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Abstract

Transferability of adversarial samples under different CNN
models is not only one of the metrics indicators for evalu-
ating the performance of adversarial examples, but also an
important research direction in the defense of adversarial ex-
amples. Diversified models prevent black-box attacks rely-
ing on a specific alternative model. Meanwhile, recent re-
search has revealed that adversarial transferability across sub-
models may be used to abstractly express the diversity needs
of sub-models under ensemble robustness. Because there was
no mathematical description for this diversity in earlier stud-
ies, the difference in model architecture or model output was
employed as an empirical standard in the assessment, with the
model loss as the optimization aim. This paper proposes cor-
responding assessment criteria and provides a more accurate
mathematical explanation of the transferability of adversar-
ial samples between models based on the singular value de-
composition (SVD) of data-dependent Jacobians. A new con-
straints norm is proposed in model training based on these
criteria to isolate adversarial transferability without any prior
knowledge of adversarial samples. Under the novel condition
of high-dimensional inputs in training process, the model at-
tribute extraction from dimensionality reduction of Jacobians
makes evaluation metric and training norm more effective.
Experiments have proved that the proposed metric is highly
correlated with the actual robustness of transferability be-
tween sub-models and the model trained based on this con-
straint norm improve the adversarial robustness of ensemble.

Introduction
In the research of adversarial examples, transferable ad-
versarial examples have become an important research di-
rection because of their more flexible and extensive ap-
plication scenarios in practice(Akhtar and Mian 2018). As
a way to improve the robustness, ensemble has become
an important research direction to defense against adver-
sarial samples at this stage. Essentially, the robustness of
ensemble model is due to the well-calibrated uncertainty
estimation for adversarial samples that outside the train-
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ing data distribution(Lakshminarayanan, Pritzel, and Blun-
dell 2016). Related test results combined with research
(Kuncheva and Whitaker 2003) proposed the concept of di-
versity of sub-models under ensemble conditions, and exper-
imentally demonstrated that the robustness of the ensemble
has a certain correlation with the diversity of sub-models.

Ensemble is widely used on both sides of attack and de-
fense in related competitions, and the description of diver-
sity metric is summarized as the diversity of model struc-
ture(Kurakin et al. 2018). More studies have proved that
models trained on the same data set without additional con-
straints are more inclined to extract the same non-robust fea-
tures (Ilyas et al. 2019; Li et al. 2015) making such an em-
pirical defense method not always effective in practice.More
research hopes to further define the diversity between mod-
els through an abstract characterisation, so as to obtain sub-
models based on diversity constraint and improve the robust-
ness of the ensemble(Bagnall, Bunescu, and Stewart 2017;
Pang et al. 2019; Kariyappa and Qureshi 2019; Yang et al.
2020). The common problem of these methods is that the de-
fine of diversity is only based on abstract concepts without
mathematical description, so its evaluation is more restricted
from the perspective of optimization loss.

Based on the conclusion of the correlation between trans-
ferability and diversity of sub-models(Yang et al. 2020), this
paper proposes an metric for accurately evaluating model
diversity based on the SVD of the Jacobian matrix. And
through the singular value and vector from mathematical
metric, the above-mentioned abstract expression is further
explained theoretically. Geometrically, Figure 1 simplify
demonstrate the difference between the evaluation method
proposed in this paper and methods based on abstract char-
acterisation by the level set of the optimize problem gradi-
ent, and gives a more accurate definition of transferability
in theory. Further, a regular term constraint through the pro-
posed diversified evaluation metric is used in model training
process to generate diversified sub-models, thereby improv-
ing the robustness of ensemble. In summary, the main con-
tributions of this article are as follows:

• This paper proposed a quantitatively metric based on
SVD of the Jacobian matrix for adversarial transferabil-
ity.



Figure 1: The illustration of the different metric of transferability based on level set of the optimize problem. (a) The upper
bound defined in GAL; (b) Transferability disturbance conditions that cannot be accurately defined by GAL; (c) DVERGE
maximizes the distance between the optimal disturbances to limit transferability; (d) Transferability disturbance conditions
that cannot be accurately defined by DVERGE; (e) The definition of transferability in this paper based on singular value and
Wasserstein distance of singular vector.

