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Abstract: Well-performing deep learning methods are essential in today’s percep-
tion of robotic systems such as autonomous driving vehicles. Ongoing research is
due to the real-life demands for robust deep learning models against numerous do-
main changes and cheap training processes to avoid costly manual-labeling efforts.
These requirements are addressed by unsupervised domain adaptation methods, in
particular for synthetic to real-world domain changes. Recent top-performing ap-
proaches are hybrids consisting of multiple adaptation technologies and complex
training processes.

In contrast, this work proposes EasyAdap, a simple and easy-to-use unsuper-
vised domain adaptation method achieving near state-of-the-art performance on
the synthetic to real-world domain change. Our evaluation consists of a compar-
ison to numerous top-performing methods, and it shows the competitiveness and
further potential of domain adaptation and domain generalization capabilities of
our method. We contribute and focus on an extensive discussion revealing pos-
sible reasons for domain generalization capabilities, which is necessary to satisfy
real-life application’s demands.

Keywords: unsupervised domain adaptation, semantic segmentation, domain
generalization

1 Introduction

Numerous applications have become feasible due to deep learning methods for computer vision,
including the environment perception of autonomous vehicles. In particular, architectures emerged
to deliver high-quality results for semantic segmentation tasks, i.e., a pixel-wise classification of
images. Unfortunately, it is in the nature of deep learning models to be sensitive to domain changes,
e. g., domain changes from day to night, from telescope to wide-angle lenses, or from rural to urban
areas. An extensive training effort is necessary to keep the high-quality on the target domain, i.e.,
to adapt the model from the source to the target domain. Moreover, supervised training methods for
the target domains are infeasible due to the high costs of manually labeling data' and the virtually

endless number of target domains?.

Several approaches exist, minimizing or even completely avoiding labeling costs for the target-
domain data. For example, Active learning approaches implement a human-in-the-loop training
process, which asks a human to provide labels for a selection of samples, in order to achieve high-
quality training results with minimal manual labeling effort [2]. While active learning for semantic
segmentation tasks remains a huge challenge, it also still requires a certain amount of manual effort
[3, 4, 5]. Unsupervised domain adaptation methods completely avoid the usage of manually labeled
target-domain data. Instead, they align the distributions of source- and target-domain data in the
input [6, 7, 8], feature [9, 10, 11, 12], output space [13, 14, 15], or a combination of those [16, 17,
18]. The latter is complex in design, and therefore, hard to reproduce.

'"The manual pixel-wise annotation of an image takes about 90 minutes.[1]
?Real-life applications demand an adaptation to every domain they might encounter.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



Training Phase Improve Pseudo-Labels

Self-Supervision ‘

Trained Model

7 " S “| Model(0)
e ~- 1 %

= S

8 . [ ]

=] Supervision [y | =

5 A e " = Reinitialize Model °

8 eI | - =3

g N E]

3 E

2 : °

Self-Training

veid o]

Figure 1: An overview of EasyAdapt’s internal dependencies (dashed lines): The source-domain
training depends on the source-domain data and labels; the self-training of the target-domain training
depends on the target-domain data and its previously created pseudo-labels; the self-supervision
depends on the target-domain data and the feature clusters of the source-domain data.
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The usage of synthetic datasets as source domain completely abandons the need for manual labeling
effort [19, 20]. However, the large domain gap between synthetic and real-world domains makes
an adaptation between these domains increasingly difficult. Several aspects cause this domain gap,
such as a decreased variety in synthetic data and the differences regarding geometry, texture, and
lighting conditions. Due to these impediments, models trained on synthetic datasets poorly perform
on real-world data. On the other hand, real-life applications demand models that are robust against
a variety of domain changes. But performing domain adaptation to a large number of domains is not
feasible due to the immense training effort. Desirable domain adaptation methods achieve a domain
generalization. These methods train models not only to improve on the source or target domain but
also on unseen domains [21, 22, 23].

