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ABSTRACT

Neural Operators, such as Deep Operator Networks (DONs) (Lu et al., 2021) and
Fourier Neural Operators (FNOs) (Li et al., 2021a), that directly learn mappings
between function spaces have received considerable recent attention. Despite
the universal approximation guarantees for DONs (Lu et al., 2021; Chen & Chen,
1995) and FNOs (Kovachki et al., 2021), there is currently no optimization conver-
gence guarantee for learning such networks using gradient descent (GD). In this
paper, we present a unified framework for optimization based on GD and apply
the framework to DONs and FNOs, establishing convergence guarantees for both.
In particular, we show that as long two conditions—restricted strong convexity
(RSC) and smoothness—are satisfied by the loss, GD is guaranteed to decrease
the loss geometrically. Subsequently, we show that the two conditions are indeed
satisfied by the DON and FNO losses, but because of rather different reasons that
arise as a result of differences in the structure of the respective models. One take-
away that emerges is that wider networks lead to better optimization convergence
for both DONs and FNOs. We present empirical results on several canonical oper-
ator learning problems to show that wider DONs and FNOs lead to lower training
losses, thereby supporting the theoretical results.

1 INTRODUCTION

Replicating the success of deep learning in scientific computing such as developing neural PDE
solvers, constructing surrogate models, and developing hybrid numerical solvers, has recently cap-
tured interest of the broader scientific community. In relevant applications to scientific computing,
we often need to learn mappings between function spaces. Neural Operators have emerged as the
prominent class of deep learning models used to learn such mappings. While there have been a
plethora of attempts, the two most widely adopted neural operators are the Fourier Neural Opera-
tors (FNOs) (Li et al., 2021a;b) and Deep Operator Networks (DONs) (Lu et al., 2021; Wang et al.,
2021). The fundamental idea of a neural operator is to parameterize these mappings as a deep neural
network and proceed with its learning—also known as its optimization or training—as in a stan-
dard supervised learning setup. However, contrary to a classical supervised learning setting where
we learn mappings between two finite-dimensional vector spaces, here we learn mappings between
mappings between infinite-dimensional function spaces.

Since a neural operator directly learns the mapping between the input and output function spaces
(Lu et al., 2021), it is a natural choice for learning solution operators of (i) parametric PDEs where
the PDE solution needs to be inferred for multiple combinations of these “input parameters” or (ii)
inverse problems where the forward problem needs to be solved multiple times to optimize a given
functional. While there exist results on the universal approximation properties of neural operators;
see, e.g., Deng et al. (2021); Kovachki et al. (2021) for universal approximation results of DONs
and FNOs, there does not exist any optimization result on when and why gradient descent (GD)
converges during the optimization of these Neural Operators.

In this paper, we establish convergence guarantees for GD for learning DONs and FNOs. We first
present two conditions for the convergence of GD on neural operator learning and show that as long
as these two conditions are satisfied by a loss function, GD will decrease the loss in every iteration.
One of the conditions is based on restricted strong convexity (RSC) on a non-empty set Qt, a recently
introduced Banerjee et al. (2023) alternative to the widely used NTK (neural tangent kernel) based
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analysis Liu et al. (2021a; 2022b); Allen-Zhu et al. (2019). The key novelty and asscoiated heavy
lifting in our work is on showing that DONs and FNOs in fact satisfy these conditions for over-
parameterized wide networks, though the analyses for DONs and FNOs are substantially different,
and need to consider specifics of how these models are structured. Our results are the first of its
kind to show GD convergence on DONs and FNOs, that too using a unified analysis, and the first
to theoretically show the benefits of width in these popular neural operators. To complement our
theoretical results, we present empirical evaluation of our guarantees and benefits of width on both
DONs and FNOs on a set of popular operator learning problems, including antiderivative, diffusion-
reaction, and Burger’s equation.

The rest of the paper is organized as follows. We briefly review related literature in Section 2 and
present specifics on DONs and FNOs in Section 3. In Section 4, we present technical conditions
under which GD optimization guarantees can be established for learning neural operators and show
that these conditions are indeed satisfied by DONs and FNOs respectively in Section 5 and 6. We
present empirical results in Section 7, with additional results and proofs in the Appendix.

2 RELATED WORK

Learning Operators. Constructing operator networks for ordinary differential equations (ODEs) us-
ing learning-based approaches was first studied in Chen & Chen (1995) where the authors showed
that a neural network with a single hidden layer can approximate a nonlinear continuous func-
tional to arbitrary accuracy. This was, in essence, akin to the Universal Approximation Theo-
rem for classical neural networks (see, e.g., Cybenko (1989); Hornik et al. (1989); Hornik (1991);
Lu et al. (2017)). While the theorem only guaranteed the existence of a neural architecture, it was
not practically realized until Lu et al. (2021) provided an extension of the theorem to deep net-
works. Since then a number of works have pursued applications of DONs to different problems
(e.g., see Goswami et al. (2022); Wang et al. (2021); Wang & Perdikaris (2021)). The operator
learning paradigm has also been explored in parallel by a number of other works, most notably
Bhattacharya et al. (2021b;a); Li et al. (2021a; 2020b; 2021b) which seek to directly parameterize
the integral kernel in the Fourier space using a deep network. A number of subsequent extensions
that explore different architectures tailored to different problems have been proposed in Li et al.
(2020a); Liu et al. (2022a); Wen et al. (2022); Pathak et al. (2022). Recently Kontolati et al. (2022)
studied the influence of over-parameterization on neural surrogates based on DONs in the context
of dynamical systems. While their paper studies the effects of over-parameterization on the general-
ization properties of DONs, an optimization analysis of DONs is a largely open problem. Similarly,
an optimization analysis of FNOs has not been pursued to the best of our knowledge.

Optimization Analysis of Neural Networks. Optimization of over-parameterized deep networks
have been studied extensively (see, e.g., Du et al. (2019); Arora et al. (2019b;a); Allen-Zhu et al.
(2019); Liu et al. (2021a)). In particular, Jacot et al. (2018) showed that the neural tangent kernel
(NTK) of a deep network converges to an explicit kernel in the limit of infinite network width and
stays constant during training. Liu et al. (2021a) showed that this constancy arises due to the scal-
ing properties of the Hessian of the predictor as a function of network width. Du et al. (2019);
Allen-Zhu et al. (2019) showed that gradient descent converges to zero training error in polynomial
time for a deep over-parameterized model, with Du et al. (2019) showing it for a deep model with
residual connections (ResNet) and Allen-Zhu et al. (2019) showing it in the context of feed-forward
models, CNNs and ResNets. Karimi et al. (2016) showed that the Polyak-Lojasiewicz (PL) condi-
tion, a much weaker condition than strong convexity can be used to explain the linear convergence of
gradient-based methods. Banerjee et al. (2023) showed convergence of feedforward networks using
restricted strong convexity (RSC) in order to derive a variant of the PL condition, and thus provide
convergence guarantees of gradient descent.

3 LEARNING NEURAL OPERATORS

In this section, we briefly introduce the DON and FNO aproaches to learning operators to setup
some notation. For a more detailed exposition, we refer the reader to Appendix B.
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3.1 LEARNING DEEP OPERTOR NETWORKS (DONS)

A DON is an operator network that learns a parametric operator Gθ such that Gθ(u) ≈ G†(u),
where u denotes the input function, and G† denotes the “true” operator. Following Lu et al. (2021),
a DON predictor is defined as the inner product of two deep networks: the branch net f = {fk}Kk=1

and the trunk net g = {gk}Kk=1, namely

Gθ(u)(y) :=

K∑

k=1

fk(θf ;u)gk(θg;y), (1)

where u ∈ R
du is the input function and y ∈ dom(Gθ(u)) ⊆ R

dy the output location on which

the operator will be evaluated1. The training data comprises of n input functions {u(i)}ni=1 and qi

output locations for each G(u(i)), i.e., {{y(i)
j }qij=1}ni=1 with y

(i)
j denoting the j-th output location for

Gθ(u
(i)). The input functions u(i) are represented in R locations {xr}Rr=1 ∈ dom(u) ⊆ R

d so that

u(i)(xr) ∈ R
du , ∀r ∈ [R]. For scalar functions u(i) ∈ R, the branch net takes input {u(i)(xr)}Rr=1,

which implies f : Rdu → R
K . Similarly, for scalar output locations y

(i)
j ∈ R we have g : R → R

K .

The branch net f has parameters θf ∈ R
pf with the kth output denoted as fk(θf ;u), k ∈ [K].

Similarly, the trunk net g has parameters θg ∈ R
pg with the kth output denoted as gk(θg;y), k ∈

[K]. The entire set of parameters for the DON is given by θ = [θ⊤
f θ⊤

g ]
⊤ ∈ R

pf+pg . The DON

learning problem can then be cast as the minimization of the following empirical risk:

θ
†
(don) ∈ argmin

θ∈Θ
L
(
Gθ(u), G

†(u)
)
:=

1

n

n∑

i=1

1

qi

qi∑

j=1

(
Gθ(u

(i))(y
(i)
j )−G†(u(i))(y

(i)
j )
)2

, (2)

with

Gθ(u
(i))(y

(i)
j ) =

K∑

k=1

fk

(
θf ; {u(i)(xr)}Rr=1

)
gk

(
θg; y

(i)
j

)
. (3)

Note that the “true” operator G† whose approximation is sought in (2) can either be explicit, e.g.
integral of a function, or implicit, e.g. the solution to a nonlinear partial differential equation (PDE).

3.2 LEARNING FOURIER NEURAL OPERATORS (FNOS

Given an input function u and corresponding output f(x) = G†(u)(x), the FNO learns a parametric
map Gθ such that Gθ(u) ≈ G†(u) where G† denotes the “true” operator. We recall the definition
of the FNO model in (Li et al., 2021a), i.e,

α(0)(x) = P (u;θp)(x), α(l)(x) = F (l)(α(l−1)(x);θF (l)) and f(x) = Q(α(L+1);θq)(x),
(4)

where {F (l)}L+1
l=1 are the nonlinear transformations with learnable parameters θF =

[θ⊤
F (1) , . . . ,θ

⊤
F (l) ]

⊤, P denotes an encoder that maps the input function to an ambient space (of-
ten higher dimensional), and Q denotes the decoder that maps the output from the last FNO block to
the desired output space with parameters θp and θq respectively. The entire set of parameters for the

FNO can be written as θ =
[
θ⊤
p θ⊤

F θ⊤
q

]⊤
. Following the approach in (Li et al., 2021a), we write

F (l)
(
α(l−1)(x);θF (l)

)
:= φ(W (l)α(l−1) +

(
K(l)(u;R(l))α(l−1)

)
)(x), (5)

where φ is a pointwise activation, W (l) is an affine transformation, K(l) denotes the paramet-

ric kernel operator with parameters R(l). The kernel can be written as a scalar function as

(K(l)(u;R(l))w)(x) :=
∫
T k(x, y,u(x),u(y);R(l))w(y)dy, where θF(l) a set of unknown pa-

rameters and w any appropriate function with domain T . With a slight abuse of notation, the FNO
applied on the input u can be implicitly written as f(x) = Gθ(u)(x). Considering n input-output

pairs (f (i)) and input (u(i)) pairs on a computational grid (xr
R
r=1) allows us to write

f (i)(xr) = Gθ(u
(i))(xr), ∀ i ∈ [n], ∀ r ∈ [R]. (6)

1The original DON paper (Lu et al., 2021) puts forth the above model and another one with a bias term
added to the inner product. For definiteness, we restrict our attention to the model without bias.
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Then, the FNO learning problem can be written as the minimization of the following empirical risk:

θ
†
(fno) ∈ argmin

θ∈Θ
L(Gθ(u), G

†(u)) =
1

n

n∑

i=1

1

R

R∑

r=1

(
Gθ(u

(i))(xr)−G†(u(i))(xr)
)2

. (7)

4 OPTIMIZATION CONVERGENCE ON NEURAL OPERATORS MODELS

We now focus on establishing two conditions for the convergence of gradient descent (GD) on neural
operator (NO) models, in particular showing that as long as the two conditions are satisfied, the loss
will decrease geometrically. The development is independent of the type of neural operator under
consideration. Then, we show that the required conditions for convergence are satisfied by DONs
(Section 5) and by FNOs (Section 6) using the structure and properties specific to these models. For
convenience, we will denote the empirical loss of the neural operator model as L(θ). The specific
losses corresponding to DONs and FNOs are in (2) and (7), respectively.

The first condition is based on the concept of Restricted Strong Convexity (RSC).

Definition 1 (Restricted Strong Convexity (RSC)). A function L is said to satisfy α-restricted strong
convexity (α-RSC) w.r.t. the tuple (B,θ) if for any θ′ ∈ B ⊆ R

p and some fixed θ ∈ R
p, we have

L (θ′) ≥ L(θ) + 〈θ′ − θ,∇θL(θ)〉+ α
2 ‖θ′ − θ‖22, with α > 0.

Let θ0 denote a suitable (random) initialization and {θt}t≥1 denote the sequence of iterates obtained
from GD on loss L(θ), i.e.,

θt+1 = θt − ηt∇θL(θt) . (8)

Under suitable assumptions, the iterates stay within a suitable ball BEuc
ρ (θ0) around the initialization

that will be individually specified for DONs and FNOs. The first conditions of interest stipulates
that at step t, the loss L satisfies α-RSC.

