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Abstract001

Since the middle of the 20th century, a fierce002
battle is being fought between symbolic and003
continuous approaches to language and cogni-004
tion. The success of deep learning models, and005
LLMs in particular, has been alternatively taken006
as showing that the continuous camp has won,007
or dismissed as an irrelevant engineering devel-008
opment. However, in this position paper I argue009
that deep learning models for language actually010
represent a synthesis between the two tradi-011
tions. This is because 1) deep learning archi-012
tectures allow for both continuous/distributed013
and symbolic/discrete-like representations and014
computations; 2) models trained on language015
make use this flexibility. In particular, I review016
recent research in mechanistic interpretability017
that showcases how a substantial part of mor-018
phosyntactic knowledge is encoded in a near-019
discrete fashion in LLMs. This line of research020
suggests that different behaviors arise in an021
emergent fashion, and models flexibly alternate022
between the two modes (and everything in be-023
tween) as needed. This is possibly one of the024
main reasons for their wild success; and it is025
also what makes them particularly interesting026
for the study of language and cognition. Is it027
time for peace?028

1 Introduction029

Since the middle of the 20th century, a fierce bat-030

tle is being fought between two antagonistic ap-031

proaches to language and cognition. Although032

the details vary, they can be broadly character-033

ized as follows. Symbolic approaches use dis-034

crete formalisms to represent language. Examples035

in computational linguistics (CL) are POS tags,036

parse trees, and discrete word senses.1 Continuous037

1In early work, these approaches were paired with top-
down processing of linguistic data, through rule-based systems
defined by hand. In later work, the processing part has instead
been data-driven: data is manually annotated according to
a given representation system, and a processing algorithm
is induced from the data via machine learning. The latter

Figure 1: Non-linear functions such as the sigmoid pro-
vide the potential for both continuous and near-discrete
behavior.

approaches use distributed representations, in the 038

form of high-dimensional algebraic objects such 039

as vectors. In CL, static word embeddings (à la 040

word2vec; Mikolov et al., 2013) are a prime exam- 041

ple. 042

The debate has taken different forms in different 043

fields; in cognitive science, this opposition has been 044

dubbed classicism vs connectionism (Buckner and 045

Garson, 2019); in AI, different terms are used by 046

different authors (Russell and Norvig, 2020); in lin- 047

guistics, the issues underlying the divide between 048

generative and cognitive linguists are related to this 049

debate Harris, 1993. The crux of the debate is that, 050

across all these fields, some researchers focus on 051

the rule-like behavior of language and cognition 052

and others on its slippery nature. However, the 053

fact that this debate exists might be a testimony 054

to the fact that language and cognition are both 055

symbolic (or discrete) and continuous (or fuzzy) 056

—and everything in between (see Section 2). 057

Focusing on language, in this position paper I 058

argue that modern LLMs support both continuous 059

and (near-)discrete representations and processing, 060

and thus are a synthesis between the two antagonis- 061

includes modern neural networks trained for, e.g., dependency
parsing.
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tic positions.2 This may seem a strange position to062

adopt, since neural networks undoubtedly fall in the063

continuous camp. However, something that is often064

overlooked in the debate is the fact that neural net-065

works have the potential for (near-)discrete behav-066

ior. This potential comes from the non-linearities067

in their architecture (Minsky and Papert, 1988).068

Take the sigmoid as an example (Figure 1): when069

its input falls near 0, the value passed on will be070

continuous; but when its input is larger or smaller,071

it will be quasi-binary. This allows networks to072

learn to combine its inputs in a way that leverages073

the two behaviors. Crucially, while neural network074

architectures allow for flexibility in behavior, what075

they will do with this potential in practice is an076

open question.077

The present paper is motivated by the fact that078

LLMs do seem to indeed exploit the potential for079

quasi-symbolic behavior with respect to language:080

A lot of recent work within interpretability provides081

evidence for near-discrete representations and pro-082

cesses, as discussed in Section 3. What is more,083

these representations arise in an emergent fashion;084

LLMs learn to behave in a a quasi-symbolic fash-085

ion, because that allows them to perform better at086

linguistic tasks. This, in turn, may be one of the rea-087

sons for their amazing success at capturing natural088

language.089

2 How discrete is language?090

Linguists have found symbolic formalisms use-091

ful across all main domains of language, such092

as phonology (Chomsky and Halle, 1968; Prince093

and Smolensky, 1993), morphosyntax (Chomsky,094

1957; Bresnan, 1982; Langacker, 1987; Pollard095

and Sag, 1994; Goldberg, 1995), semantics (Mon-096

tague, 1974; Partee et al., 1990; Pustejovsky, 1995),097

and pragmatics (Grice, 1989; Sperber and Wilson,098

1995). In this article, I will focus on morphosyntax099

and semantics.100

Work in morphosyntax posits for instance that101

words belong to different parts of speech (such as102

determiner, noun, or verb) and can stand in dif-103

ferent syntactic relations (such as subject, object,104

or indirect object). Languages mark morphosyn-105

tax formally, and restrictions in the co-occurrence106

of linguistic units (morpheme, words, clauses) are107

governed by morphosyntactic properties. For in-108

2I center the discussion on LLMs as the most widely
adopted type of model, but in the discussion I will also include
other models, such as neural machine translation models. I
will signal when I do.