This work addresses the problem of unsupervised domain adaptation from synthetic to real-world
domains. We propose EasyAdap, an iterative extension of our work in [11], which conducts a distri-
bution alignment in the feature- and output-space (see Figure 1 for an overview). While achieving
near state-of-the-art performance on the GTAS [19] to Cityscapes [1] domain change, our method
is still simple and easy-to-tune due to its simple architecture®. Our feature-space distribution align-
ment is based on a self-supervision through a clustering loss of the target-domain features towards
class-specific source-domain feature centroids. A self-training addresses the alignment of the distri-
bution in the output space. We study the interplay between this self-supervision and self-training and
show that a synergistic effect exists (see section 4.4). We discuss the reasons for this effect in Sec-
tion 4.5. Overall, our work contributes EasyAdap, an easy-to-use unsupervised domain adaptation
method that yields near state-of-the-art performance. We contribute an extensive study of various
unsupervised domain adaptation methods regarding domain generalization.

Section 2 discusses domain adaptation methods related to our work. While Section 3 describes our
method, Section 4 evaluates our approach and compares it to other domain adaptation methods w.r.t.
the performance on the target domain and unseen domains. This work concludes with Section 5.

2 Related Work

We categorize related unsupervised domain adaptation methods for semantic segmentation tasks re-
garding their adaptation in the input, feature, and output space and hybrid methods thereof. The
latter (hybrids) comprise methods from the different categories, making up the majority of the re-
cent top-performing publications. While domain adaptation is a broad field (e. g., which includes
learning new classes), we concentrate on adaptation approaches that align the distributions in the
input, feature, and output space. The following subsections collect and briefly describe examples
for these categories.

Input-Space Adaptation. Aligning the data distribution in the input space usually resembles a
style transfer from the source domain to the target domain. Since a style transfer only changes
the textures while keeping the geometry of the images, the ground truth is also valid for the style-
transferred images. Now, training a model on labeled style-transferred images from the source
domain is close to training a model on the target domain. The most successful approaches for style

3URL: https://github.com/INiemeijer/Easy Adap.git



transfer implement Cycle-GANs [6, 7], Fourier transformation [8, 24] or global image operators
[16].

Feature-Space Adaptation. The adaptation in the feature space of a deep learning model usually
relies on adversarial training or self-supervision and aims at distribution alignment. When the pre-
logit feature distributions of the source and target domain match, the classifier in the last layer
classifies the source- and target-domain images in the same way. Adversarial training is based on a
feature extractor and a domain discriminator network, classifying the feature space into source and
target domains. The optimization goal is to generate a feature space that is not discriminable into the
source and target domain while containing relevant representations for the semantic segmentation
[9, 25]. A recent approach implements a contrastive loss* on class-wise features [10] attracting
features of the same class while repulsing features of different classes independent of their domain.
The approaches presented in [12] and our approach [11] apply semantic self-supervision to align
the distribution in the feature space by attracting the target-domain features in the pre-logit feature
space towards class-specific source-domain centroids. In contrary to the contrastive self-supervision
presented in [10] the attraction mechanism used in [11, 12] does not rely on pseudo-labels for the
target domain. Our work advances the approach of [11].

Output-Space Adaptation. Distribution alignment approaches in the output space either imple-
ment an adversarial training or a self-training. Adversarial approaches consider the structure of the
output space, i. e., they discriminate images between the source and target domain based on the (spa-
tial) distribution of the output of the segmentation model [13, 14]. Aiming at an easily reproducible
approach, we avoid adversarial approaches in our work. Most of the current top-performing meth-
ods implement a self-training on the target domain, which is a training of the model on self-inferred
labels (pseudo-labels). The effect of self-training depends on the quality of the pseudo-labels, i.e.,
these methods require strategies for the mitigation of false pseudo-labels. Common approaches ig-
nore low-confident pseudo-labels using a fixed confidence threshold [27, 28]. Some approaches
filter low-confident pseudo-labels dynamically [15, 17, 29].

