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ABSTRACT
Neural-symbolic computing aims at integrating robust neural learn-

ing and sound symbolic reasoning into a single framework, to

leverage the complementary strengths of both of these, seemingly

unrelated (maybe even contradictory) AI paradigms. The central

challenge in neural-symbolic computing is to unify the formulation

of neural learning and symbolic reasoning into a single framework

with common semantics, that is, to seek a joint representation be-

tween a neural model and a logical theory that can support the

basic grounding learned by the neural model and also stick to the

semantics of the logical theory. In this paper, we propose differ-

entiable fuzzy ALC (DF-ALC) for this role, as a neural-symbolic

approach with the desired semantics of ALC. DF-ALC unifies the

description logicALC and neural models for symbol grounding; in

particular, it infuses an ALC knowledge base into neural models

through differentiable concept and role embeddings. We define a

hierarchical loss to the constraint that the grounding learned by

neural models must be semantically consistent with ALC knowl-

edge bases, and we prove soundness of the semantics of DF-ALC

under the open-world assumption and soundness of learning to

ground for a DF-ALC ontology. We further define a rule-based loss

for DF-ALC adapting to semantic image interpretation. The experi-

ment results show that DF-ALC with rule-based loss can improve

the performance of object detectors.

1 INTRODUCTION
For decades now, trends in the computational modeling of intelli-

gent behavior have followed a recurring pattern, cycling between

a primary focus on symbolic logic and automated reasoning, and

on pattern recognition (neural networks). In recent years, neural

network models, powered by ever-increasing amounts of data and

computing resources, have been in the spotlight and driven much

of the progress in AI — due in small part to the success of computa-

tional neuroscience and in large part to the success of deep learning

in AI. Nevertheless, there are some inhibitors to making the most

of their potential, such as the lack of transparency of some AI al-

gorithms which are unable to fully explain the reasoning for their

decisions (aka the “black box” nature), as well as the lack of high-

quality training data, without a foundation of which, even the most

performant models can be rendered useless — the current neural

network models are flawed in its lack of model interpretability and
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the need for large amounts of data for learning. The classic symbolic

AI [5, 15, 28, 39, 57], on the other hand, relies less heavily on data

but more on knowledge representation using symbolic logic and

automated reasoning, and thus bears full transparency by pinning

down its internal working to a set of logical statements which have

a well-defined syntax and semantics. In this sense, symbolic systems

may have the potential to provide a good complement to neural

systems, and these two fundamental AI paradigms can in principle

be integrated in a way that neural systems’ transparency can be

promoted through the injection of symbolic systems. This fancier

vision of AI has resulted in a relevant and promising research area

— neural-symbolic computing [11, 12, 20, 21, 23, 31, 34, 38, 52].

Neural-symbolic computing aims at computing with both learn-

ing and reasoning abilities, to step towards more comprehensive

intelligence. Current learning ability relies largely on differentiable

programming to draw conclusions from observations and apply

them, while current reasoning ability relies largely on logical pro-

gramming to give conclusions inferred from premises and rules

through deductive reasoning, give rules according to observations

comprising premises and conclusions through inductive reasoning,

and give premises that can interpret conclusions according to rules

through abductive reasoning. So it comes with challenges in the

integration and representation of these two kinds of programming

paradigms. From the perspective of integration, research works dif-

fer in logical techniques that aremainly consumed. Neural-symbolic

inductive logical programming works seek to learn probabilistic

logical rules from observations. This requires learning model pa-

rameters in a continuous space and the structure in a discrete

space [6, 19, 45, 56, 58]. To combine the ability of deductive rea-

soning, the first line of research learn to reason by modeling the

inference procedure using neural networks or replacing logical com-

putations with differentiable functions [13, 18, 26, 42, 43, 50]. But

this neglects factual knowledge which bridges the physical world

and the conceptual world, so the second line of research aim to find

an interpretation that satisfies theories which can be a mapping

between these two worlds
1
by encoding the satisfiability of theories

in the loss function [41, 46, 49, 53, 55]. But these works cannot find

explanations of observations according to theories, so abductive

learning-based neural-symbolic works are proposed to use the ex-

planations getting through abductive reasoning to promote the

interpretability of the computing [7, 27, 51, 60]. From the view of

the knowledge expressivity, some works are based on classical logic

— propositional logic [7, 50, 51, 60], description logic [6, 17, 18], or

first-order logic [19, 26, 42, 43, 45, 46, 56, 58], others are based on

non-classical logic, such as fuzzy logic [13, 41, 53], or probabilis-

tic logic [35, 56]. These works have well-verified effectiveness of

neural-symbolic computing in knowledge acquisition [45], query

1
The satisfiability problem (SAT) involves determining whether there exists an inter-

pretation, or assignment of truth values, that satisfies a given logical formula.

1
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answering [1], semantic image interpretation [14, 29], and entity

linking [30].

We concern about the symbol grounding problem [8, 10, 24]:

ground conceptual symbols’ meanings in perceptual instances. Neu-

ral networks may be one way to ground concrete instances in the

capacity to categorize them [25] but fail to capture the inherent log-

ical relations between symbols. Symbol grounding problem is the

main challenge in neural-symbolic AI, and can be better resolved by

neural-symbolic computing. Given a symbol set, The neural mod-

ule in neural-symbolic computing maps input instances to these

symbols through supervised (/semi-supervised) learning. And the

symbolic module finds the interpretation that can satisfy the seman-

tics of these symbols through reasoning. Both the learned mapping

and the interpretation are grounding (meaning) of these symbols

but are from different views. However, most neural-symbolic com-

puting works fail to do symbol grounding, some works are due to

the inability to interact with many-valued logic (non-classical logic),

and other works such as SATNet [49] are due to the lack of model-

ing specific logical semantics. Logic Tensor Network (LTN) [4] is

the state of art neural-symbolic work for symbol grounding based

on real logic, the semantics of which is close to the semantics of

fuzzy first-order logic, but differs in syntax, where real logic types

functions and predicates. LTN transforms the symbol grounding

problem into gradient-descent-based optimization through learning

(i.e. searching the grounding of symbols in theories by maximiz-

ing the satisfiability of theories) and reasoning (i.e. querying the

truth value of a formula from theories). The efficiency of LTN un-

der open-world assumption (OWA)
2
is evaluated with incomplete

grounding revision task in [54] showing that LTN cannot com-

pletely revise the grounding (with 88% F1 score). And LTN cannot

get interpretable and safe symbol grounding, may meet reasoning

shortcut problem[36, 37] (Though result is correct, the interpreta-

tion process is wrong). These are due to the missing properties in

approximate reasoning of real logic analyzed in [53], the unreason-

able semantics under OWA, and the mismatched way to combining

neural network and logical semantics. Real logic as an extension

to first-order logic is quite expressive and is undecidable, which

means that we cannot find a sound, complete, and terminating deci-

sion algorithm for real logic [47]. Hence, we consider Differentiable

Fuzzy Logic (DFL) based on description logics (DLs) [3], a family of

knowledge representation languages that strike a balance between

expressivity and decidability; most DLs are decidable fragments of

first-order logic.