stance, in English only verbs inflect for tense; and, 109

in most, verbs past tense is signaled ty the suffix - 110

ed (“follow/followed”). Similarly, only some verbs 111

allow for indirect objects, and the indirect object in 112

English is marked by the preposition to (see exam- 113

ple (1)). In many languages different units in the 114

sentence display agreement (Wechsler and Zlatić, 115

2003). Example (1) showcases how, in Spanish, 116

there is gender and number agreement within the 117

noun phrase: the highlighted suffix -a on the deter- 118

miner and adjective mark feminine gender, in agree- 119

ment with the noun’s lexical gender. Similarly, in 120

English, subjects and verbs agree in number; in ex- 121

ample (3), the singular subject (“A student”) cannot 122

combine with a plural verb (“are”). 123

(1) John gave/*prepared a drink to Mary 124

(2) Las partes interesadas 125

the.FEM.PL party.PL interested.FEM.PL 126

‘The interested parties’ 127

(3) A student is/*are crossing the street 128

In compositional semantics and the syntax- 129

semantics interface, we find phenomena such as 130

negation, where, in a sentential context, adding 131

negation reverses polarity (Zeijlstra, 2007, see ex- 132

ample (4)), and anaphora, where syntactic con- 133

straints determine the shape of anaphoric pronouns: 134

for instance, in (5), the pronoun “him” cannot refer 135

to Mark (Chomsky, 1981). 136

(4) I will/will not come to lunch 137

(5) Marki combs himselfi/*himi 138

All of these phenomena are largely symbolic and 139

discrete, in that there is no “in between” state: the 140

choice between “is” and “are” is determined by 141

the number of the subject; “not” is a like a binary 142

switch for polarity in sentences; etc. However, even 143

in this realm one only needs to scratch the surface 144

for discreteness to break down. The border between 145

parts of speech is notoriously fuzzy (Croft, 2001; 146

Evans and Levinson, 2009); there is no univer- 147

sal agreed upon set of syntactic relations (Dowty, 148

1991); negation is far from being a binary switch in 149

many contexts (e.g., “not unhappy” does not mean 150

“happy”), and is hugely complex from a semantic 151

point of view (Zeijlstra, 2007); and even agreement 152

can break down (Wechsler and Zlatić, 2003). 153

Consider agreement ad sensum, exemplified 154

in (6). Here, the syntactic subject is the singu- 155

lar noun “group”, but the plural form, forbidden in 156

example (3), is allowed in this case. 157
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(6) A group of students from New Zealand is/are158

crossing the street159

This example showcases the interaction between160

grammar and meaning, as ad sensum agreement161

happens with singular head nouns that denote plu-162

ralities, such as “group”. Aspects of meaning that163

are conceptual in nature are, indeed, the source of164

much of language’s fuzziness (Wittgenstein, 1953):165

Word meaning, for instance, is notoriously fuzzy,166

vague, and slippery. As an example, in contrast to167

cases like (2-5) above, the similarities and differ-168

ences between “fast” and “swift” are subtle, and169

there is no hard and fast rule to determine when to170

use one and when to use the other. Moreover, while171

most words have many meanings, more often than172

not they are difficult to delineate (Kilgarriff, 1997).173

Hence, symbolic formalisms with discrete repre-174

sentations are highly problematic for word mean-175

ing (Wittgenstein, 1953; Kilgarriff, 1997; Boleda,176

2020).177

Construction grammar, a family of theories178

within cognitive linguistics (Langacker, 1987;179

Lakoff, 1987; Fillmore et al., 1988; Goldberg,180

1995; Croft, 2001), has put the relationship be-181

tween conceptual meaning and grammar center182

stage. While these approaches still use discrete rep-183

resentations, they contest the existence of abstract184

syntactic rules of the sort exemplified in Figure 2185

(top), which are advocated by generative linguists.186

Scholars in construction grammar instead propose187

the existence of patterns (termed constructions) at188

different levels of abstraction, consisting of pair-189

ings of form and meaning.3 Constructions are often190

semi-productive and heavily dependent on concep-191

tual aspects of meaning, such that it is again diffi-192

cult to establish hard and fast rules for their use that193

can be specified on formal grounds only. For in-194

stance, the verb “to sneeze”, which is not causative,195

can sometimes be used felicitously in a causative196

construction, as in example (7), attributed to Adele197

Goldberg by Hill (2024).198

(7) They sneezed the foam off the cappuccino199

It should however be noted that not all aspects200

of meaning are fuzzy; in particular, reference in201

language is largely discrete (Frege, 1892). We use202

3“Any linguistic pattern is recognized as a construction
as long as some aspect of its form or function is not strictly
predictable from its component parts or from other construc-
tions recognized to exist. In addition, patterns are stored as
constructions even if they are fully predictable as long as they
occur with sufficient frequency.” (Goldberg, 2005, p. 5)