Condition 1 (RSC). At step t, there exists a set Qt ⊆ R
p such that

(a) the set Bt := Qt ∩ BEuc
ρ (θ0) ∩ BEuc

ρ2
(θt) is non-empty for some suitable constant radii

ρ, ρ2 > 0; and

(b) the loss function L satisfies αt-RSC w.r.t. (Bt,θt) for some αt > 0.

Note that L need not be convex for it to satisfy αt-RSC. In essence, when the iterate is θt, the loss
needs to be strongly convex on a suitable set Bt. The analysis for establishing that such a non-empty
Bt exists are substantially different for DONs and FNOs, and takes more care DONs (Section 5) as
it involves two different networks. On the other hand, the analysis for establishing the αt-RSC takes
considerably more care for FNOs (Section 6) as it involves Fourier transforms which are not there
in typical feedforward networks. The second condition stipulates that the loss L is β-smooth.

Condition 2 (Smoothness). The loss is β-smooth, i.e., for θ′,θ ∈ N (θ0) and some β = O(1),

L(θ′) ≤ L(θ) + 〈θ′ − θ,∇θL(θ)〉+ β
2 ‖θ′ − θ‖22.

A form of smoothness is utilized for most existing analysis (Allen-Zhu et al., 2019; Banerjee et al.,
2023). We work with smooth activation functions, which makes the smoothness condition easier to
establish, but we note that similar conditions are usually established and used for ReLU networks as
well Allen-Zhu et al. (2019). As long as the two conditions are satisfied at step t of the GD update
in (8), the loss is guaranteed to decrease with a suitable (constant) step-size choice.

Theorem 1 (Global Loss Reduction). Assume the loss L satisfies Conditions 1 and 2 with αt ≤ β
at step t of the GD update as in (8) with step-size ηt = ωt

β
for some ωt ∈ (0, 2). Then, ∀θ̄ ∈

arginf
θ∈BEuc

ρ (θ0)

L(θ) and θ̄t+1 ∈ arginf
θ∈Qt

κ∩BEuc
ρ (θ0)

L(θ) with 0 ≤ γt :=
L(θ̄t+1)−L(θ̄)

L(θt)−L(θ̄)
< 1, we have

L(θt+1)− L(θ̄) ≤
(
1− αtωt(1− γt)

β
(2− ωt)

)
(L(θt)− L(θ̄)) . (9)
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Our analysis is inspired by recent related advances by Banerjee et al. (2023), where a related anal-
ysis was done for basic feedforward networks. We abstract out from that special case, and demon-
strate that the analysis works for any losses satisfying Conditions 1 and 2. The heavy lifting for
the optimization convergence analyses is then to establish the two conditions for specific models,
viz. DONs and FNOs, which we respectively do in the next two sections. While NTK (neural
tangent kernel) based analysis has been widely used for convergence analysis (Liu et al., 2021a;
2022b; Allen-Zhu et al., 2019), for wide networks NTK implies RSC, and they are both sufficient
conditions for convergence (Banerjee et al., 2023). One can pursue a purely NTK based analysis of
convergence–we do not take that route, instead establish convergence based on Theorem 1.

5 OPTIMIZATION ANALYSIS FOR DEEPONETS

In this section, we focus on DONs based on smooth activation functions. To build up to the opti-
mization analysis, we first establish a bound on the spectral norm of the DON predictor, in particular
showing that ‖∇2Gθ(u)(y)‖2 = O( 1√

m
) where, again, mf = mg = m. The spectral norm bound

is then used to establish a form of Restricted Strong Convexity (RSC) of the DON loss (2), which in
turn is used to establish geometric convergence of gradient descent (GD). For the analysis, analogous
to Liu et al. (2021b), we consider a FNN for the branch net:

α
(0)
f = u, α

(l)
f = φl

(
1√
mf

W
(l)
f α

(l−1)
f

)
, ∀l ∈ [L− 1], f = α

(L)
f =

1√
mf

W
(L)
f α

(L−1)
f

(10)

where mf and L denote the width and depth of the branch net respectively, φl is the activation

function at layer l, α
(l)
f are the outputs at layer l, and W

(l)
f ≡ w

(l)
fij

denote the weight matrices at

layer l. Similarly, we consider a fully connected feedforward network for the trunk net:

α(0)
g = y, α(l)

g = φl

(
1

√
mg

W (l)
g α(l−1)

g

)
, ∀l ∈ [L− 1], g = α(L)

g =
1

√
mg

W (L)
g α(L−1)

g

(11)

where, again, mg and L denote the width and depth of the trunk net respectively and W
(l)
g ≡ w

(l)
gij

denote the weight matrices at layer l of the trunk net. We consider we have K outputs on each of

the networks, and so W
(L)
f ∈ RK×mf and W

(L)
g ∈ RK×mg .

We denote by (w
(L)
f,k )

⊤ and (w
(L)
g,k )

⊤ the kth row of the matrices W
(l)
f and W

(l)
g respectively. We let

θhid
f and θhid

g be the vectors obtained by vectorizing all the weight matrices from the hidden layers

W
(l)
f and W

(l)
g , l ∈ [L− 1], and stacking them in a single vector respectively.

In order to aid our analysis, we make the following assumptions on the activations, the loss, and the
weights:

Assumption 1 (Activation functions). The activation functions φl at each layer l are 1-Lipschitz
and βφ-smooth (i.e. φ′′ ≤ βφ) for some βφ > 0.

Assumption 2 (Initialization of Weights). All weights of the branch and trunk nets are initialized

independently as follows: (i) w
(l)
f0, ij

∼ N (0, σ2
f,0) and w

(l)
g0, ij ∼ N (0, σ2

g,0) for l ∈ [L − 1] where

σf,0 = σ0

2(1+

√
log mf√
2mf

)
and σg,0 = σ0

2(1+

√
log mg√
2mg

)
, σ0 > 0; (ii) w

(L)
f0, k

and w
(L)
g0, k , k ∈ [K], are random

unit vectors with ‖w(L)
f0, k

‖2 = 1 and ‖w(L)
g0, k‖2 = 1 respectively. Further, we assume the input data

satisfies ‖u‖2 =
√
du and ‖y‖2 =

√
dy .

We also introduce the neighborhood set BEuc
ρ,ρ1

(θ̄) = {θ ∈ R
pf+pg : ‖θhid

f − θ̄hid
f ‖ ≤ ρ, ‖θhid

g −
θ̄hid
g ‖ ≤ ρ, ‖w(L)

f,k − w̄
(L)
f,k ‖2 ≤ ρ1, ‖w(L)

g,k − w̄
(L)
g,k ‖2 ≤ ρ1, k ∈ [K]}. We focus on showing that the

two conditions needed for convergence of GD as discussed in Section 4 are satisfied by DONs. We
start with the definition of the restricted set Qt

κ as in Condition 1 for α-RSC, parameterized by some
κ ∈ (0, 1

2 ]. Due to the involvement and interaction of two neural networks, the branch and trunk
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networks, the definition of Qt
κ looks seemingly involved. However, note that Qt

κ is only needed for
establishing the α-RSC condition for the analysis, and does not change the computational algorithm,
which is simply GD run over all the branch and trunk network parameters.

Definition 2 (Qt
κ sets for DONs). For an iterate θt = [θ⊤

f,t θ⊤
g,t]

⊤, consider the singular value

decomposition 1
n

∑n
i=1

1
qi

∑qi
j=1 ℓ

′
i,j

∑K
k=1 ∇θf

f
(i)
k ∇θg

g
(i) ⊤
k,j =

∑q̃
h=1 σhahb

⊤
h , where q̃ ≤ qk

with q =
∑n

i=1 qi, and σh > 0,ah ∈ R
pf , bh ∈ R

pg respectively denote the singular values, left

singular vectors, and right singular vectors. Further, let Ḡθ = 1
n

∑n
i=1

1
qi

∑qi
j=1 Gθ(u

(i))(y
(i)
j ).

Then, for a suitable κ ∈ (0, 1√
2
], we define the set:

Q
t
κ :=

{

θ
′ = [θ′

f
⊤
θ
′

g
⊤
]
⊤

: | cos(θ′−θt,∇θḠθt)| ≥ κ,

q̃
∑

h=1

σh〈θ
′

f−θf,t,ah〉〈θ
′

g−θg,t, bh〉 ≥ 0

}

. (12)

We now show that α-RSC (Condition 1) and smoothness (Condition 2) are satisfied by the DON
loss with high probability, which implies that GD will lead to geometric decrease in the loss.

Theorem 2 (RSC). Under Assumptions 1 and 2 and Qt
κ as in Definition 2, (a) Bt

κ := Qt
κ ∩

BEuc
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt) is non-empty for suitable ρ, ρ2 = O(1), and (b) with probability at least

1− 4L
m

, at step t of GD, ∀θ′ ∈ Bt
κ, the DON loss L satisfies

αt = c1‖∇θḠt‖22 −
c2√
m

, where Ḡt =
1

n

n∑

i=1

1

qi

qi∑

j=1

Gθt
(u(i))(y

(i)
j ) . (13)

for some constants c1, c2 > 0, where c2 depends on the depth L and the radii ρ, ρ1, ρ2. Thus, the
loss L satisfies RSC w.r.t (Bt

κ,θt) whenever ‖∇θḠt‖22 = Ω( 1√
m
).

Theorem 3 (Smoothness). Under the Assumptions 1 and 2, with probability at least 1− 4L
m

, for θ ∈
BEuc

ρ,ρ1
(θ̄), L is β-smooth with β = 4(Kλ̄2 + c̃)( λ̄c√

m
+ ̺)+ 2K2λ̄2̺2 with c = max(c(f), c(g)), c̃ =

maxij G
†(u(i))(y

(i)
j ), ̺ = max(̺(f), ̺(g)), λ̄ = max(λ1, λ2) with c(f), c(g), ̺(f), ̺(g), λ1, λ2 as in

Lemma D.3.

Remark 1 (The benefit of over-parameterization for the RSC property). According to (13),
‖∇θḠt‖22 = Ω( 1√

m
) is needed to ensure that αt > 0, i.e., to ensure that the empirical loss sat-

isfies the RSC property at time t. As the width m increases (of both branch and trunk networks,
since they both have the same width), the quantity ‖∇θḠt‖22 will be able to attain the RSC property
at a lower value.

Remark 2 (Over-parameterization allows for a larger neighborhood around initialization). It can be
shown that if choose ρ <

√
m, ρ1 = O(poly(L)), and the initialization parameter σ0 < 1 − ρ√

m
,

then there is a polynomial dependence on the depth L in all of our results. Moreover, since it
is possible to make the radius ρ larger as we increase the over-parameterization, it is possible to
enlarge the neighborhood around the initialization point where our guarantees hold.

6 OPTIMIZATION ANALYSIS FOR FNOS

Complementary to Section 5, in this section establish the required conditions for the convergence of
GD for FNOs. We again do so by bounding the spectral norm of the hessian of the FNO predictor, in
particular showing that ‖∇2

θ
Gθ(u)(x)‖2 = O( 1√

m
). This is then used to establish the α-RSC of the

FNO loss (7), which in turn can be used to establish the geometric convergence of gradient descent
(GD). Our analysis is inspired by, and borrow ideas from, (Banerjee et al., 2023) and (Liu et al.,
2021a). To this end, recall the FNO model

α(l) = φ

(
1√
m
W (l)α(l−1) +

1√
m
F ∗R(l)Fα(l−1)

)
, l ∈ [L+ 1]

f = α(L+2) :=
1√
m
vTα(L+1) ,
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where W (l) and R(l) denote the parameters at layer l ∈ [L+ 1] with w
(l)
ij and r

(l)
ij denoting their re-

spective entries. We denote entire set of trainable parameters of the FNO by θ, where θ = [θ⊤
w θ⊤

r ]
⊤

and θw = [vec(W (1))⊤, . . . , vec(W (L+1))⊤ v⊤]⊤ and θr = [vec(R(1)), . . . , vec(R(L+1))⊤]⊤. We
denote the number of parameters by pw + pr, where pw = dim(θw) and pr = dim(θr). We let

θhid be the vector obtained by vectorizing all the weight matrices from the hidden layers W (l),
l ∈ [L + 1], and stacking them in a single vector. Furthermore, let the parameters be initialized at

W
(l)
0 and R

(l)
0 , i.e. their entries are initialized at w

(l)
0,ij and r

(l)
0,ij respectively. Furthermore, let θ0

denote the parameters at initialization and θt denote the parameters at an intermediate step t.

Assumption 3 (Activation functions). The activation functions of the FNO (φl) at each layer l are
1-Lipschitz and βφ-smooth (i.e. φ′′ ≤ βφ) for some βφ > 0.

Assumption 4 (Initialization of Weights). All weights of the FNO are initialized independently as

follows: (i) w
(l)
0, ij ∼ N (0, σ2

0w) and r
(l)
0, ij ∼ N (0, σ2

0r ) for l ∈ [L + 1] where σ0,w =
σ1,w

2(1+
√

log m√
2m

)

and σ0,r =
σ1,r

2(1+
√

log m√
2m

), where σ1,w, σ1,r > 0; (ii) v is a random unit vector with ‖v‖2 = 1.

Further, we assume the input to the network satisfies ‖α(0)‖2 =
√
d.

We also introduce the neighborhood set BEuc
ρ,ρ1

(θ̄) = {θ ∈ R
pw+pr : ‖θhid − θ̄hid‖2 ≤ ρ, ‖v −

v̄‖2 ≤ ρ1}.

