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Abstract

Federated learning (FL) has demonstrated great potential in revolutionizing distributed ma-
chine learning, and tremendous efforts have been made to extend it beyond the original focus
on supervised learning. Among many directions, federated contextual bandits (FCB), a piv-
otal integration of FL and sequential decision-making, has garnered significant attention in
recent years. Despite substantial progress, existing FCB approaches have largely employed
their tailored FL components, often deviating from the canonical FL framework. Conse-
quently, even renowned algorithms like FedAvg remain under-utilized in FCB, let alone other
FL advancements. Motivated by this disconnection, this work takes one step towards build-
ing a tighter relationship between the canonical FL study and the investigations on FCB. In
particular, a novel FCB design, termed FedIGW, is proposed to leverage a regression-based
CB algorithm, i.e., inverse gap weighting. Compared with existing FCB approaches, the
proposed FedIGW design can better harness the entire spectrum of FL innovations, which
is concretely reflected as (1) flexible incorporation of (both existing and forthcoming) FL
protocols; (2) modularized plug-in of FL analyses in performance guarantees; (3) seam-
less integration of FL appendages (such as personalization, robustness, and privacy). We
substantiate these claims through rigorous theoretical analyses and empirical evaluations.

1 Introduction

Federated learning (FL), initially proposed by McMahan et al. (2017); Konečnỳ et al. (2016), has garnered
significant attention for its effectiveness in enabling distributed machine learning with heterogeneous agents
(Li et al., 2020a; Kairouz et al., 2021). As FL has gained popularity, numerous endeavors have sought to
extend its applicability beyond the original realm of supervised learning, e.g., to unsupervised and semi-
supervised learning (Zhang et al., 2020; van Berlo et al., 2020; Zhuang et al., 2022; Lubana et al., 2022).
Among these directions, the exploration of federated contextual bandits (FCB) has emerged as a particularly
compelling area of research, representing a pivotal fusion of FL and sequential decision-making, which has
found various practical applications in cognitive radio and recommendation systems, among others.
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Over the past several years, substantial progress has been made in the field of FCB (Wang et al., 2019;
Li & Wang, 2022b; Li et al., 2022; 2023; Dai et al., 2023), particularly those involving varying function
approximations (e.g., linear models, as discussed in Huang et al. (2021b); Dubey & Pentland (2020); Li &
Wang (2022a); He et al. (2022); Amani et al. (2022); Fan et al. (2023)). Despite their different focuses, it
can be observed that these existing designs all employ certain FL components to enable the participating
agents to collaboratively update their CB parameterization via locally collected interaction data.

However, these FL components adopted in the previous FCB works are often over-simplified. In particular,
the canonical FL framework (traced back to the celebrated FedAvg algorithm (McMahan et al., 2017))
typically takes an optimization view of incorporating the local data through multi-round aggregation of
model parameters (such as gradients). In contrast, the FL protocol in many existing FCB works is one-shot
aggregation of some compressed local data per epoch (e.g., combining local estimates and local covariance
matrices in the study of federated linear bandits). Admittedly, for some simple cases, such straightforward
aggregation is sufficient and allows problem-specific finetuning for tight performance bounds. However,
such a deviation from the canonical FL studies prohibits existing FCB designs from leveraging the vast FL
advances, and thus largely limits the connection between FL and FCB.

Motivated by this disconnection, this work, instead of pursuing tighter performance bounds, aims to utilize
the canonical FL framework as the FL component of FCB to harness the full power of FL studies in FCB. We
propose FedIGW – an exploring design that demonstrates the ability to leverage a comprehensive array of
FL advancements, encompassing canonical algorithmic approaches (like FedAvg (McMahan et al., 2017) and
SCAFFOLD (Karimireddy et al., 2020)), rigorous convergence analyses, and critical appendages (such as
personalization, robustness, and privacy). To the best of our knowledge, this is the first paper that explicitly
focuses on the close connection between FL and FCB, which we hope can inspire a new line of FCB studies.
The distinctive contributions of FedIGW can be succinctly summarized as follows:

• Flexible incorporation of FL protocols. In the FCB setting with stochastic contexts and a realizable
reward function, FedIGW employs the inverse gap weighting (IGW) algorithm for CB while versatile FL
protocols can be incorporated (e.g., FedAvg and SCAFFOLD), provided they can solve a standard FL
problem. These two parts iterate according to designed epochs: FL, drawing from previously gathered
interaction data, supplies estimated reward functions for the forthcoming IGW interactions. A pivotal
advantage is that the flexible FL component in FedIGW provides substantial adaptability, meaning that
existing and future FL protocols can be seamlessly leveraged. Experimental results using real-world data
with several different FL choices corroborate the practicability and flexibility of FedIGW.

• Modularized plug-in of FL analyses. A general theoretical analysis of FedIGW is developed to
demonstrate its provably efficient performance. The influence of the adopted FL protocol is captured through
its optimization error, delineating the excess risk of the learned reward function. Notably, any theoretical
breakthroughs in FL convergence rates can be immediately integrated into the obtained analysis framework
and supply the corresponding guarantees of FedIGW. Concretized results are further provided through the
utilization of FedAvg and SCAFFOLD in FedIGW.

• Seamless integration of FL appendages. Beyond its inherent generality and efficiency, FedIGW
exhibits exceptional extensibility. Various appendages from FL studies can be flexibly integrated without
necessitating alterations to the CB component. We explore the extension of FedIGW to personalized learning
and the incorporation of privacy and robustness guarantees. Similar investigations in prior FCB works
would entail substantial algorithmic modifications, while FedIGW can effortlessly leverage corresponding FL
advancements to obtain these appealing attributes.

Key related works. Most of the previous studies on FCB are discussed in Sec. 2.2, and more comprehen-
sively reviewed in Appendix B. We note that these FCB designs with tailored FL protocols in previous works
sometimes can achieve near-optimal performance bounds in specific settings, while our proposed FedIGW
is more practical and extendable. We believe these two types of designs are valuable supplements to each
other. A high-level comparison between the proposed FedIGW and existing FCB designs is listed in Table 1.

Here we particularly note a recent paper (Agarwal et al., 2023) that is closely related to this work. It also
proposes to decouple the FL components in FCB by leveraging regression-based CB designs. However, Agar-
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Table 1: A comparison between existing FCB designs and the proposed FedIGW.

Existing FCB designs FedIGW

FL components Develop tailored FL protocols Leverage versatile FL protocols,
such as FedAvg and SCAFFOLD

Theoretical guarantees Analyse tailored FL protocols
for the focused instance

Plugin FL convergence rates
in a modularized fashion

Extensions (e.g., personalization,
robustness, privacy) Require further tailored protocols Integrate corresponding

FL advances directly

wal et al. (2023) mainly focuses on empirical investigations, while our work offers valuable complementary
contributions by conducting thorough theoretical analyses (see Sec. 4), building a modularized connection
between theoretical studies in FL and FCB. Moreover, experiments reported in Sec. 5 provide empirical
results on two datasets that are different than Agarwal et al. (2023), offering additional practical insights.