language to refer to entities and, from a linguistic 203

point of view, there is nothing fuzzy in the distinc- 204

tion between, say, two people with the same name. 205

Thus, whether “Elizabeth Blackburn won the No- 206

bel prize” is true will depend on which Elizabeth 207

Blackburn we’re talking about in the given con- 208

text.4 This is in contrast to conceptual aspects of 209

meaning. 210

To sum up, this overview suggests that language 211

is indeed both discrete and continuous; and that 212

there is no neat discrete/continuous divide, nor any 213

area of language that is completely discrete or com- 214

pletely continuous. At the same time, there are 215

clearly areas that are more discrete (such as gram- 216

mar) and areas that are more continuous (such as 217

word meaning). On the other hand, largely because 218

of methodological limitations, most linguistic for- 219

malisms to date continue to be discrete.5 Given 220

the properties of language just discussed, and the 221

fact that, as discussed in the introduction, neural 222

networks afford the potential for both continuous 223

and near-discrete behavior, we can expect LLMs 224

to exploit this potential. And this is indeed what 225

recent literature on interpretability suggests. In 226

what follows, I will focus on providing evidence 227

of near-discrete behavior, as continuous behaviors 228

are already widely recognized in the field (e.g., in 229

the literature on word embeddings, both static and 230

contextualized). Moreover, I will focus mainly on 231

morphosyntax, an area that has received consider- 232

able attention in the interpretability literature. 233

3 Near-discrete language processing in 234

deep learning models 235

Figure 2 schematically illustrates the contrast be- 236

tween symbolic formalisms and deep learning ar- 237

chitectures regarding syntactic processing: while 238

symbolic formalisms are entirely discrete, neural 239

networks afford both continuous and near-discrete 240

processes. However, what counts as near-discrete 241

behavior in the context of neural networks? In my 242

4As of 2025, there are at least two Elizabeth Blackburns: a
Nobel laureate and a judge in Florida.

5I should note that there have been several developments in
integrating a probabilistic component, especially in semantics
and pragmatics (see Erk, 2022, for an overview). Computa-
tional linguistics has also participated in the debate; for in-
stance, researchers in the field have explored the combination
of symbolic and distributed approaches to semantics, build-
ing on their complementary strengths and weaknesses (see
Boleda and Herbelot, 2016). However, I think it is fair to say
that these efforts have not as yet succeeded in providing a
unified linguistic framework that encompasses the phenomena
reviewed in this section.
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DISCRETE

S → NP VP
VP → V NP PP
NP → Det N | John | Mary
PP → P NP
Det → a
N → drink
P → to
V → gave

S

NP

John

VP

V

gave

NP

Det

a

N

drink

PP

P

to

NP

Mary

CONTINUOUS AND (NEAR-)DISCRETE

Figure 2: Schematic illustration of the contrast between symbolic formalisms and deep learning. Top: context-free
grammar and parse tree for the sentence "John gave a drink to Mary". Bottom: transformer architecture and circuit
for the fragment "When Mary and John went to the store, John gave a drink to", with prediction “Mary” (adapted
from Vaswani et al. (2017) and Ferrando et al. (2024), with permission). In the circuit, the representations are
continuous (vectors), but the different components function together in an interpretable algorithm, with attention
heads carrying operations such as copying (see text for details).

view, it is the existence of a small sub-unit of the243

network that is causally involved in encoding or244

processing a single piece of linguistic information245

in an interpretable fashion.6246

An illustrative example is Bau et al. (2019), who247

identified individual neurons associated to specific248

morphosyntactic properties in a neural Machine249

Translation model from the pre-transformer era.250

Altering the values of these neurons changes the251

morphosyntactic properties of the translations. For252

example, in (8) modifying the activation of a sin-253

gle neuron in the representation of the token “sup-254

ported” changes the tense of the French transla-255

6This definition does not imply that this sub-unit need be
the only one involved in the relevant behavior; see Section 4
for discussion.

tion from past (“a appuyé”) to present (“appuie”). 256

Similarly, in (9), altering the activation of a sin- 257

gle neuron changes the translation into Spanish 258

from feminine to masculine.7 Larger sub-units can 259

also manifest near-discreteness, such as attention 260

heads and what has been called “circuits” (sub- 261

graphs within neural networks; Cammarata et al., 262

2020). 263

(8) The committee supported the efforts of the 264

authorities 265

Original: Le Comité a appuyeé les efforts des 266

autorités 267

Modified: Le Comité appuie les efforts des 268

7Remarkably, both are potentially correct translations, but
the latter has a narrower meaning in which “party” must refer
to a political party.
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autorités269