DLs are widely used in ontological modeling by providing logical

semantics for Web Ontology Language (OWL) as an underpinning

of logical reasoning [33]. Our work is based on a fundamental de-

scription logic — Attributive Concept Language with Complements

(ALC) [44], which is a decidable fragment of first-order logic and

has strong expressive power.

In this study, we present the differentiable fuzzyALC (DF-ALC)

as a neuro-symbolic approach that can combine effective informa-

tion from anyALC ontology O and any neural network for getting

symbol grounding. For observed instances 𝑋 , the neural network

maps them into invariant features as their symbol groundings, and

then can theoretically categorize them as symbols𝑌 with a probably

2
it assumes that the truth value of any formula out of theories is unknown

approximately correct distribution 𝑝 (𝑌 |𝑋 ), which is an incomplete

grounding I′
in practice. Based on perceptual grounding I′

, DF-

ALC revises it into a grounding I′′
that satisfies O. While the

grounding that satisfies O can be multiple, the direction of ground-

ing should retain as much valid information as possible in I′
. So

we target to find the grounding that meets :

max 𝑙1 (I′′,I′) s.t. 𝑙2 (I′′,O) = 1

where 𝑙1 measures the constancy (keeping the reliable parts of

perceptual grounding), 𝑙2 measures the satisfiability.

A symbol grounding application of our work is semantic image

interpretation (SII) [14, 29, 32, 40], which aims to generate a struc-

tured and human-readable description of the content of images.

Current successful SII researches [2, 14] rely on background knowl-

edge of the images. LTN [14] models predicates and functions as

neural networks and learns the symbol grounding through maxi-

mizing the satisfiability in a supervised way. The main struggle of

these neural-symbolic works in leveraging logical knowledge to

adapt to the symbol grounding problem is that the revision signal

cannot be properly conveyed. In our work, rather than maximizing

satisfiability to generate grounding, we propose a rule-based loss to

learn a symbol grounding problem— semantic image interpretation.

The key contributions of this work can be summarized as follows:

• We present a neural-symbolic approach DF-ALC which fa-

cilitates a sound and complete mechanism to revise the

probabilistic semantics by a neural model according to a

consistent ALC ontology. This makes us the first to com-

bine differentiable fuzzy logic with fuzzy description logics.

• Experiments show that DF-ALC can keep the reliable com-

ponent of the perceptual grounding. Meanwhile, unknown

situations are few to affect grounding, this further demon-

strates that the semantics of DF-ALC are solid in terms of

crisp ALC under OWA.

• To get safe symbol grounding, rather than ground by max-

imizing satisfiability. We designed rule-based loss, which

mitigates the reasoning shortcut problem, and helps fuzzy

description logic adapt to interpret images, and improves

the performance in image object classification.

• The source code, alongside the experimental settings, is

publicly accessible at https://anonymous.4open.science/r/

DF-ALC.

Except for semantic image interpretation, the application of DF-

ALC is wide, e.g. in dialogue state tracker, and ontology-mediated

query answering, which is further elaborated with related works

in the appendix.

2 PRELIMINARIES
2.1 The Description Logic ALC
Let 𝑁𝐶 and 𝑁𝑅 be pairwise disjoint and countably infinite sets

of concept names and role names, respectively. ALC-concepts are
inductively constructed based on the following syntax rule:

𝐶, 𝐷 → ⊤|⊥|𝐴|¬𝐶 |𝐶 ⊓ 𝐷 |𝐶 ⊔ 𝐷 |∃𝑟 .𝐶 |∀𝑟 .𝐶,

where𝐴 ∈ 𝑁𝐶 , 𝑟 ∈ 𝑁𝑅 , and𝐶 and𝐷 range over concepts. A concept

of the form 𝐴 ∈ 𝑁𝐶 is called atomic, otherwise it is compound. An
2
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ontology O consists of a TBox and an ABox. An ALC-TBox T is

a finite set of axioms of the form:

𝐶 ⊑ 𝐷 (concept inclusion), and 𝐶 ≡ 𝐷 (concept equivalence),
where 𝐶 and 𝐷 are concepts. The disjointness between 𝐶, 𝐷 is

𝐶 ⊓𝐷 ⊑ ⊥. We use the axiom𝐶 ≡ 𝐷 as abbreviation for𝐶 ⊑ 𝐷 and

𝐷 ⊑ 𝐶 .

Let 𝑁𝐼 be disjoint and countably infinite sets of individual names,
while an ALC-ABox A is a finite set of crisp assertions of the

form:

𝑎 : 𝐶 (concept assertion), and (𝑎, 𝑏) : 𝑟 (role assertion),
where 𝐶 is a concept, 𝑟 is a role name, and 𝑎, 𝑏 are individuals

from 𝑁𝐼 .

An ALC ontology is comprised of an T and A, denoted as

O = ⟨T ,A⟩. The signature of O is 𝑠𝑖𝑔(O) = 𝑁𝐶 ∪ 𝑁𝑅 ∪ 𝑁𝐼 .

The semantics of O is defined in terms of an interpretation I =

⟨ΔI , ·I⟩, where ΔI
denotes the domain of the interpretation (a non-

empty crisp set), and ·I denotes the interpretation function, which
assigns to every concept name 𝐴 ∈ 𝑁𝐶 a set 𝐴I ⊆ ΔI

, and to

every role name 𝑟 ∈ 𝑁𝑅 a binary relation 𝑟I ⊆ ΔI × ΔI
. The

interpretation function ·I is inductively extended to concepts as

follows:

⊤I = ΔI ,⊥I = ∅, (¬𝐶)I = ΔI\𝐶I ,

(𝐶 ⊓ 𝐷)I = 𝐶I ∩ 𝐷I , (𝐶 ⊔ 𝐷)I = 𝐶I ∪ 𝐷I ,

(∃𝑟 .𝐶)I = {𝑎 ∈ ΔI | ∃𝑏.(𝑎, 𝑏) ∈ 𝑟I ∧ 𝑏 ∈ 𝐶I },
(∀𝑟 .𝐶)I = {𝑎 ∈ ΔI | ∀𝑏.(𝑎, 𝑏) ∈ 𝑟I → 𝑏 ∈ 𝐶I }.

