{ij'}^2 / \sum_{i=1}^N q_{ij'}}. \quad (10)$$

Given the target distribution P and current distribution Q , we formulate the clustering loss as follows:

$$\ell_c = \text{KL}(P \| Q) = \sum_{i=1}^N \sum_{j=1}^c p_{ij} \log \frac{p_{ij}}{q_{ij}}. \quad (11)$$

This loss function serves to guide the clustering optimization process and encourages the learned embeddings to capture as much discriminative information as possible.

During the training stage, the predicted labels are computed via $\hat{y}_i = \arg \max_j (q_{ij})$ for the i -th instance. Then we first designate the cluster containing a relatively larger number of samples as the **normal cluster**, and **temporarily** treat all nodes within it as normal candidates. Conversely, the remaining cluster is considered the **anomalous candidate cluster**. This assumption is made based on the fact that, in most datasets for outlier detection tasks, normal data constitutes the majority. Generally, the learnable clustering module avoids the use of a pre-defined threshold by generating pseudo labels directly for outlier identification, thereby improving the reliability and robustness of the detection process.

Diversity Loss. However, the clustering procedure may exhibit instability due to class collapse, *i.e.*, the optimization process collapses all nodes into a single cluster, thereby undermining the effectiveness of the clustering and impeding the self-discriminative masking phase. Actually, the self-discriminative masking phase could encourage one cluster not to contain any samples and result in a trivial solution, as it is the easiest way to reach the maximum MMD value. To address this, we design a regularization term for class collapse:

$$\ell_{\text{diversity}} = \sum_{k=1}^c \max(0, \varepsilon - \hat{u}_k), \quad (12)$$

where $\hat{u}_k = \frac{1}{N} \sum_{i=1}^N q_{ik}$ represents the proportion of samples assigned to cluster k . ε denotes the minimum threshold for the proportion to control the minimum sample numbers in each cluster. If \hat{u}_k is greater than or equal to ε , the term becomes zero (*i.e.*, no penalty). Otherwise, it would become positive and penalize the whole objective loss.

270 **Inference.** Let \mathcal{D}_{pos} and \mathcal{D}_{neg} in Eq. (8) denote the sets of normal candidate nodes and anomalous
 271 candidate nodes, respectively. We define the anomalous scores according to the predicted logits in
 272 the clustering layer. Given the normal cluster centroid, the score is calculated based on:
 273

$$274 \quad s_i = 1 - q_{i1} = 1 - \frac{(1 + \|\mathbf{z}_i - \boldsymbol{\mu}_1\|^2)^{-1}}{\sum_{j'=1}^c (1 + \|\mathbf{z}_i - \boldsymbol{\mu}_{j'}\|^2)^{-1}}, \quad (13)$$

$$275$$

276 which means that the higher the scores of the nodes, the more anomalous they are. Collecting all
 277 these modules, we define the overall objective function as
 278

$$279 \quad L = \ell_r + \alpha \cdot \ell_c + \beta \cdot \ell_{\text{dr}} + \gamma \cdot \ell_{\text{diversity}}. \quad (14)$$

$$280$$

280 The proposed objective function enables the self-discriminative masking spoiler and outlier detector
 281 to be jointly optimized, facilitating the learning of a more discriminative latent representation. The
 282 reconstruction loss is employed to retain essential information from the original data. Concurrently,
 283 the self-discriminative loss encourages the nodes from the same cluster to strongly connect, thereby
 284 reducing anomalous information contamination. The detailed procedure of the proposed method and
 285 complexity analysis are summarized in Appendices B and C, respectively.
 286

287 3 CONNECTION WITH PREVIOUS WORK

288 The concept of the “Homophily Trap” (He et al., 2024) crystallizes a long-standing challenge in
 289 graph anomaly detection. However, it measures anomaly degree using a pre-computed spectral
 290 property-based metric and then generates multi-level graph nodes, edges, and subgraphs accordingly,
 291 making the results heavily dependent on the quality of this metric. Previous attempts to mitigate it
 292 have primarily focused on graph rewriting (Dou et al., 2020; Liu et al., 2021a; Qiao & Pang, 2023;
 293 Gasteiger et al., 2019; Topping et al., 2022). These approaches, however, are often heavy-handed:
 294 they either risk destroying the graph’s essential structure through complete reconstruction or rely
 295 on heuristics that require manually defined thresholds, raising concerns about reliability. A detailed
 296 introduction to these works can be found in Appendix I.
 297

298 Our self-discriminative masking spoiler offers a more effective solution. Rather than rewriting
 299 connections, it adaptively **re-weights** them, preserving the original graph structure while surgically
 300 suppressing the information flow that causes the homophily trap. This targeted re-weighting differs
 301 fundamentally from the attention mechanism in GAT (Veličković et al., 2018). While GAT weights
 302 edges based on local feature similarity for representation learning, our masking spoiler is explicitly
 303 guided by a global, task-specific objective: maximizing the separation between clusters of normal
 304 and anomalous nodes. This guidance is a core component of our self-discriminative paradigm, which
 305 employs a clustering detector to generate pseudo-labels, creating a principled, end-to-end solution
 306 that is both adaptive and threshold-free.
 307

4 EXPERIMENT

309 In this section, we provide a detailed the experimental settings, and conduct comprehensive experi-
 310 ments to answer the following research questions:
 311

- 312 • **RQ1:** Does the proposed model outperform state-of-the-art graph outlier detection baselines?
- 313 • **RQ2:** How do the hyperparameters of the proposed method affect its detection performance?
- 314 • **RQ3:** Does the proposed method learn more effective and discriminative latent representations
 315 compared to other state-of-the-art methods?
- 316 • **RQ4:** Does the learned mask hold meaningful relevance?
- 317 • **RQ5:** What is the individual contribution of each component in the proposed method to graph
 318 anomaly detection?

320 4.1 EXPERIMENTAL SETTINGS

322 **Datasets.** We adopt eight datasets across five different types: citation networks, social networks,
 323 communication networks, organic and co-review, including Email, Cora, Flickr, CiteSeer, Disney,
 324 Enron, Reddit and Amazon. Detailed descriptions of the datasets are provided in Appendix G.
 325

Table 1: Average AUCs with standard deviation (10 trials) of different graph anomaly detection algorithms. The best and second-best results are **bolded** and underlined, respectively.

