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ABSTRACT

Learning deep discrete latent presentations offers a promise of better symbolic and
summarized abstractions that are more useful to subsequent downstream tasks.
Recent work on Vector Quantized Variational Auto-Encoder (VQ-VAE) has made
substantial progress in this direction. However, this quantizes latent representa-
tions using the online k-means algorithm which suffers from poor initialization
and non-stationary clusters. To strengthen the clustering quality for the latent rep-
resentations, we propose Vector Quantized Wasserstein Auto-Encoder (VQ-WAE)
intuitively developed based on the clustering viewpoint of Wasserstein (WS) dis-
tance. Specifically, we endow a discrete distribution over the codewords and learn
a deterministic decoder that transports the codeword distribution to the data distri-
bution via minimizing a WS distance between them. We develop further theories
to connect it with the clustering viewpoint of WS distance, allowing us to have a
better and more controllable clustering solution. Finally, we empirically evaluate
our method on several well-known benchmarks, where it achieves better quali-
tative and quantitative performances than the baselines in terms of the codebook
utilization and image reconstruction/generation.

1 INTRODUCTION

Learning compact yet expressive representations from large-scale and high-dimensional unlabeled
data is an important and long-standing task in machine learning (Kingma & Welling, 2013; Chen
et al., 2020; Chen & He, 2021; Zoph et al., 2020). Among many different kinds of methods, Vari-
ational Auto-Encoder (VAE) (Kingma & Welling, 2013) and its variants (Tolstikhin et al., 2017;
Alemi et al., 2016; Higgins et al., 2016; Voloshynovskiy et al., 2019) have shown great success in
unsupervised representation learning. Although these continuous representation learning methods
have been applied successfully to various problems ranging from images (Pathak et al., 2016; Good-
fellow et al., 2014; Kingma et al., 2016), video and audio (Reed et al., 2017; Oord et al., 2016;
Kalchbrenner et al., 2017), in some contexts, input data are more naturally modeled and encoded as
discrete symbols rather than continuous ones. For example, discrete representations are a natural fit
for complex reasoning, planning and predictive learning (Van Den Oord et al., 2017). This motivates
the need of learning discrete representations, preserving the insightful characteristics of input data.

Vector Quantization Variational Auto-Encoder (VQ-VAE) (Van Den Oord et al., 2017) is a pioneer
generative model, which successfully combines the VAE framework with discrete latent representa-
tions. In particular, the vector quantized models learn a compact discrete representation using a de-
terministic encoder-decoder architecture in the first stage, and subsequently applied this highly com-
pressed representation for various downstream tasks, examples including image generation (Esser
et al., 2021), cross-modal translation (Kim et al., 2022), and image recognition (Yu et al., 2021).
While VQ-VAE has been widely applied to representation learning in many areas (Henter et al.,
2018; Baevski et al., 2020; Razavi et al., 2019; Kumar et al., 2019; Dieleman et al., 2018; Yan et al.,
2021), it is known to suffer from codebook collapse, which has a low codebook usage, i.e. most of
embedded latent vectors are quantized to just few discrete codewords, while the other codewords
are rarely used, or dead, due to the poor initialization of the codebook, reducing the information
capacity of the bottleneck (Roy et al., 2018; Takida et al., 2022; Yu et al., 2021).

To mitigate this issue, additional training heuristics were proposed, such as the exponential moving
average (EMA) update (Van Den Oord et al., 2017; Razavi et al., 2019), soft expectation maximiza-
tion (EM) update (Roy et al., 2018), codebook reset (Dhariwal et al., 2020; Williams et al., 2020).
Notably, soft expectation maximization (EM) update (Roy et al., 2018) connects the EMA update
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with an EM algorithm and softens the EM algorithm with a stochastic posterior. Codebook reset
randomly reinitializes unused/low-used codewords to one of the encoder outputs (Dhariwal et al.,
2020) or those near codewords of high usage Williams et al. (2020). Takida et al. (2022) suspects
that deterministic quantization is the cause of codebook collapse and extends the standard VAE with
stochastic quantization and trainable posterior categorical distribution, showing that the annealing
of the stochasticity of the quantization process significantly improves the codebook utilization.

Additionally, WS distance has been applied successfully to generative models and continuous rep-
resentation learning (Arjovsky et al., 2017; Gulrajani et al., 2017; Tolstikhin et al., 2017) owing to
its nice properties and rich theory. It is natural to ask: ”Can we take advantages of intuitive prop-
erties of the WS distance and its mature theory for learning highly compact yet expressive discrete
representations?” Toward this question, in this paper, we develop solid theories by connecting the
theory bodies and viewpoints of the WS distance, generative models, and deep discrete representa-
tion learning. In particular, a) we first endow a discrete distribution over the codebook and propose
learning a ”deterministic decoder transporting the codeword to data distributions” via minimizing
the WS distance between them; b) To devise a trainable algorithm, we develop Theorem 3.1 to
equivalently turn the above WS minimization to push-forwarding the data to codeword distributions
via minimizing a WS distance between ”the latent representation and codeword distributions”; c)
More interestingly, our Corollary 3.1 proves that when minimizing the WS distance between the
latent representation and codeword distributions, the codewords tend to flexibly move to the cluster-
ing centroids of the latent representations with a control on the proportion of latent representations
associated to a centroid. We argue and empirically demonstrate that using the clustering viewpoint
of a WS distance to learn the codewords, we can obtain more controllable and better centroids than
using a simple k-means as in VQ-VAE (cf. Sections 3.1 and 5.2).

Our method, called Vector Quantized Wasserstein Auto-Encoder (VQ-WAE), applies the WS dis-
tance to learn a more controllable codebook, hence leading to an improvement in the codebook
utilization. We conduct comprehensive experiments to demonstrate our key contributions by com-
paring with VQ-VAE (Van Den Oord et al., 2017) and SQ-VAE (Takida et al., 2022) (i.e., the recent
work that can improve the codebook utilization). The experimental results show that our VQ-WAE
can achieve better codebook utilization with higher codebook perplexity, hence leading to lower
(compared with VQ-VAE) or comparable (compared with SQ-VAE) reconstruction error, with sig-
nificantly lower reconstructed Fréchlet Inception Distance (FID) score (Heusel et al., 2017). Gener-
ally, a better quantizer in the stage-1 can naturally contribute to stage-2 downstream tasks (Yu et al.,
2021; Zheng et al., 2022). To further demonstrate this, we conduct comprehensive experiments on
four benchmark datasets for both unconditional and class-conditional generation tasks. The exper-
imental results indicate that from the codebooks of our VQ-WAE, we can generate better images
with lower FID scores.

