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ABSTRACT

Graph outlier detection is a critical task for identifying rare, deviant patterns in
graph-structured data. However, prevalent methods based on graph convolution are
fundamentally challenged by the “Homophily Trap”: the aggregation of features
from neighboring nodes inadvertently contaminates the representations of normal
nodes near anomalies, blurring their distinctions. To overcome this limitation, we
propose a Clustering-guided Edge Reweighting framework for Graph Outlier De-
tection (CER-GOD), which jointly optimizes a self-discriminative masking spoiler
with an adaptive clustering-based outlier detector. The masking spoiler learns
to selectively weaken the influence of heterogeneous neighbors, preserving the
discriminative power of node embeddings. This process is guided by the clustering
detector, which generates pseudo-labels in an unsupervised manner, thereby elimi-
nating the need for predefined anomaly thresholds. To ensure robust optimization
and prevent class collapse—a failure mode exacerbated by the homophily trap—we
introduce a diversity loss that stabilizes the clustering process. Our end-to-end
framework demonstrates superior performance on multiple benchmark datasets,
establishing a new state-of-the-art by effectively dismantling the homophily trap.

1 INTRODUCTION
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Figure 1: The histograms of maximum mean dis-
crepancy distances and the t-SNE visualization
between standard Gaussian distribution N (0, Id)
and three types of node embeddings (normal node
multi-hop away from anomalies, normal node 1-
hop away from anomalies, and anomalous nodes)
for real-world anomaly on Email dataset. Note
that the embeddings are obtained via a single-layer
graph convolution operation.

Graph outlier detection, which aims to identify
anomalous data (e.g., nodes, subgraphs) deviat-
ing from dominant patterns, is a critical unsuper-
vised learning task with significant real-world
applications in areas like financial fraud detec-
tion, (Kim et al., 2024; Wang et al., 2019; Cheng
et al., 2025), traffic monitoring (Wawrowski
et al., 2023; Le et al., 2011; Zhou et al., 2009),
and biological analysis (Zhou et al., 2025; Xu
et al., 2024), etc. Over the past decades, a vari-
ety of detection strategies have emerged, achiev-
ing remarkable success, such as reconstruction-
based measurements (Ding et al., 2019; Fan
et al., 2020), contrastive learning based strate-
gies (Liu et al., 2021b; Dillon et al., 2024), or
statistical characteristic-based methods (Chen
et al., 2020; Breunig et al., 2000).

Despite their diverse approaches, a foundational
component in many state-of-the-art models is
the graph convolutional (GC) operation, which
learns node representations by aggregating information from local neighborhoods (Xu et al., 2019;
Kipf & Welling, 2019; Sun et al., 2019). However, the effectiveness of GC operations is rooted in the
principle of homophily—the assumption that nearby nodes are similar. This very principle creates
a fundamental conflict in outlier detection. When normal and anomalous nodes are neighbors, the
convolution process blurs their distinctions, a problem recently termed the “Homophily Trap” (He

1
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Figure 2: The architecture of graph outlier detection. The model takes an input graph with its
topology, applies a learnable mask to suppress noisy or irrelevant connections, and encodes the
refined structure using graph convolutional layers. The latent embeddings are then used for graph
reconstruction and clustering-based anomaly prediction. Based on these predictions, normal and
anomalous candidate groups are generated and optimized through distribution repulsion loss. The
framework is jointly optimized with three objectives: reconstruction loss, clustering loss (with a
diversity regularization term), and a distribution repulsion loss.

et al., 2024). This contamination of node embeddings obscures the discriminative features essential
for identifying anomalies, thereby undermining the performance of existing detectors.

To facilitate the understanding of the adverse effect of “Homophily Trap” in graph outlier detection,
here we show empirical evidence of “Homophily Trap” in Figure 1. Formally, a ‘normal node 1-hop
away from anomalies’ denotes a normal node with a direct edge (1-hop distance) to at least one
anomalous node, while a ‘normal node multi-hop away from anomalies’ is a normal node at a distance
of two or more hops from its nearest anomalous neighbor. The embeddings of neighboring normal
nodes are noticeably altered after graph convolution, with minimal distinction between 1-hop normal
and anomalous nodes. This illustrates that: (1) anomalous neighbors can weaken the discriminability
of normal nodes; and (2) this contamination effect decreases with increasing path. For example, when
normal nodes are surrounded by anomalous ones (or vice versa), the aggregation process can blur
the distinction between them, thereby weakening the model’s ability to detect outliers. This issue
is especially severe when the nodes are closely connected, as anomalous neighbors exert stronger
influence through short-range paths. In contrast, the contamination effect diminishes as the path
length increases, suggesting that distant neighbors contribute less to the node’s final representation.

To address this fundamental challenge, we propose a novel framework, termed CER-GOD
(Clustering-guided Edge Reweighting for Graph Outlier Detection), which dismantles the homophily
trap through the joint optimization of two synergistic components: 1) Self-Discriminative Masking
Spoiler, and 2) Clustering-based Outlier Detector, where the architecture is shown in Figure 2.
Specifically, the masking spoiler adaptively fine-tunes the edge weights of the original topology,
thereby weakening or strengthening the degree of information aggregation in GC operations. As a
result, the discriminability between the aggregated embeddings of normal and abnormal nodes is then
enhanced. However, this becomes particularly challenging when node labels are unavailable. Thus,
we further introduce a clustering-based outlier detector, which eliminates the need for predefined
thresholds when identifying anomalies and ensures that nodes aggregate information only from
semantically similar (intra-cluster) neighbors. This enables the identification of candidate normal and
anomalous nodes, which are then jointly optimized with the masking spoiler to further prevent the
aggregation of heterogeneous node types.

Nevertheless, the “Homophily Trap” may potentially lead to class collapse (i.e., all instances are
clustered into a single group) due to incomplete or suboptimal optimization in the early learning
process. To counter this, we further develop a diversity loss that is triggered when class collapse
occurs and gradually reallocates a portion of samples from the dominant cluster to another cluster.
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This ensures the anomalous candidate group remains populated. Finally, we design a new anomalous
score according to the probability confidence learned via the clustering layer. We demonstrate the
superiority of the proposed method over state-of-the-art graph outlier baselines through comprehensive
experiments on multiple benchmark datasets. The main contributions of this paper are summarized
as follows:

• A Novel Approach to Counter the Homophily Trap: We provide a rigorous analysis of the
“Homophily Trap” and introduce a self-discriminative masking spoiler that adaptively re-weights
the graph topology to mitigate the contaminating influence of heterogeneous neighbors.

• Threshold-Free Anomaly Detection: We propose an adaptive clustering-based detector that
generates pseudo-labels to guide the masking process in a fully unsupervised manner, eliminating
the reliance on arbitrary, predefined thresholds for outlier identification.

• Robust Optimization with Diversity Loss: We introduce a diversity loss function that effec-
tively prevents class collapse during clustering, ensuring the stability and reliability of the joint
optimization framework.