Methods/Datasets	Email	Cora	Disney	Flickr	CiteSeer	Enron	Reddit	Amazon
L1SUB (Miller et al., 2010)	72.89 \pm 0.26	52.53 \pm 0.00	59.80 \pm 4.73	54.43 \pm 0.02	63.86 \pm 0.13	60.85 \pm 2.51	56.94 \pm 0.00	47.53 \pm 0.02
DEEFPD (Wang et al., 2018)	52.84 \pm 0.00	51.96 \pm 0.00	50.28 \pm 0.40	52.94 \pm 0.00	52.25 \pm 0.00	50.00 \pm 0.00	51.67 \pm 0.00	50.00 \pm 0.00
GAT+ClusterAD (Veličković et al., 2018)	66.19 \pm 6.08	61.08 \pm 5.02	67.54 \pm 3.47	51.19 \pm 0.80	53.26 \pm 2.50	63.51 \pm 3.61	54.78 \pm 3.18	65.43 \pm 9.60
DOMINANT (Ding et al., 2019)	94.00 \pm 12.00	92.00 \pm 11.66	47.88 \pm 1.61	45.42 \pm 0.16	56.39 \pm 8.48	52.21 \pm 2.71	55.88 \pm 0.43	50.36 \pm 0.59
AnomalyDAE (Fan et al., 2020)	65.91 \pm 5.41	72.53 \pm 5.72	56.92 \pm 9.21	26.54 \pm 0.00	28.72 \pm 0.01	48.05 \pm 7.51	48.38 \pm 2.97	39.80 \pm 6.70
CONAD (Xu et al., 2022)	83.62 \pm 25.52	75.00 \pm 25.50	58.99 \pm 3.94	45.62 \pm 0.19	59.30 \pm 10.19	51.87 \pm 0.64	56.12 \pm 0.03	49.84 \pm 1.56
AS-GAE (Zhang & Zhao, 2022)	84.68 \pm 18.50	75.39 \pm 21.79	34.32 \pm 0.00	55.98 \pm 1.14	42.89 \pm 0.95	61.73 \pm 4.71	49.35 \pm 5.01	48.96 \pm 0.52
TAM (Qiao & Pang, 2023)	30.45 \pm 0.01	55.55 \pm 0.37	30.51 \pm 0.00	65.19 \pm 0.86	46.75 \pm 1.40	44.75 \pm 0.03	58.60 \pm 0.03	79.87 \pm 0.16
ADA-GAD (He et al., 2024)	81.85 \pm 10.76	71.68 \pm 0.01	41.10 \pm 5.25	55.99 \pm 0.02	68.08 \pm 0.00	59.94 \pm 4.69	56.17 \pm 0.10	50.86 \pm 1.10
BOURNE (Liu et al., 2024)	64.39 \pm 2.69	56.32 \pm 0.16	61.98 \pm 2.11	45.10 \pm 8.59	66.26 \pm 2.81	68.97 \pm 15.11	57.48 \pm 2.28	75.01 \pm 7.15
GADAM (Chen et al., 2024)	68.12 \pm 2.39	92.62 \pm 0.35	69.35 \pm 0.22	61.46 \pm 0.22	93.91 \pm 0.13	33.91 \pm 0.47	58.44 \pm 0.26	57.15 \pm 1.50
AD-GCL (Xu et al., 2025)	57.79 \pm 1.77	68.54 \pm 0.09	38.96 \pm 0.64	46.62 \pm 2.75	72.36 \pm 2.91	65.87 \pm 2.02	53.94 \pm 0.79	24.94 \pm 3.32
SmoothGNN (Dong et al., 2025)	51.09 \pm 15.37	62.72 \pm 8.14	54.40 \pm 8.64	50.26 \pm 4.26	52.82 \pm 1.99	52.35 \pm 3.40	58.38 \pm 6.23	49.96 \pm 0.08
CER-GOD	96.98\pm0.08	92.09 \pm 1.26	72.13\pm3.01	67.08\pm0.16	74.01 \pm 0.37	72.63\pm3.65	59.71\pm1.89	86.24\pm3.56

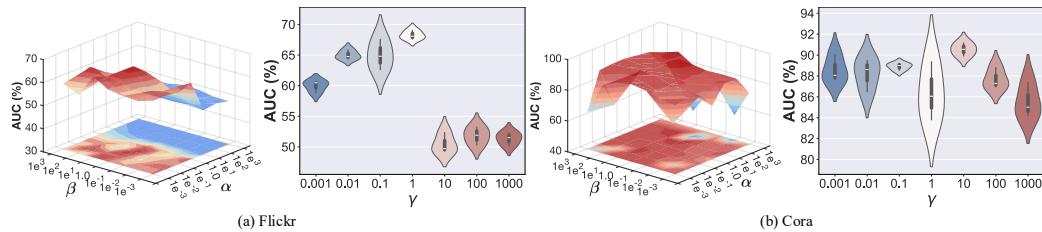


Figure 3: Parameter sensitivity of clustering loss coefficient α , distribution repulsion loss coefficient β , and diversity loss γ .

Implementation Details. The implementation details are provided in Appendix H due to page limitations. To evaluate the anomaly detection performance of each method, we utilize the widely used metric: Area Under the Curve (AUC). The experimental results are reported as the mean and standard deviation, calculated over 10 independent runs of each algorithm to ensure a fair evaluation.

Compared Baselines. To evaluate the effectiveness of the proposed method, we compared it with two types of graph outlier detection baselines, including ten node-level outlier detection methods, including GAT+ClusterAD (Veličković et al., 2018), DOMINANT (Ding et al., 2019), CONAD (Xu et al., 2022), ADA-GAD (He et al., 2024), BOURNE (Liu et al., 2024), AD-GCL (Xu et al., 2025), TAM (Qiao & Pang, 2023), SmoothGNN (Dong et al., 2025), GADAM (Chen et al., 2024), and three public available subgraph-level outlier detection SOTAs: L1SUB (Miller et al., 2010), DEEPFD (Wang et al., 2018), and AS-GAE (Zhang & Zhao, 2022).

4.2 COMPARISON WITH STATE-OF-THE-ART BASELINES (RQ1)

Table 1 provides a detailed evaluation of the proposed method against ten recent baselines across seven widely used graph datasets. The proposed approach outperforms all competitors in all datasets, often by a significant margin. For instance, on the Email dataset, our model surpasses the previous best (*i.e.*, AS-GAE) by more than 12%, indicating exceptional capability in identifying anomalies in communication networks. The proposed approach maintains consistently high accuracy and low variance, reflecting not only its robustness but also its adaptability to varied graph characteristics. It is worth noting that GAT+ClusterAD serves as a strong competitor, as it is constructed by integrating GAT with the clustering outlier detector. The proposed model achieves significant advantages, highlighting the effectiveness of the SD-MS module.

4.3 PARAMETER SENSITIVITY ANALYSIS (RQ2)

Impact of Key Hyper-parameters α , β and γ . To assess the influence of key hyper-parameters on the anomaly detection performance of the proposed model, we conduct a sensitivity analysis on the hyper-parameters α , β , and γ , which control the trade-off among the reconstruction loss, clustering loss, distribution repulsion loss, and penalty term. Figure 3 presents the AUC trends on the Flickr

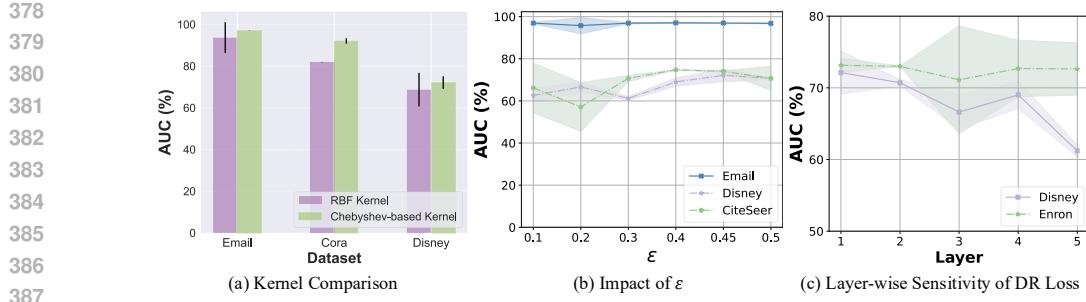


Figure 5: Parameter sensitivities of 1) different kernel methods for MMD calculation; 2) impact of hyper-parameter ϵ that controls the minimum proportion of samples per cluster; 3) impact of applying distribution repulsion (DR) loss to different GCN layers.

and Cora datasets across varying values $[1e - 3, 1e3]$. The observations are shown as follows: (1) Too large hyper-parameters may cause the clustering loss, self-discriminative loss or penalty loss to dominate the reconstruction loss, which can lead to the learned embeddings losing their original semantic information, thereby increasing the difficulty of training; (2) Moderate values are beneficial for preserving semantic information while achieving better performance, as the multiple objectives compete with each other during training. (3) When the trade-off values are too small, the model tends to prioritize low-dimensional reconstruction at the expense of discriminative features, resulting in poor separation between normal and anomalous nodes and an underdeveloped decision boundary. (4) Our model exhibits a broad safe operating region (e.g., $\alpha, \beta \in [0.01, 1]$) with consistently stable performance, enabling a reliable fixed default configuration.

Impact of Different Kernel Methods for the MMD Calculation. The results in Fig. 5(a) show that the Chebyshev-based kernel consistently outperforms the conventional RBF kernel across all three datasets. We attribute this improvement to the geometric properties of the metrics: the RBF kernel aggregates differences across all dimensions, which potentially dilutes anomalous deviations through a “smoothing” effect in high-dimensional spaces, while the Chebyshev kernel focuses exclusively on the maximum discrepancy along any single dimension. Given that anomalies generally exhibit as deviations in specific feature subsets rather than uniform global shifts, the Chebyshev kernel property enables the model to capture critical outlier patterns more effectively.