Next, we establish the two conditions required for the convergence of GD. Note that unlike DONs,
the Qt

κ sets for FNOs are relatively simpler due to a single feedforward architecture.

Definition 3 (Qt
κ sets for FNOs). For iterate θt ∈ R

pw+pr , let γ̄t =
1
n

∑n
i=1

1
R

∑R
j=1 ∇θGθt

(u(i))(xj). For κ ∈ (0, 1], define Qt
κ := {θ ∈ R

pw+pr |
| cos(θ − θt,γt)| ≥ κ}.

Theorem 4 (RSC). Given that the activation functions satisfy the smoothness property (Assump-
tion 3), the parameters are initialized as in Assumption 4 and the Qt

κ set chosen as in Definition 3,
(a) Bt

κ := Qt
κ ∩ BEuc

ρ (θ0) ∩ BEuc
ρ2

(θt) is non-empty for suitable ρ, ρ2 = O(1), and (b) with prob-

ability at least (1 − 2(L+2)
m

), at step t of GD, the FNO loss L (7) satisfies αt-RSC w.r.t. (Bt
κ, θt)

where, for constants c1, c2 > 0, we have

αt = c1‖∇θḠt‖22 −
c2√
m

, where Ḡt =
1

n

n∑

i=1

1

R

R∑

j=1

Gθt
(u(i))(xj) . (14)

Thus, the loss L(θ) satisfies RSC w.r.t (Bt
κ,θt) whenever ‖∇θḠt‖22 = Ω( 1√

m
).

Theorem 5 (Smoothness). Under Assumptions 3 and 4 with probability at least(
1− 2(L+2)

m

)
∀θ,θ′ ∈ BEuc

ρ (θ0),

L (θ′) ≤ L(θ) + 〈θ′ − θ,∇θL(θ)〉+
β

2
‖θ′ − θ‖22 , with β = 2̺2 +

2cH
√
cρ1,γ√
m

(15)

Lemma 6.1 (Predictor gradient bounds). Under Assumptions 3 and 4 and for θ ∈ BEuc
ρ (θ0) we

have

‖∇θGθ(u)‖2 ≤ ̺, (16)

where ̺2 = h(L+2)2, h(l) = γl−1 + |φ(0)|∑l−1
i=1 γ

i−1, and γ = σ1 +
ρ√
m

with σ1 = σ1,w + σ1,r

and ρ = ρw + ρr.

Proof. The proof follows directly from Lemma 4.1 in (Banerjee et al., 2023)

Remark 3 (The effects of over-parameterization for FNOs). The same observations as in Remark 1
and Remark 2 that show how over-parameterization ensures (i) a better condition for ensuring the
RSC property, (ii) a larger neighborhood around the initialization point over which our guarantees
hold.

7



Under review as a conference paper at ICLR 2024

0 200 400 600 800

Epochs % 100

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

L
os
s

m = 10

m = 50

m = 100

m = 200

m = 500

(a) Antiderivative

0 200 400 600 800

Epochs % 100

10
−4

10
−2

10
0

10
2

L
os
s

m = 10

m = 50

m = 100

m = 500

(b) Diffusion Reaction

0 200 400 600 800

Epochs % 100

10
−4

10
−3

10
−2

10
−1

10
0

L
os
s

m = 10

m = 50

m = 100

m = 200

m = 500

(c) Burgers

Figure 1: Training progress of DONs with smooth activations as measured by the MSE loss (2) for
(a) Antiderivative Operator, (b) Diffusion-Reaction Equation and (c) Burger’s Equation. The y-axis
is again plotted on a log-scale to clearly demarcate the effect of increasing width. Increasing the
width m again leads to lower training losses.

7 EXPERIMENTS

We now turn to a simple empirical evaluation of the effect of over-parameterization on the training
performance of DONs and FNOs, as measured by the empirical risk over a mini-batch B of the
training dataset. We present empirical findings for three prototypical operator learning problems
for DONs: (a) The Antiderivative (or integral) operator, (b) The Diffusion-Reaction Operator and
(c) Burgers’ Operator. Similarly, for the FNO model presented in Section 6, we present empirical
evaluation on two prototypical operator learning problems: (a) Antiderivative Operator, and (b)
Burger’s equation. For definiteness, we set the width in each layer of the branch and trunk net to
be the same (i.e. mf = mg = m) for the DON and then increase it uniformly from m = 10 to
m = 500. We monitor the training process over 80, 000 training epochs and report the resulting
average loss. Similarly, for the FNO, we adopt a similar strategy by increasing the width. Note that
the objective of this section is to show the effect of overparameterization on the Neural Operator
training and not to present any kind of comparison between the two Neural Operator.

Remark 4 (Antiderivative Operator). The Antiderivative operator is a linear operator and hence is
learned very accurately especially for wider DeepONets (LDB

∼ 10−12 at the end of training for a
DON), and similarly 10−5 for FNO.

Remark 5 (Diffusion Reaction). The Diffusion reaction equation also demonstrates lower loss with
increasing width, albeit less markedly than the antiderivative operator. This can be attributed in part
to the fact that the operator is inherently nonlinear.

Remark 6 (Burger’s equation). The operator corresponding to Burger’s equation is more intricate
with the added periodicity constraints on the solution. While the DON learns the mapping and

8
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Figure 2: Training progress of FNOs with smooth activations as measured by the MSE loss (7)
for (a) Antiderivative Operator, (b) Burger’s Equation. The y-axis is again plotted on a log-scale
to clearly demarcate the effect of increasing width. Increasing the width (m) again leads to lower
training losses.

outputs the solution over entire solution space (x, t) ∈ [0, 1] × [0, 1], the FNO in this case is only
aimed at learning the mapping from the input (initial condition t = 0) to the final output t = 1 and
not the entire solution space.

8 DISCUSSION AND CONCLUSION

We present novel optimization guarantees for the convergence of gradient descent (GD) for overpa-
rameterized Neural Operators. We focus on Neural Operators with smooth activations and analyze
two popular classes of Neural Operators: (a) Deep Operator Networks (DONs) and (b) Fourier Neu-
ral Operators (FNOs), both in their simplest possible architectural configuration, i.e. feedforward
networks. For each neural operator, we establish the conditions required for the convergence of
GD based on restricted strong convexity (RSC) and smoothness of the loss. Our analysis is first of
its kind and provides an encompassing framework to study neural operator optimization. We also
present empirical evaluations on several prototypical operator learning problems that complement
our theoretical underpinnings showing that wider neural operators lead to overall lower training
losses across all the operator learning problems.
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A NEURAL OPERATOR INTRODUCTION

A.1 LEARNING OPERATORS

Here we briefly outline the notion of learning for neural operators Li et al. (2021a; 2020b); Lu et al.
(2021). The standard operator learning problem seeks to approximate a possibly nonlinear operator
G† : U 7→ V by a parametric operator Gθ∈Θ : U 7→ V that depends on the learnable parameters
θ. The goal is to learn an optimal set of parameters θ† such that Gθ† ≈ G†. Given observations

{u(j)}nj=1 ∈ U and {G†(u(j))}nj=1 ∈ V where u(j) ∼ µ is an i.i.d sequence from the probability

measure µ supported on U and G(u(j)) is possibly corrupted with noise, the objective is to find θ†

as the solution of the minimization problem

θ† = argminθ∈Θ Eu∼µ

[
C
(
Gθ(u), G

†(u)
)]

, (17)

where U and V are separable Banach spaces and C a suitable cost functional. This is analogous to
the notion of learning in finite dimensions, which is precisely the setup classical deep learning used
for.

A.2 DEEPONET ARCHITECTURE
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Figure 3: A schematic of the unstacked DeepONet architecture Lu et al. (2021) used in this study.
Note that the input functions need not be sampled on a structured grid of points in general.

B LEARNING NEURAL OPERATORS

B.1 DON TRAINING TUPLE

Each DON training data comprises of the tuple D(i) :=(
{u(i)(xr)}Rr=1, {y(i)j }qij=1, {G(u(i))(y

(i)
j )}qij=1

)
. The total training dataset comprises of all

such training tuples D = {D(i)}ni=1.

B.2 MOTIVATION FOR FNOS

FNOs are closely related to the notion of fundamental solutions. This allows us to write
kl :=k (x, y, a(x), a(y);θF(l)) := k (x− y;θF(l)) (Li et al., 2021a). Taking the Fourier

Transform (F ) and applying the convolution theorem gives
(
K(l)(a;θF(l))α(l−1)

)
(x) =

F−1
(
F (kl) · F

(
α(l−1)

))
(x), ∀x ∈ T , l ∈ [L].
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This helps in parameterizing the kernel operator R(l) = F (kl) directly in the Fourier space and in

simplified notation obtain,
(
K(l)α(l−1)

)
(x) = F−1

(
R(l) ·

(
Fα(l−1)

))
(x), ∀x ∈ T , l ∈ [L].

Replacing this quantity back in (5), following (Li et al., 2021a), we define each Fourier block as
follows

α(l)(x) = φ
(
W (l)α(l−1) + F

−1
(
R(l) · F

(
α(l−1)

)))
(x), x ∈ T , l ∈ [L], (18)

where the Fourier transform of the input function α(l−1) is Fα(l−1)(ξ) :=∫
T e−2πi<ξ,y>α(l−1)(y)dy, y ∈ T . Notice that R(l) is defined by the set of unknown pa-

rameters θF(l) , whereas θF (l) is defined by both the affine operator W (l) and parameters θF(l) . We
now turn to the discrete version of (18) and the associated architecture.

Since we have a discrete domain, we employ the Discrete Fourier Transform (DFT). The entries of

the m × m DFT kernel (F ) can be written (up to a suitable scaling) as Fkj := e
−2πi
m

(k−1)(j−1),

where k, j ∈ [m] which allows us to write its action on an input vector α(l−1)∈ R
m as

vk :=

m∑

j=1

Fkjα
(l−1)
j = α

(l−1)
j e

−2πi
m

(k−1)(j−1), (19)

where i2 = −1.

C OPTIMIZATION CONVERGENCE ANALYSIS, FOR SECTION 4

In this appendix, we establish results for Section 4. In particular, we show that if Condition 1 (α-
RSC) and Condition 2 (smoothness) are satisfied, GD is guaranteed to geometrically decrease the
loss as in Theorem 1. Our analysis follows the recent work of Banerjee et al. (2023), and we provide
all proofs here for the sake of completeness.

We start with the following Lemma which shows that Condition 1 implies a form restricted PL
condition

Lemma C.1 (Restricted PL). Assuming Condition 1 is satisfied, i.e., Bt := Qt
κ∩N (θ0)∩BEuc

ρ2
(θt)

is non-empty and the loss L satisfies αt-RSC w.r.t. (Bt,θt), then L satisfies a restricted form of the
Polyak-Łojasiewicz (PL) condition w.r.t. (Bt,θt):

L(θt)− inf
θ∈Bt

L(θ) ≤ 1

2αt

‖∇θL(θt)‖22 . (20)

Proof. Define

L̂θt
(θ) := L(θt) + 〈θ − θt,∇θL(θt)〉+

αt

2
‖θ − θt‖22 .

By Theorem D.4, ∀θ′ ∈ Bt, we have

L(θ′) ≥ L̂θt
(θ′) . (21)

Further, note that L̂θt
(θ) is minimized at θ̂t+1 := θt −∇θL(θt)/αt and the minimum value is:

inf
θ

L̂θt
(θ) = L̂θt

(θ̂t+1) = L(θt)−
1

2αt

‖∇θL(θt)‖22 .

Then, we have

inf
θ∈Bt

L(θ)
(a)

≥ inf
θ∈Bt

L̂θt
(θ) ≥ inf

θ

L̂θt
(θ) = L(θt)−

1

2αt

‖∇θL(θt)‖22 ,

where (a) follows from (21). Rearranging terms completes the proof.

Next, we show that the restricted PL condition on Bt in Lemma C along with smoothness (Condi-
tion 2) can be used to show geometric loss reduction on Bt.

14



Under review as a conference paper at ICLR 2024

Lemma C.2 (Local Loss Reduction). Assume the loss L satisfies Conditions 1 and 2 with αt ≤ β
at step t of the GD update as in (8) with step-size ηt = ωt

β
for some ωt ∈ (0, 2). Then, for any

θ̄t+1 ∈ arginfθ∈Qt
κ∩N (θ0) L(θ), we have

L(θt+1)− L(θ̄) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ̄)) . (22)

Proof. Since L is β-smooth by Theorem D.4, we have

L(θt+1) ≤ L(θt) + 〈θt+1 − θt,∇θL(θt)〉+
β

2
‖θt+1 − θt‖22

= L(θt)− ηt‖∇θL(θt)‖22 +
βη2t
2

‖∇θL(θt)‖22

= L(θt)− ηt

(
1− βηt

2

)
‖∇θL(θt)‖22

(23)

Since θ̄t+1 ∈ arginfθ∈Bt
L(θ) and αt > 0 by assumption, from Lemma C we obtain

−‖∇θL(θt)‖22 ≤ −2αt(L(θt)− L(θ̄t+1)) .