2 VECTOR QUANTIZED VARIATIONAL AUTO-ENCODER

Given a training set D = {x1, ..., xN} ⊂ RV , VQ-VAE (Van Den Oord et al., 2017) aims at learning
a codebook which is formed by set of codewords C = [ck]

K
k=1 ∈ RK×D on the latent space Z ∈ RD,

an encoder fe to map the data examples to the codewords, and a decoder fd (i.e., q (x | z)) to
reconstruct accurately the data examples from the codewords. Given a data example x, the encoder
fe (i.e., p (z | x)) associates x to the codeword f̄e (x) = c defined as

c = argminkdz (fe (x) , ck) ,

where dz is a metric on the latent space.

The objective function of VQ-VAE is as follows:

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)
+ dz (sg (fe (x)) , C) + βdz (fe (x) , sg (C))

]
,

where Px = 1
N

∑N
n=1 δxn is the empirical data distribution, sg specifies stop gradient, dx is a

cost metric on the data space, and β is set between 0.1 and 2.0 (Van Den Oord et al., 2017) and
dz (fe (x) , C) =

∑
c∈C dz (fe (x) , c).

The purpose of VQ-VAE training is to form the latent representations in clusters and adjust the
codewords to be the centroids of these clusters.
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3 CONTROLLABLE CODEBOOKS WITH WASSERSTEIN QUANTIZATION

Figure 1: (a): Illustration of our VQ-WAE derivation. We depart with the minimization of the WS
distance on the data space in (1) and further turn it to minimizing the reconstruction error in (2)
and the WS distance on the latent space in (3); (b): Visualisation of the embedding space with
WS regularization. The output of the encoder fe(x) is distributed and moved to codewords ck in
which the cardinalities

∣∣σ−1 (k)
∣∣ (i.e., the number of latent representation which are assigned to kth

codeword) are proportional to πk. At the same time, the codewords tend to flexibly move to the
clustering centroids of the latent representations (cf. Corollary 3.1).

We present the theoretical development of our VQ-WAE framework which connects the viewpoints
of the WS distance, generative models, and deep discrete representation learning in Section 3.1.
Specifically, we propose to learn a ”deterministic decoder transporting the codeword to data distri-
butions” via minimizing the WS distance between them (Figure 1a (Top)). We then turn the above
WS minimization to push-forwarding the data to codeword distribution via minimizing a WS dis-
tance between ”the latent representation and codeword distributions” (Figure 1a (Bottom)). We
prove that when minimizing the WS distance between the latent representation and codeword distri-
butions, the codewords tend to flexibly move to the clustering centroids of the latent representations
with a control on the proportion of latent representations associated with a centroid (Figure 1b).
Based on the theoretical development, we devise a practical algorithm for VQ-WAE in Section 3.2.

3.1 THEORETICAL DEVELOPMENT

Given a training set D = {x1, ..., xN} ⊂ RV , we wish to learn a codebook C = {ck}Kk=1 ⊂ RK×D

on a latent space Z and an encoder to map each data example to a given codebook, preserving in-
sightful characteristics carried in the data. We first endow a discrete distribution over the codewords
as Pc,π =

∑K
k=1 πkδck with the Dirac delta function δ and the weights π ∈ ∆K−1 = {π′ ≥ 0 :

∥π′∥1 = 1}.

We aim to learn a decoder function fd : Z → X (i.e., mapping from the latent space Z ⊂ RD to the
data space X ), the codebook C, and the weights π, to minimize:

min
C,π

min
fd

Wdx (fd#Pc,π,Px) , (1)

where Px = 1
N

∑N
n=1 δxn is the empirical data distribution and dx is a cost metric on the data space.

We interpret the optimization problem (OP) in Eq. (1) as follows. Given a discrete distribution Pc,π

on the codewords, we use the decoder fd to map the codebook C to the data space and consider
Wdx

(fd#Pc,Px) as the codebook-data distortion w.r.t. fd. We subsequently learn fd to minimize
the codebook-data distortion given Pc,π and finally adjust the codebook C and π to minimize the
optimal codebook-data distortion. To offer more intuition for the OP in Eq. (1), we introduce the
following lemma.
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Lemma 3.1. Let C∗ = {c∗k}k , π
∗, and f∗

d be the optimal solution of the OP in Eq. (1). Assume
K < N , then C∗ = {c∗k}k , π

∗, and f∗
d are also the optimal solution of the following OP:

min
fd

min
π

min
σ∈Σπ

N∑
n=1

dx
(
xn, fd

(
cσ(n)

))
, (2)

where Σπ is the set of assignment functions σ : {1, ..., N} → {1, ...,K} such that the cardinalities∣∣σ−1 (k)
∣∣ , k = 1, ...,K are proportional to πk, k = 1, ...,K.1

Lemma 3.1 states that for the optimal solution C∗ = {c∗k} , π∗, and f∗
d of the OP in Eq. (1),

{f∗
d (c∗k)}

K
k=1 become the optimal clustering centroids of the optimal clustering solution which min-

imizes the distortion. Inspired by Wasserstein Auto-Encoder (Tolstikhin et al., 2017), we establish
the following theorem to engage the OP in (1) with the latent space.
Theorem 3.1. We can equivalently turn the optimization problem in (1) to

min
C,π,fd

min
f̄e:f̄e#Px=Pc,π

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

, (3)

where f̄e is a deterministic discrete encoder mapping data example x directly to the codebook.

First, we learn both the codebook C and the weights π. Second, ours seeks a deterministic discrete
encoder f̄e mapping data example x directly to a codeword, concurring with vector quantization
and serving our further derivations, whereas Theorem 1 in Tolstikhin et al. (2017) involves a proba-
bilistic/stochastic encoder mapping to a continuous latent distribution (i.e., a larger space to search).
More importantly, our proof is totally different from that in Tolstikhin et al. (2017) (all proof details
are given in Appendix A).