Impact of Trade-off Parameter ϵ . We have included a detailed sensitivity analysis of the diversity loss hyperparameter ϵ in Fig. 5(b). It can be observed that excessively small values may be overly permissive and further enable cluster collapse, thereby compromising performance across all datasets. Instead, $\epsilon = 0.5$ denotes the strictest setting, which may slightly hurt performance because forcing an exact 50:50 balance may be too rigid for the nature of the data.

Layer-wise Sensitivity Analysis for Distribution Repulsion Loss. We conduct a sensitivity analysis for the distribution repulsion (DR) Loss by imposing it on different GCN layers (from 1st to 5th) and compare the anomaly detection performance. Fig. 5(c) shows that performance consistently decreases as the layer depth increases from the 1st layer to the 5th layer, with the first layer yielding optimal results.

Impact of GNN Backbone. We also conduct a parameter analysis of the adopted different GNN backbones in Figure 4, which includes GCN (Kipf & Welling, 2019), GIN (Xu et al., 2019), and GAT (Veličković et al., 2018). This figure compares the AUC performance of the above-mentioned backbones on three datasets: Cora, Email, and CiteSeer. GCN outperforms the others across Cora

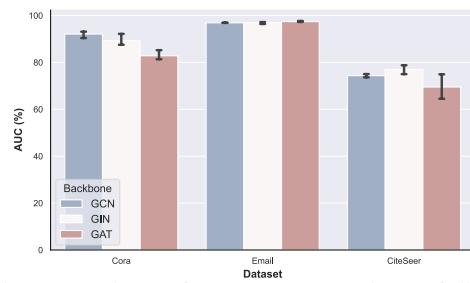


Figure 4: The performance comparison of different adopted backbones on the Cora, Email, and CiteSeer datasets.

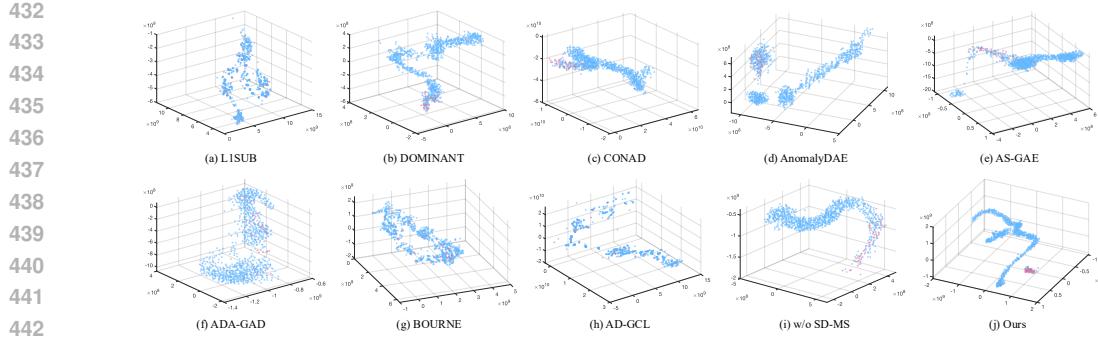


Figure 6: The comparison of t-SNE visualizations on the Email dataset for all baseline methods and the proposed model. Normal nodes are depicted in blue, while anomalous nodes are shown in red.

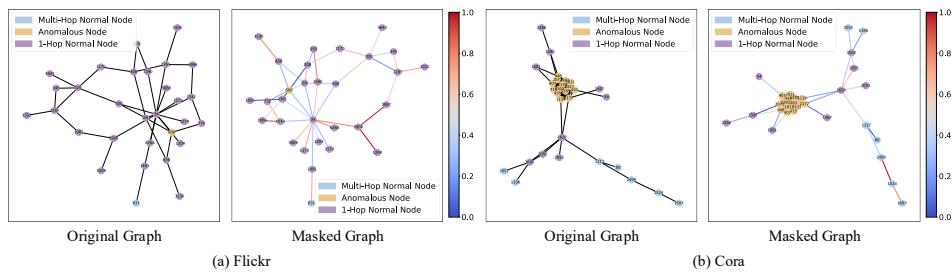


Figure 7: Visualization of the sampled subgraph topology on the Flickr and Cora datasets. The color bar represents the masking strength of edge connections.

and Email, with the largest gap on Cora. GAT follows closely, especially on CiteSeer and Email, while GIN shows the weakest performance, particularly on Email. While GCN and GIN show similar performance with no significant gap, GAT tends to perform weaker. This is likely because GAT already incorporates masking in its mechanism, which adds an additional optimization burden to the self-discriminative module. It is worth noting that all three backbones outperform the other baselines.

4.4 QUALITATIVE STUDY (RQ3&RQ4)

Embedding Visualizations. First, a more intuitive demonstration of the discriminative power of the learned embeddings is provided through t-SNE visualizations across eight baselines and the ablated model **w/o** Self-Discriminative Masking Spoiler (SD-MS), as shown in Figure 6. Compared to the baselines, the proposed model achieves a significantly better separation between normal and anomalous nodes. The anomalies are tightly clustered and clearly isolated from the majority of normal nodes, indicating that our model learns a more discriminative and structured embedding space. In contrast, most baseline methods, such as L1SUB, DOMINANT, and AD-GCL, show scattered or overlapping distributions of anomalous nodes, making them harder to detect. Even models like AS-GAE and CONAD, which display relatively better anomaly grouping, still fail to achieve the level of compactness and separation seen in our approach. The comparison with the degraded model (i) further confirms the effectiveness of the self-discriminative mask spoiler, as removing the SD-MS component results in more dispersed and less distinguishable anomaly embeddings.

Mask Visualizations. To intuitively illustrate the effectiveness of the learned mask, we display the masked graph structure (in Figure 7) and the learned mask (please refer to Appendix F). The visualized subgraph consists of 30 randomly sampled nodes, colored according to their corresponding classes. The key observations are as follows: **1)** The edge weights between inter-class nodes are significantly reduced, as indicated by edges predominantly colored in shades of blue. **2)** Edges connecting intra-class nodes tend to appear red. For example, in Subfigure (b), all anomalous nodes are interconnected with red edges. Although some normal nodes are linked by blue edges, they can still aggregate information through other undrawn normal nodes.

486 **Ablation Visualizations of SD-MS.** We also provide Figure 8 to present histograms of the L_2 -
 487 norm distances between the learned node embeddings and vectors sampled from a standard Gaus-
 488 sian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_k)$, comparing the cases with and without the proposed self-discriminative
 489 masking spoiler (SD-MS) module on Cora (re-
 490 sults on other datasets are presented in Appendix
 491 F due to page limitation) dataset. Here, the purple
 492 bars represent the distance distribution of
 493 normal nodes, while the blue bars correspond to
 494 anomalous nodes. This metric serves as a proxy
 495 to evaluate how well the embeddings of anomalous
 496 and normal nodes are separated in the latent
 497 space. The application of the SD-MS module
 498 significantly increases the separation between
 499 the distance distributions of normal and anomalous
 500 nodes. Specifically, in all datasets, SD-MS
 501 reduces the overlap between the two classes, re-
 502 sulting in more distinguishable and polarized
 503 score distributions: normal nodes cluster near
 504 lower distances, while anomalous nodes shift
 505 toward higher distances.