Let I be an interpretation. A concept inclusion 𝐶 ⊑ 𝐷 is true
in I iff𝐶I ⊆ 𝐷I

. A concept assertion 𝑎 : 𝐴 is true in I iff 𝑎I ∈ 𝐶I
.

A role assertion (𝑎, 𝑏) : 𝑟 I is true in I iff (𝑎I , 𝑏I ) ∈ 𝑟 I . I is a

model of an ontology O, write I |= O, iff every axiom in O is true
in I. An axiom 𝛽 is entailed by an ontology O, write O |= 𝛽 , iff 𝛽 is

true in every model I of O. An ontology V is entailed by another

ontology O, write O |= V , iff every model of V is also a model

of O. An ontology O is consistent (true) if there exists a model I
of O. A concept 𝐶 is satisfiable w.r.t. O if there exists a model I
of O and some 𝑑 ∈ ΔI

with 𝑑 ∈ 𝐶I
. A concept assertion 𝑎 : 𝐶 is

satisfiable in I iff 𝑎I ∈ 𝐶I
. A role assertion (𝑎, 𝑏) : 𝑟 is satisfiable

in I iff (𝑎I , 𝑏I ) ∈ 𝑟I .
Other basic reasoning problems are polynomial-time reducible

to the satisfiability problem. A concept inclusion𝐶 ⊑ 𝐷 is true in I
iff the concept 𝐶 ⊓ ¬𝐷 is unsatisfiable in I. The retrieval problem
of computing the instantiation of concept 𝐶 is polynomial-time

reducible to that of checking the satisfiability of 𝑎 : 𝐶 .

Under the interpretation I, concepts and roles are mapped into

crisp sets in ΔI
, so the vagueness cannot be modeled.

2.2 Zadeh-ALC
Fuzzy set theory and fuzzy logic were proposed by Zadeh [59]

to manage imprecise and vague knowledge. Based on fuzzy set

theory [59], a fuzzy set 𝑋 w.r.t. an universe is characterized by

a membership function 𝜇𝑋 : 𝑈 → [0, 1]. Each element 𝑢 ∈ 𝑈

is assigned with an 𝑋 -membership degree 𝜇𝑋 (𝑢). In fuzzy logic,

𝜇𝑋 (𝑢) is the truth-value of the statement ‘𝑢 is 𝑋 ’.

FuzzyALC retains the same syntax withALC, only semantics

changes. Here, we follow fuzzy ALC proposed in [48], which is

based on Gödel logic [16], and call it Zadeh-ALC.

A fuzzy interpretation (also called grounding here)I consists of a

non-empty domain ΔI
and an interpretation function ·I defined as:

(1) an individual 𝑎 is interpreted by I as an element 𝑎I ∈ ΔI
, and;

(2) a concept 𝐶 is interpreted by I as a fuzzy set 𝐶I
: ΔI → [0, 1],

and; (3) a role 𝑟 is interpreted by I as a fuzzy set 𝑟 I : ΔI × ΔI →
[0, 1].

The fuzzy interpretation function ·I is inductively extended to

concepts as follows, for all 𝑎 ∈ ΔI
:

⊤I (𝑎) = 1,⊥I (𝑎) = 0, (¬𝐶)I (𝑎) = 1 −𝐶I (𝑎), (1)

(𝐶 ⊓ 𝐷)I (𝑎) = min{𝐶I (𝑎), 𝐷I (𝑎)}, (2)

(𝐶 ⊔ 𝐷)I (𝑎) = max{𝐶I (𝑎), 𝐷I (𝑎)}, (3)

(∃𝑟 .𝐶)I (𝑎) = sup𝑏∈ΔI {min{𝑟I (𝑎, 𝑏),𝐶I (𝑏)}}, (4)

(∀𝑟 .𝐶)I (𝑎) = inf𝑏∈ΔI {max{1 − 𝑟 I (𝑎, 𝑏),𝐶I (𝑏)}}. (5)

A Zadeh-ALC TBox is a finite set of fuzzy inclusion of the form

𝐶 ⊑ 𝐷 .𝐶 ⊑ 𝐷 is true (i.e., truth-value is 1) inI (or we sayI satisfies

𝐶 ⊑ 𝐷) iff,

∀𝑎 ∈ ΔI , 𝐶I (𝑎) ≤ 𝐷I (𝑎) (6)

We say that two concepts 𝐶 and 𝐷 are fuzzy equivalent (𝐶 � 𝐷)

when 𝐶I (𝑎) = 𝐷I (𝑎) for all 𝑎 ∈ Δ𝐼
.

A Zadeh-ALC is a finite set of fuzzy assertion of the form (𝑎 :

𝐶) ⊲⊳ 𝑛 or (⟨𝑎, 𝑏⟩ : 𝑟 ) ⊲⊳ 𝑛, where ⊲⊳ stands for ≥, >, ≤, <, and
𝑛 ∈ [0, 1] is the truth value. Formally, a fuzzy interpretation I
satisfies a fuzzy assertion (𝑎 : 𝐶) ⊲⊳ 𝑛 (resp. (⟨𝑎, 𝑏⟩ : 𝑟 ) ⊲⊳ 𝑛) iff

𝐶I (𝑎I ) ⊲⊳ 𝑛 (resp. 𝑟I (𝑎I , 𝑏I ) ⊲⊳ 𝑛). For simplicity, we write a

fuzzy assertion as 𝜑 = {𝜙 ⊲⊳ 𝑛}, where 𝜙 is (𝑎 : 𝐶) or (⟨𝑎, 𝑏⟩ : 𝑟 ).
Here, we set the ⊲⊳ be = by considering two assertions of the from

𝜙 ≥ 𝑛 and 𝜙 ≤ 𝑛.

A fuzzy interpretation I is a model of a fuzzy ontology O, write

I p≈ O, iff I satisfies each axiom in O. A fuzzy ontology O fuzzy
entails a fuzzy assertion 𝜑 , write O p≈ 𝜑 iff every model of O also

satisfies 𝜑 .