Hence

L(θt+1)− L(θ̄t+1) ≤ L(θt)− L(θ̄t+1)− ηt

(
1− βηt

2

)
‖∇θL(θt)‖22

(a)

≤ L(θt)− L(θ̄t+1)− ηt

(
1− βηt

2

)
2αt(L(θt)− L(θ̄t+1))

=

(
1− 2αtηt

(
1− βηt

2

))
(L(θt)− L(θ̄t+1))

where (a) follows for any ηt ≤ 2
β

because this implies 1− βηt

2 ≥ 0. Choosing ηt =
ωT

β
, ωt ∈ (0, 2),

L(θt+1)− L(θ̄t+1) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ̄t+1)) .

This completes the proof.

Finally, we show that the local geometric loss reduction result in Bt (Lemma C.2) can be extended
to show geometric loss reduction, which is the main optimization result.

Theorem 1 (Global Loss Reduction). Assume the loss L satisfies Conditions 1 and 2 with αt ≤ β
at step t of the GD update as in (8) with step-size ηt = ωt

β
for some ωt ∈ (0, 2). Then, ∀θ̄ ∈

arginf
θ∈BEuc

ρ (θ0)

L(θ) and θ̄t+1 ∈ arginf
θ∈Qt

κ∩BEuc
ρ (θ0)

L(θ) with 0 ≤ γt :=
L(θ̄t+1)−L(θ̄)

L(θt)−L(θ̄)
< 1, we have

L(θt+1)− L(θ̄) ≤
(
1− αtωt(1− γt)

β
(2− ωt)

)
(L(θt)− L(θ̄)) . (9)

Proof. We start by showing γt = L(θ̄t+1)−L(θ∗)
L(θt)−L(θ∗) satisfies 0 ≤ γt < 1. Since θ∗ ∈ arginf

θ∈N (θ0)

L(θ),

θ̄t+1 ∈ arginf
θ∈Bt

L(θ), and θt+1 ∈ Qt
κ ∩ N (θ0) by the definition of gradient descent, we have

L(θ∗) ≤ L(θ̄t+1) ≤ L(θt+1)
(a)

≤ L(θt)−
1

2β
‖∇θL(θt)‖22 < L(θt) ,

where (a) follows from (23). Since L(θ̄t+1) ≥ L(θ∗) and L(θt) > L(θ∗), we have γt ≥ 0. Further,
since L(θ̄t+1) < L(θt), we have γt < 1.
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Now, with ωt ∈ (0, 2), we have

L(θt+1)− L(θ∗) = L(θt+1)− L(θ̄t+1) + L(θ̄t+1)− L(θ∗)

≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ̄t+1)) +

(
1− αtωt

β
(2− ωt)

)
(L(θ̄t+1)− L(θ∗))

+

(
L(θ̄t+1)−

(
1− αtωt

β
(2− ωt)

)
L(θ̄t+1)

)
−
(
L(θ∗)−

(
1− αtωt

β
(2− ωt)

)
L(θ∗)

)

=

(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ∗)) +

αtωt

β
(2− ωt)(L(θ̄t+1)− L(θ∗))

=

(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ∗)) +

αtωt

β
(2− ωt)γt(L(θt)− L(θ∗))

=

(
1− αtωt

β
(1− γt)(2− ωt)

)
(L(θt)− L(θ∗)) .

That completes the proof.

D ANALYSIS FOR DEEPONETS, FOR SECTION 5

D.1 NON-EMPTY RESTRICTED SET Qt
κ FOR DEEPONETS, AS IN DEFINITION 2

First, recall our definition of the Qt
κ set for DeepONets:

Definition 2 (Qt
κ sets for DONs). For an iterate θt = [θ⊤

f,t θ⊤
g,t]

⊤, consider the singular value

decomposition 1
n

∑n
i=1

1
qi

∑qi
j=1 ℓ

′
i,j

∑K
k=1 ∇θf

f
(i)
k ∇θg

g
(i) ⊤
k,j =

∑q̃
h=1 σhahb

⊤
h , where q̃ ≤ qk

with q =
∑n

i=1 qi, and σh > 0,ah ∈ R
pf , bh ∈ R

pg respectively denote the singular values, left

singular vectors, and right singular vectors. Further, let Ḡθ = 1
n

∑n
i=1

1
qi

∑qi
j=1 Gθ(u

(i))(y
(i)
j ).

Then, for a suitable κ ∈ (0, 1√
2
], we define the set:

Q
t
κ :=

{

θ
′ = [θ′

f
⊤
θ
′

g
⊤
]
⊤

: | cos(θ′−θt,∇θḠθt)| ≥ κ,

q̃
∑

h=1

σh〈θ
′

f−θf,t,ah〉〈θ
′

g−θg,t, bh〉 ≥ 0

}

. (12)

We now show that these restricted sets Qt
κ are non-empty.

Proposition 1 (Qt
κ is non-empty). For over-parameterized branch and trunk nets with pf , pg > qk

where q =
∑n

i=1 qi, the restricted set Qt
κ as defined in 2 is non-empty.

Proof. From the definition of Qt
κ, θ′ needs to satisfy two conditions, which we refer to respectively

as the cosine similarity condition and svd condition for convenience:

| cos(θ′ − θt,∇θḠθt
)| ≥ κ (cosine similarity condition) ,

q̃∑

h=1

σh〈θ′
f − θf,t,ah〉〈θ′

g − θg,t, bh〉 ≥ 0 (svd condition) .

We simply construct a θ′ = [θ′
f
⊤
θ′
g
⊤
]
⊤ ∈ Qt

κ along with the value of κ. Without loss of generality,

we make θt the origin of the coordinate system and work with the unit vector ḡ = [ḡ⊤
f ḡ⊤

g ]
⊤ =

∇θḠθt

‖∇θḠθt
‖2

, since the cosine similarity condition does not care for magnitudes Further, we assume

θ′ also to be a unit vector. Then, our problem reduces to feasibility of the following system of two
quadratic equations over θ′

f ∈ R
pf ,θ′

g ∈ R
pg :

(
〈θ′

f , ḡf 〉+ 〈θ′
g, ḡg〉

)2 ≥ κ2 (cosine similarity condition) ,

θ′⊤
f

(
q̃∑

h=1

σhahb
⊤
h

)
θ′
g ≥ 0 (svd condition) ,
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where singular values σh > 0, ah ∈ R
pf are orthogonal unit vectors, bh ∈ R

pg are orthogonal unit
vectors, ḡ = [ḡ⊤

f ḡ⊤
g ]

⊤ ∈ R
pf+pg and θ′ = [θ′

f ;θ
′
g] ∈ R

pf+pg are unit vectors, and we can choose

a suitable κ ∈ (0, 1
2 ]. Without loss of generality, assume ‖ḡf‖2 ≥ ‖ḡg‖2 so that ‖ḡf‖2 ≥ 1√

2
.

Then, set θ′
g = 0 so that our feasibility condition reduces to 〈θ′

f , ḡf 〉2 ≥ κ2 for some suitably

chosen κ ∈ (0, 1]. Finally, set θ′
f =

ḡf

‖ḡf‖2
so that

〈θ′
f , ḡf 〉2 =

(
ḡf

‖ḡf‖2
ḡf

)2

= ‖ḡf‖22 ≥ 1

2
,

so that the feasibility condition is satisfied for κ ∈ (0, 1√
2
] That completes the proof.

D.2 SPECTRAL NORM OF THE HESSIAN OF BRANCH AND TRUNK NETS

The convergence analysis makes use of the gradients and Hessians of the total loss and the predictor
with respect to the parameters θ, namely,

∇θL(θ) =
[∇θf

L;∇θg
L] , and ∇2

θL = H (θ) =

[
Hff Hfg

Hgf Hgg

]
, (24)

where ∇θf
L(θ) ∈ R

pf = ∂L(θ)/∂θf and ∇θg
L(θ) = ∂L(θ)/∂θg ∈ R

pg . Note that we make

use of the notation ∇θf
(·) to denote the derivative wrt the parameters θf and this is not a functional

gradient. Similarly, the individual blocks in the 2× 2 block Hessian H(θ) are given by

Hff = ∇2
θf
L =

∂2L
∂θf

2 , Hfg =
∂2L

∂θf∂θg
, Hgf = H⊤

fg =
∂2L

∂θg∂θf
, Hgg = ∇2

θg
L =

∂2L
∂θ2

g

,

(25)
where Hff ∈ R

pf×pf , Hgg ∈ R
pg×pg , Hfg ∈ R

pf×pg , Hgf ∈ R
pg×pf and the argument θ is

ignored for clarity of exposition. Using (2) and rewriting the derivatives in (24) and (25), we get

∂L
∂θf

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

K∑

k=1

g
(i)
k,j∇θf

f
(i)
k and

∂L
∂θg

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

f
(i)
k ∇θg

g
(i)
k,j , (26)

for the gradients, and

∂2L
∂θf

2 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

K∑

k=1

g
(i)
k,j∇2

θf
f
(i)
k +

1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j




K∑

k,k̂=1

g
(i)
k,jg

(i)

k̂,j
∇θf

f
(i)
k ∇θf

f
(i)⊤
k̂


 ,

∂2L
∂θg

2 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

k∑

k=1

f
(i)
k ∇2

θg
g
(i)
k,j +

1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j




K∑

k,k̂=1

f
(i)
k f

(i)

k̂
∇θg

g
(i)
k,j∇θg

g
k̂,j

(i)⊤


 ,

∂2L
∂θf∂θg

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

K∑

k=1

∇θf
f
(i)
k ∇θg

g
(i)⊤
k,j

︸ ︷︷ ︸
=H

(1)
fg

+
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j




K∑

k,k̂=1

g
(i)
k,jf

(i)

k̂
∇θf

f
(i)
k ∇θg

g
k̂,j

(i)⊤




︸ ︷︷ ︸
=H

(2)
fg

,

(27)

for the individual blocks of the hessian (24) where, we make use of the notation g
(i)
k,j = gk(θg; y

(i)
j )

and f
(i)
k = fk(θf ;u

(i)).

In order to prove the RSC and smoothness properties of the empirical loss L in the next section,
we will need to upper bound the spectral norm of its Hessian. As can be seen above, the gradient
and Hessians of the predictors (i.e., the branch and trunk networks) appear in the Hessian of L, and
thus, we will eventually need the upper bound of their norms. For this, we will make use of the next
lemma.
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Lemma D.3 (Bounds on the Predictor). Under Assumptions 1 and 2, and for θ ∈ BEuc
ρ (θ0), with

probability at least 1− 2L
(

1
mf

+ 1
mg

)
, we have for every k ∈ [K], i ∈ [n], j ∈ [qi],

∥∥∥∇2
θf
f
(i)
k

∥∥∥ ≤ c(f)
√
mf

, and

∥∥∥∇2
θg
g
(i)
k,j

∥∥∥ ≤ c(g)
√
mg

(28)

∥∥∥∇θf
f
(i)
k

∥∥∥
2
≤ ̺(f), and

∥∥∥∇θg
g
(i)
k,j

∥∥∥
2
≤ ̺(g) , (29)

|f (i)
k | ≤ λ1, and |g(i)k,j | ≤ λ2 , (30)

where c(f), c(g), ̺(f), ̺(g), λ1 λ2 are suitable constants that depend on the depth L and the radius
ρ, ρ1.

Proof. The proof follows from a direct adaptation of Theorem 4.1 and Lemma 4.1 in (Banerjee et al.,
2023).

D.4 OPTIMIZATION GUARANTEES FOR DEEPONETS

Theorem 2 (RSC). Under Assumptions 1 and 2 and Qt
κ as in Definition 2, (a) Bt

κ := Qt
κ ∩

BEuc
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt) is non-empty for suitable ρ, ρ2 = O(1), and (b) with probability at least

1− 4L
m

, at step t of GD, ∀θ′ ∈ Bt
κ, the DON loss L satisfies

αt = c1‖∇θḠt‖22 −
c2√
m

, where Ḡt =
1

n

n∑

i=1

1

qi

qi∑

j=1

Gθt
(u(i))(y

(i)
j ) . (13)

for some constants c1, c2 > 0, where c2 depends on the depth L and the radii ρ, ρ1, ρ2. Thus, the
loss L satisfies RSC w.r.t (Bt

κ,θt) whenever ‖∇θḠt‖22 = Ω( 1√
m
).

For (b), for any θ′ ∈ Bt
κ, by the second order Taylor expansion of the DeepONet loss w.r.t. iterate

θt ∈ Bt
κ, we have

L(θ′) = L(θt) + 〈θ′ − θt,∇θL(θt)〉+
1

2
(θ′ − θt)

⊤ ∂2L(θ̃)
∂θ2

(θ′ − θt) ,

where θ̃ = ξθ′ + (1− ξ)θt for some ξ ∈ [0, 1]. To establish αt-RSC of the loss with αt as in (13),
it suffices to focus on the quadratic form of the Hessian for θ′ ∈ Bt

κ and show

(θ′ − θt)
⊤H(θ̃)(θ − θt) ≥ αt‖θ′ − θt‖22 . (31)

Note that the Hessian, by chain rule, is given by

H(θ̃) =
∂2L(θ̃)
∂θ2

=
1

n

n∑

i=1

1

qi

qi∑

j=1

(
ℓ′′i,j∇G

θ̃
(u(i))(y

(i)
j )∇G

θ̃
(u(i))(y

(i)
j )⊤ + ℓ′i,j∇2G

θ̃
(u(i))(y

(i)
j )
)

.