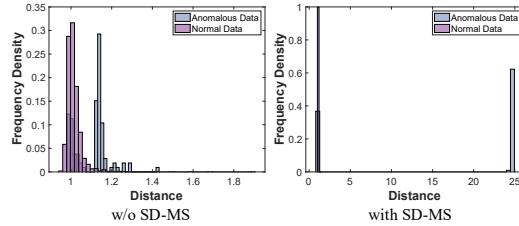
506 4.5 ABLATION STUDY (RQ5)

507 Here, we conduct an ablation study to
 508 demonstrate the effectiveness of each com-
 509 ponent in the proposed framework. Specif-
 510 ically, we design three degraded mod-
 511 ules, including **1) w/o Reconstruction vari-
 512 ant (which applies the learnable cluster-
 513 ing directly to the GCN encoder), 2)**
 514 Reconstruction-based Outlier Detector (*i.e.*,
 515 **w/o Clustering-based Outlier Detector**); **3)**

516 **w/o Self-Discriminative Masking Spoiler (SD-MS).** Note that we utilize the percentile filter strategy
 517 to get the pseudo labels for the degraded model Reconstruction OD, which is set to the actual anomaly
 518 ratio of all samples. The experimental results are shown in 4, which clearly demonstrate that the full
 519 model consistently outperforms all degraded variants across datasets, confirming the contributions
 520 of the clustering-based OD as well as the SD-MS module. In contrast, replacing the detection
 521 mechanism with reconstruction error yields significantly inferior performance, underscoring the
 522 necessity of the proposed components for effective anomaly detection. **The results also show that**
 523 **removing the reconstruction component leads to a significant performance drop, which suggests the**
 524 **necessity of this component in our method.** Besides, please note that the diversity loss cannot be
 525 ablated, as it is essential for preventing class collapse in the clustering layer.

526 5 CONCLUSION

527 In this work, we addressed the “Homophily Trap”, a fundamental challenge in graph outlier detection
 528 where message-passing mechanisms of graph convolution operation inadvertently blur the distinction
 529 between normal and anomalous nodes. Our proposed end-to-end framework successfully dismantles
 530 this trap by synergistically combining several key innovations. The core of our approach is a self-
 531 discriminative masking spoiler that intelligently re-weights graph connections, effectively filtering
 532 out contaminating information from dissimilar neighbors without destroying the underlying graph
 533 structure. This masking process is guided in a fully unsupervised manner by an adaptive clustering-
 534 based detector, which provides crucial pseudo-labels and frees the model from relying on arbitrary
 535 thresholds. To maintain stability and prevent the common pitfall of class collapse during optimiza-
 536 tion, we integrated a diversity loss. The joint optimization of these elements allows our model to learn a
 537 powerfully discriminative latent space, culminating in state-of-the-art performance on a wide range
 538 of benchmark datasets. While the current model focuses on a single class of anomalies, future work
 539 will explore extending this framework to multi-class outlier detection scenarios.



505 Figure 8: Distribution histograms of embedding
 506 distances with or w/o SD-MS on Cora. The
 507 distance is computed between learned embeddings
 508 and vectors sampled from a standard Gaussian
 509 distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_k)$ through L_2 -norm.

510 Table 2: Ablation Study on Email, Cora, and Flickr
 511 (mean (%) \pm std (%)).

Methods/Datasets	Email	Cora	Flickr
w/o Reconstruction	50.80\pm3.10	52.20\pm14.33	49.24\pm2.35
Reconstruction OD	84.12 \pm 1.11	79.51 \pm 1.60	56.70 \pm 5.15
w/o SD-MS	87.05 \pm 4.66	78.84 \pm 2.68	58.40 \pm 6.61
Ours	96.98\pm0.08	92.09\pm1.26	67.08\pm0.16

540 REFERENCES
541

542 Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
543 based local outliers. In *Proceedings of the ACM SIGMOD International Conference on Manage-
544 ment of Data*, pp. 93–104, 2000.

545 Jingyan Chen, Guanghui Zhu, Chunfeng Yuan, and Yihua Huang. Boosting graph anomaly detection
546 with adaptive message passing. In *Proceedings of the International Conference on Learning
547 Representations*, 2024.

548 Zhenxing Chen, Bo Liu, Meiqing Wang, Peng Dai, Jun Lv, and Liefeng Bo. Generative adversarial
549 attributed network anomaly detection. In *Proceedings of the ACM International Conference on
550 Information & Knowledge Management*, pp. 1989–1992, 2020.

552 Dawei Cheng, Yao Zou, Sheng Xiang, and Changjun Jiang. Graph neural networks for financial
553 fraud detection: a review. *Frontiers of Computer Science*, 19(9):1–15, 2025.

555 Barry M Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, and Tilman Plehn. Anomalies,
556 representations, and self-supervision. *SciPost Physics Core*, 7(3):056, 2024.

557 Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
558 networks. In *Proceedings of the SIAM International Conference on Data Mining*, pp. 594–602.
559 SIAM, 2019.

561 Xiangyu Dong, Xingyi Zhang, Yanni Sun, Lei Chen, Mingxuan Yuan, and Sibo Wang. Smoothggnn:
562 Smoothing-aware gnn for unsupervised node anomaly detection. In *Proceedings of the ACM on
563 Web Conference*, pp. 1225–1236, 2025.

564 Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
565 neural network-based fraud detectors against camouflaged fraudsters. In *Proceedings of the ACM
566 International Conference on Information & Knowledge Management*, pp. 315–324, 2020.

568 Haoyi Fan, Fengbin Zhang, and Zuoyong Li. Anomalydae: Dual autoencoder for anomaly detection
569 on attributed networks. In *Proceedings of the IEEE International Conference on Acoustics, Speech
570 and Signal Processing*, pp. 5685–5689. IEEE, 2020.

571 Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
572 learning. *Advances in Neural Information Processing Systems*, 32, 2019.

574 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
575 kernel two-sample test. *Journal of Machine Learning Research*, 13(1):723–773, 2012.

577 Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering
578 with local structure preservation. In *Proceedings of International Joint Conference on Artificial
579 Intelligence*, volume 17, pp. 1753–1759, 2017.

580 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
581 *Advances in Neural Information Processing Systems*, 30, 2017.

583 Junwei He, Qianqian Xu, Yangbangyan Jiang, Zitai Wang, and Qingming Huang. Ada-gad: Anomaly-
584 denoised autoencoders for graph anomaly detection. In *Proceedings of the AAAI Conference on
585 Artificial Intelligence*, volume 38, pp. 8481–8489, 2024.

586 Yejin Kim, Youngbin Lee, Minyoung Choe, Sungju Oh, and Yongjae Lee. Temporal graph networks
587 for graph anomaly detection in financial networks. In *Proceedings of the AAAI Workshop on AI in
588 Finance for Social Impact*, 2024.

590 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
591 arXiv:1412.6980*, 2014.

593 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
594 *Proceedings of the International Conference on Learning Representations*, 2019.

594 Do Quoc Le, Taeyoel Jeong, H Eduardo Roman, and James Won-Ki Hong. Traffic dispersion graph
 595 based anomaly detection. In *Proceedings of the Symposium on Information and Communication*
 596 *Technology*, pp. 36–41, 2011.

597 Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. Radar: Residual analysis for anomaly detection in
 598 attributed networks. In *Proceedings of the International Joint Conference on Artificial Intelligence*,
 599 volume 17, pp. 2152–2158, 2017.

600 Jie Liu, Mengting He, Xuequn Shang, Jieming Shi, Bin Cui, and Hongzhi Yin. Bourne: Bootstrapped
 601 self-supervised learning framework for unified graph anomaly detection. In *Proceedings of the*
 602 *IEEE International Conference on Data Engineering*, pp. 2820–2833. IEEE, 2024.

603 Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and choose:
 604 a gnn-based imbalanced learning approach for fraud detection. In *Proceedings of the ACM on Web*
 605 *Conference*, pp. 3168–3177, 2021a.

606 Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection
 607 on attributed networks via contrastive self-supervised learning. *IEEE Transactions on Neural*
 608 *Networks and Learning Systems*, 33(6):2378–2392, 2021b.

609 Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang, and Shan Xue.
 610 Comga: Community-aware attributed graph anomaly detection. In *Proceedings of the ACM*
 611 *International Conference on Web Search and Data Mining*, pp. 657–665, 2022.

612 Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Can classic gnns be strong baselines for graph-level tasks?
 613 simple architectures meet excellence. In *Proceedings of the International Conference on Machine*
 614 *Learning*, 2025.