Hybrid Methods. Most of the top performing approaches are hybrid methods combining adap-
tions methods working in the input, feature, and output space, notably [16, 17, 18]. The approach
presented in [18] performs a distribution alignment in the feature (clustering) and output space (self-
training). The approach in [16] even combines adaptation methods in the input, feature, and output
space. The currently best performing approach presented in [17] applies methods for distribution
alignment in feature and output space and additionally performs three structurally different adapta-
tion stages. Compared to these currently top-performing methods, our approach comes with a much
lower complexity regarding design and implementation effort.

3 Method

We introduce a nested iterative training approach for domain adaptation based on repeated appli-
cation of self-training and semantic clustering (see Figure 1). With this, we advance our approach
in [11] from a two stage model to an iterative model. We initialize the process with a training on
the source domain (see Section 3.1). The inner loop of the training process establishes a training
on the source and target domain, stopping early after a short number of epochs. The training on the
target domain comprises a semantic clustering and a self-training which is implemented as described
in [11]. Upon finishing such an inner iteration, the outer loop of the training process creates new
pseudo-labels and repeats the process. Section 3.2 describes the algorithm for the training process.

3.1 Building Blocks

Source Training Self-training approaches require models with a sufficient understanding of the
data to provide valuable pseudo-labels. To that, our approach initializes the model with a sophis-
ticated supervised training method on the source domain, including a rich data augmentation and
a class-uniform sampling strategy. Zhu et al. [30] showed significant improvements in supervised
training when applying a class-uniform sampling strategy. We adapt their class-uniform sampling in

4Cf. [26] for an overview of contrastive learning.



the following way. We first gather a list of objects from the dataset, i.e., a list of polygons®, each of
which has a class attribute and a centroid. We sample from this list regarding uniformly distributed
class attributes during the training. Eventually, each training batch combines randomly chosen crops
and crops that are centered around these polygons. A parameter 0 < « < 1 controls the ratio of
random samples and class-uniformly selected samples. We pair this uniform sampling with a strong
data augmentation consisting of Gaussian blurring, color jittering, and random scaling®.

Semantic Clustering When training on the source- and target-domain data, our approach for clus-
tering the feature space is inspired by the image-classification method presented in [12] and advances
our work in [11]”. We compute the class centroids on the source-domain data as running averages
of class-specific feature representations in the pre-logit feature space. We then compute a similar-
ity matrix between these class centroids and the feature representations of the target-domain data.
After weighing each entry of the similarity matrix with a constant that scales with the certainty of
the classification on the target-domain data, our loss function computes the entropy of the weighted
similarity matrix. This process implements a clustering® algorithm that executes through the back-
propagation. For details, please refer to the description in [11] or the supplementary material. The
process of Semantic Clustering is a form of self-supervision.

Self-Training Our process applies a simple self-training approach. Before training a model on the
target domain, we create pseudo-labels for the target-domain images given the current model. To
mitigate the influence of false pseudo-labels, we exclude labels from the self-training that yield a
prediction-vector entropy exceeding the threshold 3 - log K, where K is the number of classes and
B > 0. Improving the quality and impact of the pseudo-labels for self-training requires implement-
ing an iterative adaptation process. I. e., each adaptation step first needs to create new pseudo-labels
before resetting the model’s weights and (re-) starting the training.

3.2 [EasyAdap: Assembling the Bricks

Figure 1 and Algorithm 1 in the supplementary material describe our training process. First, we
perform the supervised training on the source-domain data with class-uniform sampling and a strong
data augmentation to gain an initial model M (0). Then, the process enters the domain adaptation
loop. Each adaption step first (re-) creates the pseudo-labels using the current available model
M(n) (i.e., M (0) in the first iteration). After resetting the model’s weights (to weights pre-trained
on ImageNet[31]), the adaptation step starts training a new model. We rebuild the list of samples
regarding random and class-uniform samples in each epoch of the training. While iterating over the
smaller (source- or target-domain) dataset, we sample as many batches as the larger dataset allows,
i.e., we restart sampling from the smaller dataset until we finish processing the larger dataset. We
compute the semantic segmentation loss for each training batch on the source- and target-domain
data using the ground-truth and pseudo-labels, respectively. We use the features of the source-
domain data to update the running average of the class centroids. The similarities between these
centroids and the target-domain features yield the clustering loss. We update the model’s weights
using both loss functions.