2 METHODOLOGY

2.1 PRELIMINARY AND MOTIVATION

Given a graph G = {V, E}, where V = {v1, v2, . . . , vN} denotes the set of nodes and E denotes the
set of edges, each node is associated with an attribute matrix x ∈ R1×d, and the graph structure
is represented by an adjacency matrix A ∈ {0, 1}N×N , where Aij = 1 if the presence of an edge
between node vi and node vj . In graph outlier detection tasks, the objective is to learn a discriminative
embedding in a latent space that effectively separates normal nodes from anomalous ones, which can
be initially formulated as follows:

max
f

ℓ(f(Gnormal), f(Gabnormal)), s(f(G)) =
{
0, si ≤ τ,

1, otherwise,
(1)

where ℓ(·), f(·) and s(·) denote distribution measurement, the graph representation learner, and the
anomaly detector that assigns an anomaly score si to each node, respectively. If si exceeds the
threshold τ , the i-th node is classified as anomalous, and its label yi is set to 1.

To facilitate the learning of graph embeddings, an L-layer Graph Convolutional Network is utilized
to learn the node representations at each l-th layer:

z
(l)
i = Aggr(z(l−1)

i , z
(l−1)
j : j ∈ N (i)), (2)

where N (i) is the neighbor node set of the i-th node, Aggr(·) illustrates to update the representation of
a node by aggregating the information of its neighbors. zi ∈ R1×k denotes the latent representation of
node vi, initialized as z(0)i = xi. Although aggregating information along with the graph structure has
achieved success in all kinds of fields, for the outlier detection task, it still brings several challenges:

• The aggregation operation along graph edges may propagate anomalous information from anoma-
lous nodes to neighboring normal nodes, thereby contaminating their representations.

• According to the over-squashing phenomenon (Topping et al., 2022), as the shortest path distance
between anomalous and normal nodes increases, the extent of information propagation (which is
also known as the degree of contamination) diminishes.

Towards illustrating these challenges, let the shortest distance between node i and j be r, we use

Jacobian matrix
∂z

(r)
j

∂xi
to quantify the influence of the node representation z

(r)
j to a specific input

feature xi in the node i.

Proposition 1. If |∇σl| ≤ α and |∇Aggrl| ≤ β for 0 ≤ l ≤ r, then holds

|
∂z

(r+1)
j

∂xi
| ≤ (αβ)r+1(Ar+1)ji. (3)

3
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The proof of Proposition 1 can be found in Appendix A. Given the implications of it, we recognize
that as the shortest path distance increases, the upper bound on the influence exerted by the i-th node’s
attributes on the target node embedding z

(r)
j progressively diminishes. It indicates that the sensitivity

between them exhibits an exponentially decreasing trend with respect to their shortest path distance.

In the challenging unsupervised context of outlier detection, the “homophily trap” issue severely
hinders the separation of normal nodes from nearby anomalies. Our approach directly confronts
this by integrating a self-discriminative masking spoiler with an adaptive clustering-based detector.
The masking spoiler aggregates information exclusively within intra-cluster samples and designs a
penalty strategy to resist cluster collapse. Different from existing methods (please refer to Section
3), the proposed masking spoiler selectively weakens existing edges without altering the original
message passing paths. This design preserves the structural integrity of the graph while encouraging
the aggregated embeddings of the two clusters to become as discriminative as possible.

2.2 SELF-DISCRIMINATIVE MASKING SPOILER

We first present a mathematical formulation of the proposed candidate filter strategy. To begin with, a
reconstruction-based Graph Auto-Encoder (GAE) is utilized to learn low-dimensional embeddings
for each node:

ℓr =
1

N

N∑
i=1

(∥x̂i − xi∥2 + ∥Âi −Ai∥2). (4)

Here, Â = sigmoid(Z⊤Z) denotes the reconstructed adjacency matrix, with Z = f enc
W (X,A)

representing the learning node embeddings obtained from the graph encoder function parameterized
by W = {Wl,bl}Ll=1.

Then we adopt a learnable variable M, and constrain it at each epoch on the original topology A:

Ã = M̃⊙A, subject to M̃ ∈ [0, 1]N×N , (5)

where ⊙ denotes the Hadamard product and M̃ is obtained through M̃ij = sigmoid(Mij). Following
this, the normalization operation of the adjacency matrix Ã + IN is adopted to ensure that each
node’s ego-information is preserved. We define IN as the identity matrix of shape N ×N .

The objective of this spoiler is to let the distributions of predicted normal nodes and anomalous
nodes be as discriminative as possible. Here we first collect all predicted normal instances with label
yi = 0 into the normal candidate node set Dpos, and the remaining instances into the anomalous
candidate node set Dneg. The maximum mean discrepancy (MMD) (Gretton et al., 2012) is then used
to measure the aggregated distribution distance between the two groups. Based on this, we can define
the distribution repulsion loss as follows:

MMD2[F ,Dpos,Dneg] =
1

m(m− 1)

m∑
i=1

m∑
j=1,j ̸=i

κ(zpos
i , zpos

j )

+
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

κ(zneg
i , zneg

j )− 2

mn

m∑
i=1

n∑
j=1

κ(zpos
i , zneg

j ),

(6)

where κ(·, ·) represents a certain kernel function and D = {z(0)i }Ni=1. Note that D can be taken as the
graph convolutional outputs of each layer when considering computational limits, though this may
reduce the optimization strength. Besides, we use the Gaussian kernel via the Chebyshev distance,
which can be defined as:

κChebyshev(x, y) = exp

(
−
dChebyshev(x, y)

2

2σ2

)
= exp

(
− (maxi |xi − yi|)2

2σ2

)
. (7)

Since we apply it to the first graph convolution layer in high-dimensional space, it is more effective
to focus on the maximum difference in any dimension, which makes it less sensitive to noise in the
other dimensions. Then we define the distribution repulsion loss as follows:

ℓdr = −MMD2(Dpos,Dneg). (8)

4
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Maximizing the separation between normal and anomalous points is straightforward in a supervised
setting, where labels are available. However, in the absence of labels, achieving this goal becomes
significantly more challenging, as obtaining reliable labels itself is a difficult task. To assist in
optimizing the mask M, we design a clustering-based outlier detector to generate temporary predicted
labels. Based on these pseudo labels, we raise a new outlier score function to guide the optimization
process. The entire architecture operates in an end-to-end manner, allowing the model to learn both
the optimal connections and the superior detected results simultaneously.

2.3 CLUSTERING-BASED OUTLIER DETECTOR

Learnable Clustering Layer. To preliminarily separate the normal cluster from the anomalous
candidate cluster, we introduce a clustering layer (Guo et al., 2017) that incorporates learnable
cluster centroids into our model. Specifically, the similarity between the latent representations
Z = {z0, · · · , zN} and the cluster centroids µ is measured using the Student’s t-distribution,
yielding the soft clustering assignment probabilities q for each sample across all clusters:

qij =
(1 + ∥zi − µj∥2)−1∑c

j′=1(1 + ∥zi − µj′∥2)−1
, (9)

where we assume that the N samples are partitioned into c classes. The soft assignment probabilities
qij form a distribution matrix Q. To further refine the clustering process and improve the compactness
of cluster assignments, the target distribution P is defined as follows:

pij =
q2ij/

∑N
i=1 qij∑c

j′=1 q
2
ij′/

∑N
i=1 qij′

. (10)

Given the target distribution P and current distribution Q, we formulate the clustering loss as follows:

ℓc = KL(P∥Q) =

N∑
i=1

c∑
j=1

pij log
pij
qij

. (11)

This loss function serves to guide the clustering optimization process and encourages the learned
embeddings to capture as much discriminative information as possible.