615 Benjamin Miller, Nadya Bliss, and Patrick Wolfe. Subgraph detection using eigenvector 11 norms.
 616 *Advances in Neural Information Processing Systems*, 23, 2010.

617 Seong Ho Pahng and Sahand Hormoz. Improving graph neural networks by learning continuous edge
 618 directions. In *Proceedings of the International Conference on Learning Representations*, 2025.

619 Junjun Pan, Yixin Liu, Yizhen Zheng, and Shirui Pan. Prem: A simple yet effective approach for
 620 node-level graph anomaly detection. In *Proceedings of the IEEE International Conference on*
 621 *Data Mining*, pp. 1253–1258. IEEE, 2023.

622 Mathilde Papillon, Guillermo Bernardez, Claudio Battiloro, and Nina Miolane. Topotune: A frame-
 623 work for generalized combinatorial complex neural networks. In *Proceedings of the International*
 624 *Conference on Machine Learning*, 2025.

625 Hezhe Qiao and Guansong Pang. Truncated affinity maximization: One-class homophily modeling for
 626 graph anomaly detection. *Advances in Neural Information Processing Systems*, 36:49490–49512,
 627 2023.

628 Michael Scholkemper, Xinyi Wu, Ali Jadbabaie, and Michael T Schaub. Residual connections and
 629 normalization can provably prevent oversmoothing in gnns. In *Proceedings of the International*
 630 *Conference on Learning Representations*, 2025.

631 Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
 632 supervised graph-level representation learning via mutual information maximization. *arXiv preprint*
 633 *arXiv:1908.01000*, 2019.

634 Ziheng Sun, Chris Ding, and Jicong Fan. Lovász principle for unsupervised graph representation
 635 learning. In *Advances in Neural Information Processing Systems*, 2023.

636 Ziheng Sun, Xudong Wang, Chris Ding, and Jicong Fan. Learning graph representation via graph
 637 entropy maximization. In *Proceedings of the International Conference on Machine Learning*,
 638 2024.

639 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
 640 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *Proceedings*
 641 *of the International Conference on Learning Representations*, 2022.

648 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 649 Bengio. Graph attention networks. In *Proceedings of the International Conference on Learning*
 650 *Representations*, 2018.

651

652 Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun Zhou,
 653 Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial fraud detection.
 654 In *Proceedings of the IEEE International Conference on Data Mining*, pp. 598–607. IEEE, 2019.

655

656 Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, and Jilong Wang. Deep structure
 657 learning for fraud detection. In *Proceedings of the IEEE International Conference on Data Mining*,
 658 pp. 567–576. IEEE, 2018.

659

660 Łukasz Wawrowski, Andrzej Białas, Adrian Kajzer, Artur Kozłowski, Rafał Kurianowicz, Marek
 661 Sikora, Agnieszka Szymańska-Kwiecień, Mariusz Uchroński, Miłosz Biały, Maciej Olejnik,
 662 et al. Anomaly detection module for network traffic monitoring in public institutions. *Sensors*, 23
 663 (6):2974, 2023.

664

665 Max Welling and Thomas N Kipf. Semi-supervised classification with graph convolutional networks.
 666 In *Proceedings of the International Conference on Learning Representations*, 2016.

667

668 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 669 networks? In *Proceedings of the International Conference on Learning Representations*, 2019.

670

671 Yiming Xu, Zhen Peng, Bin Shi, Xu Hua, Bo Dong, Song Wang, and Chen Chen. Revisiting graph
 672 contrastive learning on anomaly detection: A structural imbalance perspective. In *Proceedings of*
 673 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 12972–12980, 2025.

674

675 Yunpei Xu, Shaokai Wang, Qilong Feng, Jiazhi Xia, Yaohang Li, Hong-Dong Li, and Jianxin Wang.
 676 sccad: Cluster decomposition-based anomaly detection for rare cell identification in single-cell
 677 expression data. *Nature Communications*, 15(1):7561, 2024.

678

679 Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed network
 680 anomaly detection with data augmentation. In *Proceedings of the Pacific-Asia Conference on*
 681 *Knowledge Discovery and Data Mining*, pp. 444–457. Springer, 2022.

682

683 Zheng Zhang and Liang Zhao. Unsupervised deep subgraph anomaly detection. In *Proceedings of*
 684 *the IEEE International Conference on Data Mining*, pp. 753–762. IEEE, 2022.

685

686 Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe Chen. Generative
 687 and contrastive self-supervised learning for graph anomaly detection. *IEEE Transactions on*
 688 *Knowledge and Data Engineering*, 35(12):12220–12233, 2021.

689

690 Yingjie Zhou, Guangmin Hu, and Weisong He. Using graph to detect network traffic anomaly.
 691 In *Proceedings of the International Conference on Communications, Circuits and Systems*, pp.
 692 341–345. IEEE, 2009.

693

694

695 Zhecheng Zhou, Jinhang Wei, Mingzhe Liu, Linlin Zhuo, Xiangzheng Fu, and Quan Zou. Anomalgrn:
 696 deciphering single-cell gene regulation network with graph anomaly detection. *BMC Biology*, 23
 697 (1):73, 2025.

698

699

700

701

702 A PROOF OF PROPOSITION 1
703

704 *Proof.* Assume that the shortest path between node i and j is r , the gradient of activation function in
705 the l -th layer follows $|\nabla \sigma_l| \leq \alpha$, the gradient of aggregating function at layer l satisfies $|\nabla \text{Aggr}_l| \leq \beta$
706 and $\mathbf{z}_i^{(0)} = \mathbf{x}_i$, then the Jacobian at layer l is bounded by:
707

$$708 \quad 709 \quad 710 \quad \left| \frac{\partial \mathbf{z}_j^{(l)}}{\partial \mathbf{x}_i} \right| \leq (\alpha \beta)^l (\mathbf{A}^l)_{ji}. \quad (15)$$

711 Next step, let $\mathcal{N}(j)$ be the neighbor set of node j , we have the Jacobian at layer $l + 1$ via the chain
712 rule for differentiation:
713

$$714 \quad 715 \quad 716 \quad \frac{\partial \mathbf{z}_j^{(l+1)}}{\partial \mathbf{x}_i} = \frac{\partial \sigma_l \left(\text{Aggr}_l \left(\left\{ \mathbf{z}_k^{(l)} : k \in \mathcal{N}(j) \cup \{j\} \right\} \right) \right)}{\partial \text{Aggr}_l} \cdot \frac{\partial \text{Aggr}_l \left(\mathbf{z}_{\mathcal{N}(j)}^{(l)} \right)}{\partial \mathbf{z}_k^{(l)}} \cdot \frac{\partial \mathbf{z}_k^{(l)}}{\partial \mathbf{x}_i}. \quad (16)$$

717 Thus, we will obtain:
718

$$719 \quad 720 \quad 721 \quad \left| \frac{\partial \mathbf{z}_j^{(l+1)}}{\partial \mathbf{x}_i} \right| \leq \alpha \beta \sum_{k \in \mathcal{N}(j)} \left| \frac{\partial \mathbf{z}_k^{(l)}}{\partial \mathbf{x}_i} \right|, \quad (17)$$

722 and the bound would become:
723

$$724 \quad 725 \quad 726 \quad \left| \frac{\partial \mathbf{z}_j^{(l+1)}}{\partial \mathbf{x}_i} \right| \leq \alpha \beta \sum_{k \in \mathcal{N}(j)} (\alpha \beta)^l (\mathbf{A}^l)_{ki}. \quad (18)$$

727 Herein, \mathbf{A}^l represents the adjacency matrix raised to the layer l , the sum $\sum_{k \in \mathcal{N}(j)} (\mathbf{A}^l)_{ki}$ essentially
728 counts the number of paths of length l from node i to node j . This can be further expressed as:
729

$$730 \quad 731 \quad 732 \quad \left| \frac{\partial \mathbf{z}_j^{(l+1)}}{\partial \mathbf{x}_i} \right| \leq (\alpha \beta)^{l+1} (\mathbf{A}^{l+1})_{ji}, \quad (19)$$