4 Evaluation and Discussion

This section evaluates our approach, EasyAdap, regarding domain adaptation and domain general-
ization quality. To that, we evaluate its performance on the domain shift from synthetic to real-world
data via adaptations from GTAS [19] and Synthia [20] to Cityscapes [1], respectively.

We compare our approach against numerous top-performing approaches from the literature in Sec-
tion 4.1. Since real applications require domain generalization instead of specific domain shifts, we

>The COCO format stores segmentation masks as polygons.

%These simple augmentations are available in the Tensorflow and PyTorch APIL.

"In contrast to [12], the method in [11] solves additional problems regarding memory and computational
complexity due to the image-segmentation task.

8Note, that we define clustering as pulling elements towards defined cluster centers instead of finding a
partition of the elements.



discuss and compare our approach regarding domain generalization against existing domain adap-
tation approaches in Section 4.2. Section 4.3 evaluates the impact of our data augmentation and the
class-uniform sampling. In Section 4.4, we show the effects of the self-training and self-supervision.
We conclude our evaluation with a discussion in Section 4.5

All of our experiments are based on an implementation of DeepLabV3+° with a WideResNet38
[32] backbone. We scaled all target-domain training images to match the size of the source-domain
images. While we train our model on crops of 400 x 400 pixels in batches of 24 source- and 24
target-domain images, we validate it on the original sized images. The training process implements
a stochastic gradient descent optimizer with momentum 0.9 and a weight decay of 10~*. While
the source-only setups trained for 45 epochs, our iterative adaptation steps stopped early after 20
epochs. We decay the initial learning rate of 0.007 with a factor 1 — e;%,fjfw after each epoch. We
configure our domain adaptation approach as proposed in [11] except for the self-training threshold,
which we now setto 8 = %6 (see Section 3.1).

4.1 Comparison to Existing Approaches

Table 1 shows the performance of state-of-the-art unsupervised domain adaptation methods from
GTAS to the Cityscapes dataset. This table includes methods aligning distributions on the input
space [6, 16], feature space [33, 34, 35], output space (e. g., via self-training [15, 27]), and hybrid
methods [16, 17, 18] (see Section 2 for a description of this categorization).

Table 1: GTAS to Cityscapes

2w 5 5 £ E

. £t £ 5 55 s 5 P .z
source DLv2 75.8 16.8  77.2 12.5 21.0 255 30.1 20.1 81.3 246 703 538 264 49.9 17.2 259 65 253 36.0 36.6
AdapSeg [13] 86.5 259 798 22.1 20.0 23.6 331 21.8 818 259 759 573 262 76.3  29.8 32.1 72 29.5 325 41.4
CyCADA [6] 86.7 356 80.1 19.8 17.5 380 399 415 827 279 736 64.9 19.0 65.0 12.0 286 45 31.1 42.0 427
CLAN [33] 87.0 27.1 79.6 273 233 283 355 242 836 274 742 58.6 28.0 762 33.1 36.7 6.7 319 314 432
APODA [36] 85.6 328 79.0 295 255 26.8 346 199 837 40.6 779 592 283 84.6 346 492 8.0 326 396 459
PatchAlign [37] 923 519 82.1 29.252 251 245 338 33.0 824 328 822 58.6 272 843 334 463 22 295 323 46.5
ADVENT [14] 89.4 33.1 81.0 26.6 26.8 272 335 247 839 36.7 78.8 58.7 30.5 848 385 445 1.7 316 324 455
sem. self-train. [11] 825 439 764 31.7 24.7 452 456 225 871 309 826 71.0 418 86.5 28.0 27.8  0.01 255 273 46.4
BDL [7] 91.0 447 842 34.6 27.6 302 36.0 36.0 85.0 43.6 83.0 58.6 31.6 833 353 497 33 288 356 48.5
CBST [27] 91.8 535 805 327 21.0 340 289 204 839 342 809 53.1 240 82.7 303 359 16.0 259 428 459
MRKLD [38] 91.0 554 80.0 337 214 373 329 245 850 34.1 80.8 577 246 84.1 27.8 30.1 26.9 26.0 423 47.1
FADA [35] 91.0 50.6 86.0 434 29.8 36.8 434 250 86.8 383 874 64.0 38.0 852 316 46.1 6.5 254 371 50.1
CAG [18] 90.4 51.6 83.8 342 278 384 253 484 854 382 78.1 58.6 346 847 219 427  41.1 293 372 50.2
Seg-Uncertainty [15]  90.4 312 851 36.9 25.6 375 488 485 853 348 8I.1 644  36.8 86.3 349 522 1.7 29.0 446 50.3
CLST [10] 92.8 535 86.1 39.1 28.1 289 436 394 846 357 88.1 639 383 86.0 41.6 50.6 0.1 304  51.7 51.6
SAC [29] 90.4 539 86.6 424 273 45.1 485 427 874 40.1 86.1 67.5 297 88.5 49.1 546 98 26.6 453 53.8
Coarse2Fine [16] 92.5 583 86.5 274 28.8 38.1 46.7 425 854 384 918 664 37.0 87.8  40.7 524 446 41.7  59.0 56.1
ProDA [17] 87.8 56.0 79.7 46.3 44.8 45.6 535 535 88.6 452 82.1 70.7 392 88.8 455 59.4 1.0 489 564 57.5
source-only 46.44 1075 622 1.21 16.75 22,16 1893 4.65 7276 373 6395 5091 744 68.55 26.1 418 0 3.75 1.66 25.58