(9) The interested parties270

Original: Las partes interesadas271

Modified: Los partidos interesados272

It has been known for close to a decade that273

neural LMs encode non-trivial knowledge of syn-274

tax, including its hierarchical nature (Linzen et al.,275

2016; Gulordava et al., 2018; Futrell et al., 2019;276

Rogers et al., 2021). However, most earlier work277

used techniques such as probing, which could show278

THAT they encode syntactic knowledge, but not279

HOW. Newer methods in mechanistic interpretabil-280

ity (see Ferrando et al., 2024, for a survey) focus281

on precisely this question, and it is these meth-282

ods that have provided the clearest evidence for283

near-discreteness in some aspects of linguistic pro-284

cessing in deep learning models.8 This literature285

provides robust evidence for near-symbolic repre-286

sentation and processing of both morphosyntactic287

properties (e.g. part of speech, number, gender, and288

tense) and syntactic relations (dependencies and289

agreement).290

As for individual neurons, several studies have291

identified neurons that selectively respond to mor-292

phosyntactic properties such as part of speech, num-293

ber, and tense (Bau et al., 2019; Durrani et al., 2023;294

Gurnee et al., 2023, 2024), as showcased in exam-295

ples (8-9) above. As another example, Durrani et al.296

(2023) find neurons sensitive to part of speech in297

three multi-lingual LLMs (BERT, RoBERTa, and298

XLNet); for instance, neuron 624 in layer 9 of299

RoBERTa responds to verbs in the simple past300

tense and neuron 750 in layer 2 to verbs in the301

present continuous tense. Moreover, some mor-302

phosyntactic neurons are “universal” (Gurnee et al.,303

2024) in the sense that they can be found across304

different instantiations of the same auto-regressive305

LLM. This suggests that language data provide a306

strong pressure for neurons encoding morphosyn-307

tactic properties to arise.308

If the work reviewed up to here focuses on neu-309

rons that detect input properties, other studies look310

at the effects of specific neurons on the output.311

Geva et al. (2022) identified neurons that drastically312

promote the prediction of tokens with specific fea-313

tures, some of which are morphosyntactic in nature;314

for instance, neuron 1900 in layer 8 of GPT2 in-315

creased the probability of WH words (e.g. “which”,316

8The vast majority of results in this literature concerns
English; in what follows, I’ll refer to results for English.

“where”, “who”), and neuron 3025 in layer 6 of 317

WikiLM the probability of adverbs (e.g. “largely”, 318

“rapidly”, “effectively”). Ferrando et al. (2023) 319

identify a small set of neurons that are functionally 320

active in making grammatically correct predictions 321

(for instance in subject-verb agreement) in models 322

of the GPT2, OPT, and BLOOM families. 323

Attention heads specializing in specific syntac- 324

tic relations have also been amply shown to be 325

present in LLMs and neural MT models (Raganato 326

and Tiedemann, 2018; Clark et al., 2019; Htut et al., 327

2019; Voita et al., 2019; Krzyzanowski et al., 2024). 328

Figure 3(a) shows the activations of head 7 in layer 329

6 in BERT for the sentence “many employees are 330

working at its giant Renton, Walsh, plant”. This 331

head specializes in the possessive construction; 332

in the example, the possessive determiner (“its”) 333

sharply attends to its head noun (“plant”), in a de- 334

pendency relation that has 5 intervening tokens in 335

the surface structure. Other heads highlighted in 336

this literature correspond to a wide range of syntac- 337

tic relations such as subject, object, prepositional 338

complement, adjectival modifier, or adverbial mod- 339

ifier. Not all heads are near-discrete; Figure 3(b) 340

depicts a head with a broad attention pattern. 341

As for circuits,9 which have only recently gained 342

attention, a particularly relevant example in the 343

context of our paper is Wang et al. (2023). This 344

study describes in detail a circuit in GPT2-small 345

that governs the prediction of the indirect object 346

of a sentence. Figure 2 (bottom right) contains a 347

schematic depiction of the circuit for the sentence 348

“When John and Mary went to the store, John gave 349

a drink to __”, where the LLM predicts “Mary”. 350

This interpretable circuit corresponds to an algo- 351

rithm that identifies the names in the sentence (in 352

the example, “John” and “Mary”), removes the 353

names that appear in the second sentence (“John”), 354

and outputs the remaining name (“Mary”). The 355

model does this through different attention heads 356

that have specialized functions: 1) Duplicate Token 357

Heads perform duplicate token detection by attend- 358

ing to the duplicate token and writing its position 359

into another head; 2) S-Inhibition Heads remove 360

the duplicate from Name Mover Heads by inhibit- 361

ing the attention of these heads to the duplicate 362

token; and 3) Name Mover Heads output the re- 363

9Definition of “circuit” in Olah et al. (2020): “A subgraph
of a neural network. Nodes correspond to neurons or direc-
tions (linear combinations of neurons). Two nodes have an
edge between them if they are in adjacent layers. The edges
have weights which are the weights between those neurons
[...]”.
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(a)

(b)

Figure 3: Near-discrete and continuous attention heads
in BERT (adapted from Clark et al. (2019); line thick-
ness is proportional to amount of attention). (a) Head
7 in layer 6 tracks dependencies between possessive
determiners and their head nouns dependency in a near-
discrete fashion: the determiner “its”, highlighted in red,
sharply attends to its head noun “plant”. (Note that most
tokens have near-discrete attention to the [SEP] token.
Clark et al. (2019) interpreted this as a no-op signal.)
(b) Head 1 in layer 1 instead presents a broad attention
pattern with no clear interpretation.

maining name by attending to previous names in364

the sentence and copying the name they attend to365

(since S-Inhibition Heads inhibit attention to the366

duplicate token “John”, this name will be “Mary”367

in the example).368

Merullo et al. (2024) provide evidence that this369

circuit is robust (they identify the same circuit in370

a larger GPT2 model) and generalizes: some of371

its individual components are reused on a task that372

is different both semantically and syntactically (it373

involves the generation of a word denoting the374

color of an object described among other objects375

in the preceding context). This suggests that the376

uncovered circuit is at a quite high level of abstrac-377

tion in terms of linguistic knowledge. Ferrando378

and Costa-Jussà (2024) contribute evidence to this379

effect. They show that one and the same circuit380

is responsible for solving subject-verb agreement381

in English and Spanish in the multi-lingual LLM382

Gemma 2B.383

To sum up, the mechanistic interpretability lit-384

Figure 4: BERT’s attention head tracks co-reference
dependencies (head 5 in layer 4); adapted from Clark
et al. (2019). The anaphoric pronoun “her” sharply
attends to antecedent “she”.