A crisp ALC ontology is a specialism of fuzzy ALC ontology,

and can easily be extended to a fuzzy ontology by assigning truth

value 1 to assertions.

2.3 Ontology-based Semantic Image
Interpretation

Let 𝑆 = {𝑠1, ..., 𝑠𝑛} be a set of segments (a segment is a set of

contiguous pixels) returned by a low-level analysis (e.g. object

detection) of picture P. Given an ontology O, the semantic image

interpretation task can be formed as labelling picture P with an

interpretation I defined in the domain 𝑆 , which maps each segment

𝑠 ∈ 𝑆 to a set of values {𝐶I (𝑠) | 𝐶 is any concept in O}.

3 DIFFERENTIABLE FUZZY ALC
DF-ALC is an extension of fuzzy ALC. The semantics of ontology

represented in DF-ALC can be infused into symbol grounding in

a continuous space. To solve a symbol grounding problem, such

as the semantic image interpretation problem shown in Figure 1,

where the concept symbols are about cat, bird and their components

and the isPartOf(𝑠2, 𝑠1) relation symbol denotes image segment

𝑠2 is a part of 𝑠1. When the neural model is poorly trained (e.g. in a

low-resource situation), DF-ALC-represented knowledge helps to

3
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Figure 1: An ontology-based semantic image interpretation example utilizing DF-ALC. Ontology gives background knowledge
about the cat and bird. The neural model does the low-level analysis for the image, which gives the wrong grounding for the
image.

revise the perceptual grounding. The ALC ontology O = ⟨T ,A⟩
is one of the inputs of our model, which contains the inherent rela-

tions between symbols. Another input, the perceptual grounding

I′
contains valuable information for grounding but is not a model

of fuzzy extended O, so it is not reasonable. To get the grounding

that can retain information of I′
as much as possible, ontology

should be interpretated in a continuous domain as the same as the

perceptual grounding. So T is normalized to keep axioms in the

standard format, and the normalized ontology O′
is transformed

into fuzzy ALC ontology. Revising perceptual grounding is real-

ized by maximizing the satisfiability of the reformulated DF-ALC

ontology.

3.1 Normalization
Given an ALC ontology O = ⟨T ,A⟩, concepts in T are trans-

formed into negation normal forms using De Morgan’s Laws until

all concepts have no indirect negation. Then we recursively apply

NF1-9 in Figure 2 until all the axioms are in the forms in Figure 3.

Any axioms in an ALC ontology can be transformed into the

normal forms in Figure 3, using the rules in Figure 2. For the con-

cept equivalence axiom 𝐶 ≡ 𝐷 ⇔ 𝐶 ⊑ 𝐷, 𝐷 ⊑ 𝐶 , two inclusions

should use the same set of introduced concept names. The intro-

duced concepts should also not interfere with the semantics of

the ontology, so a logical reasoner is used here to add assertions

about introduced concept names to the ABox. Theorem 1 ensures

that the interpretation of the normalized ontology is semantically

equivalent to the interpretation of O.

Theorem 1. For anyALC ontology O, one can construct in poly-
nomial time a normalized ALC-ontology O’ of polynomial size in
|O| using the normalization described above such that (i) for every
model I of O, there exists a model J of O′ such that I is seman-
tically equivalent to J in 𝑠𝑖𝑔(𝑂), denoted as I ∼𝑠𝑖𝑔 (𝑂 ) J , and
(ii) for every model J of O′ there exists a model I of O such that
I ∼𝑠𝑖𝑔 (𝑂 ) J .

After normalization, we can see that formula in the form of

Figure 3 has at most one logical operation except the subclass

NF 1: 𝐷 ⊑ 𝐸 ⇒ 𝐷 ⊑ 𝐴,𝐴 ⊑ 𝐸

NF 2: 𝐷 ⊓𝐶 ⊑ 𝐵 ⇒ 𝐷 ⊑ 𝐴,𝐴 ⊓𝐶 ⊑ 𝐵

NF 3: 𝐶 ⊔ 𝐷 ⊑ 𝐵 ⇔ 𝐷 ⊑ 𝐵,𝐶 ⊑ 𝐵

NF 4: ∃𝑟 .𝐷 ⊑ 𝐵 ⇒ 𝐷 ⊑ 𝐴, ∃𝑟 .𝐴 ⊑ 𝐵

NF 5: ∀𝑟 .𝐷 ⊑ 𝐵 ⇒ 𝐷 ⊑ 𝐴,∀𝑟 .𝐴 ⊑ 𝐵

NF 6:𝐵 ⊑ 𝐷 ⊓ 𝐸 ⇔ 𝐵 ⊑ 𝐷, 𝐵 ⊑ 𝐸

NF 7: 𝐵 ⊑ 𝐷 ⊔ 𝐸 ⇒ 𝐵 ⊑ 𝐷 ⊔𝐴,𝐴 ⊑ 𝐸

NF 8: 𝐵 ⊑ ∃𝑟 .𝐷 ⇒ 𝐴 ⊑ 𝐷, 𝐵 ⊑ ∃𝑟 .𝐴
NF 9: 𝐵 ⊑ ∀𝑟 .𝐷 ⇒ 𝐴 ⊑ 𝐷, 𝐵 ⊑ ∀𝑟 .𝐴
NF 10 (De Morgan’s Laws):

¬(𝐶 ⊓ 𝐷) ⇔ ¬𝐶 ⊔ ¬𝐷,¬(𝐶 ⊔ 𝐷) ⇔ ¬𝐶 ⊓ ¬𝐷,
¬∃𝑟 .𝐶 ⇔ ∀𝑟 .¬𝐶,¬∀𝑟 .𝐶 ⇔ ∃𝑟 .¬𝐶,¬¬𝐶 ⇔ 𝐶

𝐷 , 𝐸 are complex concepts. So they are neither ⊤,⊥ nor concept

names.

𝐴 is a new introduced concept name.

𝐵 is a concept name or a concept name with negation.

𝐶 , 𝐷 , 𝐸 are arbitrary concepts.