source-only aug 5839 2544 6801 2555 2677 4025 44.62 1932 8437 3078 56.56 69.17 36.64 7429 2413 1086 09 2934 21.07 388
source-only uni 50%  57.87 32.03 5853 23.62 25.06 4238 45.17 2822 8336 2602 81.01 70.16 4024 80.07 20.05 1595 1.02 3247 2332 414

source-only uni 100%  76.03 34.02 7552 29.25 29.72 46.55 4591 2796 8252 2147 788 69.51 3458 86.14 2598 24.64 0 3256 2395 445
Self-Train 634 4099 60.85 41 3721 4528 51.06 3845 8734 3352 79.02 7038 3567 90.63 42.02 4793 1377 3792 18.03 49.18
Easy Adap 87.84 56.1 80.68 37.21 40.12 4939 5504 47.18 86.87 39.54 8535 69.93 42.13 90.65 52.12 6145 0 4213 46.39  56.32

target 9801 8441 9207 49.66  59.60 6443 6876 7822 9236 6349 943 8217 623 9482 8036 8576 7974 6599 7693 71155

Our method EasyAdap achieves near state-of-the-art performance in terms of mloU on the GTAS
to Cityscapes domain change: We achieve 56.32% mloU, which is comparable to the currently
best approach ProDA with 57.5% mloU. Similar to ProDA, we gain our improvement over other
approaches from classes like traffic light, traffic sign, fence, rider, and motorbike, which are difficult
to learn. Our method outperforms approaches that have similarities to our method (see Section 2)
on this domain change. In particular, this includes CLST and CAG with 50.2% and 51.6% mloU,
respectively. Except for ProDA, the same holds for all hybrid methods. ProDA, however, is hard-to-
tune due to its complex architecture (four structurally different training stages) and hyper-parameter-
tuning. Advancing our method from [11] into an iterative domain adaptation process improves the
results from 46.4% mloU to 56.32% due to synergistic effects between our self-supervision and
self-training. We further discuss these effects in Section 4.5.

Table 2 shows the performance of unsupervised domain adaptation methods from Synthia to the
Cityscapes dataset. Without changing any hyper-parameters tuned for the GTAS to Cityscapes do-
main change, our approach still performs well, ranking behind ProDA, SAC, and CLST, all of which
are also well-performing in the adaptation from GTAS to the Cityscapes dataset.