erature provides evidence for near-discreteness in 385

syntactic processing in different sub-units of LLMs 386

(neurons, attention heads, circuits). However, as 387

discussed in Section 2, discreteness in language 388

goes well beyond syntax, and is present in do- 389

mains such as compositional semantics and phe- 390

nomena at the syntax-semantic interface. These 391

domains have received much less attention so far, 392

but the existing evidence tentatively also points 393

towards near-discreteness. For instance, BERT 394

has attention heads specializing in co-reference, 395

in which anaphoric mentions sharply attend to their 396

antecedent (Clark et al., 2019, see Figure 4); and 397

one of the already mentioned “universal neurons” 398

in Gurnee et al. (2024) selectively responds to nega- 399

tion.10 400

4 Discussion: LLMs as a synthesis 401

The previous section has discussed near-discrete en- 402

coding and processing of linguistic information in 403

LLMs. However, as mentioned in the introduction, 404

deep learning models can flexibly switch between 405

discrete and distributed modes —and everything in 406

between (see near-discrete vs continuous attention 407

in Figure 3). In this, they are very different from 408

formalisms and representations used in theoretical 409

linguistics. 410

Indeed, as emphasized throughout this paper, 411

while representations in theoretical linguistics are 412

discrete, in LLMs they are at most near-discrete. 413

Moreover, there is wide variation in the degree 414

10The emergence of discrete behavior, and prominently cir-
cuits, has been related to what has been called “grokking”
(Power et al., 2022), that is, the sudden appearance of gener-
alization capabilities in symbolic tasks. See e.g. Nanda et al.
(2023) and Varma et al. (2023) for discussion. Here I focus on
discrete behavior in linguistic representations and processing,
but of course its emergence in learning is an exciting topic for
further study.
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of discreteness exhibited with respect to different415