Additionally, f̄e is a deterministic discrete encoder mapping a data example x directly to a codeword.
To make it trainable, we replace f̄e by a continuous encoder fe : X → Z and arrive the OP:

min
C,π

min
fd,fe

{Ex∼Px
[dx (fd (QC (fe (x))) , x)] + λWdz

(fe#Px,Pc,π)} , (4)

where QC (fe (x)) = argminc∈Cdz (fe (x) , c) is a quantization operator which returns the closest
codeword to fe (x) and the parameter λ > 0.

Particularly, we can rigorously prove that the two optimization problems of interest in (3) and (4)
are equivalent under some mild conditions in Theorem 3.2. This rationally explains why we could
solve the OP in (4) for our final tractable solution.
Theorem 3.2. If we seek fd and fe in a family with infinite capacity (e.g., the family of all measur-
able functions), the three OPs of interest in (1, 3, and 4) are equivalent.

Moreover, the OP in (4) conveys important meaningful interpretations. Specifically, by minimizing
Wdz (fe#Px,Pc,π) w.r.t. C, π, we aim to learn the codewords that are clustering centroids of fe#Px

according to the clustering viewpoint of OT as shown in Corollary 3.1, and similar to VQ-VAE, we
quantize fe (x) to the closest codeword using QC (fe (x)) = argminc∈Cdz (fe (x) , c) and try to
reconstruct x from this codebook.
Corollary 3.1. Consider minimizing the second term: minfe,C Wdz

(fe#Px,Pc,π) in (4) given π
and assume K < N , its optimal solution f∗

e and C∗are also the optimal solution of the OP:

min
fe,C

min
σ∈Σπ

N∑
n=1

dz
(
fe (xn) , cσ(n)

)
, (5)

where Σπ is the set of assignment functions σ : {1, ..., N} → {1, ...,K} such that the cardinalities∣∣σ−1 (k)
∣∣ , k = 1, ...,K are proportional to πk, k = 1, ...,K.

Corollary 3.1 indicates the aim of minimizing the second term Wdz
(fe#Px,Pc,π) in (4). By which,

we adjust the encoder fe and the codebook C such that the codewords of C become the clustering

1E.g., σ is the nearest assignment: σ−1 (k) = {f̄e (x) = ck | k = argminkdz (fe (x) , ck)} is set of latent
representations which are quantized to kth codeword.

4



Under review as a conference paper at ICLR 2023

centroids of the latent representations {fe (xn)}n to minimize the codebook-latent distortion (see
Figure 1 (Right)). Additionally, at the optimal solution, the optimal assignment function σ∗, which
indicates how latent representations (or data examples) associated with the clustering centroids (i.e.,
the codewords) has a valuable property, i.e., the cardinalities

∣∣(σ∗)−1 (k)
∣∣ , k = 1, ...,K are pro-

portional to πk, k = 1, ...,K.

Remark: Recall the codebook collapse issue, i.e. most of embedded latent vectors are quantized to
just few discrete codewords while the other codewords are rarely used. Corollary 3.1 give us impor-
tant properties: (1) we can control the number of latent representations assigned to each codeword
by adjust π, guaranteeing all codewords are utilized, (2) codewords become the clustering centroids
of the associated latent representations to minimize the codebook-latent distortion, to develop our
VQ-WAE framework.

3.2 PROPOSED FRAMEWORK

One of crucial aims of learning meaningful and well-distributed codewords is to make use of each
individual codeword efficiently by solving the OP in (4). Specifically, we wish the latent represen-
tations are more uniformly associated with the codewords. Based on Corollary 3.1, pointing out
that the numbers of latent representations associated with the kthcodeword is proportional to πk, we
hence fix π as a uniform distribution (i.e., Pc,π =

∑K
k=1

1
K δck ) to make all the codewords utilized

equally by the model, hence boosting the perplexity or the codebook usage.

We now present the practical method based on the OP in (4) with Pc,π =
∑K

k=1
1
K δck . At each

iteration, we sample a mini-batch x1, ..., xB and then solve the OP in (4) by updating fd, fe and C

based on this mini-batch as follows. Let us denote Pb = 1
B

∑B
j=i δxi

as the empirical distribution
of embedded vectors. over the current batch. Basically, we learn the optimal transportation plan P ∗

by solving:
Wdz

(fe#Pb,Pc,π) = min
P∈Γ(1B ,1C)

⟨P,Dc,x⟩ , (6)

where 1B =
[
1
B

]
B

is the vector of atom masses of Pb, 1C =
[
1
C

]
C

is the vector of atom masses of
Pc,π , Γ (1B , 1C) is the set of feasible transportation plans, and Dc,x = [dz (xi, ck)]i,k ∈ RB×K is
the cost matrix.

The pseudcode of our VQ-WAE is summarized in Algorithm 1. We use the copy gradient trick (Van
Den Oord et al., 2017) to deal with the back-propagation from decoder to encoder for reconstruction
term while Wasserstein regularization term Wdz (fe#Pb,Pc,π) can be optimized directly without
further manipulation. Additionally, Wdz (fe#Pb,Pc,π) term is only utilized in the training phase.

Algorithm 1 VQ-WAE

1: Initialize: encoder fe, decoder fd and codebook C.
2: for iter in iterations do
3: Sample a mini-batch of samples x1, ..., xB forming the empirical batch distribution Pb

4: Encode: zi→B = fe(xi→B) // i → B : for i = 1, ..., B
5: Quantize: ci→B = argmink dz (zi→B , ck) // Nearest neighbor assignment
6: Decode: x̃i→B = fd(ci→B)
7: Optimize fe, fd and C by minimizing the objective in (4):

1

B

B∑
i=1

[dx (x̃i, xi)] + λ Wdz (fe#Pb,Pc,π)︸ ︷︷ ︸
minP∈Γ(1B,1C)⟨P,Dc,x⟩

8: end for
9: Return: The optimal fe, fd and C.

4 RELATED WORK

Variational Auto-Encoder (VAE) was first introduced by Kingma & Welling (Kingma & Welling,
2013) for learning continuous representations. However, learning discrete latent representations has
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proved much more challenging because it is nearly impossible to accurately evaluate the gradients
which are required to train models. To make the gradients tractable, one possible solution is to apply
the Gumbel Softmax reparameterization trick (Jang et al., 2016) to VAE, which allows us to estimate
stochastic gradients for updating the models. Although this technique has a low variance, it brings up
a high-bias gradient estimator. Another possible solution is to employ the REINFORCE algorithm
(Williams, 1992), which is unbiased but has a high variance. Additionally, the two techniques can
be complementarily combined (Tucker et al., 2017).