733 where $(\mathbf{A}^{l+1})_{ji} = \sum_k \mathbf{A}_{jk} (\mathbf{A}^l)_{ki}$ and $\mathbf{A}_{jk} = 1$ due to $k \in \mathcal{N}(j)$. As r is the shortest distance
734 between node i and j , then the inequality becomes:
735

$$736 \quad 737 \quad 738 \quad \left| \frac{\partial \mathbf{z}_j^{(r+1)}}{\partial \mathbf{x}_i} \right| \leq (\alpha \beta)^{r+1} (\mathbf{A}^{r+1})_{ji}. \quad (20)$$

739 Then finished the proof. □
740

741 B DETAILED ALGORITHM PROCEDURES
742743 C COMPLEXITY ANALYSIS
744

745 Assume that there is a graph of N nodes, each with feature dimension d , E edges, and latent
746 dimension k , the framework:
747

- 748 • The whole encoder adopts an L -layer GCN backbone, where each layer involves two key operations:
749 neighbor aggregation ($\mathcal{O}(E)$) and linear transformation (each layer has a complexity of $\mathcal{O}(N \cdot d \cdot k)$).
750
- 751 • The decoder typically involves a linear transformation to reconstruct the input feature matrix, where
752 complexity is $\mathcal{O}(N \cdot d \cdot k)$. The complexity of computing topology $\hat{\mathbf{A}}$ is $\mathcal{O}(N^2 \cdot k)$.
753
- 754 • The clustering layer computes the similarity between each node's embedding and the cluster
755 centroids and further calculates the KL Divergence loss. Hence, the complexity is $\mathcal{O}(N \cdot c)$, where
756 c is the class number.
757

756 **Algorithm 1** Clustering-guided Edge Reweighting for Graph Outlier Detection (CER-GOD)

757 **Input:** The input graph set \mathcal{G} , dimensions of GCN hidden layers k , trade-off parameters of clustering
 758 loss α and distribution repulsion loss β , and diversity loss γ , learning rate η .
 759 **Output:** The outlier detection scores \mathbf{s} .

760 1: Initialize the parameters \mathbf{M} and Φ of self-discriminative masking spoiler and clustering-based
 761 outlier detector network parameters f_Φ ;
 762 2: Reallocate topology through Eq. (5) and normalized it with $\tilde{\mathbf{A}} + \mathbf{I}_N$;
 763 3: Initialize the cluster centroids $\boldsymbol{\mu}$ via performing K -Means on latent representation $\mathbf{Z} =$
 764 $f_{\mathcal{W}}^{\text{enc}}(\mathbf{X}, \tilde{\mathbf{A}})$;
 765 4: **while** not convergence **do**
 766 5: Obtain the latent \mathbf{Z} and $\mathbf{Z}^{(0)}$ by $\mathbf{Z} = f_{\mathcal{W}}^{\text{enc}}(\mathbf{X}, \tilde{\mathbf{A}})$ and Eq. (2);
 767 6: Calculate the reconstruction loss via Eq. (4);
 768 7: Compute the current cluster assignment distribution Q by Eq. (9);
 769 8: Compute the target cluster assignment distribution P by Eq. (10);
 770 9: Calculate the diversity loss via Eq. (12);
 771 10: Compute the cluster label for sample i via $\hat{y}_i = \arg \max_j (q_{ij}), i = 1, 2, \dots, N$;
 772 11: Calculate the distribution repulsion loss based on Eq. (8);
 773 12: Calculate total loss via Eq. (14);
 774 13: Back-propagate masking spoiler and outlier detector networks and update \mathbf{M} , Φ , and $\boldsymbol{\mu}$
 775 respectively;
 776 14: **end while**
 777 15: Calculate the outlier detection scores \mathbf{s} through Eq. (13);
 778 16: **return** The outlier detection scores \mathbf{s} .

779

- 780 • The diversity loss is computed by calculating the proportion of samples assigned to each cluster,
 781 then applying a penalty term. The complexity of this operation is $\mathcal{O}(N \cdot c)$.
- 782 • For ℓ_{dr} , assume that positive set \mathcal{D}_{pos} contains m nodes, intra-calculation consumes $\mathcal{O}(m^2 \cdot k)$ and
 783 $\mathcal{O}((N - m)^2 \cdot k)$. Inter-calculation consumes $\mathcal{O}(m \cdot (N - m) \cdot k)$. In the worst case, it would be
 784 $\mathcal{O}(N^2 \cdot k)$.

785 Thus, the total computational complexity is $\mathcal{O}(L \cdot (E + N \cdot k \cdot d) + N \cdot c + N^2 \cdot k)$.

786 We also provide the running time comparison in Table 3 for reference. Across all four datasets, CER-
 787 GOD demonstrates highly competitive efficiency, consistently ranking among the fastest methods.
 788 On Email, Cora, and Disney, CER-GOD achieves second-tier performance, running notably faster
 789 than most baselines. These results confirm that CER-GOD provides an effective balance between
 790 accuracy and efficiency, making it a practical choice for large-scale anomaly detection.

791
 792
 793
 794 Table 3: Running time (in seconds) comparison on four datasets, the results are recorded at the time
 795 of running 200 epochs for fairness.

Methods/Datasets	Email	Cora	Disney	CiteSeer
DOMINANT (Ding et al., 2019)	5.6278	17.7207	1.4391	49.0877
AnomalyDAE (Fan et al., 2020)	4.0151	6.1372	0.9438	24.4646
CONAD (Xu et al., 2022)	9.0529	33.0815	2.9236	73.6654
AS-GAE (Zhang & Zhao, 2022)	15.9610	24.7159	2.8146	27.9659
ADA-GAD (He et al., 2024)	52.4239	321.3380	7.2619	1258.2931
BOURNE (Liu et al., 2024)	11.5739	21.2274	5.9707	30.1851
AD-GCL (Xu et al., 2025)	1991.0725	5510.4095	116.0679	3223.6459
CER-GOD	42.4534	82.8717	6.7685	101.0798

803
 804
 805 **D EXPERIMENT ON LARGE-SCALE GRAPH BENCHMARK**

806 We evaluated CER-GOD on the OGB-Proteins dataset, which contains **132,534** nodes and **79,164,284**
 807 edges, where CER-GOD is compared with 5 state-of-the-art baselines: DOMINANT (Ding et al.,
 808 2019), ComGA (Luo et al., 2022), SL-GAD (Zheng et al., 2021), CoLA (Liu et al., 2021b) and
 809 TAM (Qiao & Pang, 2023). As shown in the table below (note that we reported the performance

810 of all baseline methods directly from (Qiao & Pang, 2023)), CER-GOD scales successfully and
 811 outperforms several state-of-the-art baselines in comparison.
 812

814 Table 4: AUCs (%) of different graph anomaly detection algorithms on large-scale dataset OGB-
 815 Proteins. **The best result is bolded.**

Methods/Datasets	DOMINANT	ComGA	CoLA	SL-GAD	TAM	CER-GOD
OGB-Proteins	72.67	71.34	71.42	73.71	74.49	74.81

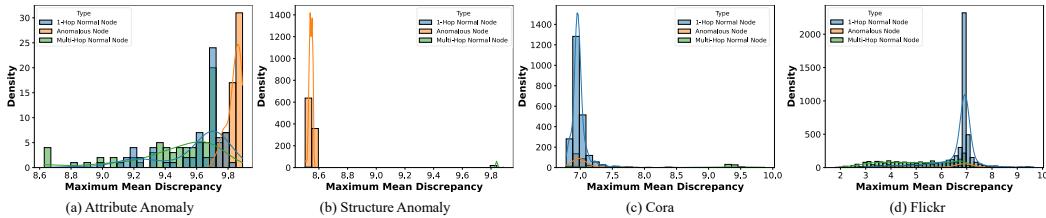
E DISCUSSION OF CLUSTER NUMBER SELECTION

816 In this paper, we focus on the unsupervised outlier detection task. In a fully unsupervised setting,
 817 we lack labels to map multiple learned clusters to the binary ground truth. For example, if we
 818 set $c = 5$, determining which specific subsets of clusters represent "normal" and which represent
 819 "anomalous" requires additional heuristics (e.g., "the smallest 3 clusters are anomalies"), which
 820 introduces significant instability and potential bias. Therefore, we followed the standard one-class
 821 classification setting and set the number of clusters as $c = 2$, as many previous works did: The
 822 "anomalous candidate cluster" does not assume all anomalies are homogeneous, but instead treats
 823 anomalous patterns (e.g., point/structural/attribute anomalies) as different manifestations of deviating
 824 from the manifold with respect to the normal pattern.