During the training stage, the predicted labels are computed via ŷi = argmaxj(qij) for the i-th
instance. Then we first designate the cluster containing a relatively larger number of samples as the
normal cluster, and temporarily treat all nodes within it as normal candidates. Conversely, the
remaining cluster is considered the anomalous candidate cluster. This assumption is made based
on the fact that, in most datasets for outlier detection tasks, normal data constitutes the majority.
Generally, the learnable clustering module avoids the use of a pre-defined threshold by generating
pseudo labels directly for outlier identification, thereby improving the reliability and robustness of
the detection process.

Diversity Loss. However, the clustering procedure may exhibit instability due to class collapse,
i.e., the optimization process collapses all nodes into a single cluster, thereby undermining the
effectiveness of the clustering and impeding the self-discriminative masking phase. Actually, the
self-discriminative masking phase could encourage one cluster not to contain any samples and result
in a trivial solution, as it is the easiest way to reach the maximum MMD value. To address this, we
design a regularization term for class collapse:

ℓdiversity =

c∑
k=1

max (0, ε− ûk) , (12)

where ûk = 1
N

∑N
i=1 qik represents the proportion of samples assigned to cluster k. ε denotes the

minimum threshold for the proportion to control the minimum sample numbers in each cluster. If ûk

is greater than or equal to ε, the term becomes zero (i.e., no penalty). Otherwise, it would become
positive and penalize the whole objective loss.

5
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Inference. Let Dpos and Dneg in Eq. (8) denote the sets of normal candidate nodes and anomalous
candidate nodes, respectively. We define the anomalous scores according to the predicted logits in
the clustering layer. Given the normal cluster centroid, the score is calculated based on:

si = 1− qi1 = 1−
(
1 + ∥zi − µ1∥2

)−1∑c
j′=1 (1 + ∥zi − µj′∥2)−1 , (13)

which means that the higher the scores of the nodes, the more anomalous they are. Collecting all
these modules, we define the overall objective function as

L = ℓr + α · ℓc + β · ℓdr + γ · ℓdiversity. (14)
The proposed objective function enables the self-discriminative masking spoiler and outlier detector
to be jointly optimized, facilitating the learning of a more discriminative latent representation. The
reconstruction loss is employed to retain essential information from the original data. Concurrently,
the self-discriminative loss encourages the nodes from the same cluster to strongly connect, thereby
reducing anomalous information contamination. The detailed procedure of the proposed method and
complexity analysis are summarized in Appendices B and C, respectively.

3 CONNECTION WITH PREVIOUS WORK

The concept of the “Homophily Trap” (He et al., 2024) crystallizes a long-standing challenge in
graph anomaly detection. However, it measures anomaly degree using a pre-computed spectral
property-based metric and then generates multi-level graph nodes, edges, and subgraphs accordingly,
making the results heavily dependent on the quality of this metric. Previous attempts to mitigate it
have primarily focused on graph rewriting (Dou et al., 2020; Liu et al., 2021a; Qiao & Pang, 2023;
Gasteiger et al., 2019; Topping et al., 2022). These approaches, however, are often heavy-handed:
they either risk destroying the graph’s essential structure through complete reconstruction or rely
on heuristics that require manually defined thresholds, raising concerns about reliability. A detailed
introduction to these works can be found in Appendix I.

Our self-discriminative masking spoiler offers a more effective solution. Rather than rewriting
connections, it adaptively re-weights them, preserving the original graph structure while surgically
suppressing the information flow that causes the homophily trap. This targeted re-weighting differs
fundamentally from the attention mechanism in GAT (Veličković et al., 2018). While GAT weights
edges based on local feature similarity for representation learning, our masking spoiler is explicitly
guided by a global, task-specific objective: maximizing the separation between clusters of normal
and anomalous nodes. This guidance is a core component of our self-discriminative paradigm, which
employs a clustering detector to generate pseudo-labels, creating a principled, end-to-end solution
that is both adaptive and threshold-free.

4 EXPERIMENT

In this section, we provide a detailed the experimental settings, and conduct comprehensive experi-
ments to answer the following research questions:

• RQ1: Does the proposed model outperform state-of-the-art graph outlier detection baselines?
• RQ2: How do the hyperparameters of the proposed method affect its detection performance?
• RQ3: Does the proposed method learn more effective and discriminative latent representations

compared to other state-of-the-art methods?
• RQ4: Does the learned mask hold meaningful relevance?
• RQ5: What is the individual contribution of each component in the proposed method to graph

anomaly detection?

4.1 EXPERIMENTAL SETTINGS

Datasets. We adopt eight datasets across five different types: citation networks, social networks,
communication networks, organic and co-review, including Email, Cora, Flickr, CiteSeer, Disney,
Enron, Reddit and Amazon. Detailed descriptions of the datasets are provided in Appendix G.

6
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Table 1: Average AUCs with standard deviation (10 trials) of different graph anomaly detection
algorithms. The best and second-best results are bolded and underlined, respectively.

Methods/Datasets Email Cora Disney Flickr CiteSeer Enron Reddit Amazon

L1SUB (Miller et al., 2010) 72.89±0.26 52.53±0.00 59.80±4.73 54.43±0.02 63.86±0.13 60.85±2.51 56.94±0.00 47.53±0.02
DEEPFD (Wang et al., 2018) 52.84±0.00 51.96±0.00 50.28±0.40 52.94±0.00 52.25±0.00 50.00±0.00 51.67±0.00 50.00±0.00
GAT+ClusterAD (Veličković et al., 2018) 66.19±6.08 61.08±5.02 67.54±3.47 51.19±0.80 53.26±2.50 63.51±3.61 54.78±3.18 65.43±9.60
DOMINANT (Ding et al., 2019) 94.00±12.00 92.00±11.66 48.78±1.61 45.42±0.16 56.39±8.48 52.21±0.71 55.88±0.43 50.36±0.59
AnomalyDAE (Fan et al., 2020) 65.91±5.41 72.53±5.72 56.92±9.21 26.54±0.00 28.72±0.01 48.05±7.51 48.38±2.97 39.80±6.70
CONAD (Xu et al., 2022) 83.62±25.52 75.00±25.50 58.99±3.94 45.62±0.19 59.30±10.19 51.87±0.64 56.12±0.03 48.94±1.56
AS-GAE (Zhang & Zhao, 2022) 84.68±18.50 75.39±21.79 34.32±0.00 55.98±1.14 42.89±0.95 61.73±4.71 49.35±5.01 48.96±0.52
TAM (Qiao & Pang, 2023) 30.45±0.01 55.55±0.37 30.51±0.00 65.19±0.86 46.75±1.40 44.75±0.03 58.60±0.03 79.87±0.16
ADA-GAD (He et al., 2024) 81.85±10.76 71.68±0.01 41.10±5.25 55.99±0.02 68.08±0.00 59.94±4.69 56.17±0.10 50.86±1.10
BOURNE (Liu et al., 2024) 64.39±2.69 56.32±0.16 61.98±2.11 45.10±8.59 66.26±2.81 68.97±15.11 57.48±2.28 75.01±7.15
GADAM (Chen et al., 2024) 68.12±2.39 92.62±0.35 69.35±0.22 61.46±0.22 93.91±0.13 33.91±0.47 58.44±0.26 57.15±1.50
AD-GCL (Xu et al., 2025) 57.79±1.77 68.54±0.09 38.96±6.04 46.62±2.75 72.36±2.91 65.87±2.02 53.94±0.79 24.94±3.32
SmoothGNN (Dong et al., 2025) 51.09±15.37 62.72±8.14 54.40±8.64 50.26±4.26 52.82±1.99 52.35±3.40 58.38±6.23 49.96±0.08