2 Federated Contextual Bandits

This section introduces federated contextual bandits (FCB). A concise formulation is first provided. Then,
the existing works are re-visited with a focus on revealing the disconnection between FL and FCB.

2.1 Problem Formulation

Agents. In the FCB setting, a total of M agents simultaneously participate in solving a contextual bandit
(CB) problem. For generality, we consider an asynchronous system: each of the M agents has a clock
indicating her time step, which is denoted as tm = 1, 2, · · · for agent m. For convenience, we also introduce
a global time step t. Denote by tm(t) the agent m’s local time step when the global time is t, and t(tm, m)
the global time step when the agent m’s local time is tm.

Agent m at each of her local time step tm = 1, 2, · · · observes a context xm,tm , selects an action am,tm from
an action set Am,tm

, and then receives the associated reward rm,tm
(am,tm

) (possibly depends on both xm,tm

and am,tm
) as in the standard CB (Lattimore & Szepesvári, 2020). Each agent’s goal is to collect as many

rewards as possible given a time horizon.

Federation. While many efficient single-agent (centralized) algorithms have been proposed for CB (Latti-
more & Szepesvári, 2020), FCB targets building a federation among agents to perform collaborative learning
such that the performance can be improved from learning independently. Especially, common interests
shared among agents motivate their collaboration. Thus, FCB studies typically assume that the agents’
environments are either fully (Wang et al., 2019; Huang et al., 2021b; Dubey & Pentland, 2020; He et al.,
2022; Amani et al., 2022; Li et al., 2022; Li & Wang, 2022b; Dai et al., 2023) or partially (Li & Wang, 2022a;
Agarwal et al., 2020) shared in the global federation.

In federated learning, the following two modes are commonly considered: (1) There exists a central server
in the system, and the agents can share information with the server, which can then broadcast aggregated
information back to the agents; or (2) There exists a communication graph between agents, who can share
information with their neighbors on the graph. In the later discussions, we mainly consider the first scenario,
i.e., collaborating through the server, which is also the main focus in FL, while both modes can be effectively
encompassed in the proposed FedIGW design.

2.2 The Current Disconnection Between FCB and FL

The exploration of FCB traces its origins to distributed multi-armed bandits (Wang et al., 2019). Since
then, FCB research has predominantly focused on enhancing performance in broader problem domains,
encompassing various types of reward functions, such as linear (Wang et al., 2019; Huang et al., 2021b;
Dubey & Pentland, 2020), kernelized (Li et al., 2022; 2023), generalized linear (Li & Wang, 2022b) and
neural (Dai et al., 2023) (see Appendix B for a comprehensive review).
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Table 2: A compact summary of investigations on FCB with their adopted FL and CB components;
a more comprehensive review is in Appendix B.

Reference Setting FL CB
Globally Shared Full Model (See Section 3)

Wang et al. (2019) Tabular Mean Averaging AE
Wang et al. (2019); Huang et al. (2021b) Linear Linear Regression AE

Li & Wang (2022a); He et al. (2022) Linear Ridge Regression UCB
Li & Wang (2022b) Gen. Linear Distributed AGD UCB

Li et al. (2022; 2023) Kernel Nyström Approximation UCB
Dai et al. (2023) Neural NTK Approximation UCB

FedIGW (this work) Realizable Flexible (e.g., FedAvg) IGW
Globally Shared Partial Model (see Section 6.1)

Li & Wang (2022a) Linear Alternating Minimization UCB
Agarwal et al. (2020) Realizable FedRes.SGD ε-greedy
FedIGW (this work) Realizable Flexible (e.g., LSGD-PFL) IGW

AE: arm elimination; Gen. Linear: generalized linear model; AGD: accelerated gradient descent

Figure 1: The FCB design principle of
periodically alternating between the employed

CB and FL components.

Upon a holistic review of these works, it becomes appar-
ent that each of them employs a particular FL protocol to
update the parameters required by CB. To be more spe-
cific, a periodically alternating design between CB and
FL is commonly adopted as reflected in Fig. 1: CB (col-
lects one epoch of data in parallel) → FL (proceeds with
CB data together and outputs CB’s parameterization)→
updated CB (collects another epoch of data in parallel)
→ · · · . A compact summary, including the components of
FL and CB employed in previous FCB works, is presented
in Table 2.

However, with a deeper look into the existing works, it is evident that the adopted FL components are not
well investigated and even have some mismatches from canonical FL designs (McMahan et al., 2017; Konečnỳ
et al., 2016). For example, in federated linear bandits (Wang et al., 2019; Dubey & Pentland, 2020; Li &
Wang, 2022a; He et al., 2022; Amani et al., 2022; Fan et al., 2023) and its extensions (Li et al., 2022; 2023;
Li & Wang, 2022b; Dai et al., 2023), the adopted FL protocols typically involve the direct transmission of
local reward aggregates and covariance matrices, constituting a one-shot aggregation of compressed local data
per epoch (albeit with subtle variations, such as synchronous or asynchronous communications); a concrete
example is given in Appendix A.2, Due to both efficiency and privacy concerns, such choices are rare (and
even undesirable) in canonical FL studies, where agents typically communicate and aggregate their model
parameters (e.g., gradients) over multiple rounds, e.g., the renowned FedAvg algorithm (McMahan et al.,
2017) (see details in Appendix A.2).

We believe that this disparity represents a significant drawback in current FCB studies, as it limits the
connection between FL and FCB to merely philosophical, i.e., benefiting individual learning by collaborating
through a federation, while vast FL studies cannot be leveraged to benefit FCB as illustrated in Fig. 2. Driven
by this gap, this work aims to take one step towards establishing a closer relationship between FCB and FL
through the introduction of an exploring design, FedIGW, that is detailed in the subsequent sections. This
approach provides the flexibility to integrate any FL protocol following the standard FL framework, which
allows us to effectively harness the progress made in FL studies, encompassing canonical algorithmic designs,
convergence analyses, and useful appendages.

3 FedIGW: Flexible Incorporation of FL Protocols

In this section, we present FedIGW, a novel FCB algorithm proposed in this work. Before delving into
the algorithmic details, a more concrete system model with stochastic contexts and a realizable reward
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Figure 2: Comparison between the FL components in existing FCB approaches and the FedIGW design
proposed in this work, where the former requires tailored FL protocols while the latter can flexibly leverage
both existing and forthcoming protocols in canonical FL studies. Additional comparisons regarding the FL

components can be found in Appendix A.2.

function is introduced. Subsequently, we outline the specifics of FedIGW, emphasizing its principal strength
in seamlessly integrating canonical FL protocols.