Given the 2 × 2 block structure of the Hessian as in (24), denoting δθ := θ′ − θt for compactness,
the quadratic form on the Hessian is given by

δθ⊤H(θ̃)δθ = δθ⊤
f Hff (θ̃)δθf︸ ︷︷ ︸

T1

+2δθ⊤
f Hfg(θ̃)δθg︸ ︷︷ ︸

T2

+ δθ⊤
g Hgg(θ̃)δθg︸ ︷︷ ︸

T3

. (32)

One of the aspects of the analysis for each of the terms T1, T2, T3 is that we have to change the

dependencies of the gradient terms from θ̃ to θt and then suitably use properties of Qt
κ. Focusing
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on T1 and using the exact form of Hff (θ̃) as in (27), we have

T1 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j

〈
δθf ,

K∑

k=1

g
(i)
k,j∇θf

f
(i)
k (θ̃f )

〉2

+
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

g
(i)
k,jδθ

⊤
f ∇2

θf
f
(i)
k (θ̃f )δθf

(a)

≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

G
θ̃
(u(i))(y

(i)
j )
〉2

− (2Kλ1λ2 + c̃)λ2c
(f)

√
mf

‖δθf‖22

=
2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j ) +

(
∇θf

G
θ̃
(u(i))(y

(i)
j )−∇θf

Gθt
(u(i))(y

(i)
j )
)〉2

︸ ︷︷ ︸
I1

− (2Kλ1λ2 + c̃)λ2c
(f)

√
mf

‖δθf‖22 ,

where (a) follows from having a square loss and the different bounds in Lemma D.3, so that ℓ′′ij = 2

and |ℓ′ij | ≤ 2Kλ1λ2 + c̃ with c̃ = 2maxij G
†(u(i))(y

(i)
j ). Now, note that

I1 =
1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉2

+

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

G
θ̃
(u(i))(y

(i)
j )−∇θf

Gθt
(u(i))(y

(i)
j )
〉2

+
2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉〈

δθf ,∇θf
G

θ̃
(u(i))(y

(i)
j )−∇θf

Gθt
(u(i))(y

(i)
j )
〉

≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉2

− 2

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇θf
Gθt

(u(i))(y
(i)
j )
∥∥∥
2

∥∥∥∇θf
G

θ̃
(u(i))(y

(i)
j )−∇θf

Gθt
(u(i))(y

(i)
j )
∥∥∥
2
‖δθf‖22

≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉2

− ̺(f)
c(f)
√
mf

‖δθf‖32 ,

where we have used Lemma D.3 and the fact that ‖θ̃f−θt,f‖2 ≤ ‖δθf‖2 and ‖θ̃g−θt,g‖2 ≤ ‖δθg‖2.
As a result

T1 ≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉2

− (ρc(f) + λc0)ρ
(f)

√
mf

‖δθf‖22 , (33)

where we have used ‖δθf‖2 ≤ ρ. The analysis for T3 is similar, and we get

T3 ≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθg,∇θg

Gθt
(u(i))(y

(i)
j )
〉2

− (ρc(g) + λc0)ρ
(g)

√
mg

‖δθg‖22 . (34)

Focusing on T2 and using the exact forms in terms of H
(1)
fg (θ̃) and H

(2)
fg (θ̃) as in (27), we have

1

2
T2 = δθ⊤

f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

∇θf
f
(i)
k (θ̃f )∇θg

g
(i)
k,j(θ̃g)

⊤


 δθg

︸ ︷︷ ︸
I2

+ δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j

(
K∑

k=1

g
(i)
k,j∇θf

f
(i)
k (θ̃f )

)(
K∑

k′=1

f
(i)
k′ ∇θg

g
(i)
k′,j(θ̃g)

⊤
)
 δθg

︸ ︷︷ ︸
I3

.
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For both I2 and I3, our goal is to first transfer the dependence of the gradient terms on θ̃ to θt, so
that we can use properties of the restricted set Qt

κ which is based on θt to simplify the analysis.
Towards that end, note that

I2 = δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

∇θf
f
(i)
k (θt,f )∇θg

g
(i)
k,j(θt,g)

⊤


 δθg

+ δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

(
∇θf

f
(i)
k (θ̃f )−∇θf

f
(i)
k (θt,f )

)
∇θg

g
(i)
k,j(θ̃g)

⊤


 δθg

+ δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

∇θf
f
(i)
k (θt,f )

(
∇θg

g
(i)
k,j(θ̃g)−∇θg

g
(i)
k,j(θt,g)

)⊤

 δθg

(a)

≥ δθ⊤
f

(
q̃∑

h=1

σhahb
⊤
h

)
δθg

− λ

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇θf
f
(i)
k (θ̃f )−∇θf

f
(i)
k (θt,f )

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(θ̃g)

⊤
∥∥∥
2
‖δθf‖2‖δθg‖2

− λ

n

n∑

i=1

1

qi

qi∑

j=1

K∑

k=1

∥∥∥∇θf
f
(i)
k (θt,f )

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(θ̃g)−∇θg

g
(i)
k,j(θt,g)

∥∥∥
2
δθ⊤

f ‖2‖δθg‖2

(b)

≥ −λ

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇θf
f
(i)
k (θ̃f )−∇θf

f
(i)
k (θt,f )

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(θ̃g)

⊤
∥∥∥
2
‖δθf‖2‖δθg‖2

− λ

n

n∑

i=1

1

qi

qi∑

j=1

K∑

k=1

∥∥∥∇θf
f
(i)
k (θt,f )

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(θ̃g)−∇θg

g
(i)
k,j(θt,g)

∥∥∥
2
‖δθf‖2‖δθg‖2

(c)

≥ −
(
λ(c(g)̺(f)
√
mf

+
λ(c(g)̺(f)
√
mf

)
‖δθf‖2‖δθg‖2

≥ −1

2

(
λ(c(g)̺(f)
√
mf

+
λ(c(g)̺(f)
√
mf

)
‖δθ‖22 ,

where (a) follows from the SVD in Definition 2, (b) follows since θ′ ∈ Bt and δθ = θ′ − θt, by the
properties of Qt

κ ⊂ Bt, we have
∑

h σh〈δθf ,ah〉〈δθg, bh〉 ≥ 0, and (c) follows Lemma D.3 and

the fact that ‖θ̃f − θt,f‖2 ≤ ‖δθf‖2 and ‖θ̃g − θt,g‖2 ≤ ‖δθg‖2.
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Next focusing on I3, since we are using square loss, we have

I3 = δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

∇θf
G

θ̃
(u(i))(y

(i)
j )∇θg

G
θ̃
(u(i))(y

(i)
j )⊤


 δθg

(b)

≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

G
θ̃
(u(i))(y

(i)
j )
〉〈

δθg,∇θg
G

θ̃
(u(i))(y

(i)
j )
〉

=
1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉〈

δθg,∇θg
Gθt

(u(i))(y
(i)
j )
〉

+
1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,

(
∇θf

G
θ̃
(u(i))(y

(i)
j )−∇θf

Gθt
(u(i))(y

(i)
j )
)〉〈

δθg,∇θg
G

θ̃
(u(i))(y

(i)
j )
〉

+
1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉〈

δθg,
(
∇θg

G
θ̃
(u(i))(y

(i)
j )−∇θg

Gθt
(u(i))(y

(i)
j )
)〉

≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉〈

δθg,∇θg
Gθt

(u(i))(y
(i)
j )
〉

− 1

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇θf
G

θ̃
(u(i))(y

(i)
j )−∇θf

Gθt
(u(i))(y

(i)
j )
∥∥∥
2

∥∥∥∇θg
G

θ̃
(u(i))(y

(i)
j )
∥∥∥
2
‖δθf‖2 〈δθg‖2

− 1

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇θf
Gθt

(u(i))(y
(i)
j )
∥∥∥
2

∥∥∥∇θg
G

θ̃
(u(i))(y

(i)
j )−∇θg

Gθt
(u(i))(y

(i)
j )
∥∥∥
2
‖δθf‖2 ‖δθg‖2

≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉〈

δθg,∇θg
Gθt

(u(i))(y
(i)
j )
〉
−
(
c(f)̺(g)
√
mf

+
c(g)̺(f)
√
mf

)
‖δθf‖2 ‖δθg‖2

≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉〈

δθg,∇θg
Gθt

(u(i))(y
(i)
j )
〉
− 1

2

(
c(f)̺(g)
√
mf

+
c(g)̺(f)
√
mf

)
‖δθ‖22 .

Combining the bounds on T1, T2, T3 and using m = mg = mf , for a suitable constant c2 based on

c(f), c(g), ̺(f), ̺(g), λ, ρ, we have

δθ⊤H(θ̃)δθ ≥ 1

n

n∑

i=1

1

qi

qi∑

j=1

(〈
δθf ,∇θf

Gθt
(u(i))(y

(i)
j )
〉
+
〈
δθg,∇θg

Gθt
(u(i))(y

(i)
j )
〉)2

− c2√
m
‖δθ‖22

(a)

≥
(〈

δθf ,∇θf
Ḡθt

(u(i))(y
(i)
j )
〉
+
〈
δθg,∇θg

Ḡθt
(u(i))(y

(i)
j )
〉)2

− c2√
m
‖δθ‖22

=
〈
δθ,∇θḠθt

〉2 − c2√
m
‖δθ‖22

(b)

≥ κ2‖∇θḠθt
‖22‖δθ‖22 −

c2√
m
‖δθ‖22

= αt‖δθ‖22 ,

where (a) follows from Jensen’s inequality and with Ḡθ = 1
n

∑n
i=1

1
qi

∑qi
j=1 Gθ(u

(i))(y
(i)
j ) as in

Definition 2 and (b) follows from Definition 2, and αt = κ2‖∇θḠθ‖22 − c2√
m

. That completes the

proof.

Theorem 3 (Smoothness). Under the Assumptions 1 and 2, with probability at least 1− 4L
m

, for θ ∈
BEuc

ρ,ρ1
(θ̄), L is β-smooth with β = 4(Kλ̄2 + c̃)( λ̄c√

m
+ ̺)+ 2K2λ̄2̺2 with c = max(c(f), c(g)), c̃ =

maxij G
†(u(i))(y

(i)
j ), ̺ = max(̺(f), ̺(g)), λ̄ = max(λ1, λ2) with c(f), c(g), ̺(f), ̺(g), λ1, λ2 as in

Lemma D.3.
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Proof. By the second order Taylor expansion about θ̄, we have L(θ′) = L(θ̄)+ 〈θ′− θ̄,∇θL(θ̄)〉+
1
2 (θ

′ − θ̄)⊤ ∂2L(θ̃)
∂θ2 (θ′ − θ̄), where θ̃ = ξθ′ + (1− ξ)θ̄ for some ξ ∈ [0, 1]. Then,

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) = (θ′ − θ̄)⊤
(
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j∇G
θ̃
(u(i))(y

(i)
j )∇G

θ̃
(u(i))(y

(i)
j )⊤

+ ℓ′i,j∇2G
θ̃
(u(i))(y

(i)
j )

)
(θ′ − θ̄)

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j
〈
θ′ − θ̄,∇G

θ̃
(u(i))(y

(i)
j )
〉2

︸ ︷︷ ︸
I1

+
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j(θ
′ − θ̄)⊤∇2G

θ̃
(u(i))(y

(i)
j )(θ′ − θ̄)

︸ ︷︷ ︸
I2

.

Now, note that

I1 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j
〈
θ′ − θ̄,∇G

θ̃
(u(i))(y

(i)
j )
〉2

(a)

≤ 2

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇G
θ̃
(u(i))(y

(i)
j )
∥∥∥
2

2
‖θ′ − θ̄‖22

(b)

≤ 2K2λ̄2̺2‖θ′ − θ̄‖22 ,
where (a) follows by the Cauchy-Schwartz inequality and (b) from Lemma D.3 as follows:

‖G
θ̃
(u(i))(y

(i)
j )‖2 ≤

K∑

k=1

∥∥∥∥∥

[
g
(i)
k,j(θ̃g)∇θ̃f

f
(i)
k

f
(i)
k (θ̃f )∇θ̃g

g
(i)
k,j

]∥∥∥∥∥
2

≤
K∑

k=1

‖∇
θ̃f
f
(i)
k ‖2|g(i)k,j |+ ‖∇

θ̃g
g
(i)
k,j‖2|f

(i)
k | ≤ K(̺(g)λ1 + ̺(f)λ2) ≤ Kλ̺̄.

For I2, with Qt,(i,j) = (θ′ − θ̄)⊤∇2G
θ̃
(u(i))(y

(i)
j )(θ′ − θ̄), we have

|Qt,(i,j)| ≤ ‖θ′ − θ̄‖22
∥∥∥∇2G

θ̃
(u(i))(y

(i)
j )
∥∥∥
2
≤ 2(λ̄

c√
m

+ ̺)‖θ′ − θ̄‖22 ,

where the last inequality follows from

∥∥∥∇2G
θ̃
(u(i))(y

(i)
j )
∥∥∥
2
≤

∥∥∥∥∥∥


 |g(i)k,j |‖∇2

θ̃f
f
(i)
k ‖2 ∇

θ̃f
f
(i)
k ∇

θ̃g
g
(i)
k,j

⊤

∇
θ̃g
g
(i)
k,j∇θ̃f

f
(i)
k

⊤
|f (i)

k |‖∇2
θ̃f
g
(i)
k,j‖2




∥∥∥∥∥∥
2

≤ |g(i)k,j |‖∇2
θ̃f
f
(i)
k ‖2 + 2‖∇2

θ̃f
f
(i)
k ‖2‖∇2

θ̃g
g
(i)
k,j‖2 + |f (i)

k |‖∇2
θ̃g
g
(i)
k,j‖2 ≤ 2(λ̄

c√
m

+ ̺).

