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Abstract

User-generated social media data is constantly
changing as new trends influence online dis-
cussion and personal information is deleted
due to privacy concerns. However, traditional
NLP models rely on fixed training datasets,
which means they are unable to adapt to tem-
poral change—both test distribution shift and
deleted training data—without frequent, costly
re-training. In this paper, we study tempo-
ral adaptation through the task of longitudi-
nal hashtag prediction and propose a non-
parametric dense retrieval technique, which
does not require re-training, as a simple but
effective solution. In experiments on a newly
collected, publicly available, year-long Twit-
ter dataset exhibiting temporal distribution
shift, our method improves by 64% over the
best static parametric baseline while avoid-
ing costly gradient-based re-training. Our ap-
proach is also particularly well-suited to dy-
namically deleted user data in line with data
privacy laws, with negligible computational
cost/performance loss.

1 Introduction

Distribution shift, particularly in the target labels
of classification tasks, presents a serious challenge
for the deployment of NLP systems in real-world
scenarios. The distribution of text data changes
over time due to new language usage, events, or
trends (Eisenstein et al., 2014; Ryskina et al., 2020;
Jaidka et al., 2018), which causes statically-trained
models to become stale without further re-training
on new data (Lazaridou et al., 2021; Dhingra et al.,
2022; Luu et al., 2022). Temporal shift is most evi-
dent in social media data, which we study through
multi-label tweet-hashtag prediction, where tweets
are classified into rapidly changing user-generated
trends. Recent temporal analysis of named entity
recognition models for social media (Rijhwani and

∗Equal contribution.
∗∗Work done while at Twitter.

Encoded Tweet Hashtag

#NewStart

#Fitness

#NewYear

Month 1

Month 2

. .
 .

Step 1: Encode/Index Datastores

Step 2: Inference via KNN Dense Retrieval
Te

m
po

ra
l D

is
tri

bu
tio

n 
Sh

ift

Most Recent 

Month m Datastore

KNN

New

Test Tweet

Encoded Tweet Hashtag

#NewStart

#Fitness

#NewYear

Encoded Tweet Hashtag

#Valentines

#Punxsutawney

#SuperBowl

Tweet Hashtag

… #Valentines

… #Punxsutawney

… #SuperBowl

Tweet Hashtag

… #NewStart

… #Fitness

… #NewYear

Tweet

…

query 

embedding retrieve

encode

query

compare

Encoded Tweet Hashtag

#NewStart

#NewYear rerank

Hashtag

#NewYear

#NewStart

fetch most recent datastore

. .
 .

Encoder

Encoder

Encoder

Figure 1: An overview of the KNN Dense Retrieval model
components. First, a month’s tweets are encoded into em-
beddings and added to an external, indexed datastore with
their associated hashtags—a process that could be automated
in a production setting. Second, a test tweet is encoded and
used to query the most recent datastore, which contains the
latest month’s training data for temporal adaptation. The top-k
tweets from this datastore are then retrieved and re-ranked.

Preotiuc-Pietro, 2020) identifies the advantages of
continual exposure to late-breaking training data.
Given the ever-shifting nature of user-generated
data, deployed models must be explicitly designed
to (1) adapt to dynamic test distributions to pre-
vent temporal performance degradation, and (2)
abide by data privacy laws, such as GDPR, CCPA,
etc. (Voigt and Von dem Bussche, 2017), that man-
date prompt removal of user data.

In this paper, our main contribution is an empiri-
cal analysis of a known, but understudied learning
paradigm in the context of temporal adaptation:
non-parametric classification via dense retrieval
from a datastore. By using a K-nearest neighbor
(KNN) classifier in conjunction with a static neu-
ral text encoder and simple reranker (as depicted
in Fig 1), we demonstrate that continual and au-
tomatic updates of the training datastore facilitate
quick adaptation and deletion. In contrast to con-



temporary neural paradigms, which require gradi-
ent descent during fine-tuning, our approach re-
quires no gradient updates—both adaptation and
retroactive deletion use minimal compute.