To enable learning the discrete latent codes, VQ-VAE (Van Den Oord et al., 2017) uses deterministic
encoder/decoder and encourages the codebooks to become the clustering centroids of latent repre-
sentations. Additionally, the copy gradient trick is employed in back-propagating gradients from
the decoder to the encoder (Bengio, 2013). Some further works were proposed to extend VQ-VAE,
notably (Roy et al., 2018; Wu & Flierl, 2020). Particularly, Roy et al. (2018) uses the Expectation
Maximization (EM) algorithm in the bottleneck stage to train the VQ-VAE for improving the qual-
ity of the generated images. However, to maintain the stability of this approach, we need to collect
a large number of samples on the latent space. Wu & Flierl (2020) imposes noises on the latent
codes and uses a Bayesian estimator to optimize the quantizer-based representation. The introduced
bottleneck Bayesian estimator outputs the posterior mean of the centroids to the decoder and per-
forms soft quantization of the noisy latent codes which have latent representations preserving the
similarity relations of the data space. Recently, Takida et al. (2022) extends the standard VAE with
stochastic quantization and trainable posterior categorical distribution, showing that the annealing
of the stochasticity of the quantization process significantly improves the codebook utilization.

Wasserstein (WS) distance has been widely used in generative models (Arjovsky et al., 2017; Gul-
rajani et al., 2017; Tolstikhin et al., 2017). Arjovsky et al. Arjovsky et al. (2017) uses a dual form of
WS distance to develop Wasserstein generative adversarial network (WGAN). Later, Gulrajani et al.
(2017) employs the gradient penalty trick to improve the stability of WGAN. In terms of theory de-
velopment, mostly related to our work is Wasserstein Auto-Encoder (Tolstikhin et al., 2017) which
aims to learn continuous latent representation preserving the characteristics of input data.

5 EXPERIMENTS

In this section, we conduct extensive experiments to show the effectiveness of our proposed method
compared to other advances.

Datasets: we empirically evaluate the proposed VQ-WAE in comparison with VQ-VAE (Van
Den Oord et al., 2017) that is the baseline method and recently proposed SQ-VAE (Takida et al.,
2022) which is the state-of-the-art work of improving the codebook usage, on four different bench-
mark datasets: CIFAR10 (Van Den Oord et al., 2017), MNIST (Deng, 2012), SVHN (Netzer et al.,
2011), CelebA (Liu et al., 2015) and the high-resolution images dataset FFHQ Karras et al. (2019).

Implementation: For a fair comparison, we utilize the same architectures and hyper-parameters for
all methods. Additionally, in the primary setting, we use the codeword (discrete latent) dimensional-
ity of 64 and codebook size |C| = 512 for all datasets except FFHQ with codeword dimensionality
of 256 and |C| = 1024, while the hyper-parameters {β, τ, λ} are specified as presented in the orig-
inal papers, i.e., β = 0.25 for VQ-VAE and VQ-GAN (Esser et al., 2021), τ = 1e−5 for SQ-VAE
and λ = 1 for our VQ-WAE. The details of the experimental settings are presented in Appendix C.

5.1 RESULTS ON BENCHMARK DATASETS

In order to quantitatively assess the quality of the reconstructed images, we report the results on
most common evaluation metrics, including the pixel-level peak signal-to-noise ratio (PSNR), patch-
level structure similarity index (SSIM), feature-level LPIPS (Zhang et al., 2018), and dataset-level
Fréchlet Inception Distance (FID) (Heusel et al., 2017). We report the test-set reconstruction results
on four datasets in Table 1. With regard to the codebook utilization, we employ perplexity score
which is defined as e−

∑K
k=1 pck

log pck where pck =
Nck∑K
i=1 Nci

(i.e., Nci is the number of latent

representations associated with the codeword ci) is the probability of the ith codeword being used.
Note that by formula, perplexitymax = |C| as P (c) becomes to the uniform distribution, which
means that all the codewords are utilized equally by the model.
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Table 1: Reconstruction performance (↓: the lower the better and ↑: the higher the better).

Dataset Model Latent Size SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓ Perplexity ↑
CIFAR10 VQ-VAE 8 × 8 0.70 23.14 0.35 77.3 69.8

SQ-VAE 8 × 8 0.80 26.11 0.23 55.4 434.8
VQ-WAE 8 × 8 0.80 25.93 0.23 54.9 505.0

MNIST VQ-VAE 8 × 8 0.98 33.37 0.02 4.8 47.2
SQ-VAE 8 × 8 0.99 36.25 0.01 3.2 301.8

VQ-WAE 8 × 8 0.99 35.61 0.01 2.4 507.7
SVHN VQ-VAE 8 × 8 0.88 26.94 0.17 38.5 114.6

SQ-VAE 8 × 8 0.96 35.37 0.06 24.8 389.8
VQ-WAE 8 × 8 0.96 34.67 0.06 22.6 486.0

CELEBA VQ-VAE 16 × 16 0.82 27.48 0.19 19.4 48.9
SQ-VAE 16 × 16 0.89 31.05 0.12 14.8 427.8

VQ-WAE 16 × 16 0.88 30.08 0.13 13.6 508.0
FFHQ VQ-GAN 16 × 16 0.6641 22.24 0.12 4.42 423

VQ-WAE 16 × 16 0.6648 22.45 0.1245 4.20 1022

We compare VQ-WAE with VQ-VAE, SQ-VAE and VQ-GAN for image reconstruction in Table 1.
All instantiations of our model significantly outperform the baseline VQ-VAE under the same com-
pression ratio, with the same network architecture. While the latest state-of-the-art SQ-VAE holds
slightly better scores for traditional pixel- and patch-level metrics, our method achieves much better
rFID scores which evaluate the image quality at the dataset level. Note that our VQ-WAE signif-
icantly improves the perplexity of the learned codebook. This suggests that the proposed method
significantly improves the codebook usage, resulting in better reconstruction quality. Finally, to
complete the assessment, the qualitative results are visualized in Figure 4 (Appendix B).

5.2 DETAILED ANALYSIS

We run a number of ablations to analyze the properties of VQ-VAE, SQ-VAE and VQ-WAE, in order
to assess if our VQ-WAE can simultaneously achieve (i) efficient codebook usage, (ii) reasonable
latent representation.