phenomena, or even within a phenomenon. For416

instance, in the work cited above, Durrani et al.417

(2023) found drastically fewer neurons responding418

to the POS of function words (like determiners or419

numerals) than to the POS of content words (like420

nouns and verbs). They conjectured that the rep-421

resentation of POS in the networks may be more422

distributed in the latter than in the former case. Sim-423

ilarly, Bau et al. (2019) find that gender and number424

are represented in a more distributed fashion than425

tense in the NMT model they analyze.426

Another crucial difference with classical for-427

malisms in linguistics is the fact that there is a428

high degree of redundancy in neural networks (Dur-429

rani et al., 2023). For instance, when Wang et al.430

(2023) ablated the Name Mover Heads that they431

identified in the indirect object circuit explained432

above, they found that the circuit still worked to433

some extent. They subsequently went on to iden-434

tify back-up Name Mover Heads that replaced the435

role of the initially identified heads. Redundancy436

is a well-known property of neural networks, and437

one crucial for their functioning, as it allows for438

graceful as opposed to catastrophic degradation in439

behavior (LeCun et al., 1989).440

The flip side of redundancy is polysemanticity,441

that is, the fact that units respond to different prop-442

erties (Rumelhart et al., 1986). For instance, in443

many (but not all) cases a neuron that responds444

to, say, tense, will also respond to some other445

unrelated property. In a fine-grained analysis of446

GPT2-small attention heads including manual an-447

notation, Krzyzanowski et al. (2024) found that448

around 90% are polysemantic. There are advan-449

tages to polysemanticity, such as the fact that it450

allows networks to represent more features than451

they have dimensions (Elhage et al., 2022, call this452

“superposition”).453

If we put the two features together (redundancy454

and polysemanticity), we see that each feature is455

represented across many individual neurons and456

neurons are responsible for different features. By457

definition, this is what makes a representation dis-458

tributed (Hinton et al., 1986). So why am I argu-459

ing that LLMs are a synthesis between continu-460

ous and discrete approaches? Because, as a mat-461

ter of fact, even if they could represent and pro-462

cess everything in a distributed fashion, they do463

not. They learn to process some aspects of lan-464

guage in a near-symbolic manner, to the point that465

specific interpretable algorithms can be reverse-466

engineered. The 90% figure just mentioned, from 467

Krzyzanowski et al. (2024), implies that 10% 468

of the attention heads analyzed are monoseman- 469

tic —when they would not need to be, and in 470

fact polysemanticity has advantages, as mentioned 471

above. Similarly, most of the “universal neurons” 472

identified by Gurnee et al. (2024) are monoseman- 473

tic, and they have clear functional roles in circuits, 474

such as deactivating attention heads. This stands 475

in stark contrast to, for instance, the much more 476

distributed representation of words in static or con- 477

textualized word embeddings. And, indeed, the ev- 478

idence for near-discrete behavior overwhelmingly 479

comes from domains where symbolic formalisms 480

have been the most successful, such as grammar 481

and compositional semantics. 482

5 Conclusion 483

I started this piece by pointing out that a fierce 484

battle is being fought, since the second half of the 485

20th century, between symbolic and distributed ap- 486

proaches to language and cognition. The advent of 487

deep learning models has added fuel to this debate, 488

with some of its participants continuing to take 489

sides for one or the other with maximalist positions 490

that are, in my view, sterile. Luckily, many schol- 491

ars are instead increasingly focusing on the huge 492

possibilities that these models bring to the table in 493

terms of advancing scientific knowledge (Manning, 494

2015; Warstadt and Bowman, 2022; Futrell and 495

Mahowald, 2025). In this article, I have joined this 496

latter camp, putting forth the view that LLMs are a 497

synthesis between the two approaches with respect 498

to how they represent and process language. 499

So, may it be time for peace? The research I 500

have surveyed has only scratched the surface, and 501

we need everyone on board to continue to make 502

progress in our collective understanding of how 503

language works. 504

Limitations 505

I am aware that my definition of what counts as 506

near-discreteness in LLMs is, ironically, fuzzy. I 507

think that, given the present state of the art (mecha- 508

nistic interpretation of deep learning models is still 509

in its infancy), the best I can do is offer an initial 510

definition and many examples of the kind of behav- 511

ior that I think provides support for my position. 512

Delineating the role of quasi-symbolic language 513

processing in LLMs more precisely is an exciting 514

avenue for further work. 515

7



Acknowledgments516

I used Generative AI to assist with latex formatting517

in the preparation of this paper.518

References519

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir520
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-521
tifying and controlling important neurons in neural522
machine translation. In International Conference on523
Learning Representations.524

Gemma Boleda. 2020. Distributional semantics and525
linguistic theory. Annual Review of Linguistics,526
6(1):213–234.527

Gemma Boleda and Aurélie Herbelot. 2016. Formal528
distributional semantics: Introduction to the special529
issue. Computational Linguistics, 42(4):619–635.530

Joan Bresnan. 1982. The mental representation of gram-531
matical relations.532

Cameron Buckner and James Garson. 2019. Connec-533
tionism. In Edward N. Zalta, editor, The Stanford534
Encyclopedia of Philosophy, Fall 2019 edition. Meta-535
physics Research Lab, Stanford University.536

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah,537
Michael Petrov, Ludwig Schubert, Chelsea Voss, Ben538
Egan, and Swee Kiat Lim. 2020. Thread: Circuits.539
Distill. Https://distill.pub/2020/circuits.540

Noam Chomsky. 1957. Syntactic Structures. Mouton &541
Co.542

Noam Chomsky. 1981. Lectures in Government and543
Binding: The Pisa lectures. Number 9 in Studies in544
Generative Grammar. Foris, Dordrecht.545

Noam Chomsky and Morris Halle. 1968. The Sound546
Pattern of English. Harper & Row, New York.547

Kevin Clark, Urvashi Khandelwal, Omer Levy, and548
Christopher D. Manning. 2019. What does BERT549
look at? an analysis of BERT‘s attention. In Pro-550
ceedings of the 2019 ACL Workshop BlackboxNLP:551
Analyzing and Interpreting Neural Networks for NLP,552
pages 276–286, Florence, Italy. Association for Com-553
putational Linguistics.554

William A. Croft. 2001. Radical Construction Gram-555
mar: Syntactic Theory in Typological Perspective.556
Oxford University Press, Oxford.557

David Dowty. 1991. Thematic proto-roles and argument558
selection. language, 67(3):547–619.559

Nadir Durrani, Fahim Dalvi, and Hassan Sajjad. 2023.560
Discovering salient neurons in deep nlp models. Jour-561
nal of Machine Learning Research, 24(362):1–40.562

Nelson Elhage, Tristan Hume, Catherine Olsson, 563
Nicholas Schiefer, Tom Henighan, Shauna Kravec, 564
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, 565
Carol Chen, Roger Grosse, Sam McCandlish, Jared 566
Kaplan, Dario Amodei, Martin Wattenberg, and 567
Christopher Olah. 2022. Toy models of superpo- 568
sition. Transformer Circuits Thread. 569

Katrin Erk. 2022. The probabilistic turn in seman- 570
tics and pragmatics. Annual Review of Linguistics, 571
8(1):101–121. 572

Nicholas Evans and Stephen C. Levinson. 2009. The 573
myth of language universals: Language diversity and 574
its importance for cognitive science. Behavioral and 575
Brain Sciences, 32(5):429–448. 576

Javier Ferrando and Marta R. Costa-Jussà. 2024. On 577
the similarity of circuits across languages: a case 578
study on the subject-verb agreement task. In Find- 579
ings of the Association for Computational Linguistics: 580
EMNLP 2024, pages 10115–10125, Miami, Florida, 581
USA. Association for Computational Linguistics. 582

Javier Ferrando, Gerard I. Gállego, Ioannis Tsiamas, 583
and Marta R. Costa-Jussà. 2023. Explaining how 584
transformers use context to build predictions. In 585
Proceedings of the 61st Annual Meeting of the As- 586
sociation for Computational Linguistics (Volume 1: 587
Long Papers), pages 5486–5513, Toronto, Canada. 588
Association for Computational Linguistics. 589