In order to analyze our proposed temporal adap-
tation method, we introduce a new supervised
dataset (§3) focused on hashtag prediction, a multi-
label classification task in the social media domain
that exhibits label shift over time. Hashtag predic-
tion, in which a system must predict the set of hash-
tags to be assigned to a given input tweet, is partic-
ularly amenable to our non-parametric method due
to the intrinsic, user-generated categorization. In
other words, the latest supervised training data can
be automatically scraped and updated periodically
on-demand. We release the dataset as tweet IDs.

In addition to comparing several text encoding
strategies and re-ranking methods on the dataset
(§5), we compare against two state-of-the-art para-
metric baselines based on BART (Lewis et al.,
2020), a large pre-trained sequence-to-sequence
model. These variants include a fine-tuned BART
encoder-based classifier, along with the full BART
seq2seq model fine-tuned on tweet-hashtag pairs.
We find that our best non-parametric approach out-
performs static parametric models with an aver-
age relative gain of 64% recall under test distri-
bution shift—and, even outperforms conventional
gradient-based temporal adaptation of parametric
baselines with an average relative gain of 12%
recall. Together, our empirical analyses high-
light non-parametric techniques as a practical and
promising direction for handling distribution shift
and user-deletion, and may facilitate future work
on real-world, temporal NLP system deployment.

2 Dense KNN Hashtag Prediction Model

Language in user-generated social media data con-
stantly changes, which makes the prediction of new
trend categories, or hashtags, challenging for NLP
models. Fundamentally, hashtag prediction is a
multi-label classification problem, in which a set
of hashtags must be suggested for a single tweet.
As new events influence online discussion, the clas-
sification labels change drastically: roughly half
of hashtag types in our dataset are newly replaced
after 4–5 months (see details in App. Fig. 3).

For this task, we consider a known, but under-
studied learning paradigm in the context of tem-
poral adaptation: non-parametric classification via
dense retrieval from a datastore. By combining a

K-nearest neighbor (KNN) classifier with a static
neural text encoder and simple reranker, as depicted
in Fig. 1, we enable simple but effective updating of
an external datastore when train/test data changes,
in contrast to full re-training of parametric models.
Our model first retrieves the top-K nearest hash-
tag labels from a datastore based on L2 distance in
neural embedding space,

Sk(xt) = {(x1, y1), . . . , (xk, yk)}
= argmin top-k

(xd,yd)∈D
∥xt − xd∥2 (1)

where xt is a neural encoding of a test/query tweet
and xd is the neural encoding of a train tweet from
train datastore D. Both xd and yd, which represents
one (of the potentially many) associated tweet’s
hashtag labels, are stored “unrolled” in D, such
that tweets with h hashtags occur h times with
only one hashtag per entry. After obtaining the
top-K tweet-hashtag pairs Sk(xt), we add a final
re-ranking step to return final hashtag predictions
Ŷr, where r << k:

Ŷr = {ŷ1, . . . , ŷr} = re-rank(Sk(xt)) (2)

Based on this, our dense KNN model has three
main components: (1) A static neural tweet en-
coder, such as the fine-tuned BART model (Lewis
et al., 2020) that we use, which is only trained once
and does not require updates, (2) a datastore that
enables fast nearest neighbor search, and (3) a re-
ranker to boost recall performance. We explain
components (2) and (3) in more detail next.
Datastore and Search. We follow prior
work (Khandelwal et al., 2020, 2021) and use
FAISS (Johnson et al., 2019), which enables effi-
cient indexing, clustering, and approximate nearest
neighbor similarity search for dense vectors using
quantization, which is faster than exact search, but
does not precisely correspond to exact L2 distance.
See § 4.1 for implementation details.
Re-ranking Retrieved Hashtags. For optimal
performance, we explore several methods for re-
ranking the top-K retrieved tweets to return the
“unique” top-R (R << K) hashtags, after remov-
ing repetitions. First, default distance ranking
involves re-ranking based on tweet embedding L2-
distance returned by FAISS, which are approxi-
mate as FAISS quantizes vectors for search ef-
ficiency. Second, our actual distance ranking
method uses the actual distance between the en-
coded query tweet and its retrieved neighbors.
Third, frequency-based ranking prioritizes the