• The mathematical characterisation based on optimization
theory of the transferability further help us to understand
model attribute of the black-box.
• This paper further uses the metric of diversity metric as

a regular norm item in network training so as to improve
the ensemble robustness.

Related work
Abstract description and hypothesis of sub-model diver-
sity Subsequent studies proceed from different assumptions
and put forward different evaluation metric for the diversity
of sub-models under ensemble robustness. Based on the dif-
ference non-maximal logits outputs of model, ADP(Bagnall,
Bunescu, and Stewart 2017; Pang et al. 2019) evaluated such
diversity between sub-models. Based on the overlap of ad-
versarial subspaces (Tramèr et al. 2017), GAL(Kariyappa
and Qureshi 2019) evaluates such diversity through the gra-
dient direction difference; Based on the non-robust features,
DVERGE(Yang et al. 2020) further evaluated such diversity
through the non-robust distill feature transferability. Differ-
ent from the above-mentioned assumption, this paper starts
from the perspective of the transferability of adversarial
samples on the basis of the assumption of (Yang et al. 2020),
and gives a mathematical expression through optimization
theory.

Theoretical analysis of model attributes based on Ja-
cobian matrix The attributes of the model for more the-
oretical analysis is the essential to explain the black-box
performance.The Frobenius norm of the Jacobian matrix is
first used in the regularization training of the model’s ro-
bustness (Hoffman, Roberts, and Yaida 2019; Jakubovitz
and Giryes 2018; Novak et al. 2018). When the adversar-
ial samples are initially discovered, the spectral norm of a
certain layer weight is considered to be a metric for evaluat-
ing the sensitivity (Szegedy et al. 2013). The global spectral
norm of the model Jacobian matrix is further used to con-

strain the robustness of the model (Sokolić et al. 2017; Far-
nia, Zhang, and Tse 2018). (Khrulkov and Oseledets 2018;
Roth, Kilcher, and Hofmann 2019) essentially reveals that
the iterative generation process of adversarial samples is
mathematically approximates to the SVD of Jacobian matrix
through power method (Boyd 1974). Through further math-
ematical analysis, the Frobenius norm of Jacobian matrix is
connected with the transferability of Universal Adversarial
Perturbations (UAP) (Co, Rego, and Lupu 2021).

This paper expands the theoretical analysis based on Ja-
cobian matrix and innovatively evaluate the transferability
between models accurately through SVD. The Jacobian ma-
trix after dimensionality reduction is decomposed, and the
degree of alignment between the singular vectors is precisely
defined by the Wasserstein distance.

Method
Define f(x) as the logit output of convolutional neural net-
work f under image x, while Jf (x) = ∂fi

∂x |x is the Jacobian
matrix under image x. In the case where the perturdation δ
is small enough and higher-order terms are ignored, the de-
gree variation output of model which measured by the reg-
ular term Lq can be linearly represented as the first-order
Taylor expansion through Jacobian matrix Jf (x):

‖f(x+ δ)− f(x)‖ ≈ ‖Jf (x)δ‖q ≤ ‖Jf (x)‖F ‖δ‖ (1)

From the perspective of optimization theory, the goal of ad-
versarial sample optimization is to maximize ‖Jf (x)δ‖q .
When q = 2 the goal of adversarial sample optimization
can be simplified to a constrained optimization problem of
quadratic functions:

maxmize δTQδ

subject to δTPδ = K
(2)

Where Q = JTJ . Because of the homogeneity of the norm,
k is set as 1 to solve this constrained optimization problem.



Through Lagrange function l(x, λ) = xTQx+λ(1−xTPx)
under constrained optimization problem, the Lagrange con-
dition can be obtained as:

P−1Qδ = λδ (3)
Therefore, the eigenvector of P−1Q is the optimal δ

that corresponding to the solution of objective equation (3).
When the perturbation constraint is also under L2norm, P
is the identity matrix, and the maximum eigenvalue of Q
is the maximum value of equation (3). It can be seen that
the singular vector of the Jacobian matrix J essentially de-
fines the possible local optimal solutions of δ, and the max-
imum singular value defines the maximum output variation
of the model under L2norm. Without this meaning of sin-
gular values, the upper bound of transferability was defined
through inequality in (1)(Kariyappa and Qureshi 2019). But
as shown in Figure 1(a) and (b), when singular vectors are
not fullly align and singular values are not constant up to a
fixed scalar this metric can not define the transability more
accurately. Through the theory of optimization, the meaning
of eigenvalues and eigenvectors can be combined to further
analyze the transferability.