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and 590
Marta R. Costa-Jussà. 2024. A primer on the in- 591
ner workings of transformer-based language models. 592
Preprint, arXiv:2405.00208. 593

Charles Fillmore, Paul Kay, and Catherine O’Connor. 594
1988. Regularity and idiomaticity in grammatical 595
constructions: The case of let alone. Language, 596
64:501–538. 597

Gottlob Frege. 1892. Über Sinn und Bedeutung. 598
Zeitschrift für Philosophie und philosophische Kritik, 599
100:25–50. 600

Richard Futrell and Kyle Mahowald. 2025. How linguis- 601
tics learned to stop worrying and love the language 602
models. Preprint, arXiv:2501.17047. 603

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng 604
Qian, Miguel Ballesteros, and Roger Levy. 2019. 605
Neural language models as psycholinguistic subjects: 606
Representations of syntactic state. In Proceedings of 607
the 2019 Conference of the North American Chap- 608
ter of the Association for Computational Linguistics: 609
Human Language Technologies, Volume 1 (Long and 610
Short Papers), pages 32–42, Minneapolis, Minnesota. 611
Association for Computational Linguistics. 612

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold- 613
berg. 2022. Transformer feed-forward layers build 614
predictions by promoting concepts in the vocabulary 615
space. In Proceedings of the 2022 Conference on 616
Empirical Methods in Natural Language Process- 617
ing, pages 30–45, Abu Dhabi, United Arab Emirates. 618
Association for Computational Linguistics. 619

8

https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://doi.org/10.1162/COLI_a_00261
https://doi.org/10.1162/COLI_a_00261
https://doi.org/10.1162/COLI_a_00261
https://doi.org/10.1162/COLI_a_00261
https://doi.org/10.1162/COLI_a_00261
https://doi.org/10.23915/distill.00024
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
http://jmlr.org/papers/v24/23-0074.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://doi.org/10.18653/v1/2024.findings-emnlp.591
https://doi.org/10.18653/v1/2024.findings-emnlp.591
https://doi.org/10.18653/v1/2024.findings-emnlp.591
https://doi.org/10.18653/v1/2024.findings-emnlp.591
https://doi.org/10.18653/v1/2024.findings-emnlp.591
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2023.acl-long.301
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3


Adele Goldberg. 2005. Constructions at Work: The620
Nature of Generalization in Language. Oxford Uni-621
versity Press.622

Adele E. Goldberg. 1995. Construction grammar: a623
construction grammar approach to argument struc-624
ture. University of Chicago Press.625

H. P. Grice. 1989. Studies in the Way of Words. Harvard626
University Press.627

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,628
Tal Linzen, and Marco Baroni. 2018. Colorless green629
recurrent networks dream hierarchically. In Proceed-630
ings of the 2018 Conference of the North American631
Chapter of the Association for Computational Lin-632
guistics: Human Language Technologies, Volume633
1 (Long Papers), pages 1195–1205, New Orleans,634
Louisiana. Association for Computational Linguis-635
tics.636

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei637
Kheirkhah, Qinyi Sun, Will Hathaway, Neel Nanda,638
and Dimitris Bertsimas. 2024. Universal neu-639
rons in GPT2 language models. arXiv preprint640
arXiv:2401.12181.641

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine642
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.643
2023. Finding neurons in a haystack: Case studies644
with sparse probing. Preprint, arXiv:2305.01610.645

Randy Allen Harris. 1993. The Linguistics Wars. Ox-646
ford University Press.647

Felix Hill. 2024. Why transformers are obviously good648
models of language. Preprint, arXiv:2408.03855.649

G. E. Hinton, J. L. McClelland, and D. E. Rumel-650
hart. 1986. Distributed representations. In D. E.651
Rumelhart and J. L. McClelland, editors, Parallel Dis-652
tributed Processing: Explorations in the Microstruc-653
ture of Cognition. Volume 1: Foundations, pages654
77–109. MIT Press, Cambridge, MA.655

Phu Mon Htut, Jason Phang, Shikha Bordia, and656
Samuel R. Bowman. 2019. Do attention heads657
in bert track syntactic dependencies? Preprint,658
arXiv:1911.12246.659

Adam Kilgarriff. 1997. I don’t believe in word senses.660
Computers and the Humanities, 31(2):91–113.661

Robert Krzyzanowski, Connor Kissane, Arthur Conmy,662
and Neel Nanda. 2024. We inspected every head in663
gpt-2 small using saes so you don’t have to. Align-664
ment Forum.665

George Lakoff. 1987. Women, Fire, and Dangerous666
Things: What Categories Reveal about the Mind.667
CSLI, Chicago.668

Ronald W. Langacker. 1987. Foundations of Cogni-669
tive Grammar Volume I. Stanford University Press,670
Stanford, California.671

Yann LeCun, John Denker, and Sara Solla. 1989. Op- 672
timal brain damage. In Advances in Neural In- 673
formation Processing Systems, volume 2. Morgan- 674
Kaufmann. 675

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 676
2016. Assessing the ability of LSTMs to learn syntax- 677
sensitive dependencies. Transactions of the Associa- 678
tion for Computational Linguistics, 4:521–535. 679

Christopher D. Manning. 2015. Computational linguis- 680
tics and deep learning. Computational Linguistics, 681
41(4):701–707. 682