R hashtags with the greatest support in the initial
retrieved K. We count the number of occurrences
of each hashtag in the top-K retrieved tags, and
then rank them from most repeated to least, and
return the top-R most common ones.

3 Longitudinal Hashtag Dataset
Since we require a dataset with fine-grained tem-
poral annotations and aim to study longitudinal
effects of temporal distribution shift, we collect a
new large-scale benchmark dataset for temporal
hashtag prediction on Twitter. We scrape tweets
from the entire 2021 calendar year organized by
week published, keeping only tweet-hashtags in
the top-10K most frequent hashtags that week. We
observe large label distribution shift over time, as
roughly 50% of labels are new after 4–5 months
(for detail, see Fig. 3).

For temporal evaluation, we divide our dataset
into alternating 3-week train/1-week test splits
(nearly, but not exactly aligned with month bound-
aries), such that the test data is always from a future
date. We chose to divide our dataset into weeks be-
cause we (a) needed a fine-grained enough division
to investigate how model performance decays over
time, yet (b) enough data points in each division
for supervised training/fine-tuning of high-capacity
neural baselines for comparison. Of course, these
two decisions are at odds with each other since
very fine-grained divisions will reduce the amount
of training data in each division. Finally, (c) we
desired a temporal setup that would be practical
for real-world use (i.e. avoid excessively frequent
updates). For comparison, we also consider the
setting with no temporal shift, where each week
contains its own train/test splits and all of the 3-
week test splits are aggregated for evaluation. To
facilitate models like ours that require a frozen his-
torical training corpus (e.g. to train our static tweet
encoder), we reserve the first 3-week time split.

4 Experimental Setup
For the parametric neural classifier, we use BART-
large (Lewis et al., 2020) with a multi-label classifi-
cation head. To explore if performance degradation
over time is simply due to a fixed label set, we pro-
vide another parametric model, a neural seq2seq
baseline based on BART with conditional genera-
tion head, which can generate hashtags unseen dur-
ing training. The model is trained to maximize the

Code/data (tweet IDs) available here: https://github.
com/mireshghallah/temporal-knn

conditional probability of the tokenized sequence
of concatenated hashtags, given the tweet text as
input. During test time, we force the model to gen-
erate 120 tokens, and then select the first 5 hashtags
for calculating recall independent of their order.

For our model’s neural encoder for KNN, we
use the same BART architecture as a tweet text
encoder. In this setup, we use the neural classifier
fine-tuned once on the initial 3-week training set for
hashtag classification, and then freeze and re-use
it for encoding every subsequent train/test week
in the year. That is, instead of continuously re-
training our neural encoder for KNN, we simply re-
use it and swap out the encoded datastores during
updating. We describe other encoder variants and
their results in §5.

4.1 Training Details
For the neural classifier experiments, we train each
classifier for 30 epochs, and choose the best check-
point based on validation recall. We use a learning
rate of 3e-5 with a polynomial scheduler and train-
ing batch size of 36 for both the neural classifier
and the seq2seq models. For the Tw/oA setting in-
troduced in Section 5, we train one model each for
classifier/seq2seq. For the classifier, this results in
a fixed label set size of 16,886 for all test sets. For
the Tw/A setting, we train 12 different models on
each of the 3-week alternating train splits, testing
on each of the 1-week future test sets with the most
recent models.