3.1 System Model

Built on the formulation in Sec. 2, for each agent m ∈ [M ], denote Xm a context space, and Am a finite
set of Km actions. At each time step tm of each agent m, the environment samples a context xm,tm

∈ Xm

and a context-dependent reward vector rm,tm ∈ [0, 1]Am according to a fixed but unknown distribution
Dm. The agent m, as in Sec. 2, then observes the context xm,tm , picks an action am,tm ∈ Am, and
receives the reward rm,tm

(am,tm
). The expected reward of playing action am given context xm is denoted as

µm(xm, am) := E[rm,tm
(am)|xm,tm

= xm].

With no prior information about the rewards, the agents gradually learn their optimal policies, denoted by
π∗

m(xm) := arg maxam∈Am
µm(xm, am) for agent m with context xm. Following a standard notation (Wang

et al., 2019; Huang et al., 2021b; Dubey & Pentland, 2020; Li & Wang, 2022a; He et al., 2022; Amani et al.,
2022; Li & Wang, 2022b; Li et al., 2022; 2023; Dai et al., 2023), the overall regret of M agents in this
environment is

Reg(T ) := E

 ∑
m∈[M ]

∑
tm∈[Tm]

[
µm(xm,tm

, π∗
m(xm,tm

))− µm(xm,tm
, am,tm

)
] ,

where Tm = tm(T ) is the effective time horizon for agent m given a global horizon T and the expectation
is taken over the randomness in contexts and rewards and the agents’ algorithms. This overall regret can
be interpreted as the sum of each agent m’s individual regret with respect to (w.r.t.) her optimal strategy
π∗

m. Hence, it is ideal to be sub-linear w.r.t. the number of agents M , which indicates the agents’ learning
processes are accelerated on average due to federation.

Realizablilty. Despite not knowing the true expected reward functions, we consider the scenario that
they are the same across agents and are within a function class F , to which the agents have access. This
assumption, rigorously stated in the following, is often referred to as the realizability assumption.
Assumption 3.1 (Realizability). There exists f∗ in F such that f∗(xm, am) = µm(xm, am) for all m ∈ [M ],
xm ∈ Xm and am ∈ Am.

This assumption is a natural extension from its commonly-adopted single-agent version (Agarwal et al.,
2012; Simchi-Levi & Xu, 2022; Xu & Zeevi, 2020; Sen et al., 2021) to a federated one. Note that it does not
imply that the agents’ environments are the same since they may face different contexts Xm, arms Am, and
distributions DXm

m , where DXm
m is the marginal distribution of the joint distribution Dm on the context space

Xm. We study a general FCB setting only with this assumption, which incorporates many previously studied
FCB scenarios as special cases. For example, the federated linear bandits (Huang et al., 2021b; Dubey &
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Algorithm 1 FedIGW (Agent m)

Input: epoch number l = 1, reward function f̂ l
m(·, ·) = 0, local dataset Sl

m = ∅
1: for time step tm = 1, 2, · · · do
2: observe context xm,tm ▷ CB: IGW
3: compute â∗

m = arg maxam∈Am
f̂ l(am, xm,tm) and action selection distribution

pl
m(am|xm,tm)←

1/
(

Km + γl
(

f̂ l(â∗
m, xm,tm

)− f̂ l(am, xm,tm
)
))

if am ̸= â∗
m

1−
∑

a′
m ̸=â∗

m
pl

m(a′
m|xm,tm

) if am = â∗
m

4: select action am,tm
∼ pl

m(·|xm,tm
); observe reward rm,tm

(am,tm
)

5: update the local dataset Sl
m ← Sl

m ∪ {(xm,tm
, am,tm

, rm,tm
(am,tm

))}
6: if tm = tm(τ l) then ▷ FL
7: perform FL f̂ l+1 ← FLroutine(Sl

m)
8: update dataset Sl+1

m ← ∅; update epoch l← l + 1
9: end if

10: end for

Pentland, 2020; Li & Wang, 2022a; He et al., 2022; Amani et al., 2022) are with a linear function class F .
Furthermore, Assumption 3.1 aligns with considerations in the canonical FL studies, where all clients learn
one common model (i.e., f∗) although their data distributions can be different (i.e., varying distribution
Dm). Additional studies on personalization can be found in Sec. 6.1.

3.2 Algorithm Design

The FedIGW algorithm proceeds in epochs, which are separated at time slots τ1, τ2, · · · w.r.t. the global
time step t, i.e., the l-th epoch starts from t = τ l−1 + 1 and ends at t = τ l. The overall number of epochs
is denoted as l(T ). In each epoch l, we describe the FL and CB components as follows, while emphasizing
that the FL component is decoupled and follows the standard FL framework.

CB: inverse gap weighting (IGW). For CB, we use inverse gap weighting (Abe & Long, 1999), which
has received growing interest in the single-agent setting recently (Foster & Rakhlin, 2020; Simchi-Levi & Xu,
2022; Krishnamurthy et al., 2021; Ghosh et al., 2021) but has not been fully investigated in the federated
setting. At any time step in epoch l, when encountering the context xm, agent m first identifies the optimal
arm by â∗

m = arg maxam∈Am
f̂ l(xm, am) from an estimated reward function f̂ l (provided by the to-be-

discussed FL component). Then, she randomly selects her action am according to the following distribution,
which is inversely proportional to each action’s estimated reward gap from the identified optimal action â∗

m:

pl
m(am|xm)←

1/
(

Km + γl
(

f̂ l(â∗
m, xm)− f̂ l(am, xm)

))
if am ̸= â∗

m

1−
∑

a′
m ̸=â∗

m
pl

m(a′
m|xm) if am = â∗

m

,

where γl is the learning rate in epoch l that controls the exploration-exploitation tradeoff.

Besides being a valuable supplement to the currently dominating UCB-based studies in FCB, the main merit
of leveraging IGW as the CB component is that it only requires an estimated reward function instead of
other complicated data analytics, e.g., upper confidence bounds.

FL: flexible choices. By IGW, each agent m performs local stochastic arm sampling and collects a set
of data samples Sl

m := {(xm,tm , am,tm , rm,tm : tm ∈ [tm(τ l−1) + 1, tm(τ l)])} in epoch l. To enhance the
performance of IGW in the subsequent epoch l + 1, an improved estimate f̂ l+1 based on all agents’ data is
desired. This objective aligns precisely with the aim of canonical FL studies, which aggregates local data for
better global estimates (McMahan et al., 2017; Konečnỳ et al., 2016). Thus, the agents can target solving
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the following standard FL problem:

min
f∈F
L̂(f ;Sl

[M ]) :=
∑

m∈[M ]

(nm/n) · L̂m(f ;Sl
m), (1)

where nm := |Sl
m| is the number of samples in dataset Sl

m, n :=
∑

m∈[M ] nm is the total number of samples,
and L̂m(f ;Sl

m) := (1/nm) ·
∑

i∈[nm] ℓm(f(xi
m, ai

m); ri
m) is the empirical local loss of agent m with ℓm(·; ·) :

R2 → R as the loss function and (xi
m, ai

m, ri
m) as the i-th sample in Sl

m.