CER-GOD 96.98±0.08 92.09±1.26 72.13±3.01 67.08±0.16 74.01±0.37 72.63±3.65 59.71±1.89 86.24±3.56

(j) Ours(g) BOURNE (h) AD-GCL

(a) Flickr (b) Cora

(f) ADA-GAD

(e) AS-GAE

(i) w/o SD-MS

Figure 3: Parameter sensitivity of clustering loss coefficient α, distribution repulsion loss coefficient
β, and diversity loss γ.

Implementation Details. The implementation details are provided in Appendix H due to page
limitations. To evaluate the anomaly detection performance of each method, we utilize the widely
used metric: Area Under the Curve (AUC). The experimental results are reported as the mean and
standard deviation, calculated over 10 independent runs of each algorithm to ensure a fair evaluation.

Compared Baselines. To evaluate the effectiveness of the proposed method, we compared it with
two types of graph outlier detection baselines, including ten node-level outlier detection methods,
including GAT+ClusterAD (Veličković et al., 2018), DOMINANT (Ding et al., 2019), CONAD (Xu
et al., 2022), ADA-GAD (He et al., 2024), BOURNE (Liu et al., 2024), AD-GCL (Xu et al., 2025),
TAM (Qiao & Pang, 2023), SmoothGNN (Dong et al., 2025), GADAM (Chen et al., 2024), and three
public available subgraph-level outlier detection SOTAs: L1SUB (Miller et al., 2010), DEEPFD
(Wang et al., 2018), and AS-GAE (Zhang & Zhao, 2022).

4.2 COMPARISON WITH STATE-OF-THE-ART BASELINES (RQ1)

Table 1 provides a detailed evaluation of the proposed method against ten recent baselines across
seven widely used graph datasets. The proposed approach outperforms all competitors in all datasets,
often by a significant margin. For instance, on the Email dataset, our model surpasses the previous
best (i.e., AS-GAE) by more than 12%, indicating exceptional capability in identifying anomalies
in communication networks. The proposed approach maintains consistently high accuracy and low
variance, reflecting not only its robustness but also its adaptability to varied graph characteristics. It
is worth noting that GAT+ClusterAD serves as a strong competitor, as it is constructed by integrating
GAT with the clustering outlier detector. The proposed model achieves significant advantages,
highlighting the effectiveness of the SD-MS module.

4.3 PARAMETER SENSITIVITY ANALYSIS (RQ2)

Impact of Key Hyper-parameters α, β and γ. To assess the influence of key hyper-parameters on
the anomaly detection performance of the proposed model, we conduct a sensitivity analysis on the
hyper-parameters α, β, and γ, which control the trade-off among the reconstruction loss, clustering
loss, distribution repulsion loss, and penalty term. Figure 3 presents the AUC trends on the Flickr
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(a) Kernel Comparison (b) Impact of 𝜀 (c) Layer-wise Sensitivity of DR Loss

Figure 5: Parameter sensitivities of 1) different kernel methods for MMD calculation; 2) impact of
hyper-parameter ϵ that controls the minimum proportion of samples per cluster; 3) impact of applying
distribution repulsion (DR) loss to different GCN layers.

and Cora datasets across varying values [1e− 3, 1e3]. The observations are shown as follows: (1)
Too large hyper-parameters may cause the clustering loss, self-discriminative loss or penalty loss
to dominate the reconstruction loss, which can lead to the learned embeddings losing their original
semantic information, thereby increasing the difficulty of training; (2) Moderate values are beneficial
for preserving semantic information while achieving better performance, as the multiple objectives
compete with each other during training. (3) When the trade-off values are too small, the model tends
to prioritize low-dimensional reconstruction at the expense of discriminative features, resulting in
poor separation between normal and anomalous nodes and an underdeveloped decision boundary.
(4) Our model exhibits a broad safe operating region (e.g., α, β ∈ [0.01, 1]) with consistently stable
performance, enabling a reliable fixed default configuration.

Impact of Different Kernel Methods for the MMD Calculation. The results in Fig. 5(a) show that
the Chebyshev-based kernel consistently outperforms the conventional RBF kernel across all three
datasets. We attribute this improvement to the geometric properties of the metrics: the RBF kernel
aggregates differences across all dimensions, which potentially dilutes anomalous deviations through
a “smoothing” effect in high-dimensional spaces, while the Chebyshev kernel focuses exclusively on
the maximum discrepancy along any single dimension. Given that anomalies generally exhibit as
deviations in specific feature subsets rather than uniform global shifts, the Chebyshev kernel property
enables the model to capture critical outlier patterns more effectively.

Figure 4: The performance comparison of differ-
ent adopted backbones on the Cora, Email, and
CiteSeer datasets.

Impact of Trade-off Parameter ϵ. We have
included a detailed sensitivity analysis of the di-
versity loss hyperparameter ϵ in Fig. 5(b). It can
be observed that excessively small values may
be overly permissive and further enable cluster
collapse, thereby compromising performance
across all datasets. Instead, ϵ = 0.5 denotes the
strictest setting, which may slightly hurt perfor-
mance because forcing an exact 50:50 balance
may be too rigid for the nature of the data.

Layer-wise Sensitivity Analysis for Distribu-
tion Repulsion Loss. We conduct a sensitivity
analysis for the distribution repulsion (DR) Loss
by imposing it on different GCN layers (from 1st to 5th) and compare the anomaly detection perfor-
mance. Fig. 5(c) shows that performance consistently decreases as the layer depth increases from the
1st layer to the 5th layer, with the first layer yielding optimal results.