For the datastores, we encode all tweets into an
N × E memory maps, where N is the number of
unrolled tweets (§2) in the training set and E is
the embedding size (E = 1024). Separately, we
construct an N × V memory map for hashtags,
where V = 280 is the max allowable length of
tokens. We use the FAISS IndexFlatIP quantizer
with L2 as the distance metric. For retrieval, we
use their search function as well, which retrieves
the nearest K neighbors but using the approximate
(quantized) distances which means the retrieval
and order is not exact. We also experimented with
Cosine distance and found it to under-perform com-
pared to L2 in our case. We use K = 1204 for our
experiments (see App. Table 3).

5 Results

Our experimental results consist of performance
comparisons between (1) different models and tem-
poral settings and (2) user-deletion. We present
model ablations in Appendix A.

https://github.com/mireshghallah/temporal-knn
https://github.com/mireshghallah/temporal-knn


Temporal Adaptation. We perform experiments
with three different temporal dataset (§3) settings:
(1) Non-temporal (NT), where there is no tempo-
ral distribution shift between train and test; each
week contains its own train/test splits and the 3-
week test splits that correspond with each 3-week
train split are aggregated for evaluation. (2) Tem-
poral w/o Adaptation (Tw/oA), where a model’s
training data consists of only the first 3-weeks of
the year and its test data is from every later test
week (weeks 4, 8, . . . , 48). (3) Temporal w/
Adaptation (Tw/A), where the model is re-trained
throughout the year on the 3-week split immedi-
ately before the given test week (e.g. for test week
8, the model is trained on weeks 5–7).

In Table 2 (a), we summarize results across these
3 settings. In terms of comparing the two paramet-
ric baselines, we can see that in the temporal setups
(Tw/oA, Tw/A) the Seq2Seq model outperforms
the Classifier, potentially due to its capability of
generating unseen hashtags, unlike the Classifier’s
fixed training label set. The Classifier is able to per-
form well exclusively for the NT evaluation, which
does not exhibit any distribution shift, and there-
fore is not a representative setting for production.
Dense KNN outperforms Seq2Seq and Classifier
for both temporal setups, which shows how sim-
ple, yet robust non-parametric models are under
distribution shift.

In Fig 2 (b), we compare year-long performance
degradation of Tw/oA & Tw/A models for a bet-
ter understanding of the effects of temporal shift.
As the test week progresses further along in the
year, we see a marked decrease in performance (as
much as a 34% relative decrease) for Tw/oA mod-
els (dashed line), which is indicative of major dis-
tribution shift between the old data the model was
trained on vs. the new test data. Alternatively, the
solid lines, representing the continuously re-trained
models with the Tw/A setting, tend to maintain
their performance much better. Our dense KNN
model performs the best across time, despite being
the simplest and most efficient model to update
since it requires no gradient-based training.

Does distribution shift affect the tweet encoder?
While our neural tweet encoder—the component of
our dense KNN model that encodes tweets as keys
for our datastores—requires historical data to learn
how to embed tweets for nearest hashtag retrieval,
results in Fig 2 (b) show that this older data has no
impact on the performance of our full “Dense KNN”