As Eqn. (1) exactly follows the standard formulation of FL, the agents and the server can employ any FL
protocol to solve this optimization, such as FedAvg (McMahan et al., 2017), SCAFFOLD (Karimireddy
et al., 2020) and FedProx (Li et al., 2020a). These wildly-adopted FL protocols typically perform iterative
communications of local model parameters (e.g., gradients), instead of one-shot aggregations of compressed
local data in previous FCB studies. To highlight the remarkable flexibility, we denote the adopted FL
protocol as FLroutine(·). With datasets Sl

[M ] := {Sl
m : m ∈ [M ]}, the output function of this FL process,

denoted as f̂ l+1 ← FLroutine(Sl
[M ]), is used as the estimated reward function for IGW sampling in the next

epoch l + 1.

The FedIGW algorithm for agent m is summarized in Alg. 1. The key, as aforementioned, is that the
component of FL in FedIGW is highly flexible as it only requires an estimated reward function for later IGW
interactions. In particular, any existing or forthcoming FL protocol following the standard FL framework in
Eqn. (1) can be leveraged as the FLroutine(·) in FedIGW.
Remark 3.2. The main underlying reason for selecting IGW as the CB component is that it is a regression-
based CB algorithm, i.e., IGW only requires a learned reward function f̂ l for the CB interaction in one
epoch l. The canonical FL framework with an optimization perspective is exactly targeted at learning such a
function via collaboratively solving Eqn. (1), which thus can be integrated with IGW. In contrast, previous
FCB designs are predominated by UCB-based CB components as reflected in Table 2. However, obtaining
the upper confidence bounds (UCBs) estimates for an unknown reward function is not usually the target
of the canonical FL framework. Thus, tailored FL components are developed to fulfill this purpose, e.g.,
sharing covariance matrices to obtain UCBs for linear reward functions. We note that there are also other
regression-based CB algorithms, e.g., greedy and softmax. IGW is adopted here mainly due to its theoretical
superiority demonstrated in Sec. 4, while its strong empirical performances have also been observed in Sec. 5.

4 Theoretical Guarantees: Modularized Plug-in of FL Analyses

In this section, we theoretically analyze the performance of the FedIGW algorithm, where the impact of the
adopted FL choice is modularized as a plug-in component of its optimization error.

4.1 A General Guarantee

Denoting El
m := tm(τ l) − tm(τ l−1) as the length of epoch l for agent m, El

[M ] := {El
m : m ∈ [M ]} as

the epoch length set, c := minm∈[M ],l∈[2,l(T )] El
m/El−1

m , c := maxm∈[M ],l∈[2,l(T )] El
m/El−1

m and c := c/c, the
following global regret guarantee can be established.

Theorem 4.1. Using a learning rate γl = O
(√∑

m∈[M ] El−1
m Km/(

∑
m∈[M ] El−1

m E(El−1
[M ]))

)
in epoch l,

denoting K̄l :=
∑

m∈[M ] El
mKm/

∑
m∈[M ] El

m, the regret of FedIGW can be bounded as

Reg(T ) = O

 ∑
m∈[M ]

E1
m +

∑
l∈[2,l(T )]

c
5
2

√
K̄lE(El−1

[M ])
∑

m∈[M ]

El
m

 . (2)

Here E(El
[M ]) (abbreviated from E(F ; El

[M ])) denotes the excess risk of the output from the adopted
FLroutine(Sl

[M ]) using the datasets Sl
[M ], whose formal definition is deferred to Definition C.1.
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It can be observed that in Eqn. (2), the first term bounds the regret in the first epoch. The obtained bounds
for the regrets incurred within each later epoch (i.e., the term inside the sum over l in the second epoch)
can be interpreted as the epoch length times the expected per-step suboptimality, which then relates to the
estimation quality of f̂ l and thus E(El−1

[M ]) as f̂ l is learned with the interaction data collected from epoch
l − 1 as in the design of FedIGW shown in Alg. 1.

4.2 Some Concretized Discussions

Theorem 4.1 is notably general in the sense that a corresponding regret can be established as long as an upper
bound on the excess risk E(El−1

[M ]) can be obtained for a certain class of reward functions and the adopted
FL protocol. In the following, we provide several more concrete illustrations, and especially, a modularized
framework to leverage FL convergence analyses. To ease the notation, we discuss synchronous systems with
a shared number of arms in the following, i.e., tm = t, ∀m ∈ [M ], and Km = K,∀m ∈ [M ], while noting
similar results can be easily obtained for general systems. With this simplification, we can unify all El

m as
El and K̄l as K.

To initiate the concretized discussions, we start with considering a finite function class F , i.e., |F| < ∞,
which can be extended to a function class F with a finite covering number of the metric space (F , l∞).
In particular, the following corollary can be established via establishing E(n[M ]) = O(log(|F|n)/n) in the
considered case as in Lemma D.2.
Corollary 4.2 (A Finite Function Class). If |F| < ∞ and the adopted FL protocol provides an ex-
act minimizer for Eqn. (1) with quadratic losses, with τ l = 2l, FedIGW incurs a regret of Reg(T ) =
O(
√

KMT log(|F|MT )) and a total O(log(T )) calls of the adopted FL protocol.

We note that the obtained regret approaches the optimal regret Ω(
√

KMT log(|F|)/ log(K)) of a single agent
playing for MT rounds (Agarwal et al., 2012) up to logarithmic factors, which demonstrates the statistical
efficiency of the proposed FedIGW. Moreover, the total O(log(T )) times call of the FL protocol indicates
that only a limited number of agents-server information-sharing are required, which further illustrates its
communication efficiency.

As the finite function class is not often practically useful, we then focus on the canonical FL setting that
each f ∈ F is parameterized by a d-dimensional parameter ω ∈ Rd as fω, e.g., a neural network. To
facilitate discussions, we abbreviate S := S[M ] while denoting ω∗

S := arg minω L̂(fω;S) as the empirical
optimal parameter given a fixed dataset S and ω̂S as the output of the adopted FL protocol. We further
assume f∗ is parameterized by the true model parameter ω∗, and for a fixed ω, define L(fω) := ES [L̂(fω;S)]
as its expected loss w.r.t. the data distribution.