825 Regarding computational cost, as analyzed in Appendix C, the reconstruction process is indeed
 826 a major time-consuming component in our method. Compared to the reconstruction component,
 827 the clustering overhead is linear to N and proportional to the small c (here $c = 2$). Thus, adding
 828 clustering does not change the overall asymptotic time complexity and adds only a modest overhead
 829 in practice.

F SUPPLEMENTARY VISUALIZATION RESULTS

830 **Homophily Trap Visualizations.** Here, we supplement four additional histograms of maximum
 831 mean discrepancy distances on two synthetic datasets (Attribute Anomaly and Structure Anomaly),
 832 and two real-world datasets (Cora and Flickr) in Fig. 9. The distance is computed between the
 833 standard Gaussian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ and three types of node embeddings (normal node multi-
 834 hop away from anomalies, normal node 1-hop away from anomalies, and anomalous nodes). The
 835 embeddings are obtained through a single-layer graph convolution operation without any additional
 836 linear projection layer, isolating the pure effects of graph convolution. The synthetic datasets, derived
 837 from (Zhang & Zhao, 2022), demonstrate the homophily trap phenomenon in data containing either
 838 attribute anomalies or structure anomalies alone. Real-world data further exhibits both anomaly types
 839 simultaneously. This confirms the presence of the 'homophily trap' in real-world applications: graph
 840 convolution significantly influences the embeddings of neighboring normal nodes, causing them to
 841 become nearly indistinguishable from 1-hop anomalous nodes.



862 Figure 9: The histograms of maximum mean discrepancy distances on two synthetic datasets and two
 863 real-world datasets.

Embedding Visualizations. Figure 10 presents 3D scatter plots comparing the performance of various anomaly detection methods on the Cora dataset. The blue points represent normal data, and the pink points represent anomalies. Overall, the proposed method CER-GOD achieves the best separation between normal and anomalous points, demonstrating superior performance compared to other methods such as L1SUB, DOMINANT, and CONAD, which show less distinct separation. While methods like AS-GAE and ADA-GAD improve anomaly detection, the proposed approach clearly outperforms all, providing the most effective distinction between normal and anomalous data.

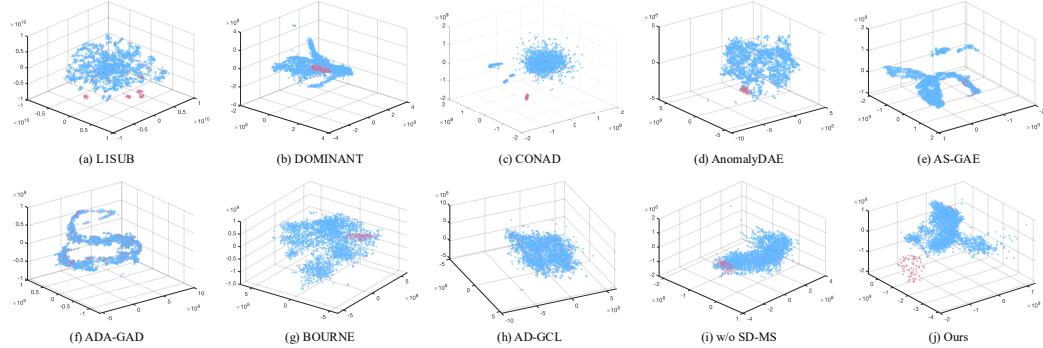


Figure 10: The comparison of t-SNE visualizations on the Cora dataset for all baseline methods and the proposed model. Normal nodes are depicted in blue, while anomalous nodes are shown in red.

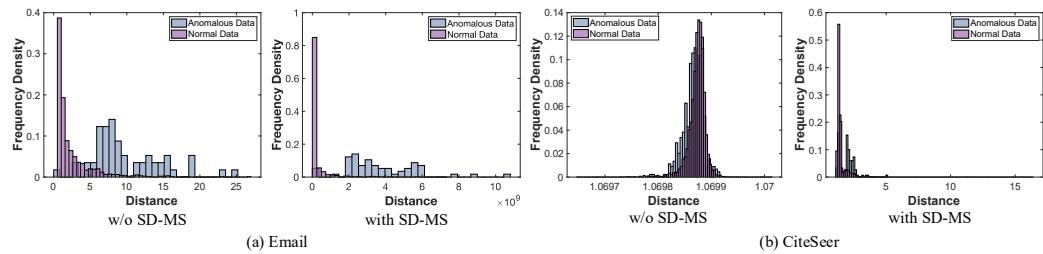


Figure 11: Distribution histograms of embedding distances with or w/o SD-MS on Email and CiteSeer datasets. The distance is computed between learned embeddings and vectors sampled from a standard Gaussian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_{d'})$ through L_2 -norm.

Ablation Visualizations of SD-MS. Similar conclusions can be observed in Figure 11. The area of the overlapping region obviously decreases after the masking procedure. Also, the distance distributions of normal and anomalous nodes are more discriminative intuitively.

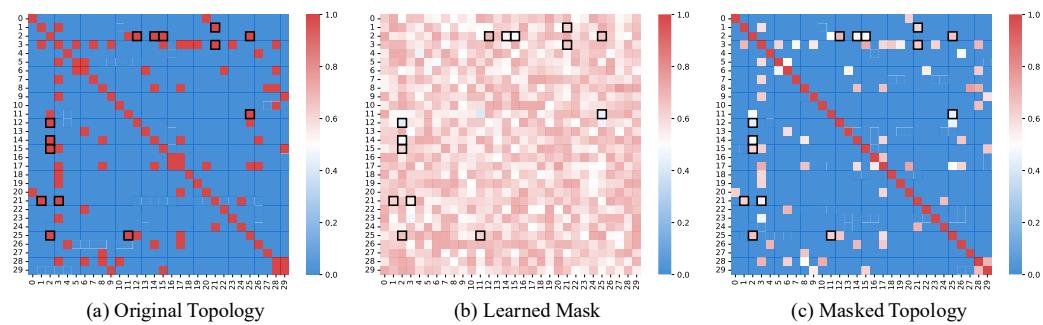


Figure 12: Visualization of the learned mask in the proposed model on the Flickr dataset. The color bar represents the masking strength of edge connections. Connections between different-class node pairs are highlighted with black frames.

918 **Mask Visualizations.** The learned mask and its impact are illustrated in Figure 12. A subgraph
 919 consisting of 30 randomly selected nodes is shown, with elements corresponding to different-class
 920 node pairs highlighted in a black frame. It is clearly evident that the relationships framed in the
 921 figure are significantly weakened, as most of them are close to white or even in blue, indicating high
 922 masking strength. For example, the relationships between Node 12 and Node 2, as well as between
 923 Node 25 and Node 11, exhibit such weakened connections.

925 G DATASETS

927 The detailed statistical descriptions are shown in Table 5. We also report the number of edges with
 928 “Homophily Trap” (HT) for the reference. Specifically, we adopt the Email and Cora in (Zhang &
 929 Zhao, 2022), CiteSeer, Flickr in (Pan et al., 2023), [Amazon](#), [OGB-Proteins](#) in (Qiao & Pang, 2023),
 930 and Disney, Enron, [Reddit](#) in PyGOD¹.