Impact of GNN Backbone. We also conduct a parameter analysis of the adopted different GNN
backbones in Figure 4, which includes GCN (Kipf & Welling, 2019), GIN (Xu et al., 2019), and
GAT (Veličković et al., 2018). This figure compares the AUC performance of the above-mentioned
backbones on three datasets: Cora, Email, and CiteSeer. GCN outperforms the others across Cora
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(j) Ours(g) BOURNE (h) AD-GCL

(a) L1SUB (d) AnomalyDAE(c) CONAD(b) DOMINANT

(f) ADA-GAD

(e) AS-GAE

(i) w/o SD-MS

Figure 6: The comparison of t-SNE visualizations on the Email dataset for all baseline methods and
the proposed model. Normal nodes are depicted in blue, while anomalous nodes are shown in red.

Original Graph Masked Graph

(a) Flickr

Original Graph Masked Graph

(b) Cora

Original Graph Masked Graph

(a) Flickr

Original Graph Masked Graph

(b) Cora

Figure 7: Visualization of the sampled subgraph topology on the Flickr and Cora datasets. The color
bar represents the masking strength of edge connections.

and Email, with the largest gap on Cora. GAT follows closely, especially on CiteSeer and Email,
while GIN shows the weakest performance, particularly on Email. While GCN and GIN show similar
performance with no significant gap, GAT tends to perform weaker. This is likely because GAT
already incorporates masking in its mechanism, which adds an additional optimization burden to the
self-discriminative module. It is worth noting that all three backbones outperform the other baselines.

4.4 QUALITATIVE STUDY (RQ3&RQ4)

Embedding Visualizations. First, a more intuitive demonstration of the discriminative power of
the learned embeddings is provided through t-SNE visualizations across eight baselines and the
ablated model w/o Self-Discriminative Masking Spoiler (SD-MS), as shown in Figure 6. Compared
to the baselines, the proposed model achieves a significantly better separation between normal and
anomalous nodes. The anomalies are tightly clustered and clearly isolated from the majority of
normal nodes, indicating that our model learns a more discriminative and structured embedding space.
In contrast, most baseline methods, such as L1SUB, DOMINANT, and AD-GCL, show scattered
or overlapping distributions of anomalous nodes, making them harder to detect. Even models like
AS-GAE and CONAD, which display relatively better anomaly grouping, still fail to achieve the
level of compactness and separation seen in our approach. The comparison with the degraded model
(i) further confirms the effectiveness of the self-discriminative mask spoiler, as removing the SD-MS
component results in more dispersed and less distinguishable anomaly embeddings.

Mask Visualizations. To intuitively illustrate the effectiveness of the learned mask, we display
the masked graph structure (in Figure 7) and the learned mask (please refer to Appendix F). The
visualized subgraph consists of 30 randomly sampled nodes, colored according to their corresponding
classes. The key observations are as follows: 1) The edge weights between inter-class nodes are
significantly reduced, as indicated by edges predominantly colored in shades of blue. 2) Edges
connecting intra-class nodes tend to appear red. For example, in Subfigure (b), all anomalous nodes
are interconnected with red edges. Although some normal nodes are linked by blue edges, they can
still aggregate information through other undrawn normal nodes.

9
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Ablation Visualizations of SD-MS. We also provide Figure 8 to present histograms of the L2-
norm distances between the learned node embeddings and vectors sampled from a standard Gaus-
sian distribution N (0, Ik), comparing the cases with and without the proposed self-discriminative

(j) Ours(g) BOURNE (h) AD-GCL

Cora (b)

(f) ADA-GAD

(e) AS-GAE

(i) w/o SD-MS

             

        

 

    

   

    

   

    

   

    

 
  
 
 
 
 
 
 
  
 
 
 
  
 

              

           

          

        

 

   

   

   

   

 

 
  
 
 
 
 
 
 
  
 
 
 
  
 

              

           

with SD-MSw/o SD-MS

Figure 8: Distribution histograms of embedding
distances with or w/o SD-MS on Cora. The dis-
tance is computed between learned embeddings
and vectors sampled from a standard Gaussian dis-
tribution N (0, Ik) through L2-norm.

masking spoiler (SD-MS) module on Cora (re-
sults on other datasets are presented in Appendix
F due to page limitation) dataset. Here, the pur-
ple bars represent the distance distribution of
normal nodes, while the blue bars correspond to
anomalous nodes. This metric serves as a proxy
to evaluate how well the embeddings of anoma-
lous and normal nodes are separated in the latent
space. The application of the SD-MS module
significantly increases the separation between
the distance distributions of normal and anoma-
lous nodes. Specifically, in all datasets, SD-MS
reduces the overlap between the two classes, re-
sulting in more distinguishable and polarized
score distributions: normal nodes cluster near
lower distances, while anomalous nodes shift
toward higher distances.

4.5 ABLATION STUDY (RQ5)

Table 2: Ablation Study on Email, Cora, and Flickr
(mean (%)±std (%)).

Methods/Datasets Email Cora Flickr

w/o Reconstruction 50.80±3.10 52.20±14.33 49.24±2.35
Reconstruction OD 84.12±1.11 79.51±1.60 56.70±5.15
w/o SD-MS 87.05±4.66 78.84±2.68 58.40±6.61
Ours 96.98±0.08 92.09±1.26 67.08±0.16

Here, we conduct an ablation study to
demonstrate the effectiveness of each com-
ponent in the proposed framework. Specif-
ically, we design three degraded mod-
ules, including 1) w/o Reconstruction vari-
ant (which applies the learnable cluster-
ing directly to the GCN encoder), 2)
Reconstruction-based Outlier Detector (i.e.,
w/o Clustering-based Outlier Detector); 3)
w/o Self-Discriminative Masking Spoiler (SD-MS). Note that we utilize the percentile filter strategy
to get the pseudo labels for the degraded model Reconstruction OD, which is set to the actual anomaly
ratio of all samples. The experimental results are shown in 4, which clearly demonstrate that the full
model consistently outperforms all degraded variants across datasets, confirming the contributions
of the clustering-based OD as well as the SD-MS module. In contrast, replacing the detection
mechanism with reconstruction error yields significantly inferior performance, underscoring the
necessity of the proposed components for effective anomaly detection. The results also show that
removing the reconstruction component leads to a significant performance drop, which suggests the
necessity of this component in our method. Besides, please note that the diversity loss cannot be
ablated, as it is essential for preventing class collapse in the clustering layer.