Following standard learning-theoretic analyses, the key task excess risk E(F ; n[M ]) can be bounded via a
combination of errors stemming from optimization and generalization.
Lemma 4.3. If the loss function lm(·; ·) is µf -strongly convex in its first coordinate for all m ∈ [M ], it holds
that E(F ; n[M ]) ≤ 2

(
εopt(F ; n[M ]) + εgen(F ; n[M ])

)
/µf , where εgen(F ; n[M ]) := ES,ξ[L(f

ω̂S
)−L̂(f

ω̂S
;S)] and

εopt(F ; n[M ]) := ES,ξ[L̂(f
ω̂S

;S)− L̂(fω∗
S

;S)].

For the generalization error term εgen(F ; n[M ]), we can utilize standard results in learning theory (e.g.,
uniform convergence). For the sake of simplicity, we here leverage a distributional-independent upper bound
on the Rademacher complexity, denoted as R(F ; n[M ]) (rigorously defined in Eqn. (4)), which provides that
εgen(F ; n[M ]) ≤ 2R(F ; n[M ]) using the classical uniform convergence result (see Lemma D.5). We do not
further particularize this upper bound while noting it can be specified following standard procedures (Mohri
et al., 2018; Bartlett et al., 2005).

On the other hand, the optimization error term εopt(F ; n[M ]) is exactly the standard convergence error in
the analysis of FL protocols. Thus, once any theoretical breakthrough on the convergence of one FL protocol
is reported, the obtained result can be immediately incorporated into our analysis framework to characterize
the performance of FedIGW using that FL protocol. In particular, the following corollary is established to
demonstrate the modularized plug-in of analyses of different FL protocols, where FedAvg (McMahan et al.,
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2017) and SCAFFOLD (Karimireddy et al., 2020) are adopted as further specific instances. To the best
of our knowledge, this is the first time that convergence analyses of FL protocols can directly benefit the
analysis of FCB designs.
Corollary 4.4 (Modularized Plug-in of FL Analyses; A Simplified Version of Corollary D.6). Under the
condition of Lemma 4.3, the regret of FedIGW can be bounded as

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
K
(
Rl−1 + εl

opt)
)

/µf MEl

 ,

where Rl := R(F ; {El : m ∈ [M ]}) and using ρl rounds of communications (i.e., global aggregations) and κl

rounds of local updates in epoch l, under a few other standard conditions,

• with FedAvg as the adopted FLroutine(·), it holds that εl
opt ≤ Õ((ρlκlM)−1 + (ρl)−2);

• with SCAFFOLD as the adopted FLroutine(·), it holds that εl
opt ≤ Õ((ρlκlM)−1).

From this corollary, we can see that FedIGW enables a general analysis framework to seamlessly leverage
theoretical advances in FL, in particular, convergence analyses. Thus, besides FedAvg and SCAFFOLD,
when switching the FL component in FedIGW to FedProx (Li et al., 2020a), FedOPT (Reddi et al., 2020),
and other existing or forthcoming FL designs, we can effortlessly plug in their optimization errors to obtain
corresponding performance guarantees of FedIGW. This convenience highlights the theoretically intimate
relationship between FedIGW and canonical FL studies.

Moreover, Corollary 4.4 can also guide how to perform the adopted FL protocol. As the generalization error
is an inherent property that cannot be bypassed by better optimization results, there is no need to further
proceed with the iterative FL process as long as the optimization error does not dominate the generalization
error, which is reflected in a more particularized corollary in Corollary D.7.
Remark 4.5 (A Linear Reward Function Class). As a more specified instance, we consider linear reward
functions as in federated linear bandits, i.e., fω(·) = ⟨ω, ϕ(·)⟩ and f∗(·) = ⟨ω∗, ϕ(·)⟩, where ϕ(·) ∈ Rd is a
known feature mapping. In this case, the FL problem can be formulated as a standard ridge regression with
ℓm(fω(xm, am); rm) := (⟨ω, ϕ(xm, am)⟩ − rm)2 + λ∥ω∥2

2. With a properly chosen regularization parameter
λ = O(1/n), the generalization error can be bounded as εgen(n[M ]) = Õ(d/n) (Hsu et al., 2012), while
a same-order optimization error can be achieved by many efficient distributed algorithms (Nesterov, 2003)
with roughly O(

√
n log(n/d)) rounds of communications. Then, with an exponentially growing epoch length,

FedIGW can have a regret of Õ(
√

dMKT ) with at most Õ(
√

MT ) rounds of communications as illustrated
in Appendix D.3, both of which are efficient with sublinear dependencies on the number of agents M and
time horizon T . It is worth noting that during this process, no raw or compressed data is communicated
– only processed model parameters (e.g., gradients) are exchanged. This aligns with FL studies while is
distinctive from previous designs for federated linear bandits (Dubey & Pentland, 2020; Li & Wang, 2022a;
He et al., 2022; Fan et al., 2023), which often communicate covariance matrices or aggregated rewards.
Remark 4.6 (Beyond Linear Reward Functions). This modularized framework can be further adopted in
analyzing other reward functions as long as the corresponding excess risks can be provided. For example, the
optimization errors of FedAvg (and its variants) with neural networks as the function class can be obtained
from many recent works, including Theorem 4.1 in Huang et al. (2021a) and Theorem 1 in Song et al. (2023).
The corresponding generalization error can also be established following existing results, e.g., Theorem 4.3
in Huang et al. (2021a) and Chapter 11 in Zhang (2023). Combining these two parts of analyses can lead to
bounds on regret and communication rounds that are sublinear in M and T using the analysis framework.

5 Experimental Results

In this section, we report the empirical performances of FedIGW on two distinct real-world multi-label
classification datasets, Bibtex (Katakis et al., 2008) and Delicious (Tsoumakas et al., 2008), which are also
used in other practical CB investigations such as Cortes (2018). The aim of CB in these experiments is
considered to be recommending one of the correct labels at any given time. Especially, in the experiments,
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Figure 3: The averaged reward collected by each agent via FedIGW (using different FL protocols), the
state-of-the-art FN-UCB, and two other naive baselines (i.e., greedy and softmax using FedAvg) with

M = 10 participating agents on Bibtex (left) and Delicious (right) datasets.

at each time step, a context is randomly sampled from the dataset while the true labels are concealed from
the agents. The agents then determine which label to select (i.e., pull one arm) with their CB algorithms;
thus, the number of arms is the number of possible labels in each dataset. Upon pulling one arm, a reward of
1 is granted if the pulled arm corresponds to one of the true labels, while a reward of 0 is granted otherwise.
From Table 3, we can observe that these tasks are challenging given their high-dimensional contexts (> 500)
and large numbers of arms (> 150). Additional experimental details and results are discussed in Appendix G,
while the codes for the experiments can be found at https://github.com/ShenGroup/FedIGW.