model over time. To understand why our approach
does not suffer performance degradation despite
using a tweet encoder trained on stale data, we can
compare our “Dense KNN Tw/A” results in Fig 2
(b) with the “Classifier Tw/oA” setting. As a re-
minder, these two methods share the same underly-
ing BART encoder model (except for the classifica-
tion head), which is trained on the first three-week
training dataset. While the neural encoder stays
the same for “Dense KNN Tw/A” and “Classifier
Tw/oA” settings, the “Dense KNN Tw/A” model
gets updated with the temporally closest datastores
over time, while the “Classifier Tw/oA” must only
rely on the stale neural encoder/classifier head. If
we contrast “Dense KNN Tw/A”’s purple solid line
in Fig 2 (b) with the “Classifier Tw/oA”’s orange
dashed line, we observe a sharp performance drop
for the stale classifier. However, performance stays
relatively constant over time for the “Dense KNN
Tw/A” model despite having the same encoder as
the stale classifier. We understand this to show that
the learned representations for comparing tweets,
the component shared by both methods, are not
negatively impacted by the passage of time, but
it is instead the classification head that becomes
outdated as a result of changing label set distribu-
tions. Since “Dense KNN Tw/A” is able to see
the most recent, empirical label set distribution
when we update the datastore over time, this would
explain its high performance. These findings are
further supported by the increase in performance
from the “Classifier Tw/oA” (dashed orange line)
to “Classifier Tw/A” (solid orange line) settings,
the “Lifetime of a Hashtag” label set overlap over
time (App. Fig 3), and App. Fig 4, in which we
show the yearlong hashtag prediction performance
breakdown for the best temporally adapted settings.

Deletion Adaptation. As explained in §1, efficient
model adaptation facilitates selective deletion of
training data, which can be an important feature
for removing harmful training examples or obeying
user deletion requests. For non-parametric meth-
ods like dense KNN, deletion involves straightfor-
ward removal of the given tweet from the datas-
tore, followed by a re-indexing operation, which
takes minutes on CPU. The parametric classifier,
however, needs to be fully re-trained without the
deleted tweets, which takes about a week on our
dataset with a single A100 GPU. In Fig 2 (c), we
compare our dense KNN with training data from
weeks 9–11 and test data from future weeks 12,
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Figure 2: (a, left) Comparing average test recall@{1, 5} performance over the year. “Most Common Train” (MC Train) uses the
most frequent hashtag label from the corresponding training set for each setting. For instance, “Non-temporal” and “Temporal w/
Adaptation” settings use the most common hashtag label from the three weeks right before the test week, unlike “Temporal w/o
Adaptation”, which uses the most common hashtag label from the first three weeks of the year. † denotes statistical significance
via paired bootstrap test (Koehn, 2004). (b, center) Comparison of our KNN approach with the neural seq2seq and classifier
models. Dashed lines show evaluation results of a model trained/datastore created on only time bucket 1 (first 3 weeks). Solid
lines show the performance of adapted/re-trained models on the most recent data. (c, right) Performance effects of training data
deletion (thicker line means higher deletion percentage) under Temporal w/o Adaptation (Tw/oA) setting. We have plotted the
optimal classifier, without any deletion, as its the upperbound of classifier performance.

16, 20, . . ., 48 under 4 different training dataset
deletion percentages: 1.7%, 20%, 50% and 80%.
The 1.7% scenario represents the real-world user-
deleted data percentage (due to account suspension,
user deletion, or content violations) that is obtained
after re-scraping the tweets 5 months after initial
collection, while other percentages are chosen for
interest and deleted randomly. We compare the
behavior of dense KNN with updated datastores
with that of the parametric classifier without any
deletion in Fig 2 (c). We observe that the KNN
model decays gracefully as more data is deleted,
and even with the deletion, it still outperforms the
upper bound classifier model.

6 Related Work

Hashtag Recommendation. Earlier works on
hashtag recommendation compute tf-idf vectors
from extracted keywords and apply classifiers on
these vectors (Jeon et al., 2014; Sedhai and Sun,
2014), while late works incorporate neural nets (Li
et al., 2016; Shen et al., 2019; Gong and Zhang,
2016; Ma et al., 2019). Feng and Wang (2014)
collected a dataset of millions of tweets/hashtags
across two months of 2012 and designed a personal
hashtag recommendation model using user meta-
data. Instead, we release a public dataset of tweets
over an entire year, show how to continually update
a non-parametric datastore to handle temporal shift.
Another line of research models semantic word
shift as one form of temporal change (Wijaya and
Yeniterzi, 2011; Kulkarni et al., 2015; Hamilton
et al., 2016; Kutuzov et al., 2018).
Temporal Adaptation. More recently, the tempo-
ral generalization problem has been re-emphasized
in pretrained language models (Lazaridou et al.,
2021; Dhingra et al., 2022; Luu et al., 2022; Jin