5.2.1 CODEBOOK USAGE

Table 2: Distortion and Perplexity with different codebook sizes.

Dataset MNIST CIFAR10

|C| 64 128 256 512 64 128 256 512

VQ-VAE Perplexity 47.8 70.3 52.0 47.2 24.3 44.9 85.1 69.8
rFID 5.9 6.2 5.2 4.8 86.6 78.9 73.6 69.8

SQ-VAE Perplexity 47.4 85.4 184.8 301.8 59.5 113.2 220.0 434.8
rFID 4.7 4.3 3.5 3.2 71.5 66.9 62.6 55.4

VQ-WAE Perplexity 63.8 127.7 255.1 507.7 63.4 126.1 252.0 505.0
rFID 5.6 3.8 2.8 2.4 73.5 68.5 60.3 54.9

We observe the codebook utilization of three methods with different codebook sizes
{64, 128, 256, 512} on MNIST and CIFAR10 datasets. Particularly, we present the reconstruction
performance for different settings in Table 2 and the histogram of latent representations over the
codebook in Figure 2.

As discussed in Section 3.1 and Section 3.2, the number of used centroids reflects the capability of
the latent representations. In other words, it represents the certain amount of information is pre-
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Figure 2: Latent distribution over the codebook on test-set.

served in the latent space. By explicitly defining the numbers of latent representations associated
with the codebooks to be uniform (i.e., fixing π in (4) as a uniform distribution) in the Wasserstein
regularization term, VQ-WAE is able to maximize the information in the codebooks, hence improv-
ing the reconstruction capacity. It can be seen from Figure 2 that the latent distribution of VQ-WAE
over the codebook is nearly uniform and the codebook’s perplexity almost reaches the optimal value
(i.e., the value of perplexities reach to corresponding codebook sizes) in different settings. It is also
observed that as the size of the codebook increases, the perplexity of codebook of VQ-WAE also in-
creases, leading to the better reconstruction performance (Table 2), in line with the analysis in (Wu
& Flierl, 2018). SQ-VAE also has good codebook utilization as its perplexity is proportional to the
size of the codebook. However, its codebook utilization becomes less efficient when the codebook
size becomes large, especially in low texture dataset (i.e., MNIST).

On the contrary, the codebook usage of VQ-VAE is less efficient, i.e., there are many zero entries
in its codebook usage histogram, indicating that some codewords have never been used (Figure
2). Furthermore, Table 2 also shows the instability of VQ-VAE’s reconstruction performance with
different codebook sizes.

5.2.2 VISUALIZATION OF LATENT REPRESENTATION

To better understand the codebook’s representation power, we employ t-SNE (van der Maaten &
Hinton, 2008) to visualize the latent representations that have been learned by VQ-VAE, SQ-VAE
and VQ-WAE on the MNIST dataset with two codebook sizes of 64 and 512. Figure 3 shows
the latent distributions of different classes in the latent space, in which the samples are colored
accordingly to their class labels. Figure 3c shows that representations from different classes of VQ-
WAE are well clustered (i.e., each class focuses on only one cluster) and clearly separated to other
classes. In contrast, the representations of some classes in VQ-VAE and SQ-VAE are distributed to
several clusters and or mixed to each other (Figure 3a,b). Moreover, the class-clusters of SQ-VAE
are uncondensed and tend to overlap with each other. These results suggest that the representations
learned by VQ-WAE can better preserve the similarity relations of the data space better than the
other models.

5.2.3 IMAGE GENERATION

As discussed in the previous section, VQ-WAE is able to optimally utilize its codebook, leading
to meaningful and diverse codewords that naturally improve the image generation. To confirm this
ability, we perform the image generation on the benchmark datasets. Since the decoder reconstructs
images directly from the discrete embeddings, we only need to model a prior distribution over the
discrete latent space (i.e., codebook) to generate images.

We employ a conventional autoregressive model, the CNN-based PixelCNN (Van den Oord et al.,
2016), to estimate a prior distribution over the discrete latent space of VQ-VAE, SQ-VAE and VQ-
WAE on CIFAR10, MNIST, SVHN and CelebA. The details of generation settings are presented

8
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Figure 3: The t-SNE feature visualization on the MNIST dataset.

Table 3: FID scores of generated images.

Dataset VQ-Model Generation Latent Size |C| unconditional class-conditional

CIFAR10 VQ-VAE PixelCNN 8 × 8 512 117.49 117.16
SQ-VAE PixelCNN 8 × 8 512 103.78 90.74

VQ-WAE PixelCNN 8 × 8 512 87.62 88.93
MNIST VQ-VAE PixelCNN 8 × 8 512 27.01 25.56

SQ-VAE PixelCNN 8 × 8 512 8.93 4.94
VQ-WAE PixelCNN 8 × 8 512 8.17 3.96

SVHN VQ-VAE PixelCNN 8 × 8 512 62.13 64.24
SQ-VAE PixelCNN 8 × 8 512 31.26 36.41

VQ-WAE PixelCNN 8 × 8 512 30.64 34.24
CELEBA VQ-VAE PixelCNN 16 × 16 512 42.0 -

SQ-VAE PixelCNN 16 × 16 512 29.5 -
VQ-WAE PixelCNN 16 × 16 512 28.8 -

in Section 3.2 of the supplementary material. The quantitative results in Table 3 indicate that the
codebook of VQ-WAE leads to a better generation ability than VQ-VAE and SQ-VAE.

6 CONCLUSION

In this paper, inspired by the nice properties and mature theory of the WS distance allowing it to be
applied successfully to generative models and continous representation learning, we propose Vec-
tor Quantized Wasserstein Auto-Encoder (VQ-WAE), which endows a discrete distribution over the
codewords and learns a deterministic decoder that transports the codeword distribution to the data
distribution via minimizing a WS distance between them. We then developed theoretical analysis
to show the equivalence of this WS minimization to another OP regarding push-forwarding the data
distribution to the codeword distribution, which can be realized by minimizing a WS distance be-
tween the latent representation and codeword distributions. We conduct comprehensive experiments
to show that our VQ-WAE utilizes the codebooks more efficiently than the baselines, hence leading
to better reconstructed and generated image quality.