Then, we have

I2 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j(θ
′ − θ̄)⊤∇2G

θ̃
(u(i))(y

(i)
j )(θ′ − θ̄)

≤ 4(Kλ̄2 + c̃)(
λ̄c√
m

+ ̺)‖θ′ − θ̄‖22 ,

with c̃ = maxij G
†(u(i))(y

(i)
j ).
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Putting the upper bounds on I1 and I2 back, we have

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) ≤
[
4(Kλ̄2 + c̃)(

λ̄c√
m

+ ̺) + 2K2λ̄2̺2
]
‖θ′ − θ̄‖22 .

This completes the proof.

E ANALYSIS FOR FOURIER NEURAL OPERATORS

Theorem 6 (Hessian Spectral Norm Bound). Under Assumptions 3 and 4 and for θ ∈ BEuc
ρ (θ0),

with probability at least 1− 2(L+2)
m

, for any ui, i ∈ [n], we have

‖∇2
θG(θ;ui)‖2 ≤ cH√

m
(35)

where Gθ(·) is corresponds to the FNO predictor and cH = ..... For definiteness, we recall the FNO
model

α(l) = φ

(
1√
m
W (l)α(l−1) +

1√
m
F ∗R(l)Fα(l−1)

)
, l ∈ [L+ 1]

f := α(L+2) :=
1√
m
vTα(L+1) ,

(36)

where W (l), R(l) ∈ R
m×m for l ∈ {2, . . . , L+ 1}, W (1) ∈ R

m×d, R(1) = 0 and α(0) = x ∈ R
d.

Proof. The proof follows as a direct result of Lemma E.1, E.2, E.3, E.4,

Lemma E.1 (Initialization of the Parameters). Consider the initialization of the parameters

w
(l)
ij by w

(l)
0,ij and R

(l)
ij by R

(l)
0,ij respectively where w

(l)
0,ij ∼ N

(
0, σ0w

2
)

and similarly R
(l)
0,ij ∼

N
(
0, σ2

0R

)
with σ0w =

σ1w

2(1 +
√

logm
2m )

and σ0R =
σ1R

2(1 +
√

logm
2m )

. Then, we have,

‖W (l)
0 ‖2 ≤ σ1w

√
m, and ‖R(l)

0 ‖2 ≤ σ1R

√
m. (37)

Proof. The proof follows directly from Lemma A.1 in Banerjee et al. (2023). We reproduce it here

for the sake of completeness. For (ml × ml−1) random matrices W
(l)
0 and R

(l)
0 with i.i.d entries

w
(l)
0,ij ∈ N (0, σ2

0,w) and r
(l)
0,ij ∈ N (0, σ2

0,r), the largest singular values are bounded from above with

probabilities (1− 2 exp(−t2/2σ2
0,w)) and (1− 2 exp(−t2/2σ2

0,r)) respectively, namely,

σmax(W
(l)
0 ) ≤ σ0,w(

√
ml +

√
ml−1) + t, and σmax(R

(l)
0 ) ≤ σ0,r(

√
ml +

√
ml−1) + t. (38)

In order to derive the above concentration result note that W
(l)
0 = σ0,wW̄

(l)
0 and R

(l)
0 = σ0,rR̄

(l)
0 ,

where the entries w̄
(l)
0,ij ∈ N (0, 1) and r̄

(l)
0,ij ∈ N (0, 1). We can then write

E[‖W (l)
0 ‖2] = σ0,wE[‖W̄ (l)

0 ‖2] = σ0,w(
√
ml +

√
ml−1),

E[‖R(l)
0 ‖2] = σ0,rE[‖R̄(l)

0 ‖2] = σ0,r(
√
ml +

√
ml−1)

from Gordon’s Theorem for Gaussian random matrices (see Theorem 5.32, Proposition 3.4 in
(Vershynin, 2010)) where the function f : B → ‖σ0B‖2 is a σ0-Lipchitz function (where the
matrix B can be treated as a vector). Finally, choosing tw = σ0,w

√
2 logm so that (38) holds with

probability at least
(
1− 2

m

)
. In order to obtain the result in (37) we consider the following cases:

• Case 1: l = 1. With m0 = du and m1 = m.
∥∥∥W (1)

0

∥∥∥
2
≤ σ0(

√
d+

√
m+

√
2 logm) ≤ σ0(2

√
m+

√
2 logm),

R
(1)
0 = 0.
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• Case 2: 2 ≤ l ≤ L. With ml = ml−1 = m

‖W (l)
0 ‖2 ≤ σ0,w

(
2
√
m+

√
2 logm

)
, ‖R(l)

0 ‖2 ≤ σ0,r

(
2
√
m+

√
2 logm

)
.

Now, using σ0,w =
σ1,w

2(1 +
√

logm
2m )

and σ0,r =
σ1,r

2(1 +
√

logm
2m )

completes the proof.

Proposition 2 (Layer-wise matrices). Under Assumptions 4 for θ ∈ BEuc
ρ (θ0), with probability at

least (1− 2/m) we have

∥∥∥W (l)
∥∥∥
2
≤
(
σ1w +

ρw√
m

)√
m, and

∥∥∥R(l)
∥∥∥
2
≤
(
σ1R +

ρr√
m

)√
m, l ∈ [L+ 1] (39)

Proof. By the virtue of triangle inequality, we have for l ∈ [L+ 1]

‖W (l)‖2 ≤ ‖W (l)
0 ‖2 + ‖W (l) −W

(l)
0 ‖2

(a)

≤ σ1,w

√
m+ ρw,

‖R(l)‖2 ≤ ‖R(l)
0 ‖2 + ‖R(l) −R

(l)
0 ‖2

(a)

≤ σ1,r

√
m+ ρr,

where (a) follows from Lemma E.1.

Remark 7. Note that R(1) = 0, so that Proposition 2 is trivially satisfied for it.

We now show that the L2 norm of the output at the layer l of the FNO, i.e. α(l), is bounded by
O(

√
m).

Lemma E.2 (L2-norm of the output at l-th layer). Consider any l ∈ [L+1]. Under Assumptions 3

and 4 for θ ∈ BEuc
ρ , with probability at least (1− 2l

m
), we have

∥∥∥α(l)
∥∥∥
2
≤ √

m

(
σ1 +

ρ√
m

)l

+
√
m

l∑

i=1

(
σ1 +

ρ√
m

)i−1

|φ(0)| =
(
γl + |φ(0)|

l∑

i=1

γi−1

)
√
m,

(40)
where,

σ1 = σ1,w + σ1,r, and, ρ = ρw + ρr.

Proof. We prove the result using induction (see Lemma A.2 in Banerjee et al. (2023)). First, note

that the input is normalized to have ‖u‖2 =
√
d, which implies that ‖α(0)‖2 =

√
d (note that

R(1) = 0). Then, using the fact that m0 = du and φ is 1-Lipchitz,
∥∥∥∥φ
(

1√
d
W (1)α(0)

)∥∥∥∥
2

− ‖φ(0)‖2 ≤
∥∥∥∥φ
(

1√
d
W (1)α(0)

)
− φ(0)

∥∥∥∥
2

≤
∥∥∥∥

1√
d
W (1)α(0)

∥∥∥∥
2

, (41)

which in turn gives,

∥∥∥α(1)
∥∥∥
2
=

∥∥∥∥φ
(

1√
du

W (1)α(0)

)∥∥∥∥
2

≤
∥∥∥∥

1√
du

W (1)α(0)

∥∥∥∥
2

+ ‖φ(0)‖2

≤ 1√
du

∥∥∥W (1)
∥∥∥
2

∥∥∥α(0)
∥∥∥
2
+ |φ(0)|√m

≤
(
σ1,w +

ρw√
m

)√
m+ |φ(0)|√m

≤
(
σ1,w + σ1,r +

ρw + ρr√
m

)√
m+ |φ(0)|√m

where we use m instead of du to aid clarity in the subsequent steps below. Now, for completeness,
consider also the output at layer 2, namely,

‖α(2)‖2 =

∥∥∥∥φ
(

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

)∥∥∥∥
2

,
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which gives,

∥∥∥∥φ
(

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

)∥∥∥∥
2

− ‖φ(0)‖2

≤
∥∥∥∥φ
(

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

)
− φ(0)

∥∥∥∥
2

≤
∥∥∥∥

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

∥∥∥∥
2

,

and, in turn,

‖α(2)‖2 ≤
∥∥∥∥

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

∥∥∥∥
2

+ ‖φ(0)‖2

≤
∥∥∥∥

1√
m
W (2)α(1)

∥∥∥∥
2

+

∥∥∥∥
1√
m
F ∗R(2)Fα(1)

∥∥∥∥
2

+ |φ(0)|√m

≤ 1√
m
‖W (2)‖2‖α(1)‖2 +

1√
m
‖R(2)‖2‖α(1)‖2 +

√
m|φ(0)|

≤
(
σ1,w +

ρw√
m

+ σ1,r +
ρr√
m

)
‖α(1)‖2 +

√
m|φ(0)|

≤ √
m

(
σ1 +

ρ√
m

)2

+

(
1 +

(
σ1 +

ρ√
m

))√
m|φ(0)|.

Now, for the inductive step, consider that the output at layer l − 1 satisfies

∥∥∥α(l−1)
∥∥∥
2
≤ √

m

(
σ1,w + σ1,r +

ρw + ρr√
m

)l−1

+
√
m

l−1∑

i=1

(
σ1,w + σ1,r +

ρw + ρr√
m

)i−1

|φ(0)|.

Finally, at layer l, we have

∥∥∥α(l)
∥∥∥
2
≤ 1√

m



∥∥∥W (l)

∥∥∥
2
+
∥∥∥F ∗R(l)F

∥∥∥
2︸ ︷︷ ︸


 ‖α(l−1)‖2 +

√
m|φ(0)| (42)

≤
(
σ1,w + σ1,r +

ρw + ρr√
m

)
‖α(l−1)‖2 +

√
m|φ(0)| (43)

≤ √
m

(
σ1,w + σ1,r +

ρw + ρr√
m

)l

+
√
m

l∑

i=1

(
σ1 +

ρ√
m

)i−1

|φ(0)|. (44)

Introducing γ = σ1 +
ρ√
m

, we can write

‖α(l)‖2 ≤ √
m

(
γl + |φ(0)|

l∑

i=1

γi−1

)
. (45)

This completes the proof.

Lemma E.3. For l ∈ {2, . . . , L+1}, under Assumptions 3 and 4 for θ ∈ BEuc
ρ (θ0), with probability

at least (1− 2
m
]), we have,

∥∥∥∥
∂α(l)

∂α(l−1)

∥∥∥∥
2

2

≤
(
σ1,w +

ρw√
m

)2

+ ≤
(
σ1,r +

ρr√
m

)2

= γ2
w + γ2

r . (46)

Proof. We have

[
∂α(l)

∂α(l−1)

]

ij

=
1√
m
φ′(α̃(l−1))

[
W

(l)
ij + [F ∗R(l)F ]ij

]
.
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Now, ‖A‖2 = sup‖v‖2=1 ‖Av‖2 we have,

∥∥∥∥
∂α(l)

∂α(l−1)

∥∥∥∥
2

2

= sup
‖v‖2=1

1

m

(
φ′2
∥∥∥
(
W (l) + F ∗R(l)F

)
v

∥∥∥
2

2

)

(a)

≤ sup
‖v‖2=1

1

m

(
‖W (l)v‖22 + ‖F ∗R(l)Fv‖22

)
(b)
= sup

‖v‖2=1

1

m

(
‖W (l)v‖22 + ‖R(l)v‖22

)
,

(47)

where (a) follows from the fact that φ is 1-Lipchitz and using the triangle inequality, and (b) follows
from the fact that F ∗ and F are isometries wrt the L2 norm, i.e. ‖Fv‖22 = ‖v‖22 and ‖F ∗v‖22 = ‖v‖22.
This finally gives

∥∥∥∥
∂α(l)

∂α(l−1)

∥∥∥∥
2

2

≤ 1

m

(
‖W (l)‖22 + ‖R(l)‖22

)
=

(
σ1,w +

ρw√
m

)2

+

(
σ1,r +

ρr√
m

)2

= γ2
w + γ2

r .

This completes the proof.

Lemma E.4. Consider an arbitrary layer l ∈ [L+ 1] and the gradient of the output at layer l with
respect to the parameters, i.e.,

g(l) =




∂α(l)

∂w(l)

∂α(l)

∂r(l)
,




where, w(l) = vec(W (l)) and r(l) = vec(R(l)). Under Assumptions 3 and 4 and for θ ∈ BEuc
ρ (θ0),

with probability at least
(
1− 2l

m

)
,

‖g(l)‖22 ≤ 2

(
γ(l−1) + |φ(0)|

l−1∑

i=1

γ(i−1)

)2

Proof. We can index the vectors w(l) and r(l) using j ∈ [m] and j′ ∈ [du] for l = 1 and j′ ∈ [m]
for l ∈ {2, . . . , L+ 1}. Therefore,

[
∂α(l)

∂w(l)

]

i,jj′
=

1√
m
φ′(α̃(l)

i )δijα
(l−1)
j′ , δij =

{
1 i = j

0 otherwise
.