Figure 2: Normalization rules for ALC

Form 1: 𝐶 ⊑ 𝐵

Form 2: 𝐶1 ⊓𝐶2 ⊑ 𝐵 Form 3: 𝐵 ⊑ 𝐶1 ⊔𝐶2

Form 4: 𝐶 ⊑ ∃𝑟 .𝐵 Form 5: 𝐶 ⊑ ∀𝑟 .𝐵
Form 6: ∃𝑟 .𝐵 ⊑ 𝐶 Form 7: ∀𝑟 .𝐵 ⊑ 𝐶

𝐶 , 𝐵,𝐶1,𝐶2 are concept names or concept names with negation.

𝑟 is a role name.

Figure 3: Normalized forms of ALC ontologies for DF-ALC

operator, so any normalized ALC ontology in Figure 2 can be

efficiently used as the input to a neural network.

4
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Table 1: Performance of hierarchical loss based on four kinds of axioms given the perceptual grounding in three examples.
Unknown situations expect no revision. True situations expect revision executed in the implication.

Example Description Given an Ontology with Axiom Expected Performance of Hierarchical Loss

1 (rI (𝑠1, 𝑠2) > 𝛼) ∧ (BI (𝑠1) > 𝛼) =⇒ (AI (𝑠2) > 𝛼) (∀r.A ⊑ B) or (∃r.A ⊑ B) Unknown do not revise, as expected

1 (rI (𝑠1, 𝑠2) > 𝛼) ∧ (BI (𝑠1) > 𝛼) =⇒ (AI (𝑠2) > 𝛼) (B ⊑ ∀r.A) or (B ⊑ ∃r.A) True can revise, but not in an expected way

2 (rI (𝑠1, 𝑠2) > 𝛼) ∧ (AI (𝑠1) > 𝛼) =⇒ (BI (𝑠2) > 𝛼) (∀r.A ⊑ B) or (∃r.A ⊑ B) True can revise, but not in an expected way

2 (rI (𝑠1, 𝑠2) > 𝛼) ∧ (AI (𝑠1) > 𝛼) =⇒ (BI (𝑠2) > 𝛼) (B ⊑ ∀r.A) or (B ⊑ ∃r.A) Unknown can revise, but not in an expected way

3 (AI (𝑠2) > 𝛼) ∧ (BI (𝑠1) > 𝛼) =⇒ (rI (𝑠1, 𝑠2) > 𝛼) B ⊑ ∃r.A True do not revise, as expected

3 (AI (𝑠2) > 𝛼) ∧ (BI (𝑠1) > 𝛼) =⇒ (rI (𝑠1, 𝑠2) > 𝛼) (∃r.A ⊑ B) or (∀r.A ⊑ B) Unknown do not revise, not as expected

3.2 Learning to Ground Symbols
After normalizing ontology O into O′

, only TBox of O and the

concept name set change. Assign T ′
to the TBox of Γ. Fuzzy extend

A to be the ABox of of Γ (i.e. transform each assertion 𝜙 in A
to be 𝜙 = 1). The signature of Γ is defined as the signature of O′

,

containing 𝑁𝐶 , 𝑁𝑅 , and 𝑁𝐼 . To enable differentiable operators to

transfer gradient information, we reform the fuzzy interpretation

as differentiable fuzzy interpretation. The domain of the grounding

ΔI
is𝑁𝐼 . The interpretation function ofI is reformed as embedding

functions (symbol grounding), which embeds each concept name

𝐶 ∈ 𝑁𝐶 into |Δ|-dimensional vector, 𝐶I = R |Δ | , and each role

name 𝑟 ∈ 𝑁𝑅 into a ( |Δ|, |Δ|)-dimensional matrix, 𝑟 I = R |Δ | ×R |Δ | .
The 𝑖th item of 𝐶I

is the truth value of Δ𝑖 : 𝐶 , and the (𝑖, 𝑗)th item

of 𝑟I is the truth value of (Δ𝑖 ,Δ 𝑗 ) : 𝑟 . Then, reform the perceptual

grounding I′
as embedding functions, as the initialization of the

grounding of Γ.
The semantics of Zadeh-ALC is sound w.r.t crisp semantics un-

der the open-world assumption. This is an extension of the sound-

ness of fuzzy ALC. We define the crisp transformation ♯(·) of
DF-ALC assertion 𝜑 into three-valued ALC assertion.

♯𝜑 = ♯{𝜙 = 𝑛} ↦→


𝜙 when 𝑛 > 𝛼

𝑢𝑛𝑘𝑛𝑜𝑤𝑛 when 1 − 𝛼 ≤ 𝑛 ≤ 𝛼

¬𝜙 when 𝑛 < 1 − 𝛼

 (7)

where 𝛼 ∈ [0.5, 1] is predefined according to the application, and

¬𝜙 is 𝑎 : ¬𝐶 or (𝑎, 𝑏) : ¬𝑟 . For TBox axioms, ♯(·) to fuzzy TBox

axioms: ♯{𝜓 ∈ T } = {𝜓 ∈ T }. So for O = ⟨T ,A⟩, ♯O = ♯{𝜑 ∈
A} ∪ {𝜓 ∈ T }.

Proposition 1. (Soundness of the semantics) Let ♯O be an ALC
ontology, and 𝜑 be a fuzzy assertion. O p≈ 𝜑 iff. ♯O |= ♯𝜑 (i.e. fuzzy
entailment is consistent with entailment in ALC).

Backpropagation on the grounding of Γ can learn a model I′′

of Γ, which is also a model of O in the signature of O, according to

Theorem 1. The forward process is to compute the truth values of

axioms in T ′
, by maximizing the satisfiability of T ′

(minimizing

the hierarchical loss in Equation 8).

𝐿𝑜𝑠𝑠 (I, Γ) = 1

|T ′ |
∑︁

{𝐶⊑𝐷 }∈T′

∑︁
𝑎∈ΔI

max(0,𝐶I (𝑎) − 𝐷I (𝑎)) (8)

where 𝐶 and 𝐷 is any concept.

The main idea of Equation 8 is to ensure that the interpretationI
should satisfy every 𝐶 ⊑ 𝐷 ∈ T ′

, denoting that ∀𝑎 ∈ ΔI ,𝐶I (𝑎) ≤
𝐷I (𝑎). Though 𝐶 ⊑ 𝐷 is also equivalent to 𝐶 → 𝐷 ≥ 𝑛 in fuzzy

ALC, where (𝐶 → 𝐷)I = min𝑑∈ΔI {max{1 − 𝐶I (𝑎), 𝐷I (𝑎)}},
according to [48], it is hard to assign 𝑛. Besides, using 𝐶 → 𝐷 ≥ 𝑛

as constraint will lead to 𝐷I (𝑎) ≥ 𝑛 or 𝐶I (𝑎) ≤ 1 − 𝑛, which is

highly dependent on 𝑛 rather than the reliable observations of the

neural system. So we use ∀𝑎 ∈ ΔI ,𝐶I (𝑎) ≤ 𝐷I (𝑎) to constraint

concept inclusion in Γ.