5 CONCLUSION

In this work, we addressed the “Homophily Trap”, a fundamental challenge in graph outlier detection
where message-passing mechanisms of graph convolution operation inadvertently blur the distinction
between normal and anomalous nodes. Our proposed end-to-end framework successfully dismantles
this trap by synergistically combining several key innovations. The core of our approach is a self-
discriminative masking spoiler that intelligently re-weights graph connections, effectively filtering
out contaminating information from dissimilar neighbors without destroying the underlying graph
structure. This masking process is guided in a fully unsupervised manner by an adaptive clustering-
based detector, which provides crucial pseudo-labels and frees the model from relying on arbitrary
thresholds. To maintain stability and prevent the common pitfall of class collapse during optimization,
we integrated a diversity loss. The joint optimization of these elements allows our model to learn a
powerfully discriminative latent space, culminating in state-of-the-art performance on a wide range
of benchmark datasets. While the current model focuses on a single class of anomalies, future work
will explore extending this framework to multi-class outlier detection scenarios.
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A PROOF OF PROPOSITION 1

Proof. Assume that the shortest path between node i and j is r, the gradient of activation function in
the l-th layer follows |∇σl| ≤ α, the gradient of aggregating function at layer l satisfies |∇Aggrl| ≤ β

and z
(0)
i = xi, then the Jacobian at layer l is bounded by:∣∣∣∣∣∂z

(l)
j

∂xi

∣∣∣∣∣ ≤ (αβ)l(Al)ji. (15)

Next step, let N (j) be the neighbor set of node j, we have the Jacobian at layer l + 1 via the chain
rule for differentiation:

∂z
(l+1)
j

∂xi
=

∂σl

(
Aggrl

({
z
(l)
k : k ∈ N (j) ∪ {j}

}))
∂Aggrl

·
∂Aggrl

(
z
(l)
N (j)

)
∂z

(l)
k

·
∂z

(l)
k

∂xi
. (16)

Thus, we will obtain: ∣∣∣∣∣∂z
(l+1)
j

∂xi

∣∣∣∣∣ ≤ αβ
∑

k∈N (j)

∣∣∣∣∣∂z(l)k

∂xi

∣∣∣∣∣ , (17)

and the bound would become: ∣∣∣∣∣∂z
(l+1)
j

∂xi

∣∣∣∣∣ ≤ αβ
∑

k∈N (j)

(αβ)l(Al)ki. (18)

Herein, Al represents the adjacency matrix raised to the layer l, the sum
∑

k∈N (j)(A
l)ki essentially

counts the number of paths of length l from node i to node j. This can be further expressed as:∣∣∣∣∣∂z
(l+1)
j

∂xi

∣∣∣∣∣ ≤ (αβ)l+1(Al+1)ji, (19)

where (Al+1)ji =
∑

k Ajk(A
l)ki and Ajk = 1 due to k ∈ N (j). As r is the shortest distance

between node i and j, then the inequality becomes:∣∣∣∣∣∂z
(r+1)
j

∂xi

∣∣∣∣∣ ≤ (αβ)r+1(Ar+1)ji. (20)

Then finished the proof.

B DETAILED ALGORITHM PROCEDURES

C COMPLEXITY ANALYSIS

Assume that there is a graph of N nodes, each with feature dimension d, E edges, and latent
dimension k, the framework:

• The whole encoder adopts an L-layer GCN backbone, where each layer involves two key operations:
neighbor aggregation (O(E)) and linear transformation (each layer has a complexity of O(N ·d·k)).

• The decoder typically involves a linear transformation to reconstruct the input feature matrix, where
complexity is O(N · d · k)). The complexity of computing topology Â is O(N2 · k).

• The clustering layer computes the similarity between each node’s embedding and the cluster
centroids and further calculates the KL Divergence loss. Hence, the complexity is O(N · c), where
c is the class number.
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Algorithm 1 Clustering-guided Edge Reweighting for Graph Outlier Detection (CER-GOD)
Input: The input graph set G, dimensions of GCN hidden layers k, trade-off parameters of clustering

loss α and distribution repulsion loss β, and diversity loss γ, learning rate η.
Output: The outlier detection scores s.

1: Initialize the parameters M and Φ of self-discriminative masking spoiler and clustering-based
outlier detector network parameters fΦ;

2: Reallocate topology through Eq. (5) and normalized it with Ã+ IN ;
3: Initialize the cluster centroids µ via performing K-Means on latent representation Z =

f enc
W (X, Ã);

4: while not convergence do
5: Obtain the latent Z and Z(0) by Z = f enc

W (X, Ã) and Eq. (2);
6: Calculate the reconstruction loss via Eq. (4);
7: Compute the current cluster assignment distribution Q by Eq. (9);
8: Compute the target cluster assignment distribution P by Eq. (10);
9: Calculate the diversity loss via Eq. (12);

10: Compute the cluster label for sample i via ŷi = argmaxj(qij), i = 1, 2, . . . , N ;
11: Calculate the distribution repulsion loss based on Eq. (8);
12: Calculate total loss via Eq. (14);
13: Back-propagate masking spoiler and outlier detector networks and update M, Φ, and µ

respectively;
14: end while
15: Calculate the outlier detection scores s through Eq. (13);
16: return The outlier detection scores s.

• The diversity loss is computed by calculating the proportion of samples assigned to each cluster,
then applying a penalty term. The complexity of this operation is O(N · c).

• For ℓdr, assume that positive set Dpos contains m nodes, intra-calculation consumes O(m2 · k) and
O((N −m)2 · k). Inter-calculation consumes O(m · (N −m) · k). In the worst case, it would be
O(N2 · k).

Thus, the total computational complexity is O(L · (E +N · k · d) +N · c+N2 · k).
We also provide the running time comparison in Table 3 for reference. Across all four datasets, CER-
GOD demonstrates highly competitive efficiency, consistently ranking among the fastest methods.
On Email, Cora, and Disney, CER-GOD achieves second-tier performance, running notably faster
than most baselines. These results confirm that CER-GOD provides an effective balance between
accuracy and efficiency, making it a practical choice for large-scale anomaly detection.

Table 3: Running time (in seconds) comparison on four datasets, the results are recorded at the time
of running 200 epochs for fairness.

Methods/Datasets Email Cora Disney CiteSeer

DOMINANT (Ding et al., 2019) 5.6278 17.7207 1.4391 49.0877
AnomalyDAE (Fan et al., 2020) 4.0151 6.1372 0.9438 24.4646
CONAD (Xu et al., 2022) 9.0529 33.0815 2.9236 73.6654
AS-GAE (Zhang & Zhao, 2022) 15.9610 24.7159 2.8146 27.9659
ADA-GAD (He et al., 2024) 52.4239 321.3380 7.2619 1258.2931
BOURNE (Liu et al., 2024) 11.5739 21.2274 5.9707 30.1851
AD-GCL (Xu et al., 2025) 1991.0725 5510.4095 116.0679 3223.6459
CER-GOD 42.4534 82.8717 6.7685 101.0798

D EXPERIMENT ON LARGE-SCALE GRAPH BENCHMARK

We evaluated CER-GOD on the OGB-Proteins dataset, which contains 132,534 nodes and 79,164,284
edges, where CER-GOD is compared with 5 state-of-the-art baselines: DOMINANT (Ding et al.,
2019), ComGA (Luo et al., 2022), SL-GAD (Zheng et al., 2021), CoLA (Liu et al., 2021b) and
TAM (Qiao & Pang, 2023). As shown in the table below (note that we reported the performance
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of all baseline methods directly from (Qiao & Pang, 2023)), CER-GOD scales successfully and
outperforms several state-of-the-art baselines in comparison.

Table 4: AUCs (%) of different graph anomaly detection algorithms on large-scale dataset OGB-
Proteins. The best result is bolded.