9
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7 REPRODUCIBILITY STATEMENT

We provide the implementation of our framework in the supplementary material.
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las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
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APPENDIX

This appendix is organized as follows:

• In Section A, we present all proofs for theory developed in the main paper.
• In Section B, we present additional experimental results on the high-quality image dataset

FFHQ.
• In Section C, we present experimental settings and implementation specification of VQ-

WAE.

A THEORETICAL DEVELOPMENT

Given a training set D = {x1, ..., xN} ⊂ RV , we wish to learn a set of codebooks C = {ck}Kk=1 ∈
RK×D on a latent space Z and an encoder to map each data example to a given codebook, preserving
insightful characteristics carried in data. We first endow a discrete distribution over the codebooks
as Pc,π =

∑K
k=1 πkδck with the Dirac delta function δ and the weights π ∈ ∆K . We aim to learn a

decoder function fd : Z → X (i.e., mapping from the latent space Z ⊂ RD to the data space X ),
the codebooks C, and the weights π, to minimize:

min
C,π

min
fd

Wdx
(fd#Pc,π,Px) , (7)

where Px = 1
N

∑N
n=1 δxn

is the empirical data distribution and dx is a cost metric on the data space.
Lemma A.1. (Lemma 3.1 in the main paper) Let C∗ = {c∗k}k , π

∗, and f∗
d be the optimal solution

of the OP in Eq. (7). Assume K < N , then C∗ = {c∗k}k , π
∗, and f∗

d are also the optimal solution
of the following OP:

min
fd

min
C,π

min
σ∈Σπ

N∑
n=1

dx
(
xn, fd

(
cσ(n)

))
, (8)

where Σπ is the set of assignment functions σ : {1, ..., N} → {1, ...,K} such that the cardinalities∣∣σ−1 (k)
∣∣ , k = 1, ...,K are proportional to πk, k = 1, ...,K.

Proof of Lemma A.1

It is clear that

fd#Pc,π =

K∑
k=1

πkδfd(ck).

Therefore, we reach the following OP:

min
C,π

min
fd

Wdx

(
1

N

N∑
n=1

δxn
,

K∑
k=1

πkδfd(ck)

)
. (9)

By using the Monge definition, we have

Wdx

(
1

N

N∑
n=1

δxn
,

K∑
k=1

πkδfd(ck)

)
= min

T :T#Px=fd#Pc,π

Ex∼Px
[dx (x, T (x))]

=
1

N
min

T :T#Px=fd#Pc,π

N∑
n=1

dx (xn, T (xn)) .

Since T#Px = fd#Pc,π , T (xn) = fd (ck) for some k. Additionally,
∣∣T−1 (fd(ck))

∣∣ , k = 1, ...,K
are proportional to πk, k = 1, ...,K. Denote σ : {1, ..., N} → {1, ...,K} such that T (xn) =
fd(cσ(n)),∀i = 1, ..., N , we have σ ∈ Σπ . It follows that

Wdx

(
1

N

N∑
n=1

δxn
,

K∑
k=1

πkδfd(ck)

)
=

1

N
min
σ∈Σπ

N∑
n=1

dx
(
xn, fd

(
cσ(n)

))
.
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Finally, the the optimal solution of the OP in Eq. (7) is equivalent to

min
fd

min
C,π

min
σ∈Σπ

N∑
n=1

dx
(
xn, fd

(
cσ(n)

))
,

which directly implies the conclusion.
Theorem A.1. (Theorem 3.1 in the main paper) We can equivalently turn the optimization problem
in (7) to

min
C,π,fd

min
f̄e:f̄e#Px=Pc,π

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

, (10)

where f̄e is a deterministic discrete encoder mapping data example x directly to the codebooks.

Proof of Theorem A.1

We first prove that the OP of interest in (7) is equivalent to

min
C,π,fd

min
f̄e:f̄e#Px=Pc,π

Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] , (11)

where f̄e is a stochastic discrete encoder mapping data example x directly to the codebooks. To
this end, we prove that

Wdx (fd#Pc,π,Px) = min
f̄e:f̄e#Px=Pc,π

Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] , (12)

where f̄e is a stochastic discrete encoder mapping data example x directly to the codebooks.

Let f̄e be a stochastic discrete encoder such that f̄e#Px = Pc,π (i.e., x ∼ Px and c ∼ f̄e (x)
implies c ∼ Pc,π). We consider γd,c as the joint distribution of (x, c) with x ∼ Px and c ∼ f̄e (x).
We also consider γfc,d as the joint distribution including (x, x′) ∼ γfc,d where x ∼ Px,c ∼ f̄e (x),
and x′ = fd (c). This follows that γfc,d ∈ Γ (fd#Pc,π,Px) which admits fd#Pc,π and Px as its
marginal distributions. We also have:

Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] = E(x,c)∼γd,c
[dx (fd (c) , x)]

(1)
= E(x,x′)∼γfc,d

[dx (x, x
′)]

≥ min
γfc,d∈Γ(fd#Pc,π,Px)

E(x,x′)∼γfc,d
[dx (x, x

′)]

= Wdx
(fd#Pc,π,Px) .

Note that we have the equality in (1) due to (id, fd)#γd,c = γfc,d.

Therefore, we reach

min
f̄e:f̄e#Px=Pc,π

Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] ≥ Wdx
(fd#Pc,π,Px) .

Let γfc,d ∈ Γ (fd#Pc,π,Px). Let γfc,c ∈ Γ (fd#Pc,π,Pc,π) be a deterministic coupling such
that c ∼ Pc,π and x = fd (c) imply (c, x) ∼ γc,fc. Using the gluing lemma (see Lemma 5.5
in Santambrogio (2015)), there exists a joint distribution α ∈ Γ (Pc,π, fd#Pc,π,Px) which admits
γfc,d and γfc,c as the corresponding joint distributions. By denoting γd,c ∈ Γ (Px,Pc,π) as the
marginal distribution of α over Px,Pc,π , we then have

E(x,x′)∼γfc,d
[dx (x, x

′)] = E(c,x′,x)∼α [dx (x, x
′)] = E(c,x)∼γd,c,x′=fd(c) [dx (x, x

′)]

= E(c,x)∼γd,c
[dx (fd (c) , x)] = Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] .