Implementation based on https://github.com/NVIDIA/semantic-segmentation/tree/sdcnet



Table 2: Synthia to Cityscapes

= = = )
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source DLv2 64.3 213 731 24 1.1 314 7.0 277  63.1 67.6 422 199 73.1 153 10.5 389 349 40.3
AdapSeg [13] 79.2 372 788 - - - 9.9 10.5 782 80.5 535 19.6 67.0 29.5 216 313 - 459
PatchAlign [37] 82.4 38.0 78.6 8.7 0.6 260 39 11.1 755 846 535 21,6 714 32.6 19.3 31.7 400 46.5
CLAN [33] 81.3 37.0 80.1 - - - 16.1 13.7 782 81.5 534 212 73.0 329 226 307 - 47.8
APODA [36] 86.4 413 793 - - - 22.6 17.3  80.3 81.6 569 21.0 84.1 49.1 24.6 457 - 53.1
ADVENT [14] 85.6 422 797 8.7 0.4 259 54 8.1 80.4 84.1 579 23.8 733 36.4 14.2 33.0 412 48.0
BDL [7] 86.0 46.7 803 - - - 14.1 11.6  79.2 81.3  54.1 279 737 422 257 453 - 514
FADA [35] 84.5 40.1 83.1 4.8 0.0 343 20.1 272 848 84.0 535 22,6 854 437 26.8 278 452 52.5
CBST [27] 68.0 299 763 10.8 14 339 228 295 776 783  60.6 283 8l.6 235 18.8 398 426 489
MRKLD [38] 67.7 322 739 10.7 1.6 374 222 312  80.8 80.5 60.8 29.1 82.8 25.0 19.4 453 438 50.1
CAG UDA [18] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 227 845 776 642 27.8  80.9 19.7 227 48.3 445 51.5
Seg-Uncertainty [15]  87.6 419 83.1 14.7 1.7 362 313 19.9 81.6 80.6  63.0 21.8 86.2 40.7 236 53.1 479 549
Coarse2Fine [16] 75.7 300 819 115 25 353 18.0 327 86.2 90.1 65.1 332 833 36.5 353 543 482 55.5
CLST [10] 88.0 49.2 82.2 163 04 292 318 239 84.1 88.0 59.1 272 855 46.6 289 56.5 498 57.8
SAC [29] 89.3 472 85.5 26.5 1.3 43.0 455 320 87.1 89.3 63.6 254 869 356 304 530 526 59.3
ProDA [17] 87.8 457 84.6 37.1 0.6 440 546 37.0 88.1 844 742 243 88.2 51.1 40.5 456 555 62.0
source-only 8.6 11.58 32.01 145 0 30.25 18.55 9.1 7457 68.74 56.63 8.16 66.98 12.05 3.41 9.69 2631 29.24
source-only aug 55.14 30.54 69.12 4.69 0 40.35 25.78 23.55 80.15 7693 61.92 21.59 40.78 18.6 17.05 27.6 37.13 4221

source-only uni 50%  64.39 2834 722 335 119 40.69 2751 2018 7993 59.2 6477 2407 79.04 241 1776 2048 39.2 4322
source-only uni 100% 79.0  33.18 68.75 3.16 038 42.07 2579 26.05 78.67 76.76 6128 2476 80.72 26.64 18.73 2894 42.18 4841
Easy Adap 8448 46.12 7469 0.16 0.04 47.14 4977 3194 7784 B85.11 7333 36.14 86.96 46.06 28.89 2301 4948 5725
target 98.01 8441 9207 49.66 59.69 6443 6876 7822 9236 943 82.17 623 9482 8576 6599 7693 7812 9277

Table 3: Domain generalization: Methods trained on GTAS (source-only) and methods adapted from
GTAS to Cityscapes tested on different real-world domains