In order to evaluate the transferability of adversarial sam-
ples more accurately, this paper characterize the transferabil-
ity based on the distance between singular vectors. How to
choose a reasonable distance function is an essential issue in
our method. (Gulrajani et al. 2017) proposed theory that the
constraint of the variation between the logites output of dif-
ferent images is essentially a constraint on the Wasserstein
distance of the image. Converting to the scenario of adver-
sarial distinguish, the diversity metric in DVERGE can be
expressed as the discrimination of GAN to distinguish the
adversarial samples. So the diversity constraint achieved by
the DVERGE increase the distance between optimal per-
turbations. As shown in Figure 1(d), considering extreme
cases when singular values of a target Jacobian matrix is
not much different and there is one target singular vector
has small Wasserstein distance with source optimal pertur-
bations, it can also achieve strong transferability under this
constraint. A more accurate assessment of transferability
defined in this paper is characterized as: Given the singu-
lar vector(s vec) corresponding to the largest singular value
of the source Jacobian matrix(max(s valJs

)), the singular
value(s val) corresponding to the target Jacobian singular
vector under the condition of minimizing the Wasserstein
distance(mindis s valJs→Jt

) reveals the approximate out-
put variation. Let d as Wasserstein distance, the Equation (4)
mathematically expresses this metric as:

mindis s valJs→Jt

max (s valJs )×min

(
d

(
argmax
s vecJs

(s val) , s vecJt

))

s.t. mindis s vacJs→Jt = argmin
s vecJt

d

(
argmax

Js

(s val), s vecJt

) (4)

Drawing idea from PCA’s dimensionality reduction, we
make redundant assumptions about the role of batch-size
and image-channel dimensions in the gradient, and reduce
the dimensionality of the Jacobian matrix through HOSVD
decomposition (Kolda and Bader 2009; Chen and Saad
2009). This paper follows the overall parameter optimiza-
tion of ensemble in the training process. Algorithm 1 shows
the overall optimization algorithm.

Algorithm 1: Ensemble network optimization based on
transferability metric
Input: Batch images X, N sub-models
Parameter: Parameters of sub-model
Output: models for ensemble

1: initialization or pretraining model reload.
2: while i=1..N do
3: Randomly initialize sub-model fi
4: end while
5: while epoch=1..M do
6: while i=1..N do
7: ens out+ = softmax (modeli(X))
8: while j=1..N do
9: trans metricsi+ = trans metricsi,j 6=i / eq(4)

10: end while
11: ens transs = meanN (trans metricsi)
12: ens loss = BCE (meanN (ens out), Y onehot)
13: gω = 5ω(ens loss+ ens trans)
14: ω = ω + α ·RMSProp(ω, gω) / gradient regular
15: end while
16: end while
17: return Diversity sub-models

Experiment and results
Experiment of different evaluation metrics
The experiment combines the evaluation metric described
by abstract concepts to discuss the correlation between it
and the evaluation metric proposed by this paper and verifies
ours effectiveness.DVERGE (Yang et al. 2020) characterizes
the degree of output variation of distillation adversarial ex-
amples between different sub-models as equation (5):
1

2
E(x,y)(xs,ys)

[
lfi

(
x

′

f
j
l
(x, xs, y)

)
+ lfj

(
x

′

fi
l
(x, xs, y)

)]
(5)

Based on the diversity evaluation metric of formula (5),
the experimental result in Table 1 shows the diversity eval-
uation results of different method. The result shows the dis-
tillation adversarial loss between sub-models based on for-
mula (5). The brackets after each method give the transfer-
ability evaluation metric based on formula (4). The feature
distillation of adversarial examples is based on the method
of article (Ilyas et al. 2019). The perturbation strength is set
as standard 0.03 (≈ 8/255) while the iteration step is 50.