et al., 2022; Loureiro et al., 2022) as their re-
training cost continues to grow. While in-context
learning enables updating model posteriors without
gradient updates, static models are still unable to
update their temporal world knowledge (Akyürek
et al., 2022; Xie et al., 2021). The temporal distri-
bution shift problem on Twitter has been studied
in Preoţiuc-Pietro and Cohn (2013); Rijhwani and
Preotiuc-Pietro (2020); Luu et al. (2022); Kowald
et al. (2017); Kamath and Caverlee (2013).
User Data Deletion. While several methods
have been proposed to partially mitigate compu-
tational costs of unlearning through techniques to
speed up re-training, substantial compute is still
required (Bourtoule et al., 2021; Wu et al., 2020).
Decremental learning (Cauwenberghs and Poggio,
2000; Karasuyama and Takeuchi, 2009) has been
proposed for removing specific training samples.
Different from previous methods, we explore a sim-
ple, theoretically guaranteed, and effective way to
delete user data by modifying the datastore.

7 Conclusion
In this paper, we show that a non-parametric dense
KNN retriever model is particularly well-suited
for the task of temporal adaptation as it can effi-
ciently adapt to changing test distributions over
time by easily updating and swapping out datas-
tores. We find it improves by 64% over the best
static parametric baselines while avoiding their
costly gradient-based re-training. Our model also
performs well under selective deletion of training
data, which is an important feature for removing
harmful training examples, or obeying user dele-
tion requests in line with data privacy laws, such
as GDPR and CCPA. We hope the release of our
dataset will encourage more work on temporal
model adaptation in the future.



Limitations

Our proposed dense retrieval method relies on a
collection of “historic data” which is used to train
an encoding/embedding model, to produce the rep-
resentations that would be used as keys in the data-
store. As the KNN method relies on these represen-
tations for finding neighbors, it is crucial to train
the embeddings on in-domain historic data, that
would also be unlikely to receive deletion requests.
However, as we show in our experiments, this data
does not go stale for even a year out, and still per-
forms well and provided appropriate embeddings,
as the performance of the KNN method does not
degrade with the passage of time (as seen in Fig 2
(b) and discussed in Section 5).

Ethics Statement

We abide by the Twitter development and
data usage agreement (https://developer.
twitter.com/en/developer-terms/
agreement-and-policy) for the collection
and usage of the Twitter data. Also, upon release
of the dataset, we will only make the tweet IDs
available for data re-hydration (and not the user
ID or the tweet body), to protect the privacy of the
users, which is inline with the overall goal of this
paper as well.
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Figure 3: On Twitter, hashtag usage exhibits significant tem-
poral distribution shift, which is challenging for current NLP
models. We show the hashtag label set overlap, computed as
recall between each month’s hashtags, for our longitudinal
dataset of 7.13M tweets over the 2021 calendar year. We note
that the recall is not symmetric because monthly hashtag sets
have different sizes.

Longitudinal Hashtag Dataset Statistics

Number of Train Tweets Per Week 475,437
Number of Val-Test Tweets per Week 59,430
Number of Avg Tags per Tweet 2.9
Number of Unique Tags per Week 10,000
Avg Hashtag Length (tokens) 3.2
Avg Tweet Length (tokens) 30.3

Table 1: Summary statistics of new longitudinal dataset.

A Ablation Studies

In this section, we perform an ablation of several
model components, including the encoding of the
tweets for building the datastore, the K in KNN,
and the re-ranking of the retrieved K nearest neigh-
bors. Finally, we break-down the recall @5 results
of the KNN over different time buckets, to see how
well the updated datastore helps capture out-of-
vocabulary tags that a datastore/model from the
first time bucket would not have captured.