932 **Table 5: Detailed information of the graph benchmark datasets.**

Dataset	# Nodes	# Edges	# Average [E]	# Edges w/o HT	# Average [E] w/o HT	Anomaly Rate	Data Types
Email	1,005	28,275	28,1300	22,190	22,0796	6.01%	Communication Network
Flickr	7,575	482,555	63,7036	428,301	56,5413	6.24%	Social Network
Cora	2,708	15,045	5,5557	14,383	5,3112	4.07%	Citation Network
CiteSeer	3,327	10,275	3,0883	9,563	2,8744	4.72%	Citation Network
Disney	124	335	2,7016	318	2,5645	4.80%	Organic
Enron	13,533	176,987	13,0782	176,794	13,0639	0.04%	Organic
Reddit	10,984	168,016	15,2964	159,688	14,5382	3.30%	Organic
Amazon	10,244	351,216	34,3521	283,594	27,7381	6.66%	Co-review
OGB-Proteins	132,534	79,164,284	597,3130	79,164,284	597,3130	4.50%	Biology Network

942 H DETAILED EXPERIMENTAL SETTINGS

- 944 • **Trade-off Parameters:** For the proposed method, there are three critical hyper-parameters, α , β ,
 945 and γ , in their loss functions, which control the contributions of the clustering loss and distribution
 946 repulsion loss, and diversity loss, respectively. Section 4.3 includes the evaluation of the impact of
 947 variations in the values of all hyper-parameters on the anomaly detection performance. [For our
 948 main experiments, the complete hyperparameter configurations are summarized in Table 6.](#)
- 949 • **Baseline Settings:** All baselines are reproduced via publicly available code with their default
 950 parameter settings. Particularly, we employ the same architecture of the backbone network as the
 951 proposed method to ensure a fair comparison.
- 952 • **Training Details:** We utilize Adam (Kingma & Ba, 2014) for training. Besides, we set the learning
 953 rate η to 5e-5 with the total training epochs to 300. For the proposed model, a 3-layer GCN
 954 backbone is adopted for the outlier detector, and the hidden dimension is set to 16.
- 955 • **Implementation:** All experiments are executed on the NVIDIA Tesla H100 GPU (80 GB) with
 956 Intel Xeon Platinum 8480CL CPU.

958 **Table 6: Detailed hyper-parameter settings on all datasets.**

Hyper-parameters	Email	Cora	Disney	Flickr	CiteSeer	Enron	Reddit	Amazon
α	0.001	0.1	0.001	0.1	0.001	0.001	10	10
β	0.001	10	0.01	0.001	1	1	0.001	0.1
γ	1	1	1	1	1	1	1	1

965 I RELATED WORK

967 I.1 GRAPH NEURAL NETWORK

969 Graph neural networks (GNNs) have emerged as a dominant framework for modeling graph-structured
 970 data, owing to their ability to aggregate information from a node’s neighbors based on the underlying

971 ¹<https://github.com/pygod-team/data>

972 topology. Over the past decade, a wide range of architectural innovations have been introduced
 973 to improve their expressivity, efficiency, and generalization, spanning foundational models such
 974 as GCN, GraphSAGE, and GIN to more recent advances like InfoGraph and kernel-based graph
 975 learning (Welling & Kipf, 2016; Hamilton et al., 2017; Xu et al., 2019; Sun et al., 2019; 2023).
 976 GNNs are applicable to both node-level and graph-level tasks, with the latter often relying on readout
 977 operations to map a graph into a vector space. Recent research has further expanded the landscape
 978 (Scholkemper et al., 2025; Pahng & Hormoz, 2025; Sun et al., 2024). For example, Luo et al.
 979 (2025) introduced GNN+, showing that classical GNNs augmented with edge features, normalization,
 980 dropout, residual connections, feed-forward layers, and positional encodings can match or outperform
 981 graph Transformers on graph-level tasks while being more efficient; Papillon et al. (2025) also
 982 presented TopoTune, extending GNNs to topological deep learning via Generalized Combinatorial
 983 Complex Neural Networks that capture higher-order interactions with reduced complexity.
 984
 985

986 I.2 GRAPH OUTLIER DETECTION

987
 988 Node-level outlier detection on graphs has developed through several methodological paradigms,
 989 each emphasizing different aspects of structural and attribute information. Reconstruction-based
 990 methods (Ding et al., 2019; Fan et al., 2020) aim to rebuild node attributes or graph structures
 991 using autoencoders, flagging nodes with high reconstruction errors as anomalies. Prediction-based
 992 methods (e.g., Li et al. (2017)) infer node features or links based on neighbors or learned patterns,
 993 where deviations from predictions indicate abnormality. Contrastive learning-based methods (Liu
 994 et al., 2021b; Dillon et al., 2024; Xu et al., 2025) distinguish normal and abnormal behaviors by
 995 learning robust node representations through contrasting positive and negative samples, thereby
 996 enlarging margins between inliers and outliers. Distance or deviation-based methods (Chen et al.,
 997 2020; Breunig et al., 2000) measure statistical divergence in local neighborhoods, leveraging density
 998 or clustering cues to spot anomalies. Beyond these categories, hybrid and advanced designs have
 999 emerged: adversarial approaches like AS-GAE (Zhang & Zhao, 2022) enhance discrimination via
 1000 perturbation; boundary-aware representations such as BOURNE (Liu et al., 2024) and adaptive
 1001 augmentation in ADA-GAD (He et al., 2024) refine normality decision boundaries; and interpretable
 1002 designs like CONAD (Xu et al., 2022) integrate attention for anomaly explanation. Recent efforts also
 1003 target robustness under homophily and heterophily by incorporating denoising strategies, geometric
 1004 embeddings (e.g., hyperbolic spaces), and transformer-style encoders to mitigate over-smoothing
 1005 and over-squashing. Collectively, these approaches represent a progression from early subspace and
 1006 residual scoring to more sophisticated adversarial, contrastive, and one-class objectives, reflecting the
 1007 field’s ongoing pursuit of greater accuracy, interpretability in node-level anomaly detection.
 1008
 1009

1010 I.3 GRAPH REWRITING FOR GRAPH MINING

1011
 1012 For the homophily trap issue, graph rewriting is a direct solution that aims at breaking the connection
 1013 between inter-class nodes while keeping intra-class connections. Dou et al. (2020) raised a label-
 1014 aware similarity measure to identify informative neighbors, use reinforcement learning to determine
 1015 the optimal number to select, and aggregate the chosen neighbors across different relations. Liu et al.
 1016 (2021a) proposed that for the fraud target node, the redundant links could be filtered by choosing
 1017 neighbors that are far from the target, measured by the distance, and removing them from the
 1018 neighbor set. And the necessary links, which are beneficial for fraud prediction, would be created
 1019 by choosing similar nodes of the fraud class and regarding them as neighbors. Qiao & Pang (2023)
 1020 calculated the Euclidean distance and removed the relatively farther neighbor nodes for one node,
 1021 finally adopting the similarity of nodes to detect anomalies. Gasteiger et al. (2019) designed the
 1022 Graph Diffusion Convolution to aggregate information from a larger neighborhood by constructing it
 1023 through a new graph, generated by sparsifying a generalized form of graph diffusion. Topping et al.
 1024 (2022) introduced a new combinatorial edge-based curvature, the Balanced Forman curvature, which
 1025 provides a sharp lower bound to the standard Ollivier curvature on graphs, and demonstrated that
 negatively curved edges contribute to this phenomenon. The limitations of current works have been
 discussed in Section 3.

J REPRODUCIBILITY STATEMENT

To ensure full reproducibility, our source code is provided in the supplementary material. We also plan to release the curated training dataset and final model weights. The experimental framework is described throughout the paper for transparency, and details on hardware details, model configurations, and hyper-parameters settings can be found in Appendix H. Dataset resources are summarized in Appendix G, and all evaluation benchmarks, which are publicly available, are listed in Section 4.1.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

The conceptual framework and core ideas outlined in this paper represent the authors' original contributions. AI-driven language models were employed solely as auxiliary tools to support specific well-defined tasks. These tasks encompassed implementing basic utility functions, and assisting with manuscript translation and linguistic polishing. The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079