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024. 683
Circuit component reuse across tasks in transformer 684
language models. In The Twelfth International Con- 685
ference on Learning Representations. 686

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey 687
Dean. 2013. Efficient Estimation of Word Repre- 688
sentations in Vector Space. In Proceedings of ICLR 689
Workshop. 690

Marvin L Minsky and Seymour A Papert. 1988. Percep- 691
trons: expanded edition. 692

Richard Montague. 1974. English as a formal language. 693
In Richmond H. Thomason, editor, Formal philoso- 694
phy: Selected Papers of Richard Montague, chapter 6, 695
pages 188–221. Yale University Press, New Haven. 696

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess 697
Smith, and Jacob Steinhardt. 2023. Progress mea- 698
sures for grokking via mechanistic interpretability. In 699
The Eleventh International Conference on Learning 700
Representations. 701

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel 702
Goh, Michael Petrov, and Shan Carter. 2020. 703
Zoom in: An introduction to circuits. Distill. 704
Https://distill.pub/2020/circuits/zoom-in. 705

Barbara H. Partee, Alice Meulen, and Robert E. Wall. 706
1990. Mathematical Methods in Linguistics. Kluwer, 707
Dordrecht. 708

Carl Pollard and Ivan A Sag. 1994. Head-driven phrase 709
structure grammar. University of Chicago Press. 710

Alethea Power, Yuri Burda, Harri Edwards, Igor 711
Babuschkin, and Vedant Misra. 2022. Grokking: 712
Generalization beyond overfitting on small algorith- 713
mic datasets. CoRR, abs/2201.02177. 714

Alan Prince and Paul Smolensky. 1993. Optimality 715
theory: Constraint interaction in generative grammar. 716
Technical Report 2, Rutgers University Center for 717
Cognitive Science. 718

James Pustejovsky. 1995. The Generative Lexicon. The 719
MIT Press, Cambridge, MA (etc.). 720

Alessandro Raganato and Jörg Tiedemann. 2018. An 721
analysis of encoder representations in transformer- 722
based machine translation. In Proceedings of the 723
2018 EMNLP Workshop BlackboxNLP: Analyzing 724

9

https://doi.org/10.1093/acprof:oso/9780199268511.001.0001
https://doi.org/10.1093/acprof:oso/9780199268511.001.0001
https://doi.org/10.1093/acprof:oso/9780199268511.001.0001
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2408.03855
https://arxiv.org/abs/2408.03855
https://arxiv.org/abs/2408.03855
https://arxiv.org/abs/1911.12246
https://arxiv.org/abs/1911.12246
https://arxiv.org/abs/1911.12246
https://www.alignmentforum.org/posts/xmegeW5mqiBsvoaim/we-inspected-every-head-in-gpt-2-small-using-saes-so-you-don
https://www.alignmentforum.org/posts/xmegeW5mqiBsvoaim/we-inspected-every-head-in-gpt-2-small-using-saes-so-you-don
https://www.alignmentforum.org/posts/xmegeW5mqiBsvoaim/we-inspected-every-head-in-gpt-2-small-using-saes-so-you-don
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/COLI_a_00239
https://doi.org/10.1162/COLI_a_00239
https://doi.org/10.1162/COLI_a_00239
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://doi.org/10.23915/distill.00024.001
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431


and Interpreting Neural Networks for NLP, pages725
287–297, Brussels, Belgium. Association for Com-726
putational Linguistics.727

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.728
2021. A primer in bertology: What we know about729
how bert works. Transactions of the Association for730
Computational Linguistics, 8:842–866.731

David E Rumelhart, James L McClelland, PDP Re-732
search Group, et al. 1986. Parallel distributed pro-733
cessing, volume 1: Explorations in the microstructure734
of cognition: Foundations. The MIT press.735

Stuart Russell and Peter Norvig. 2020. Artificial Intelli-736
gence: A Modern Approach, 4th edition. Pearson.737

Dan Sperber and Deirdre Wilson. 1995. Relevance:738
Communication and Cognition, 2nd edition. Black-739
well Publishing.740

Vikrant Varma, Rohin Shah, Zachary Kenton, János741
Kramár, and Ramana Kumar. 2023. Explain-742
ing grokking through circuit efficiency. Preprint,743
arXiv:2309.02390.744

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob745
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz746
Kaiser, and Illia Polosukhin. 2017. Attention is all747
you need.748

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-749
nrich, and Ivan Titov. 2019. Analyzing multi-head750
self-attention: Specialized heads do the heavy lift-751
ing, the rest can be pruned. In Proceedings of the752
57th Annual Meeting of the Association for Computa-753
tional Linguistics, pages 5797–5808, Florence, Italy.754
Association for Computational Linguistics.755

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,756
Buck Shlegeris, and Jacob Steinhardt. 2023. In-757
terpretability in the wild: a circuit for indirect ob-758
ject identification in GPT-2 small. In ICLR - The759
Eleventh International Conference on Learning Rep-760
resentations.761

Alex Warstadt and Samuel R. Bowman. 2022. What762
artificial neural networks can tell us about human lan-763
guage acquisition. In Algebraic Structures in Natural764
Language, pages 17–60. CRC Press.765

Stephen Wechsler and Larisa Zlatić. 2003. The many766
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