Table 3: The context dimension and number of arms
in Bibtex and Delicious

Task Context dimension Number of arms
Bibtex 1835 159

Delicious 500 983

Varying FL choices. The reported Fig. 3 first
compares the averaged rewards collected by each
agent with FedIGW using different FL choices, in-
cluding FedAvg (McMahan et al., 2017), SCAF-
FOLD (Karimireddy et al., 2020), and FedProx (Li
et al., 2020a). This is the first time, to the best of
our knowledge, that FedAvg is practically integrated
with FCB experiments, let alone other FL protocols, which largely demonstrate the generality and flexibility
of FedIGW. It can be observed that using the more developed SCAFFOLD and FedProx provides improved
performance (i.e., collects more rewards) compared with the basic FedAvg, which credits to that FedIGW
can flexibly leverage algorithmic advances in FL protocols.

Comparison with baselines. To further evaluate the performance of FedIGW, experiments are conducted
to compare it with several baselines as described in the following.

• FN-UCB (Dai et al., 2023). The federated neural-upper confidence bound (FN-UCB) design proposed
in Dai et al. (2023) is adopted as a strong FCB baseline due to its capability of leveraging neural networks
to approximate rewards and the previously reported good performance. Instead of being compatible with
canonical FL protocols, FN-UCB requires a specifically developed communication design, where local
neural tangent features are transmitted to the server for global aggregation in a one-shot fashion.

• Greedy and softmax. Besides IGW, two other regression-based CB algorithms, greedy selection and
softmax selection, are also adopted for empirical validations using FedAvg to collaboratively learn the
reward function. In particular, the action is selected as am,tm

← arg maxam∈Am
f̂ l(am, xm,tm

) for greedy
and am,tm

∼ softmax(f̂ l(·, xm,tm
)/ζ) for softmax, where ζ is a tempurate parameter.

In Fig. 3, all methods leverage the same-size MLPs to approximate reward functions for fair comparisons.
It can be observed that after convergence, FedIGW (even with the basic FedAvg) significantly outperforms
FN-UCB with about twice the rewards collected by each agent on average, demonstrating its remarkable
superiority. Also, under the FL protocol (i.e., FedAvg), FedIGW exhibits much stronger performance than
greedy and softmax, further illustrating the advantage of using IGW as the CB algorithm.
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6 Flexible Extensions: Seamless Integration of FL Appendages

Another notable advantage offered by the flexible FL choices is to bring appealing appendages from FL
studies to directly benefit FCB. In the following, we discuss how to leverage techniques of personalization,
robustness, and privacy from FL in FedIGW while presenting intriguing avenues for future exploration.

6.1 Personalized Learning

In many cases, each agent’s true reward function is not globally realizable as in Assumption 3.1, but instead
only locally realizable in her own function class as in the following assumption.
Assumption 6.1 (Local Realizability). For each m ∈ [M ], there exists f∗

m in Fm such that f∗
m(xm, am) =

µm(xm, am) for all xm ∈ Xm and am ∈ Am

Following discussions in Sec. 4.2, we consider that each function f in Fm is parameterized by a dm-dimensional
parameter ωm ∈ Rdm , which is denoted as fωm . Correspondingly, the true reward function f∗

m is parameter-
ized by ω∗

m and denoted as fω∗
m

. To still motivate the collaboration and motivated by popular personalized
FL studies (Hanzely et al., 2021; Agarwal et al., 2020), we study a middle case where only partial parameters
are globally shared among {fω∗

m
: m ∈ [M ]} while other parameters are potentially heterogeneous among

agents, which can be formulated via the following assumption.
Assumption 6.2. For all m ∈ [M ], the true parameter ω∗

m can be decomposed as [ωα,∗, ωβ,∗
m ] with ωα,∗ ∈ Rdα

and ωβ,∗
m ∈ Rdβ

m , where dα ≤ minm∈[M ] dm and dβ
m := dm − dα. In other words, there are dα-dimensional

globally shared parameters among {ω∗
m : m ∈ [M ]}.

A similar setting is studied in Li & Wang (2022a) for linear reward functions and in Agarwal et al. (2020)
for realizable cases with a naive ε-greedy design for CB. For FedIGW, we can directly adopt a personalized
FL protocol (such as LSGD-PFL in Hanzely et al. (2021)) to solve a standard personalized FL problem:

min
ωα,ωβ

[M]

L̂(fωα,ωβ

[M]
;S[M ]) :=

∑
m∈[M ]

(nm/n) · L̂m(fωα,ωβ
m

;Sm).

With outputs ω̂α and ω̂β
[M ], the corresponding M functions {f

ω̂α,ω̂β
m

: m ∈ [M ]} (instead of the single one f̂

in Sec. 3.2) can be used by the M agents, separately, for their CB interactions following the IGW algorithm.
Concrete results and more details can be found in Appendix E.1.
Remark 6.3 (A Linear Reward Function Class). Similar to Remark 4.5, we also consider linear reward
functions for the personalized setting with f∗

m(·) := ⟨ω∗
m, ϕ(·)⟩ and {ω∗

m : m ∈ [M ]} satisfying Assumption 6.2.
Then, FedIGW still can achieve a regret of Õ(

√
d̃MKT ) with Õ(

√
MT ) rounds of communications, where

d̃ := dα +
∑

m∈[M ] dβ
m; see more details in Appendix E.1.1.

6.2 Robustness, Privacy, and Beyond

Another important direction in FCB studies is to improve robustness against malicious attacks and pro-
vide privacy guarantees for local agents. A few progresses have been achieved in attaining these desirable
attributes for FCB but they typically require substantial modifications to their base FCB designs, such as
robustness in Demirel et al. (2022); Jadbabaie et al. (2022); Mitra et al. (2022) and privacy guarantees in
Dubey & Pentland (2020); Zhou & Chowdhury (2023); Li & Song (2022); Huang et al. (2023).

With FedIGW, it is more convenient to achieve these attributes as suitable techniques from FL studies can
be seamlessly applied. Especially, robustness and privacy protection have been extensively studied for FL
in Yin et al. (2018); Pillutla et al. (2022); Fu et al. (2019) and Wei et al. (2020); Yin et al. (2021); Liu et al.
(2022), respectively, among other works. As long as such FL protocols can provide an estimated function
(which is the default goal of FL), they can be adopted in FedIGW to achieve additional robustness and
privacy guarantees in FCB; see more details in Appendix E.2.