≥ min
f̄e:f̄e#Px=Pc,π

Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] ,

where f̄e(x) = γd,c(· | x).
This follows that

Wdx
(fd#Pc,π,Px) = min

γfc,d∈Γ(fd#Pc,π,Px)
E(x,x′)∼γfc,d

[dx (x, x
′)]

≥ min
f̄e:f̄e#Px=Pc,π

Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] .
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This completes the proof for the equality in Eq. (12), which means that the OP of interest in (7) is
equivalent to

min
C,π,fd

min
f̄e:f̄e#Px=Pc,π

Ex∼Px,c∼f̄e(x) [dx (fd (c) , x)] , (13)

We now further prove the above OP is equivalent to

min
C,π,fd

min
f̄e:f̄e#Px=Pc,π

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

, (14)

where f̄e is a deterministic discrete encoder mapping data example x directly to the codebooks.

It is obvious that the OP in (14) is special case of that in (13) when we limit to search for deter-
ministic discrete encoders. Given the optimal solution C∗1, π∗1, f∗1

d , and f̄∗1
e of the OP in (13),

we show how to construct the optimal solution for the OP in (14). Let us construct C∗2 = C∗1,
f∗2
d = f∗1

d . Given x ∼ Px, let us denote f̄∗2
e (x) = argmincdx

(
f∗2
d (c) , x

)
. Thus, f̄∗2

e is
a deterministic discrete encoder mapping data example x directly to the codebooks. We define
π∗2
k = Pr

(
f̄∗2
e (x) = ck : x ∼ Px

)
, k = 1, ...,K, meaning that f̄∗2

e #Px = Pc∗2,π∗2 . From the
construction of f̄∗2

e , we have

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≤ Ex∼Px,c∼f̄∗1
e (x)

[
dx
(
f∗1
d (c) , x

)]
.

Furthermore, because C∗2, π∗2, f∗2
d , andf̄∗2

e are also a feasible solution of the OP in (14), we have

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≥ Ex∼Px,c∼f̄∗1
e (x)

[
dx
(
f∗1
d (c) , x

)]
.

This means that

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

= Ex∼Px,c∼f̄∗1
e (x)

[
dx
(
f∗1
d (c) , x

)]
,

and C∗2, π∗2, f∗2
d , andf̄∗2

e are also the optimal solution of the OP in (14).

Additionally, f̄e is a deterministic discrete encoder mapping data example x directly to the code-
books. To make it trainable, we replace f̄e by a continuous encoder fe : X → Z and arrive the
following OP:

min
C,π

min
fd,fe

{Ex∼Px
[dx (fd (QC (fe (x))) , x)] + λWdz

(fe#Px,Pc,π)} , (15)

where QC (fe (x)) = argminc∈Cdz (fe (x) , c) is a quantization operator which returns the closest
codebook to fe (x) and the parameter λ > 0.

We now propose and prove the following lemma that is necessary for the proof of Theorem A.2.
Lemma A.2. Consider C, π, fd, and fe as a feasible solution of the OP in (15). Let us denote
f̄e(x) = argmincdz(fe(x)), c) = QC(x), then f̄e(x) is a Borel measurable function.

Proof of Lemma A.2.

We denote the set Ak on the latent space as

Ak = {z : dz(z, ck) < d(z, cj),∀j ̸= k} = {z : QC(z) = ck}.
Ak is known as a Voronoi cell w.r.t. the metric dz . If we consider a continuous metric dz , Ak is a
measurable set. Given a Borel measurable function B, we prove that f̄−1

e (B) is a Borel measurable
set on the data space.

Let B ∩ {c1, .., cK} = {ci1 , ..., cim}, we prove that f̄−1
e (B) = ∪m

j=1f
−1
e

(
Aij

)
. Indeed, take

x ∈ f̄−1
e (B), then f̄e(x) ∈ B, implying that f̄e(x) = QC(x) = cij for some j = 1, ...,m. This

means that fe(x) ∈ Aij for some j = 1, ...,m. Therefore, we reach f̄−1
e (B) ⊂ ∪m

j=1f
−1
e

(
Aij

)
.

We now take x ∈ ∪m
j=1f

−1
e

(
Aij

)
. Then fe(x) ∈ Aij for j = 1, ...,m, hence f̄e(x) = QC(x) = cij

for some j = 1, ...,m. Thus, f̄e(x) ⊂ B or equivalently x ∈ f̄−1
e (B), implying f̄−1

e (B) ⊃
∪m
j=1f

−1
e

(
Aij

)
.

Finally, we reach f̄−1
e (B) = ∪m

j=1f
−1
e

(
Aij

)
, which concludes our proof because fe is a measurable

function and Aij are measurable sets.
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Theorem A.2. (Theorem 3.2 in the main paper) If we seek fd and fe in a family with infinite
capacity (e.g., the space of all measurable functions), the three OPs of interest in (7, 10, and 15) are
equivalent.

Proof of Theorem A.2.

Given the optimal solution C∗1, π∗1, f∗1
d , and f∗1

e of the OP in (15), we conduct the optimal so-
lution for the OP in (10). Let us conduct C∗2 = C∗1, f∗2

d = f∗1
d . We next define f̄∗2

e (x) =
argmincdz

(
f∗1
e (x) , c

)
= QC∗1

(
f∗1
e (x)

)
= QC∗2

(
f∗1
e (x)

)
. We prove that C∗2, π∗2, f∗2

d , and
f̄∗2
e are optimal solution of the OP in (10). By this definition, we yield f̄∗2

e #Px = Pc∗2,π∗2 and
hence Wdz

(
f̄∗2
e #Px,Pc∗2,π∗2

)
= 0. Therefore, we need to verify the following:

(i) f̄∗2
e is a Borel-measurable function.

(ii) Given a feasible solution C, π, fd, and f̄e of (10), we have

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≤ Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

. (16)

We first prove (i). It is a direct conclusion because the application of Lemma A.2 to C∗1, π∗1, f∗1
d ,

and f∗1
e .

We next prove (ii). We further derive as

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

+ λWdz

(
f̄∗2
e #Px,Pc∗2,π∗2

)
= Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

= Ex∼Px

[
dx
(
f∗1
d

(
QC∗2

(
f∗1
e (x)

))
, x
)]

= Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f∗1
e (x)

))
, x
)]

≤ Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f∗1
e (x)

))
, x
)]

+ λWdz

(
f∗1
e #Px,Pc∗1,π∗1

)
. (17)

Moreover, because f̄e#Px = Pc,π which is a discrete distribution over the set of codewords C, we
obtain QC(f̄e(x)) = f̄e(x). Note that C, π, fd, and f̄e is also a feasible solution of (15) because f̄e
is also a specific encoder mapping from the data space to the latent space, we achieve

Ex∼Px

[
dx
(
fd
(
QC

(
f̄e (x)

))
, x
)]

+ λWdz

(
f̄e#Px,Pc,π

)
≥ Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f̄∗1
e (x)

)
, x
))]

+ λWdz

(
f̄∗1
e #Px,Pc∗1,π∗1

)
.