Proposition 2. (Soundness of learning to ground in DF-ALC)
When the hierarchical loss converges to 0, the learned interpretation
I′′ is the model of the given ALC ontology O. For any model J of
O, I′′ ∼𝑠𝑖𝑔 (O) J .

Prop.1 and Prop.2 are proved to be true in the Appendix.A

3.3 Rule-based Learning
But learning grounding by maximizing the satisfiability captured by

DF-ALC semantics can meet reasoning shortcut problem, because

this restraint can only ensure the revised grounding is a model of

the given ontology, but there are lots of different models. Besides,

the hierarchical loss proposed in Equation. 8 can lead A ⊑ B to learn

a grounding I that AI = BI , so cannot be distinguish between ⊑
and ≡. And BI (𝑠) can be revised as 0.5, which loses information.

A relaxed revision is to reduce AI (𝑠) or improve BI (𝑠) based on
the truthness of BI (𝑠) to satisfy AI ≤ BI . Here is the rule-based
loss for axioms in the NF 1-3 shown in Fig. 2:

𝐿𝑜𝑠𝑠NF1-NF3 (AI , BI ; I, Γ) =∑︁
A⊑B

∑︁
𝑠∈ΔI

((1 − BI (𝑠)) ∗𝐺 (AI (𝑠), BI (𝑠))), (9)

where A and B is any concept, AI and BI are vectors in the rep-

resentation of DF-ALC calculated according to the semantics of

Zadeh-ALC. 𝐺 (𝑣, 𝑤) = 𝑅𝑒𝐿𝑈 (𝑣 −𝑤), and 𝐺 (𝑣, 𝑤) does not take
part in the gradient descent.

For axioms in the normal form 4-7, the semantics of ∃ and ∀ in

Zadeh-ALC can not be reasoned in a proper way with hierarchical

loss. So different losses are designed for axioms in normal form 4-7

respectively.

Consider four ontologies O1 = {∃r.A ⊑ B}, O2 = {∀r.A ⊑ B},
O3 = {B ⊑ ∃r.A},O4 = {B ⊑ ∀r.A}, in the following three examples,

the performance of DF-ALC with hierarchical loss and the revision

calculus are shown in Table 1
3
. Example1 in Table 1 is explained as

follow:

3
Detailed analysis for example 2 and 3 is in the appendix.B
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Example 1. Given a perceptual groundingI in the domain {𝑠1, 𝑠2},
AI (𝑠1) = 0, AI (𝑠2) = 0, BI (𝑠1) = 0.9, BI (𝑠2) = 0, rI (𝑠1, 𝑠2) =

0.9, rI (𝑠1, 𝑠1) = rI (𝑠2, 𝑠1) = rI (𝑠2, 𝑠2) = 0, notated as vectors
AI = ⟨0, 0⟩ and BI = ⟨0.9, 0⟩.

According to the semantics of Zadeh-ALC, in O1, (∃r.A)I =

⟨0, 0⟩, which satisfies (∃r.A)I ≤ BI , so hierarchical loss is 0, and

no revision is executed. But this is not what we want. As we know

that 𝑠1 is likely to be B, and rI (𝑠1, 𝑠2) is likely to be true, so

𝑠2 is likely to be a membership of A. In O2, (∀r.A)I = ⟨0.1, 1⟩,
which does not satisfy (∀r.A)I ≤ BI , and hierarchical loss is 1.1.

Through gradient decent, until loss becomes 0, AI = ⟨0.24, 0⟩, BI =

⟨0.4, 1⟩, rI (𝑠2, 𝑠1) will be 0.7 and rI (𝑠1, 𝑠2) will be 1. In O3, with

hierarchical loss, AI
will be ⟨0.38, 0⟩ , BI

will be ⟨0.35, 0⟩and
rI (𝑠1, 𝑠1) will be ⟨0, 36⟩. In O4, with hierarchical loss,BI = ⟨0, 0⟩
and rI (𝑠1, 𝑠2) = 0.

These situations should be solved in an axiom-level view, which

means that the loss rather than the fuzzy semantics should be

advanced. So we introduce the following rule-based loss to solve

the problems meet in Table 1:

𝐿𝑜𝑠𝑠NF4 (AI , BI , rI ; I, Γ) =∑︁
B⊑∃r.A

∑︁
𝑠∈ΔI

((1 − AI (𝑠)) ∗𝐺 (𝛼 ′, AI (𝑠))∗

𝐺 (
∑︁
𝑎∈ΔI

(BI (𝑎) ⊗ rI (𝑎, 𝑠), 𝛼 ′))+

(1 − rI (𝑠, 𝑎)) ∗𝐺 (BI (𝑠) ⊗ AI (𝑎), rI (𝑠, 𝑎)))

(10)

where ⊗ is the t-norm. With the rule-based loss, the parts of in-

terpretation that we believed to be true are not determined by a

threshold, but by the speciality of the task and dataset. In this paper,

we use the product t-norm as ⊗ in the rule-based loss validated by

the evaluation in the experiments. 𝛼 ′ ∈ [0.5, 1] is the threshold for
the truth-value.

𝐿𝑜𝑠𝑠NF5 (AI , BI ; I, Γ) =∑︁
B⊑∀r.A

∑︁
𝑠∈ΔI

((1 − AI (𝑠)) ∗𝐺 (𝛼, AI (𝑠))∗

𝐺 (
∑︁
𝑎∈ΔI

(BI (𝑎) ⊗ rI (𝑎, 𝑠), 𝛼 ′)))

(11)

𝐿𝑜𝑠𝑠NF6 (AI , BI ; I, Γ) =∑︁
∃r.A⊑B

∑︁
𝑠∈ΔI

((1 − BI (𝑠)) ∗𝐺 (𝛼 ′, BI (𝑠))∗

𝐺 (
∑︁
𝑎∈ΔI

(AI (𝑎) ⊗ rI (𝑠, 𝑎), 𝛼 ′)))

(12)

𝐿𝑜𝑠𝑠NF7 (AI , BI ; I, Γ) =∑︁
∀r.A⊑B

∑︁
𝑠∈ΔI

((1 − BI (𝑠)) ∗𝐺 (𝛼 ′, BI (𝑠))∗

𝐺 (
∑︁
𝑎∈ΔI

(AI (𝑎) ⊗ rI (𝑠, 𝑎), 𝛼 ′))+

(1 − AI (𝑠)) ∗𝐺 (𝛼 ′, AI (𝑠)) ∗𝐺 (
∑︁
𝑎∈ΔI

(BI (𝑎) ⊗ rI (𝑎, 𝑠), 𝛼 ′)))

(13)

We only consider the situations when an assertion is larger than 𝛼 ′

here,w.l.o.g., the opposite situations (less than 1 − 𝛼 ′) are dual and
can be added to the loss according to the distribution of perceptual

grounding, e.g. the opposite situations are more plausible.