Other Possibilities. There have been many studies on fairness guarantees (Mohri et al., 2019; Du et al.,
2021), client selections (Balakrishnan et al., 2022; Fraboni et al., 2021), and practical communication designs
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(Chen et al., 2021; Wei & Shen, 2022; Zheng et al., 2020) in FL among many other directions, which are all
conceivably applicable in FedIGW. In addition, Marfoq et al. (2023) studies FL with data streams, i.e., data
comes sequentially instead of being static, which is a suitable design for FCB as CB essentially provides data
streams. If similar ideas can be leveraged in FCB, the two components of CB and FL can truly be parallel.

7 Conclusions

In this work, we studied the problem of federated contextual bandits (FCB). It is first recognized that existing
FCB designs are largely disconnected from canonical FL studies in their adopted FL protocols, which hinders
the integration of crucial FL advancements. To bridge this gap, we introduced a novel design, FedIGW,
capable of accommodating a wide range of FL protocols, provided they address a standard FL problem.
A comprehensive theoretical performance guarantee was provided for FedIGW, highlighting its efficiency
and versatility. Notably, we demonstrated the modularized incorporation of convergence analysis from FL
by employing examples of the renowned FedAvg (McMahan et al., 2017) and SCAFFOLD (Karimireddy
et al., 2020). Empirical validations on real-world datasets further underscored its practicality and flexibility.
Moreover, we explored how advancements in FL can seamlessly bestow additional desirable attributes upon
FedIGW. Specifically, we delved into the incorporation of personalization, robustness, and privacy, presenting
intriguing opportunities for future research.

It would be valuable to pursue further exploration of alternative CB algorithms within FCB, e.g., Xu &
Zeevi (2020); Foster et al. (2020); Wei & Luo (2021), and investigate whether the FedIGW design can be
extended to more general federated RL (Dubey & Pentland, 2021; Min et al., 2023).
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Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization: Dis-
tributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Sanath Kumar Krishnamurthy, Vitor Hadad, and Susan Athey. Adapting to misspecification in contextual
bandits with offline regression oracles. In International Conference on Machine Learning, pp. 5805–5814.
PMLR, 2021.

Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. On distributed cooperative decision-making
in multiarmed bandits. In 2016 European Control Conference (ECC), pp. 243–248. IEEE, 2016.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Chuanhao Li and Hongning Wang. Asynchronous upper confidence bound algorithms for federated linear
bandits. In International Conference on Artificial Intelligence and Statistics, pp. 6529–6553. PMLR, 2022a.

Chuanhao Li and Hongning Wang. Communication efficient federated learning for generalized linear bandits.
Advances in Neural Information Processing Systems, 2022b.

Chuanhao Li, Huazheng Wang, Mengdi Wang, and Hongning Wang. Communication efficient distributed
learning for kernelized contextual bandits. Advances in Neural Information Processing Systems, 2022.

Chuanhao Li, Huazheng Wang, Mengdi Wang, and Hongning Wang. Learning kernelized contextual bandits
in a distributed and asynchronous environment. The Eleventh International Conference on Learning
Representations, 2023.

Tan Li and Linqi Song. Privacy-preserving communication-efficient federated multi-armed bandits. IEEE
Journal on Selected Areas in Communications, 40(3):773–787, 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE signal processing magazine, 37(3):50–60, 2020a.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR, 2021.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg
on non-iid data. In International Conference on Learning Representations, 2020b.

Jiabin Lin and Shana Moothedath. Federated stochastic bandit learning with unobserved context. arXiv
preprint arXiv:2303.17043, 2023.

Keqin Liu and Qing Zhao. Distributed learning in multi-armed bandit with multiple players. IEEE Trans-
actions on Signal Processing, 58(11):5667–5681, 2010.

Ziyao Liu, Jiale Guo, Wenzhuo Yang, Jiani Fan, Kwok-Yan Lam, and Jun Zhao. Privacy-preserving aggre-
gation in federated learning: A survey. IEEE Transactions on Big Data, 2022.

Ekdeep Lubana, Chi Ian Tang, Fahim Kawsar, Robert Dick, and Akhil Mathur. Orchestra: Unsupervised
federated learning via globally consistent clustering. In International Conference on Machine Learning,
pp. 14461–14484. PMLR, 2022.

Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. Federated learning for data streams.
arXiv preprint arXiv:2301.01542, 2023.

David Martínez-Rubio, Varun Kanade, and Patrick Rebeschini. Decentralized cooperative stochastic bandits.
Advances in Neural Information Processing Systems, 32, 2019.

15



Published in Transactions on Machine Learning Research (07/2024)

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pp. 1273–1282. PMLR, 2017.

Yifei Min, Jiafan He, Tianhao Wang, and Quanquan Gu. Multi-agent reinforcement learning: Asynchronous
communication and linear function approximation. arXiv preprint arXiv:2305.06446, 2023.

Aritra Mitra, Arman Adibi, George J Pappas, and Hamed Hassani. Collaborative linear bandits with
adversarial agents: Near-optimal regret bounds. Advances in neural information processing systems, 2022.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press,
2018.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In International
Conference on Machine Learning, pp. 4615–4625. PMLR, 2019.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

Gergely Neu and Julia Olkhovskaya. Efficient and robust algorithms for adversarial linear contextual bandits.
In Conference on Learning Theory, pp. 3049–3068. PMLR, 2020.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning. IEEE
Transactions on Signal Processing, 70:1142–1154, 2022.

Clémence Réda, Sattar Vakili, and Emilie Kaufmann. Near-optimal collaborative learning in bandits. In
NeurIPS 2022-36th Conference on Neural Information Processing System, 2022.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
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A Additional Discussions

A.1 Societal Impacts

This work focuses on providing a new design for federated contextual bandits (FCB), which establishes
a close relationship between FCB and FL. We do not foresee major negative societal impacts as FCB is
a well-established research domain and this work largely investigates its theoretical aspects. Moreover,
as discussed in Section 6.2, FedIGW can conveniently incorporate appendages from FL studies to obtain
appealing properties of privacy, robustness, fairness, and beyond, which we believe can contribute to a
positive societal impact.

A.2 Examples of FL Components in FCB Studies

An example of the FL components adopted in previous FCB studies is provided in the following, together
with the renowned FedAvg protocol for comparison. Specifically, as in Remark 4.5, we consider the study
of federated linear bandits with a known d-dimensional feature mapping ϕ(·, ·). Then, Alg. 2 illustrates the
FL component commonly adopted in Wang et al. (2019); Li & Wang (2022a); Dubey & Pentland (2020); He
et al. (2022): the agents share compressed local data (e.g., covariance matrices) to the server for aggregation,
which happens in a one-shot fashion. A simplified version of FedAvg (McMahan et al., 2017) is presented
in Alg. 3, with client m’s local loss function denoted as L̂m(·; ·) following Sec. 3. It can be observed that
FedAvg takes an optimization perspective to perform multi-rounds of gradient descent distributively.