Noting that f̄e#Px = Pc,π and QC(f̄e(x)) = f̄e(x), we arrive at

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

≥ Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f̄∗1
e (x)

))
, x
)]

+ λWdz

(
f̄∗1
e #Px,Pc∗1,π∗1

)
. (18)

Combining the inequalities in (17) and (18), we obtain Inequality (16) as

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≤ Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

. (19)

This concludes our proof.

Corollary A.1. (Corollary 3.1 in the main paper) Consider minimizing the second term:
minfe,C Wdz

(fe#Px,Pc,π) in (15) given π and assume K < N , its optimal solution f∗
e and C∗are

also the optimal solution of the following OP:

min
fe,C

min
σ∈Σπ

N∑
n=1

dz
(
fe (xn) , cσ(n)

)
, (20)

where Σπ is the set of assignment functions σ : {1, ..., N} → {1, ...,K} such that the cardinalities∣∣σ−1 (k)
∣∣ , k = 1, ...,K are proportional to πk, k = 1, ...,K.
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Proof of Corollary A.1.

By the Monge definition, we have

Wdz
(fe#Px,Pc,π) = Wdz

(
1

N

N∑
n=1

δfe(xn),

K∑
k=1

πkδck

)
= min

T :T#(fe#Px)=Pc,π

Ez∼fe#Px
[dz (z, T (z))]

=
1

N
min

T :T#(fe#Px)=Pc,π

N∑
n=1

dz (fe (xn) , T (fe (xn))) .

Since T#(fe#Px) = Pc,π , T (fe (xn)) = ck for some k. Additionally,
∣∣T−1 (ck)

∣∣ , k = 1, ...,K
are proportional to πk, k = 1, ...,K. Denote σ : {1, ..., N} → {1, ...,K} such that T (fe (xn)) =
cσ(n),∀i = 1, ..., N , we have σ ∈ Σπ . It also follows that

Wdz

(
1

N

N∑
n=1

δfe(xn),

K∑
k=1

πkδck

)
=

1

N
min
σ∈Σπ

N∑
n=1

dz
(
fe (xn) , cσ(n)

)
.

B VISUALIZATION OF RECONSTRUCTION RESULTS

Figure 4: Reconstruction results for the FFHQ dataset.
Qualitative assessment: We present the reconstructed samples from FFHQ (high-resolution im-
ages) for qualitative evaluation. It can be clearly seen that the high-level semantic features of the
input image and colors are better preserved with VQ-WAE than the baseline. Particularly, we notice
that VQGAN often produces repeated artifact patterns in image synthesis (see the hair of man is
second column in Figure 4) while VQ-WAE does not. This is because VQ-GAN is lack of diversity
in the codebook, which will be further analyzed in Section 5.2.1. Consequently, the quantization
operator embeds similar patches into the same quantization index and ignores the variance in these
patches (e.g., VQ-GAN reconstructs the background in third column of Figure 4 as hair of woman).

C EXPERIMENTAL SETTINGS

C.1 VQ-MODEL

Implementation: For fair comparison, we utilize the same framework architecture and hyper-
parameters for both VQ-VAE and VQ-WAE. Specifically, we construct the VQ-VAE and VQ-WAE
models as follows:
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• For CIFAR10, MNIST and SVHN datasets, the models have an encoder with two convolu-
tional layers of stride 2 and filter size of 4 × 4 with ReLU activation, followed by 2 residual
blocks, which contained a 3 × 3, stride 1 convolutional layer with ReLU activation followed
by a 1 × 1 convolution. The decoder was similar, with two of these residual blocks followed
by two deconvolutional layers.

• For CelebA dataset, the models have an encoder with two convolutional layers of stride 2
and filter size of 4 × 4 with ReLU activation, followed by 6 residual blocks, which contained
a 3 × 3, stride 1 convolutional layer with ReLU activation followed by a 1 × 1 convolution.
The decoder was similar, with two of these residual blocks followed by two deconvolutional
layers.

• For high-quality image dataset FFHQ, we utilize the well-known VQGAN framework Esser
et al. (2021) as the baseline.

We only replace the regularization module of VQ-VAE i.e., two last terms of objective func-
tion: dz (sg (fe (x)) , C) + βdz (fe (x) , sg (C)) by our proposed by Wasserstein regularization
λWdz

(fe#Px,Pc,π)) in Eq. (4) for VQ-WAE. Additional, we employ the POT library (Flamary
et al., 2021) to compute WS distance for simplicity. However, our VQ-WAE does not require op-
timal transport map the from WS distance in (6) to update the model. Therefore, we can employ
a wide range of speed-up algorithms to solve optimization problem (OP) in (6) such as Sinkhorn
algorithm (Cuturi, 2013) or entropic regularized dual for (Genevay et al., 2016).

Hyper-parameters: following (Takida et al., 2022), we adopt the adam optimizer for training with:
learning-rate is e−4, batch size of 32, embedding dimension of 64 and codebook size |C| = 512 for
all datasets except FFHQ with embedding dimension of 256 and |C| = 1024. Finally, we train model
for CIFAR10, MNIST, SVHN, FFHQ in 100 epoches and for CelebA in 70 epoches respectively.

C.2 GENERATION MODEL

Implementation: It is worth to noting that we employ the codebooks learned from reported VQ-
models to extract codeword indices and we employ PixelCNN (Van den Oord et al., 2016) with
the same setting for generation for all VQ-VAE, SQ-VAE and VQ-WAE. In particular, we feed
PixelCNN over the ”pixel” values of the 8× 8 1-channel latent space for CIAR10, MNIST, SVHN,
and 16× 16 1-channel latent space for CelebA.

Hyper-parameters: we adopt the adam optimizer for training with: learning-rate is 3e−4, batch
size of 32. Finally, we PixelCNN over the ”pixel” values of the 8× 8 1-channel latent space in 100
epoches.
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