4 EXPERIMENTS
4.1 Performance Evaluation
We design two experiments to verify the efficiency of DF-ALC, and

answer the following questions: can loss always converge to zero?

If not, what can the result be in these cases? How successful the

learning in DF-ALC is in keeping reliable observations while revis-

ing erroneous ones? To answer the first two questions, learning

grounding for DF-ALC ontologies should be evaluated in different

neural networks under various situations. However the distribution

of observations and the properties of a specific neural network give

bias (in a way of having the same pattern of errors) to the perceptual

grounding. Therefore, we design an experimental task — masked

ABox revision, for evaluation in various observation distributions.

This task is not oriented to tackle a concrete symbol grounding prob-

lem. Given an ALC ontology O = ⟨T ,A⟩, where A is completed

by a logical reasoner, then fuzzy extended in DF-ALC. We assign

the idea grounding I with the processed A. Mask the random part

of grounding I into a random truth value in an unknown region,

and reformulate it into a differentiable fuzzy interpretation I′
as

the imitation of a perceptual grounding. Then transform ontology

O into DF-ALC ontology Γ. Use I′
as the initialization to learn the

revised grounding I′′
based on Γ. Using the crisp transformation

defined in Formula 7 to transform the revised grounding into crisp

grounding, and evaluate it with the satisfiability calculated in the

crisp mode. However, this experiment cannot show the constancy

(in keeping the reliable parts) between I′
and I′′

, which means

the degree that the revised grounding shifts from an ideal ground-

ing. So we design another task called conjunctive query answering,

which is a kind of ontology-mediated query answering. The target

is to retrieve individuals for complex concepts based on the revised

grounding.

4.1.1 Settings. In the masked ABox revision task, we used 6 on-

tologies (“Ontodm” and “Nifdys” are not consistent), while in the

conjunctive query answering task, we used 4 consistent ontolo-

gies. We used the Logical Tensor Network (LTN) as the comparison

model. LTN, is a differentiable fuzzy logic model in product real

logic based on first-order logic. We used normalized ontology and

the same loss (hierarchical loss in Equation. 8) to train LTN.

The mask rate of ABox ranges from {20%, 40%, 60%, 80%}. We

set the unknown region as [0.2, 0.8]. Meanwhile, the truth values

greater (less) than 𝛼 = 0.8 (1 − 𝛼 = 0.2) were assumed to be true

(false). We used success rate (S.R.) to evaluate soundness. The suc-

cess rate is the percentage of the TBox axiom in original ontology

(without normalization) that is satisfied w.r.t. the crisp I′′
. To be

fair, we evaluated the results in the semantics of first-order logic.We

tested conjunctive queries in the forms of𝐶⊓𝐷 and𝐶⊓∃𝑟 .𝐷 , where

𝐶 and 𝐷 are atomic concepts, and 𝑟 is a role name. We generated

20 queries in each form, and the answer set of each query was not

empty. Considering the time complexity of using a logical reasoner

to get the true answer set, we only used two forms of conjunctive
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S.R. KL S.R. KL S.R. KL S.R. KL

M H R L H R L M H R L H R L M H R L H R L M H R L H R L

Family 0.0 100.0 93.1 100.0 6.0 1.5 10.3 0.0 100.0 93.1 100.0 7.1 3.1 10.3 0.0 100.0 93.1 100.0 8.2 4.6 10.3 0.0 100.0 93.1 100.0 9.0 6.1 10.3

Family2 0.0 100.0 73.8 91.8 5.1 1.9 9.5 0.0 96.7 73.8 88.5 6.2 3.2 9.9 0.0 98.4 73.8 91.8 7.1 4.2 10.4 0.0 96.7 73.8 91.8 8.5 5.4 11.2

GlycoRDF 4.1 100.0 90.9 96.4 3.7 1.3 2.2 4.1 100.0 90.9 96.4 4.2 1.9 2.8 4.1 99.5 90.9 95.9 4.7 2.5 3.1 4.1 99.5 90.9 95.9 5.0 3.1 3.4

Nifdys 7.3 97.3 89.2 95.0 1.0 0.3 0.7 2.7 98.7 84.5 94.7 1.1 0.6 0.8 0.4 99.3 82.7 94.8 0.9 0.9 0.9 0.1 99.6 82.7 94.7 1.0 1.2 1.0
Nihss 16.1 100.0 100.0 51.6 0.4 0.5 2.4 0.0 100.0 100.0 48.4 0.6 1.0 2.4 0.0 100.0 100.0 48.4 1.0 1.4 2.4 0.0 100.0 100.0 48.4 1.1 1.9 2.4

Ontodm 5.4 91.6 41.5 98.5 5.4 1.2 10.6 0.3 91.2 37.3 98.2 0.6 1.0 2.4 0.2 92.1 97.6 1.0 1.4 2.4 0.2 91.3 37.3 97.4 1.1 1.9 2.4

Sso 0.0 100.0 100.0 100.0 0.3 0.5 0.5 0.0 100.0 100.0 100.0 0.7 1.0 0.5 0.0 100.0 100.0 100.0 1.0 1.5 0.5 0.0 100.0 100.0 100.0 1.3 2.0 0.5

Table 2: Success rate (S.R.) and KL divergence (KL) in four mask rate settings. M is the masked grounding. H is the revised
grounding by DF-ALC with hierarchical loss. R is the revised grounding by DF-ALC with rule-based loss. L is the revised
grounding by LTN.