Now, for l ∈ {2, . . . , L+ 1}, we can write the 2-norm of the matrices as follows

∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

2

= sup
‖V ‖F=1

1

m

m∑

i=1


φ′

(
α̃
(l)
i

) m∑

j,j′=1

α
(l−1)
j′ δijVjj′




2

≤ sup
‖V ‖F=1

1

m
‖Vα(l−1)‖22

≤ sup
‖V ‖F=1

1

m
‖V ‖22‖α(l−1)‖22

(a)

≤ sup
‖V ‖F=1

1

m
‖V ‖2F ‖α(l−1)‖22

≤ 1

m
‖α(l−1)‖22

(b)

≤ 1

m

[
√
m

(
γl−1 + |φ(0)|

l−1∑

i=1

γi−1

)]2
=

(
γl−1 + |φ(0)|

l−1∑

i=1

γi−1

)2

,
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where, (a) follows from the fact that ‖V ‖22 ≤ ‖V ‖2F and (b) from (45). The l = 1 case follows in a
similar fashion:

∥∥∥∥
∂α(1)

∂w(1)

∥∥∥∥
2

2

≤ 1

du
‖α(0)‖22 =

1

du
‖u‖22 = 1,

∥∥∥∥
∂α(1)

∂r(1)

∥∥∥∥
2

2

= 0.

Similarly,

∥∥∥∥
∂α(l)

∂r(l)

∥∥∥∥
2

2

= sup
‖V ‖F=1

1

m

m∑

i=1

(
φ′
(
α̃
(l)
i

)
F ∗
ijFj′pα

(l−1)
p Vjj′

)2

≤ sup
‖V ‖F=1

1

m
‖(F ∗V F )α(l−1)‖22

≤ sup
‖V ‖F=1

1

m
‖F ∗V F‖22‖α(l−1)‖22

≤ sup
‖V ‖F=1

1

m
‖F ∗‖22‖V ‖22‖F‖22‖α(l−1)‖22

(a)

≤ sup
‖V ‖F=1

1

m
‖V ‖2F ‖α(l−1)‖22

≤ 1

m
‖α(l−1)‖22

(b)

≤ 1

m

[
√
m

(
γl−1 + |φ(0)|

l−1∑

i=1

γi−1

)]2
=

(
γl−1 + |φ(0)|

l−1∑

i=1

γi−1

)2

,

where (a) follows again by ‖V ‖22 ≤ ‖V ‖2F and the fact that F ∗ and F are unitary matrices, and (b)
from (45). Now, finally

‖g‖22 =

∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

2

+

∥∥∥∥
∂α(l)

∂r(l)

∥∥∥∥
2

2

≤ 2

(
γl−1 + |φ(0)|

l−1∑

i=1

γi−1

)2

. (48)

This completes the proof

We now focus on bounding the hessian of the predictor (36). Note that the FNO model can be
considered having (L + 1) layers, with Layer 1 being the feedforward single layer encoder, the
L layers from 2 to L + 1 being FNO layers, and Layer (L + 2) being the output of the linear
decoder. Furthermore, we make use of Einstein summation convention, i.e. repeated indices imply
summation, unless explicitly stated.

The Hessian matrix H for the L FNO layers can be viewed as 2× 2 block matrix, namely,

H =

[
H

(l1,l2)
w H

(l1,l2)
w,r

H
(l1,l2)
r,w H

(l1,l2)
r

]

where

• the (1, 1) block has L×L sub-blocks corresponding to H
((l1,l2)
w := ∂2f

∂w(l1)∂w(l2) for l1, l2 ∈
{2, . . . , L+ 1},

• the (2, 2) block has L×L sub-blocks corresponding to H
((l1,l2)
r := ∂2f

∂r(l1)∂r(l2) for l1, l2 ∈
{2, . . . , L+ 1}, and

• the (1, 2) and (2, 1) cross blocks have terms of the form H
((l1,l2)
w,r := ∂2f

∂w(l1)∂r(l2) for l1, l2 ∈
{2, . . . , L+ 1}.

There are additional blocks corresponding to W (1), including
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• diagonal block H
((1,1)
w := ∂2f

∂w(1)2
,

• off-diagonal blocks H
((1,l1)
w := ∂2f

∂w(1)∂w(l1) for l1 ∈ {2, . . . , L + 1}, as well as H
((l1,1)
w ,

and

• off-diagonal blocks H
(1,l2)
w,r := ∂2f

∂w(1)∂r(l2) for l2 ∈ {2, . . . , L+ 1}, as well as H
((l2,1)
r,w .

Further, there are additional blocks corresponding to v, including

• diagonal block Hv := ∂2f
∂v2 , which is 0,

• off-diagonal block H
((l1)
v,w := ∂2f

∂v∂w(l1) for l1 ∈ {1, . . . , L+ 1}, as well as H
((l1)
w,v , and

• off-diagonal block H
(l2)
v,r := ∂2f

∂v∂r(l2) for l2 ∈ {2, . . . , L+ 1}, as well as H
((l1)
v,w .

Gradients. The gradient of f wrt any w(l1) and any r(l1), l1 ∈ [L + 1] and for any l1, l2 ≤ l ≤ L,
is given by

∂f

∂w(l1)
=

(
∂α(l1)

∂w(l1)

l∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
∂f

∂α(l)
, (49)

∂f

∂r(l2)
=

(
∂α(l2)

∂r(l2)

l∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
∂f

∂α(l)
. (50)

Note that the choice of l with l1 ≤ l ≤ L gives different forms of the recurive decomposition.

Further, as typical,
∏b

a with a > b is simply a 1, i.e., the term does not affect the analysis.

For the analysis, for convenience, let l1, l2 respectively be the index for w, r when both w, r are
being considered, and we will consider both l1 ≤ l2 and l1 ≥ l2, which suffices due to the symmetry
of H .

First, note that

‖H‖2 ≤
L+1∑

l1,l2=1

‖H((l1,l2)
w ‖2 +

L+1∑

l1,l2=2

‖H((l1,l2)
r ‖2 + 2

L+1∑

l1=1

L+1∑

l2=2

‖H((l1,l2)
w,r ‖2 + 2

L+1∑

l1=1

‖H(l1)
v,w ‖2 + 2

L+1∑

l2=2

‖H(l2)
v,r ‖2 .

(51)

Diagonal blocks. Note that the analysis for ‖H((l1,l2)
w ‖2 and ‖H((l1,l2)

r ‖2 terms follow exactly
from the (Liu et al., 2021a).

Off-Diagonal blocks. For the off-diagonal blocks, we focus on bounding ‖H((l1,l2)
w,r ‖2 for (Case

1.A) l1 ≤ l2, (Case 1.B) l2 ≤ l1. Further, we bound (Case 2.A) ‖H(l1)
v,w ‖2 and (Case 2.B) ‖H(l2)

v,r ‖2.

We define

Q(w,r)
∞ (f) := max

l∈[L+1]

{∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

}
,

Q(w,r)
2 (f) := max

l∈[L+1]

{∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

,

∥∥∥∥
∂α(l)

∂r(l)

∥∥∥∥
2

}
,

Q(w,r)
2,2,1 (f) := max

1≤l1≤l2≤l3≤L

{∥∥∥∥
∂2α(l1)

∂w(l1)∂r(l1)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂r(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂α(l2)

∂w(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l3)

(∂α(l3−1))2

∥∥∥∥
2,2,1

}
.

(52)
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Let Lφ denote the layerwise Lipschitz constant, i.e., maxl∈[L−1] ‖∂α(l+1)

∂α(l) ‖2 ≤ Lφ.

Case 1.A: 1 ≤ l1 ≤ l2 ≤ L. By building on the form of the gradient, we have

H(l1,l2)
w,r =

∂2α(l1)

∂w(l1)∂r(l1)
∂f

∂α(l1)
1[l1=l2] +

(
∂α(l1)

∂w(l1)

l2−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
∂2α(l2)

∂α(l2−1)∂r(l2)

(
∂f

∂α(l2)

)

+
L∑

l=l2+1

(
∂α(l1)

∂w(l1)

l−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)(
∂α(l2)

∂r(l2)

l−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
∂2α(l)

(∂α(l−1))2

(
∂f

∂α(l)

)
.

Then,

‖H(l1,l2)
w,r ‖2 ≤

∥∥∥∥
∂2α(l1)

∂w(l1)∂r(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

+

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l2−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+
L∑

l=l2+1

(∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)(∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

l−1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)∥∥∥∥
∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

≤
∥∥∥∥

∂2α(l1)

∂w(l1)∂r(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

+ Ll2−l1−1
φ

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+

L∑

l=l2+1

L2l−l2−l1
φ

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

.

Then, based on the definitions in (52), we have

‖H(l1,l2)
w,r ‖2 ≤ C ′

1Qw,r
2,2,1(f)Qw,r

∞ (f) ,

where C ′
1 is a suitable constant.

Lemma E.5. Under Assumptions 3 and 4 for θ ∈ BEuc
ρ (θ0), the following inequalities hold with

probability at least (1− 2(L+2)
m

]).

∥∥∥∥
∂2α(l1)

∂w(l1)∂r(l1)

∥∥∥∥
2

2,2,1

≤ βφ

(
γl1−1 + |φ(0)|

l1−1∑

i=1

γi−1

)2

(53)

∥∥∥∥
∂2α(l)

∂α(l−1)2

∥∥∥∥
2

2,2,1

≤ . . . (54)

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2

2,2,1

≤ βφ

(
γ2 + (γl2−1 + |φ(0)|

l2−1∑

i=1

γi−1)

)
+ 1 (55)

Proof. We first begin with proving (53). Note that from (36) we have

∂2α
(ll)
i

∂w
(l1)
jj′ ∂r

(l1)
kk′

=
1

m
φ′′
(
α̃(l1)

)
· α(l1−1)

j′ δijF
∗
ikFk′qα

(l1−1)
q ,
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where we make use of Einstein notation and there is no summation on the index i. Now,

∥∥∥∥∥
∂2α

(ll)
i

∂w
(l1)
jj′ ∂r

(l1)
kk′

∥∥∥∥∥
2,2,1

= sup
‖V1‖F=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
1

m
φ′′(

˜
α
(l1)
i )α

(l1−1)
j′ δijF

∗
ikFk′qα

(li−1)
q V1jj′V2kk′

∣∣∣∣

= sup
‖V1‖F=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
φ′′

m

(
V1ij′α

(l1−1)

j
′

)(
F ∗
ikV2kk′Fk′qα

(l1−1)
q

)∣∣∣∣

= sup
‖V1‖F=1,‖V2‖F=1

∣∣∣
〈
V1α

(l1−1), (F ∗V2F )α(l1−1)
〉∣∣∣

(a)

≤ sup
‖V1‖F=1,‖V2‖F=1

βφ

2m

(∥∥∥V1α
(l1−1)

∥∥∥
2

2
+
∥∥∥FHV2Fα(l−1)

∥∥∥
2

2

)

(b)

≤ βφ

2m

(∥∥∥α(l1−1)
∥∥∥
2

2
+
∥∥∥α(l1−1)

∥∥∥
2

2

)
= βφ

(
γl1−1 + |φ(0)|

l1−1∑

i=1

γi−1

)2

,

(56)

where (a) follows from: |V1α
(l1−1)|21 ≤ ‖V1α‖22 ≤ ‖V1‖22‖α‖22 and ‖V1‖22 ≤ ‖V1‖2F and (b)

follows from (45). This completes the proof for (53).

For proving (54), again note from (36) that

[
∂2α(l)

∂α(l−1)2

]

i,j,k

=
1

m
φ′′(α̃(l))

(
W

(l)
ij + F ∗

ipR
(l)
pqFqj

)
·
(
W

(l)
ik + F ∗

iuR
(l)
uvFvk

)

=
φ′′

m


W (l)

ij W
(l)
ik︸ ︷︷ ︸

=T1

+W
(l)
ij F ∗

iuR
(l)
uvFvk︸ ︷︷ ︸

=T2

+F ∗
ipR

(l)
pqFqjW

(ik)

︸ ︷︷ ︸
=T3

+F ∗
ipR

(l)
pqFqjF

∗
iuR

(l)
uvFvk︸ ︷︷ ︸

=T4


 .

(57)

Then, we can write

∥∥∥∥
[

∂2α(l)

∂α(l−1)2

]∥∥∥∥
2,2,1

= sup
‖v1‖2=1,‖v2‖2=1

m∑

i=1

∣∣∣∣∣

(
∂2α(l1)

∂α(l1−1)2

)

i,j,k

v1jv2k

∣∣∣∣∣ .

Let us now handle each of the terms separately:

sup
‖v1‖2=1,‖v2‖2=1

m∑

i=1

φ′′

m
T1ijv1jv2k =

φ′′

m
sup

‖v1‖2=1,‖v2‖2=1

m∑

i=1

∣∣∣
(
W

(l)
ij v1j

)
·
(
W

(l)
ik v1k

)∣∣∣

=
φ′′

m
sup

‖v1‖2=1,‖v2‖2=1

∣∣∣
〈
W (l)v1,W

(l)v2

〉∣∣∣

≤ βφ

2m
·
(
‖W (l)‖22‖v1‖22 + ‖W (l)‖22‖v2‖22

)

≤ βφ

(
σ1,w +

ρw√
m

)2

= βφγ
2
w.