Ours(4.917) DVERGE(19.757) Baseline(157)
19.07 26.57 13.12 0.71 15.971 16.33 0.355 4.42 4.035

27.689 23.63 13.17 16.438 0.82 16.28 5.08 0.39 4.46
27.43 26.68 9.175 16.45 15.949 0.787 5.059 4.81 0.314

ADP(69.873) GAL(31) Advt(48.565)
1.31 4.73 4.41 2.559 6.369 6.46 3.966 4.55 4.6
4.59 1.197 4.517 6.07 1.448 19.48 4.68 3.86 4.598
4.646 5.071 1.226 6.048 17.59 1.24 4.687 4.56 3.88

Table 1: The diversity evaluation results of different method.
The brackets after each method give the metric based on
equation (4)

Comparing the results of different methods on different
evaluation metric, the results obtained based on equation (4)



(a) (b)

Figure 2: Robustness result with different perturbation: (a)white-box attack; (b)black-box attack. Different line shows the dif-
ferent method to diversify sub-model. All ensemble is achieved under three sub-models.

proposed in this paper are consistent with the results of equa-
tion (5) in the evaluation of model diversity. It is demon-
strated that the metric proposed in this paper based on equa-
tion (4) have coherence in evaluating the output variation
caused by perturbation with equation (5). The evaluation
metric of equation (4) is based on the attributes of the model
itself, and does not depend on any prior information based
on adversarial samples. This is also the essential difference
between the method in this paper and DVERGE. Also based
on the attribute extraction attribute of the Jacobian matrix,
the GAL method(Kariyappa and Qureshi 2019) optimizes
the upper bound constraint defined by formula (1), which
also improves the diversity of the network. However, com-
pared with the metric proposed in this paper, the poor results
fully demonstrate that the method in this paper is a more ef-
fective characterization of the model’s output variation un-
der the transfer attack.

Experiment of ensemble robustness The experiment in
this section evaluates the robustness of the ensemble model
with different method. In order to evaluate the robustness
more comprehensively, different adversarial perturbation ex-
periments are set up. Figure 2 shows the according result un-
der white-box attack and black-box attack. The white box at-
tack algorithm uses the current AutoAttack algorithm (Croce
and Hein 2020) which has the best attack performance. The
black box attack mainly relies on the transfer attack algo-
rithm of the alternative model, which is consistent with the
setting of DVERGE. Based on the baseline models, three
types of adversarial example including (1) PGD (2) M-DI2-
FGSM (Xie et al. 2019) (3) SGM (Wu et al. 2020) are gen-
erated, and the final accuracy rate is calculated comprehen-
sively under different types of adversarial samples.

Comparison under the white-box attack, the method in
this paper achieves the best robust performance without the
any adversarial sample prior conditions. Compared with the
optimal result of DVERGE, because the equation (4) only
gives constraints from the output variation range, the final
recognition accuracy is not characterize enough, so the op-
timal result is not achieved under the robustness of recogni-

tion, which is the further direction to improve. Comparison
under the black-box attack, our method achieves the best de-
fense performance under high perturbation. The robustness
under low perturbation conditions is not optimal. By com-
paring the accuracy of each type of adversarial sample, the
adversarial sample based on CW loss has relatively good at-
tack performance. This also shows that the perturbation con-
straint characterized by the output variation in this paper is
still more sensitive to the change of the loss function in prac-
tice. The theoretical characterization based on the loss func-
tion is an important point to further improve the robustness.

Conclusion

In this paper, the transferability of adversarial samples be-
tween sub-models is taken as the starting point for the study
of ensemble robustness. Through the optimization theory
analysis under Lagrange conditions, the SVD of the Jaco-
bian matrix is a characterization of the model’s optimal per-
turbation and output variation. Based on this theory, the
level set of optimization further mathematical demonstrate
the shortcomings of the previous abstract characterization of
trasferability. So, this paper effectively redefines the trans-
ferability metric between models: Given the singular vector
corresponding to the largest singular value of the source Ja-
cobian matrix, the singular value corresponding to the target
Jacobian singular vector under the condition of minimiz-
ing the Wasserstein distance reveals the approximate out-
put variation. By performing SVD on the dimensionality-
reduced Jacobian matrix, the sub-models obtained by this
metric as a regular term in network training has a great ef-
fect on reducing the degree of output variation. Without re-
lying on any prior information of adversarial samples, ex-
periments show that the method, using as a model attribute
extraction, finally improves the robustness of the ensem-
ble. The theoretical characterization of the loss function and
classification performance instead of the output variation
will be an important direction to further improve the robust-
ness of classification.
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