Methods/Datasets DOMINANT ComGA CoLA SL-GAD TAM CER-GOD

OGB-Proteins 72.67 71.34 71.42 73.71 74.49 74.81

E DISCUSSION OF CLUSTER NUMBER SELECTION

In this paper, we focus on the unsupervised outlier detection task. In a fully unsupervised setting,
we lack labels to map multiple learned clusters to the binary ground truth. For example, if we
set c = 5, determining which specific subsets of clusters represent "normal" and which represent
“anomalous” requires additional heuristics (e.g., “the smallest 3 clusters are anomalies”), which
introduces significant instability and potential bias. Therefore, we followed the standard one-class
classification setting and set the number of clusters as c = 2, as many previous works did: The
"anomalous candidate cluster" does not assume all anomalies are homogeneous, but instead treats
anomalous patterns (e.g., point/structural/attribute anomalies) as different manifestations of deviating
from the manifold with respect to the normal pattern.

Regarding computational cost, as analyzed in Appendix C, the reconstruction process is indeed
a major time-consuming component in our method. Compared to the reconstruction component,
the clustering overhead is linear to N and proportional to the small c (here c = 2). Thus, adding
clustering does not change the overall asymptotic time complexity and adds only a modest overhead
in practice.

F SUPPLEMENTARY VISUALIZATION RESULTS

Homophily Trap Visualizations. Here, we supplement four additional histograms of maximum
mean discrepancy distances on two synthetic datasets (Attribute Anomaly and Structure Anomaly),
and two real-world datasets (Cora and Flickr) in Fig. 9. The distance is computed between the
standard Gaussian distribution N (0, Id) and three types of node embeddings (normal node multi-
hop away from anomalies, normal node 1-hop away from anomalies, and anomalous nodes).The
embeddings are obtained through a single-layer graph convolution operation without any additional
linear projection layer, isolating the pure effects of graph convolution. The synthetic datasets, derived
from (Zhang & Zhao, 2022), demonstrate the homophily trap phenomenon in data containing either
attribute anomalies or structure anomalies alone. Real-world data further exhibits both anomaly types
simultaneously. This confirms the presence of the ’homophily trap’ in real-world applications: graph
convolution significantly influences the embeddings of neighboring normal nodes, causing them to
become nearly indistinguishable from 1-hop anomalous nodes.

(c) Cora(a) Attribute Anomaly (b) Structure Anomaly

(a) Synthetic Anomaly (b) Real-World Anomaly

(d) Flickr

Figure 9: The histograms of maximum mean discrepancy distances on two synthetic datasets and two
real-world datasets.
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Embedding Visualizations. Figure 10 presents 3D scatter plots comparing the performance of
various anomaly detection methods on the Cora dataset. The blue points represent normal data, and
the pink points represent anomalies. Overall, the proposed method CER-GOD achieves the best
separation between normal and anomalous points, demonstrating superior performance compared
to other methods such as L1SUB, DOMINANT, and CONAD, which show less distinct separation.
While methods like AS-GAE and ADA-GAD improve anomaly detection, the proposed approach
clearly outperforms all, providing the most effective distinction between normal and anomalous data.

(j) Ours(g) BOURNE (h) AD-GCL

(a) L1SUB (d) AnomalyDAE(c) CONAD(b) DOMINANT

(f) ADA-GAD

(e) AS-GAE

(i) w/o SD-MS

Figure 10: The comparison of t-SNE visualizations on the Cora dataset for all baseline methods and
the proposed model. Normal nodes are depicted in blue, while anomalous nodes are shown in red.

(j) Ours(g) BOURNE (h) AD-GCL

(a) Email (b) CiteSeer

(f) ADA-GAD

(e) AS-GAE

(i) w/o SD-MS

with SD-MSw/o SD-MS with SD-MSw/o SD-MS

          

        

 

   

   

   

   

 
  
 
 
 
 
 
 
  
 
 
 
  
 

              

           

                      

        

 

    

    

    

    

   

    

    

 
  
 
 
 
 
 
 
  
 
 
 
  
 

              

           

     

        

 

   

   

   

   

   

   

 
  
 
 
 
 
 
 
  
 
 
 
  
 

              

           

Figure 11: Distribution histograms of embedding distances with or w/o SD-MS on Email and CiteSeer
datasets. The distance is computed between learned embeddings and vectors sampled from a standard
Gaussian distribution N (0, Id′) through L2-norm.

Ablation Visualizations of SD-MS. Similar conclusions can be observed in Figure 11. The area
of the overlapping region obviously decreases after the masking procedure. Also, the distance
distributions of normal and anomalous nodes are more discriminative intuitively.

(a) Original Topology (b) Learned Mask (c) Masked Topology

Figure 12: Visualization of the learned mask in the proposed model on the Flickr dataset. The color
bar represents the masking strength of edge connections. Connections between different-class node
pairs are highlighted with black frames.
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Mask Visualizations. The learned mask and its impact are illustrated in Figure 12. A subgraph
consisting of 30 randomly selected nodes is shown, with elements corresponding to different-class
node pairs highlighted in a black frame. It is clearly evident that the relationships framed in the
figure are significantly weakened, as most of them are close to white or even in blue, indicating high
masking strength. For example, the relationships between Node 12 and Node 2, as well as between
Node 25 and Node 11, exhibit such weakened connections.

G DATASETS

The detailed statistical descriptions are shown in Table 5. We also report the number of edges with
“Homophily Trap” (HT) for the reference. Specifically, we adopt the Email and Cora in (Zhang &
Zhao, 2022), CiteSeer, Flickr in (Pan et al., 2023), Amazon, OGB-Proteins in (Qiao & Pang, 2023),
and Disney, Enron, Reddit in PyGOD1.

Table 5: Detailed information of the graph benchmark datasets.
Dataset # Nodes # Edges # Average [E] # Edges w/o HT # Average [E] w/o HT Anomaly Rate Data Types

Email 1,005 28,275 28.1300 22,190 22.0796 6.01% Communication Network
Flickr 7,575 482,555 63.7036 428,301 56.5413 6.24% Social Network
Cora 2,708 15,045 5.5557 14,383 5.3112 4.07% Citation Network
CiteSeer 3,327 10,275 3.0883 9,563 2.8744 4.72% Citation Network
Disney 124 335 2.7016 318 2.5645 4.80% Organic
Enron 13,533 176,987 13.0782 176,794 13.0639 0.04% Organic
Reddit 10,984 168,016 15.2964 159,688 14.5382 3.30% Organic
Amazon 10,244 351,216 34.3521 283,594 27.7381 6.66% Co-review
OGB-Proteins 132,534 79,164,284 597.3130 79,164,284 597.3130 4.50% Biology Network

H DETAILED EXPERIMENTAL SETTINGS

• Trade-off Parameters: For the proposed method, there are three critical hyper-parameters, α, β,
and γ, in their loss functions, which control the contributions of the clustering loss and distribution
repulsion loss, and diversity loss, respectively. Section 4.3 includes the evaluation of the impact of
variations in the values of all hyper-parameters on the anomaly detection performance. For our
main experiments, the complete hyperparameter configurations are summarized in Table 6.