Figure 4: Conjunctive query answering results

queries in-depth 2 (the depth is determined by the conjunction

amounts in the query). We chose all individuals with 𝑄I (𝑎) ≥ 0.8

to be the answer for query 𝑄 . And use the answers generated by

logical reasoner as ideal answers to evaluate the predicted answers

with precision and recall as metrics. Detailed information (data,

resources, training details, etc.) about the experiments is shown in

the supplementary material.

4.1.2 Results. The revising masked grounding experiment uses a

success rate to evaluate the ratio of TBox axiom that is interpreted as

true, and a KL divergence to evaluate how the revised grounding is

similar to the expected grounding, with results shown in Table 2.We

can see that DF-ALC and LTN succeeded in most cases. Not surpris-

ingly, the success rate is low for masked grounding, since any small

fault in the grounding can dissatisfy an axiom in the ontology. DF-

ALC does not perfectly predict “Ontodm” and “Nifdys”, as these two

ontologies are not consistent. In “Ontodm”, DF-ALC predicts wrong

grounding for disjoint concepts, and these concepts are incom-

pletely asserted. The same problem occurs in “Nifdys”. We further

study the failures in “Family2”, and find that the failures are caused

by unknown cases. More specifically, we can see that an individual

“F6M80” is asserted as a Male, but his parents are not asserted, there-

fore the values of “Son(F6M80)” and “Child(F6M80)” are unknown.

In learned grounding of Γ, though they are all in unknown region

(0.2, 0.8), SonI′′ (F6M80) = 0.5490 > Child
I′′ (F6M80) = 0.5489

can still lead to Son
I′′
@ Child

I′′
. For LTN, almost all of the ax-

ioms in the form of ∃𝑟 .⊤ ⊑ 𝐶 are not learned well. For DF-ALC,

several axioms fail in the complex forms ( e.g. ∃𝑟1 .(∃𝑟2 .𝐵) ⊑ 𝐶)

when the masked rate gets higher. And it is worth noting that learn-

ing in “Family2”, “GlycoRDF”, “Nifdys”, and “Ontodm” cannot get

the hierarchical loss to converge to 0 in finite time in the four set-

tings. But we still get the success rate of “Family2” and “GlycoRDF”

being 100%, which is due to the crisp transformation for masked

grounding. So if the given ALC ontology O is consistent, though

the learning loss cannot converge to 0 in some cases, the crisp trans-

formed grounding is the model of O. DF-ALC with hierarchical loss

does better than DF-ALC with rule-based loss in success rate, but

worse in the KL divergence.

From the results shown in Figure 4, we find that both models

cannot do well in this task as expected. Because the masked se-

mantics loses much information, DF-ALC can revise the grounding
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Figure 5: Object types classification results. The baseline model is the classification results of FRCNN. For evaluation, the
performance are classified into three categories: vehicle, indoor, and animal. The metrics are macro averaged.

in a shifted direction. High precision (i.e. maintaining the reason-

ing properties well) and relatively high recall (i.e. being constancy

with reliable part of observation) can be expected with DF-ALC

compared to LTN when the mask rate is low (e.g. 0.2). While both

DF-ALC and LTN have problems in revising role interpretation

function.

Overall, DF-ALC outperforms LTN in most observation revi-

sion cases. The common and significant problem for both of them

is to avoid the disturbance of unknown cases to satisfiability to

knowledge.

4.2 Semantic Image Interpretation
In this experiment, we apply DF-ALC to solve the SII problem. We

use PASCAL-PART dataset [9]. The dataset consists of images an-

notated with bounding boxes denoting distinct objects. The simple

semantics between these objects like part-of relation can be de-

tected by computing the pixel cover rate between bounding boxes,

constructing the role interpretation function of perceptual inter-

pretation I′
. Objects are then grounded by object detector Fast

R-CNN (FRCNN) [22], which gives each object 𝑏 the label 𝐶 with

𝑠𝑐𝑜𝑟𝑒 (𝐶,𝑏), constructing the concept interpretation function of

I′
. To revise I′

, we introduced an OWL ontology O𝑝𝑎𝑟𝑡𝑂𝑓 with

two kinds of axioms, which is similar to the ontology introduced

in Figure. 1. The first kind of axiom depicts the part-of relation

between types, e.g. ∃isPartOf.Chair ⊑ Seat ⊔ Leg. The second
kind of axiom asserts the disjointness between different types, e.g.

Chair⊓∃isPartOf.Chair ⊑ ⊥, Chair⊓Table ⊑ ⊥. Then we used

the rule-based loss to reviseI′
according to ontologyO𝑝𝑎𝑟𝑡𝑂𝑓 . LTN

was trained with constraints following the settings proposed in [14].

The results are shown in Figure. 5. Indoor objects have the sim-

plest relationships and animal objects have the most complex re-

lationships, which interprets why DF-ALC performs the best in

indoor objects. Animal objects can have many common types of

objects, e.g. ear, head, and eye, but DF-ALC can still improve recall.

LTN fails in improving the object types classification performance

upon the baseline because the fuzzy logical operators cannot con-

vey the proper information by maximizing the satisfiability. But

LTN can do link prediction (e.g. revise the part-of-relation interpre-

tation), which cannot be done by DF-ALC. On the whole, DF-ALC

provides an unsupervised way to improve symbol grounding by

utilizing logical knowledge. We further tested how DF-ALC per-

form when the FRCNN is not trained well, the result is shown in

appendix.C.

5 CONCLUSION AND FUTUREWORK
This work presents DF-ALC, the first neural-symbolic approach that

gets symbol grounding for ALC Ontologies. DF-ALC proposed

two strategies to revise any neural networks’ symbol grounding

using fuzzy extendedALC semantics. One strategy is to maximize

the satisfiability of ALC ontology O by minimizing hierarchical

loss. When DF-ALC with hierarchical loss is converged to 0, the

revised symbol grounding is proven to be a model of O. But in
some situations, the revision process can be wrong, so we proposed

another strategy to minimize rule-based loss. DF-ALC with rule-

based loss can mitigate the reasoning shortcut problem. Compared

with the most related differentiable fuzzy logic model, LTN, we find

that DF-ALC is better at retaining the reliable part of probability.

However, we have only tested how DF-ALC revises the output of

the last layer of the neural network. While DF-ALC can also back-

propagate the gradient to the neural network, and train DF-ALC

with the neural system in an end-to-end way. Besides, the differ-

entiable fuzzy existential quantifier operator in DF-ALC should

further be investigated.
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