Ablating encoder for datastore. Apart from the
classifier encoder used in all previous experiments,
we also tried using both the seq2seq model as the
encoder, and a generic encoder trained on tweets,
named Bertweet (Nguyen et al., 2020), compared
in Table 2. The classifier encoder performs the best,
followed by the seq2seq, and Bertweet. One poten-
tial explanation for Bertweet’s poor performance is
that its training set, which consists of tweets from
2012 to 2019, is outdated, creating a significant dis-
tribution mismatch. This would hint that the KNN

Temporal

Non-temporal W/o Adaptation W/ Adaptation

@5 @1 @5 @1 @5 @1

MC Train 1.69 0.46 1.11 0.26 1.68 0.47
KNN-Seq 35.21 11.83 10.35 3.32 19.64 5.88
KNN-Bertweet 33.07 11.00 7.55 2.30 15.46 4.59
KNN-Clsf 39.54 13.15 18.45 6.65 26.21 9.60

Table 2: Ablation study of the effect of different encoders for
encoding the tweets in the datastore and retrieving the nearest
neighbors.

encoder could also require updates, although only
across years as previously described.

Ablating K and re-ranking methods. In Ta-
ble 3, we show ablation results for top-k and re-
ranking averaged over the 12 test weeks. Over-
all, frequency-based re-ranking outperforms the
distance-based methods by a large margin, which
we hypothesize is due to the robustness added by
the repetitions in hashtags. We can see that for
the distance-based methods, the overall trend is
that higher K is better, due to fewer cascading er-
rors (1024 is optimal on average). The frequency-
based re-ranking, however, degrades significantly
if the number of retrieved neighbors is large (1024
and 2048), which is expected, as more irrelevant
but common hashtags are suggested. When K ap-
proaches the datastore size, we approach a random
frequency-based classifier.

OOV tag prediction performance. Finally, we
want to investigate how updating the datastore
helps us capture new, out-of-vocabulary (OOV)
hashtags, that would not be predicted if we kept us-
ing the datastore from time bucket 1. Fig 5 shows
the results for this experiment, where the OOV
refers to out-of-vocabulary with respect to bucket
1’s hashtag vocabulary. IV refers to in-vocabulary
hashtags, which means the tags that appear both
in the given test week, and the train data of time
bucket 1. We report the recall over the IV and
OOV tags separately. We can see that the updates
in the datastores help predict 19% of the hashtags
that would otherwise not be predicted, on average
across the test weeks. We see that as we proceed
with time buckets, the OOV recall grows, eventu-
ally overtaking the IV recall. It is worth noting that
the number of IV tags is substantially smaller in
later time buckets. We suspect the superior OOV
performance on the later time buckets is related
to content shift, i.e., the meanings of IV tags may
have shifted by the later time buckets.
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Figure 4: Evaluation matrix using all possible combinations of previous three-week-span train buckets (roughly corresponding
to months) to predict hashtags for all possible combinations of test week buckets (occurring directly after each three-week-span
train bucket throughout the year). We compare recall@5 results for the best performing seq2seq temporal baseline from Table 2
(a), and our Dense KNN model. We include using future months to predict past test weeks, although unrealistic in practice, for
completeness.

Method / K 20 50 100 1024 2048

Frequency-based 25.23 26.26 26.21 23.12 21.44
Default Dist. 24.00 24.09 24.32 24.27 24.21
Actual Dist. 24.22 24.50 24.77 24.97 24.92

Table 3: Effect of K on KNN retrieval and comparing dif-
ferent re-ranking methods from §2. Recall @ 5 is reported,
averaged over the 12 test weeks of the year under the Tw/A
evaluation scheme.
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Figure 5: Studying the effect of updating the datastore on
capturing out-of-vocabulary (OOV) vs. in-vocabulary (IV)
hashtags. OOV recall is reported with respect to the vocabu-
lary from the initial three-week training set.