• Baseline Settings: All baselines are reproduced via publicly available code with their default
parameter settings. Particularly, we employ the same architecture of the backbone network as the
proposed method to ensure a fair comparison.

• Training Details: We utilize Adam (Kingma & Ba, 2014) for training. Besides, we set the learning
rate η to 5e-5 with the total training epochs to 300. For the proposed model, a 3-layer GCN
backbone is adopted for the outlier detector, and the hidden dimension is set to 16.

• Implementation: All experiments are executed on the NVIDIA Tesla H100 GPU (80 GB) with
Intel Xeon Platinum 8480CL CPU.

Table 6: Detailed hyper-parameter settings on all datasets.
Hyper-parameters Email Cora Disney Flickr CiteSeer Enron Reddit Amazon

α 0.001 0.1 0.001 0.1 0.001 0.001 10 10
β 0.001 10 0.01 0.001 1 1 0.001 0.1
γ 1 1 1 1 1 1 1 1

I RELATED WORK

I.1 GRAPH NEURAL NETWORK

Graph neural networks (GNNs) have emerged as a dominant framework for modeling graph-structured
data, owing to their ability to aggregate information from a node’s neighbors based on the underlying

1https://github.com/pygod-team/data
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topology. Over the past decade, a wide range of architectural innovations have been introduced
to improve their expressivity, efficiency, and generalization, spanning foundational models such
as GCN, GraphSAGE, and GIN to more recent advances like InfoGraph and kernel-based graph
learning (Welling & Kipf, 2016; Hamilton et al., 2017; Xu et al., 2019; Sun et al., 2019; 2023).
GNNs are applicable to both node-level and graph-level tasks, with the latter often relying on readout
operations to map a graph into a vector space. Recent research has further expanded the landscape
(Scholkemper et al., 2025; Pahng & Hormoz, 2025; Sun et al., 2024). For example, Luo et al.
(2025) introduced GNN+, showing that classical GNNs augmented with edge features, normalization,
dropout, residual connections, feed-forward layers, and positional encodings can match or outperform
graph Transformers on graph-level tasks while being more efficient; Papillon et al. (2025) also
presented TopoTune, extending GNNs to topological deep learning via Generalized Combinatorial
Complex Neural Networks that capture higher-order interactions with reduced complexity.

I.2 GRAPH OUTLIER DETECTION

Node-level outlier detection on graphs has developed through several methodological paradigms,
each emphasizing different aspects of structural and attribute information. Reconstruction-based
methods (Ding et al., 2019; Fan et al., 2020) aim to rebuild node attributes or graph structures
using autoencoders, flagging nodes with high reconstruction errors as anomalies. Prediction-based
methods (e.g., Li et al. (2017)) infer node features or links based on neighbors or learned patterns,
where deviations from predictions indicate abnormality. Contrastive learning-based methods (Liu
et al., 2021b; Dillon et al., 2024; Xu et al., 2025) distinguish normal and abnormal behaviors by
learning robust node representations through contrasting positive and negative samples, thereby
enlarging margins between inliers and outliers. Distance or deviation-based methods (Chen et al.,
2020; Breunig et al., 2000) measure statistical divergence in local neighborhoods, leveraging density
or clustering cues to spot anomalies. Beyond these categories, hybrid and advanced designs have
emerged: adversarial approaches like AS-GAE (Zhang & Zhao, 2022) enhance discrimination via
perturbation; boundary-aware representations such as BOURNE (Liu et al., 2024) and adaptive
augmentation in ADA-GAD (He et al., 2024) refine normality decision boundaries; and interpretable
designs like CONAD (Xu et al., 2022) integrate attention for anomaly explanation. Recent efforts also
target robustness under homophily and heterophily by incorporating denoising strategies, geometric
embeddings (e.g., hyperbolic spaces), and transformer-style encoders to mitigate over-smoothing
and over-squashing. Collectively, these approaches represent a progression from early subspace and
residual scoring to more sophisticated adversarial, contrastive, and one-class objectives, reflecting the
field’s ongoing pursuit of greater accuracy, interpretability in node-level anomaly detection.

I.3 GRAPH REWRITING FOR GRAPH MINING

For the homophily trap issue, graph rewriting is a direct solution that aims at breaking the connection
between inter-class nodes while keeping intra-class connections. Dou et al. (2020) raised a label-
aware similarity measure to identify informative neighbors, use reinforcement learning to determine
the optimal number to select, and aggregate the chosen neighbors across different relations. Liu et al.
(2021a) proposed that for the fraud target node, the redundant links could be filtered by choosing
neighbors that are far from the target, measured by the distance, and removing them from the
neighbor set. And the necessary links, which are beneficial for fraud prediction, would be created
by choosing similar nodes of the fraud class and regarding them as neighbors. Qiao & Pang (2023)
calculated the Euclidean distance and removed the relatively farther neighbor nodes for one node,
finally adopting the similarity of nodes to detect anomalies. Gasteiger et al. (2019) designed the
Graph Diffusion Convolution to aggregate information from a larger neighborhood by constructing it
through a new graph, generated by sparsifying a generalized form of graph diffusion. Topping et al.
(2022) introduced a new combinatorial edge-based curvature, the Balanced Forman curvature, which
provides a sharp lower bound to the standard Ollivier curvature on graphs, and demonstrated that
negatively curved edges contribute to this phenomenon. The limitations of current works have been
discussed in Section 3.
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J REPRODUCIBILITY STATEMENT

To ensure full reproducibility, our source code is provided in the supplementary material. We also
plan to release the curated training dataset and final model weights. The experimental framework is
described throughout the paper for transparency, and details on hardware details, model configurations,
and hyper-parameters settings can be found in Appendix H. Dataset resources are summarized in
Appendix G, and all evaluation benchmarks, which are publicly available, are listed in Section 4.1.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

The conceptual framework and core ideas outlined in this paper represent the authors’ original
contributions. AI-driven language models were employed solely as auxiliary tools to support specific
well-defined tasks. These tasks encompassed implementing basic utility functions, and assisting with
manuscript translation and linguistic polishing. The authors take full responsibility for the content
of the manuscript, including any text generated or polished by the LLM. We have ensured that the
LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific
misconduct.

20


	Introduction
	Methodology
	Preliminary and Motivation
	Self-discriminative Masking Spoiler
	Clustering-based Outlier Detector

	Connection with Previous Work
	Experiment
	Experimental Settings
	Comparison with State-of-the-art Baselines (RQ1)
	Parameter Sensitivity Analysis (RQ2)
	Qualitative Study (RQ3&RQ4)
	Ablation Study (RQ5)

	Conclusion
	Proof of Proposition 1
	Detailed Algorithm Procedures
	Complexity Analysis
	Experiment on Large-scale Graph Benchmark
	Discussion of Cluster Number Selection
	Supplementary Visualization Results
	Datasets
	Detailed Experimental Settings
	Related Work
	Graph Neural Network
	Graph Outlier Detection
	Graph Rewriting for Graph Mining

	Reproducibility Statement
	The Use Of LARGE LANGUAGE MODELS (LLMS)