Model Cityscapes BDD rain fog snow night
source-only DLv2 [13] 36.6 36.5 33.6 40.2 334 8.6
source-only DLv2 [29] 40.8 35.1 329 31.3 28.7 7.1
source-only DLv3+ 25.58 28.45 28.37 24.69 23.39 3.7
source-only aug DLv3+ 389 313 32.02 29.04 27.6 575
source-only uni 100% DLv3+ 44.06 36.77 33.27 35.75 28.28 7.63
AdapSeg [13] 42.4 37.4 30.8 354 279 7.4
Seg-Uncertainty [15] 50.3 35.7 359 414 374 14.0
SAC [29] 53.8 41.55 39.6 44.7 349 15.6
ProDA [17] 57.5 47.5 43.1 49.2 40.7 15.4
EasyAdap 56.6 46.69 43.02 48.56 38.87 14.38
target (Cityscapes model) 77.55 46.26 45.58 61.22 47.65 17.87

4.2 Domain Generalization

This section evaluates the domain generalization capabilities of our domain adaptation method and
compares it with several other approaches. To that, Table 3 shows the performance of several models
on the datasets Cityscapes, BDD [39], and four different domains of the dataset ACDC [40]. No
model has seen samples of BDD or ACDC during the training. Furthermore, the source-only models
did not see the Cityscapes samples during training.

BDD differs from the target domain of the adaptation (Cityscapes) by containing a diverse set of
weather and lighting conditions and by being recorded across the USA instead of Germany. ACDC,
which was recorded in Europe, defines the specific partitions rain, fog, snow, and night. Hence,
regarding the models trained on GTAS (and Cityscapes without ground-truth), these datasets include
domain shifts regarding the environment, weather, and sensors.

The improvements of our source-only models due to data augmentation and additional class-uniform
sampling also transfer to the unseen domains of BDD and ACDC. Considering the DeepLabV2
[29, 13] and DeepLabV3+ source-only models, there is no clear superior model. Note that the
target model (trained on the Cityscapes dataset) yields similar results on BDD as the adaptation
approaches ProDA and EasyAdap from GTAS to Cityscapes. Apart from that, the target model
always outperforms the domain adaptation approaches significantly. While ProDA leads the board
of domain adaptation approaches, EasyAdap achieves very close results. Furthermore, EasyAdap
outperforms the other domain adaptation approaches (see table 3).

4.3 Source-Only Training

The quality of our source-only training is crucial for the later creation of the first pseudo-labels.
To study the design decision of our source-only training, Table 1 and 2 show the performance of
different source-only models: trained without any augmentation (source-only); trained with color
jitter, Gaussian blurring, and random scaling (source-only aug); and trained with augmentation and
class-uniform sampling (source-only uni 50% and source-only uni 100%). On both datasets, GTAS



and Synthia, the augmentation improves the plain source-only model’s quality by over 10% mIoU.
An additional class-uniform sampling improves the model’s quality further by over 5% mloU. Sam-
pling the complete batch via class-uniform sampling (source-only uni 100%) outperforms a mixed
batch of random and class-uniformly sampled images (source-only uni 50%).

4.4 Impact of Adaptation Features

We conducted several experiments to study the impact of EasyAdap’s features on the model’s
quality. Figure 2 shows the best mIoU values on the validation set per adaptation step, which
consists of Ny.q;n, = 20 training epochs (see Algorithm 1). We successively enabled self-
training, class-uniform sampling'’, and the semantic self-supervision on the target domain (see
Section 6.1 and 3.1). Figure 2 shows that a self-training yields similar improvements as a com-
bination with an additional class-uniform sampling on the target domain. A further self-supervision
shows a steeper learning curve in the first few adaptation steps and yields a more durable learning
behavior. I.e., the two learning processes without self-supervision stagnate after four adaptation
steps, but the model trained with additional self-supervision still increases in quality.