(58)
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sup
‖v1‖2=1,‖v2‖2=1

m∑

i=1

φ′′

m
T4ijv1jv2k =

φ′′

m
sup

‖v1‖2=1,‖v2‖2=1

m∑

i=1

∣∣∣
(
(F ∗R(l)F )ijv1j

)
·
(
(F ∗R(l)F )ipv2p

)∣∣∣

=
φ′′

m
sup

‖v1‖2=1,‖v2‖2=1

∣∣∣
〈
(F ∗R(l)F )v1, (F

∗R(l)F )v2

〉∣∣∣

≤ βφ

2m
sup

‖v1‖2=1,‖v2‖2=1

(
‖F ∗R(l)F‖22‖v1‖22 + ‖F ∗R(l)F‖22‖v2‖22

)

≤ βφ

m
‖F ∗R(l)F‖22

=
βφ

m
‖Rl‖22 = βφγ

2
w.

(59)

sup
‖v1‖2=1,‖v2‖2=1

m∑

i=1

φ′′

m
T2ijv1jv2k =

φ′′

m
sup

‖v1‖2=1,‖v2‖2=1

m∑

i=1

∣∣∣(W (l)
ij v1j ) · (F ∗R(l)F )ipv2p

∣∣∣

=
φ′′

m
sup

‖v1‖2=1,‖v2‖2=1

∣∣∣
〈
W (l)v1, F

HR(l)Fv2

〉∣∣∣

≤ βφ

2m
sup

‖v1‖2=1,‖v2‖2=1

(
‖W (l)‖22‖v1‖22 + ‖F ∗R(l)F‖22‖v2‖22

)

≤ βφ

2m

(
‖W (l)‖22 + ‖R(l)‖22

)
=

βφ

2

(
γ2
w + γ2

r

)
.

(60)

Similarly, for the term corresponding to T3 we obtain

sup
‖v1‖2=1,‖v2‖2=1

m∑

i=1

φ′′

m
T3ijv1jv2k ≤ βφ

2

(
γ2
w + γ2

r

)
(61)

Putting together (58), (59), (60) and (61), we get

∥∥∥∥
∂2α(l)

∂α(l−1)2

∥∥∥∥
2

2,2,1

≤ 2βφ(γ
2
w + γ2

r ) ≤ 2(γ2
w + γ2

r +
√
2γwγr) = 2γ2. (62)

This completes the proof for (54). We now look at the proof for (55). First note that
[

∂2α(l2)

∂α(l2−1)∂r
(l2)
jj′

]

i,jj′k

=
1

m
φ′′(α̃i)

(
W

(l2)
ik + F ∗

ipR
(l2)
pq Fqk

)
F ∗
ijFj′qα

(l2−1)
q +

1√
m
φ′(α̃(l2)

i ), F ∗
ijFj′k

=
φ′′

m

(
W

(l2)
ik F ∗

ijFj′qα
(l2−1)
q

)

︸ ︷︷ ︸
=T1

+
φ′′

m

(
F ∗
ipR

(l2)
pq FqkF

∗
ijFj′qα

(l2−1)
q

)

︸ ︷︷ ︸
=T2

+
1√
m
φ′(α̃(l2)

i ), F ∗
ijFj′k

︸ ︷︷ ︸
=T3

.

Again, we analyze each of the terms separately

∥∥∥T1i,jj′k

∥∥∥
2,2,1

= sup
‖v1‖2=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
φ′′

m

(
Wikv

(l2)
1k

F ∗
ijV2jj′Fj′qα

(l2−1)
q

)∣∣∣∣

= sup
‖v1‖2=1,‖V2‖F=1

∣∣∣∣
φ′′

m

〈
W (l)v1, F

∗V2Fα(l2−1)
〉∣∣∣∣

≤ βφ

2m

(
‖W (l2)v1‖22 + ‖F ∗V2Fα(l2−1)‖22

)

≤ βφ

2


γ2

w +

(
γ(l2−1) + |φ(0)|

l2−1∑

i=1

γi−1

)2



(63)
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∥∥∥T2i,jj′k

∥∥∥
2,2,1

= sup
‖v1‖2=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
φ′′

m

(
F ∗
ipR

(l2)
pq Fqkv1kF

∗
ijV2jj′Fj′qα

(l2−1)
q

)∣∣∣∣

= sup
‖v1‖2=1,‖V2‖F=1

∣∣∣∣
φ′′

m

〈
F ∗R(l)Fv1, F

∗V2Fα(l2−1)
〉∣∣∣∣

≤ sup
‖v1‖2=1,‖V2‖F=1

βφ

m

(
‖F ∗R(l)Fv1‖22 + ‖F ∗V2Fα(l2−1)‖22

)

≤ sup
‖v1‖2=1,‖V2‖F=1

βφ

m

(
‖F ∗R(l)F‖22‖v1‖22 + ‖F ∗V2F‖22‖α(l2−1)‖22

)

(a)

≤ βφ

m

(
‖R(l)‖22 + ‖α(l2−1)‖22

)
=

βφ

2


γ2

r +

(
γ(l2−1) + |φ(0)|

l2−1∑

i=1

γi−1

)2



(64)

where (a) follows, again, by exploiting the isometry of F ∗ and F wrt the L2 norm, and using
‖V2‖2 ≤ ‖V2‖F . Finally,

∥∥∥T3i,jj′k

∥∥∥
2,2,1

= sup
‖v1‖2=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
φ′
√
m
F ∗
ijV2jj′Fj′kv1k

∣∣∣∣

= sup
‖v1‖2=1,‖V2‖F=1

∣∣∣∣
φ′
√
m
F ∗V2Fv1

∣∣∣∣

≤ sup
‖v1‖2=1,‖V2‖F=1

1√
m

m∑

i=1

‖(F ∗V2F )i,:‖2‖v1‖

≤ sup
‖v1‖2=1,‖V2‖F=1

1√
m

m∑

i=1

‖V2,i,:‖2 ≤ sup
‖v1‖2=1,‖V2‖F=1

‖V2‖F = 1,

(65)

where we make use of the fact that
∑m

i=1 ‖V2,i,:‖2 ≤ √
m
√∑m

i=1 ‖V2,i,:‖22 and the isometry of

F ∗ and F wrt the L2 norm. Combining (63), (64) and (65), we get

∥∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r
(l2)
jj′

∥∥∥∥∥
2,2,1

≤ βφ

2

(
γ2
w + γ2

r

)
+ βφ

(
γ(l2−1) + |φ(0)|

l2−1∑

i=1

γi−1

)2

+ 1

≤ βφ

(
γ2 + (γl2−1 + |φ(0)|

l2−1∑

i=1

γi−1)

)
+ 1.

(66)

This completes the proof.

Case 1.B: 1 ≤ l2 ≤ l1 ≤ L. By building on the form of the gradient, we have

H(l1,l2)
w,r =

∂2α(l2)

∂w(l2)∂r(l2)
∂f

∂α(l2)
1[l1=l2] +

(
∂α(l2)

∂r(l2)

l1−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
∂2α(l1)

∂α(l1−1)∂w(l1)

(
∂f

∂α(l1)

)

+
L∑

l=l1+1

(
∂α(l2)

∂r(l2)

l−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)(
∂α(l1)

∂w(l1)

l−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
∂2α(l)

(∂α(l−1))2

(
∂f

∂α(l)

)
.
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Then,

‖H(l1,l2)
w,r ‖2 ≤

∥∥∥∥
∂2α(l2)

∂w(l2)∂r(l2)

∥∥∥∥
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∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+

∥∥∥∥
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∥∥∥∥
2
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∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

∥∥∥∥
∂2α(l1)

∂α(l1−1)∂w(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

+

L∑

l=l1+1

(∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

l−1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)(∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)∥∥∥∥
∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

≤
∥∥∥∥

∂2α(l2)

∂w(l2)∂r(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+ Ll2−l1−1
φ

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l1)

∂α(l1−1)∂w(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

+

L∑

l=l2+1

L2l−l2−l1
φ

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂α(l1)

∂r(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

.

Lemma E.6. Under Assumptions 3 and 4, with θ ∈ BEuc
ρ (θ0), we have with high probability

∥∥∥∥
∂2α(l2)

∂w(l2)∂r(l2)

∥∥∥∥
2

2,2,1

≤ βφ

(
γl2−1 + |φ(0)|

l2−1∑

i=1

γi−1

)2

(67)

∥∥∥∥
∂2α(l1)

∂α(l1−1)∂w(l1)

∥∥∥∥
2

2,2,1

≤ βφ

(
γ2 + (γl1−1 + |φ(0)|

l1−1∑

i=1

γi−1)

)
+ 1. (68)

Proof. The proof of (67) follows in a manner similar to the proof of (53). Next, for proving (68)
consider the following

[
∂α(l1)

∂α(l1−1)∂w(l1)

]

i,jj′k

=



φ′′(α̃(l1)

i )

m
W

(l1)
ik α

(l1)
j′ δij

︸ ︷︷ ︸
=T1

+
φ′′(α̃(l1)

i )

m
F ∗
ipR

(l1)
pq Fqkα

(l1)
j′ δij

︸ ︷︷ ︸
=T2


+

1√
m
φ′(α(l1))δijδkj′

︸ ︷︷ ︸
=T3

Then analyzing each term separately, we get

∥∥∥T1i,jj′k

∥∥∥
2,2,1

= sup
‖v1‖2=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
φ′′

m
W

(l1)
ik v1kV2ijα

(l1−1)
j

∣∣∣∣

= sup
‖v1‖2=1,‖V2‖F=1

∣∣∣∣
φ′′

m

〈
W (l1)α(l1), V2α

(l1−1)
〉∣∣∣∣

≤ sup
‖v1‖2=1,‖V2‖F=1

βφ

2m

(
‖W (l1)‖22‖v1‖22 + ‖V2‖22‖α(l1−1)‖22

)

≤ βφ

2m

(
‖W (l1)‖22 + ‖α(l1−1)‖22

)
=

βφ

2


γ2

w +

(
γl1−1 + |φ(0)|

l1−1∑

i=1

γi−1

)2

 ,

(69)
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∥∥∥T2i,jj′k

∥∥∥
2,2,1

= sup
‖v1‖2=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
φ′′

m
F ∗
ipR

(l1)
pq Fqkv1kV2ij′α

(l1−1)
j′

∣∣∣∣

= sup
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φ′′
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(l1−1)
〉∣∣∣∣

≤ sup
‖v1‖2=1,‖V2‖F=1

βφ

2m

(
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(l1−1)‖22
)

≤ sup
‖v1‖2=1,‖V2‖F=1

βφ

2m

(
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(l1−1)‖22
)

≤ sup
‖v1‖2=1,‖V2‖F=1

βφ

2m

(
‖F ∗R(l1)Fv1‖22 + ‖V2α

(l1−1)‖22
)
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2


γ2

r +

(
γl1−1 + |φ(0)|

l1−1∑

i=1

γi−1

)2

 ,

(70)

and, finally,

∥∥∥T3i,jj′k

∥∥∥
2,2,1

= sup
‖v1‖2=1,‖V2‖F=1

m∑

i=1

∣∣∣∣
φ′
√
m
V2ikv1k

∣∣∣∣

≤ sup
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m∑

i=1

1√
m
‖v1‖2‖V2,i,:‖2

≤ ‖V2‖F = 1.

(71)

Hence, we have

∥∥∥∥
∂2α(l1)

∂α(l1−1)∂w(l1)

∥∥∥∥
2

2,2,1

≤ βφ

2

(
γ2
w + γ2

r

)
+ βφ

(
γl1−1 + |φ(0)|

l1−1∑
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γi−1

)2

≤ βφ

(
γ2 + γl1−1 + |φ(0)|

l1−1∑

i=1

γi−1

)2

.

(72)

This completes the proof of (68).

Finally, we remark that the analysis for the diagonal blocks H
(l1,l2)
w and H

(l1,l2)
r follows directly

from (Banerjee et al., 2023). The interested reader is referred to Theorem 4.2 (and equivalently
Theorem 3.1 in (Liu et al., 2021a)).

Then, based on the definitions in (52), we have

‖H(l1,l2)
w,r ‖2 ≤ C ′

1Qw,r
2,2,1(f)Qw,r

∞ (f) ,

where C ′
1 = · · · . Here

Case 2.A: 1 ≤ l1 ≤ L+ 1. For Hessian terms involving (v, w), since ∂f
∂v

= 1√
m
α(L+1), we have

H(l1)
v,w =

1√
m

∂α(L+1)

∂w(l1)
=

1√
m

(
∂α(l1)

∂w(l1)

L+1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
.

Then,

‖H(l1,L+1)
w,v ‖2 ≤ 1√

m

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

L+1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

≤ 1√
m
LL
φQ(w,r)

2 (f) .

Case 2.B: 2 ≤ l2 ≤ L+ 1. For Hessian terms involving (v, r), since ∂f
∂v

= 1√
m
α(L+1), we have

H(l2)
v,r =

1√
m

∂α(L+1)

∂r(l2)
=

1√
m

(
∂α(l2)

∂r(l2)

L+1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
.
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Then,

‖H(l2)
v,r ‖2 ≤ 1√

m

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

L+1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

≤ 1√
m
LL
φQ(w,r)

2 (f) .

Thus, the hessian of the FNO predictor is bounded.
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