Source Only Self-Training EasyAdap

0.52 4

0.50 4

mioU

0.48

—e— a:SelfTrain source uniform 50%
b:SelfTrain target + source uniform 50%

—&— cEasyAdap

— d:Semantic Self Supervision

——— e:Source only uniform sampling 50% il
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Figure 2: Left: Best mloU per adaptation step; self-training (a); self-training+uniform sampling
on target domain (b); self-training+uniform sampling+semantic self-supervision (c); uniform sam-
pling+semantic self-supervision (d); uniform sampling source only (e). Right: Qualitative examples

4.5 Discussion and Limitation

Does domain adaptation transfer knowledge? Table 3 shows that the target model trained on
Cityscapes (Cityscapes model) achieves similar performance on BDD as the ProDA and EasyAdap
models adapted to the Cityscapes dataset. While the Cityscapes model has to overcome the domain
change from sunny to rainy weather included in BDD, the adaptation methods need to overcome the
domain change from synthetic to real-world. The Cityscapes model also achieves similar perfor-
mance on ACDC’s rain domain as the ProDA and EasyAdap models. In this case, the target domain
consists of rainy images only, which challenges the Cityscapes model even more, while the adapted
models from GTAS seem to play out their advantage of having seen synthetic rainy images during
their training. On the other hand, the Cityscapes model outperforms the adapted models on the foggy
and snowy domains, which are unseen for all adapted models. We think that the additional domain
gap from the synthetic to the real world for the adapted models is the reason for the performance
drop of the adapted models compared to the Cityscapes model. Hence, the adapted models show
the behavior of knowledge transfer (here, rainy images) from synthetic to real-world domains. This
observation supports approaches adapting from synthetic to real-world domains. Moreover, it sup-
ports the demand for richer synthetic datasets regarding different domains, such as sensor, weather,
lighting, and environmental domains.

How to support domain generalization through adaptation? Since a domain adaptation to every pos-
sible encountered domain is infeasible in real-life applications, this work explicitly addresses and

1%From here on, we always apply class-uniform sampling on the source domain.



studies domain generalization effects of unsupervised domain adaptation methods, including our
own method EasyAdap. Section 4.2 and Table 3 show stronger generalization effects for some of
the adaptation methods. In particular, SAC, ProDA, and EasyAdap show significant improvements
in the unseen domains of BDD and ACDC. These methods apply self-training while AdapSeg does
not, and Seg-Uncertainty only applies self-training without improving the pseudo-labels through
recreation. These observations open the question of whether self-training, which mimics a super-
vised training on both domains, yields these strong generalization effects.

What are the reasons for synergistic effects? The experiments in Section 4.4 and Figure 2 show a
synergistic effect since enabling self-training and self-supervision gains 15% mloU while enabling
only one of the mechanisms gains only 8% and 4%, respectively. Hence, simultaneously enabling
both mechanisms gains another 3% atop each single mechanism. We argue that there is a synergy
between self-training and semantic self-supervision, i. e., they support each other. On the one hand,
self-training aims to mimic a supervised training on the source and target domain, which helps
the training process to generalize upon both domains. This generalization effect yields a better
alignment of the feature distribution in both domains, which in turn helps the self-supervision to
attract the target-domain features to the correct source-domain class centroids. On the other hand,
the self-supervision reduces the number of correct but ignored pseudo-labels by sharpening the
feature space and therefore reducing the uncertainty of correctly classified pixels.

How does the sampling strategy affect generalization? Sections 4.2 and 4.3 show that our source-
only models generalize well to unseen real-world data. We argue that combining a strong data
augmentation with a class-uniform sampling improves the domain generalization by avoiding over-
fitting. On the one hand, seldom classes gain weight in the training by oversampling, but the strong
augmentation avoids overfitting. On the other hand, large-area classes such as vegetation and terrain
lose weight compared to seldom classes, which again avoids overfitting the training data.

5 Conclusion

We propose the easy-to-use unsupervised domain adaptation method EasyAdap with near state-of-
the-art performance based on a self-supervision and self-training strategy. Our evaluation shows
that the quality of our method comes from a combination of improvements, including preliminary
training on the source domain with increased domain generalization capabilities due to strong data
augmentation and a class-uniform sampling; a self-training that yields strong domain generalization
capabilities; and a synergy of our self-supervision and self-training. Our evaluation includes an ex-
tensive discussion of domain adaptation methods at hand regarding knowledge transfer and domain
generalization capabilities. Our discussion includes several research questions regarding domain
adaptation and domain generalization of training and adaptation methods.
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