Algorithm 2 The FL component commonly adopted
in existing studies on federated linear bandits: one-
shot aggregation of compressed local data
Input: M clients with client m’s interaction dataset

denoted as Sm = {(xm,τm
, am,τm

, rm,τm
) : τm ∈

[nm]}
1: Client m: with ϕ(xm,τm

, am,τm
) denoted as

ϕm,τm , compute Vm ←
∑

τm∈[nm] ϕm,τmϕ⊤
m,τm

and
bm ←

∑
τm∈[nm] rm,τm

ϕm,τm

2: Client m: send Vm and bm to the server
3: Server: receive Vm and bm from each client m
4: Server: compute V ←

∑
m∈[M ] Vm and b ←∑

m∈[M ] bm

5: Server: send V and b to all clients
6: Client m: receive V and b from the server

Algorithm 3 The (simplified) FedAvg algorithm as
an example of the canonical FL framework: multiple-
round aggregation of local model parameters
Input: M clients with client m’s interaction dataset

denoted as Sm = {(xm,τm
, am,τm

, rm,τm
) : τm ∈

[nm]}, learning rate η
1: for i = 1, 2, · · · do
2: Client m: update ω̂′

m ← ω̂m−∇L̂m(ω̂m;Sm)
3: Client m: send ∆m ← ω̂′

m− ω̂m to the server
4: Server: receive ∆m from each client m
5: Server: with

∑
m∈[M ] nm denoted as n, send

ω̂ ← ω̂ − η
∑

m∈[M ]
nm

n ∆m to all clients
6: Client m: receive ω̂′ from the server and set

ω̂m ← ω̂
7: end for

A.3 Limitations and Future Works

While this work proposes a novel, broadly applicable FCB design, i.e., FedIGW, there are still many inter-
esting directions that are worth further exploring.

• Paralleling CB and FL. As mentioned in Section 2.2, the current FL studies largely focus on learning
from batched and static datasets. To accommodate such protocols, FCB designs typically follow a period-
ically alternating scheme as shown in Fig. 1, which is thus the focus of this work. While such alternating
designs are capable of achieving statistical and communication efficiency, there is still room for improvement:
(1) the CB interactions need to wait for the completeness of a full FL process, which may be slow when
computation resources are limited and communication delays are large; (2) it is desirable to use the CB data
in a more timely fashion instead of accumulating to the end of an epoch.

As one variant of periodically alternating, we can have FedIGW interleave CB and FL as shown in Fig. 4(a).
This approach provides some buffer to perform FL without agents waiting for its completeness. Especially,
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in epoch l, on one hand, the agents perform FL with datasets from epoch l − 1; on the other hand, they
perform CB interactions following IGW with an estimated function f̂ l−2 learned during epoch l − 1 via
datasets from epoch l − 2. In other words, there will be one epoch delay compared with the basic form of
FedIGW, while this delay is used for the FL process.

Furthermore, a better approach is to have FL and CB fully paralleled as shown in Fig. 4(b). Then, neither
of them needs to wait for the other part, while CB data can be processed more timely. As mentioned in
Section 6.2, we believe that the framework of FL with data streams proposed in a recent work of Marfoq
et al. (2023) could be a suitable tool, as the sequential CB interactions essentially provide data steams. We
believe this direction is not only worth further exploring in FCB but perhaps more importantly, calls for more
investigation in FL with data streams, where FCB can also serve as an important motivation application.

(a) Interleaving (b) Fully Paralleling

Figure 4: Different Styles of Connecting FL and CB in FCB.

• Incorporating other FL advances. Given the flexible FL choice in FedIGW, although this work
has provided detailed discussions on incorporating many aspects of FL advancements (including canonical
algorithmic designs, convergence analysis, and useful appendages), there are still many directions worth
further exploration. For example, as mentioned in Section 2.1, this work and most FCB investigations are
focused on collaborating through a central server, while the case of communicating via a connected graph
is less explored, where certain consensus errors commonly appear (Xin et al., 2020; Ye et al., 2020). It is
worth noting that the design and analysis framework of FedIGW are both applicable in the later setting.
Especially, the consensus error can be modeled as one part of the optimization error in Lemma 4.3. This
further validates the value of the proposed FedIGW design and the general analysis framework while further
specifications are left for future works.

Also, it would be great to leverage extra tools to save computations in the adopted FL protocol. Using local
updates as in Chou et al. (2020) is one promising direction. These approaches are all feasible in FedIGW as
long as the agents can obtain a learned reward function to perform IGW interactions. Their specific impacts
can be captured via the established analysis framework through their own optimization errors.

• Leveraging other CB designs. With previous FCB studies largely focused on the CB component, this
work is motivated to incorporate more advances from FL. Thus, we propose the FedIGW design which can
leverage canonical protocols, convergence analyses, and flexible appendages from FL.

However, we also note that there are still many CB algorithms that remain under-explored in FCB, where
UCB-based designs are dominating. For example, the simple greedy algorithm is shown to be efficient when
the context generation contains certain exploration capabilities in (Han et al., 2020). Moreover, varying
attempts have been made in Xu & Zeevi (2020); Foster & Rakhlin (2020); Foster et al. (2020); Zhu et al.
(2022) to design generally applicable CB algorithms with tight performance guarantees, e.g., handling infinite
arms. It would be interesting to investigate how to bring these designs to the federated setting and whether
such connections provide new opportunities and insights.

• Complex environments. This work is focused on a stationary environment with stochastic rewards,
which is well motivated by practical applications and commonly adopted in FCB studies. To further broaden
the applicability of FCB, we believe that it is also important to study adversarial or non-stationary envi-
ronments. Many advances have been made in standard single-agent bandits, e.g., Auer et al. (2002); Neu &
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Olkhovskaya (2020); Zierahn et al. (2023); Wei & Luo (2021). A recent work (Yi & Vojnović, 2023) investi-
gates the federated adversarial environment in the tabular setting and further investigations are desired to
provide further concrete designs and analyses.

• Extension to RL. It would also be meaningful to extend the current study of FCB to federated reinforce-
ment learning (RL) as a further step in understanding the combination of FL and sequential decision-making.
Some results have been reported in Dubey & Pentland (2021); Min et al. (2023); Jin et al. (2022); Fan et al.
(2021); Cisneros-Velarde et al. (2023). We hope this work can serve as a starting point for more principled
and generally applicable studies in federated RL.

B Additional Related Works

The studies on federated multi-armed bandits (FMAB) and federated contextual bandits (FCB) can be
viewed as a version of the general multi-agent bandits (Liu & Zhao, 2010; Boursier & Perchet, 2019; Shi
et al., 2020; 2021b) and parallelizing bandits (Chan et al., 2021; Karbasi et al., 2021) that is more suitable
for modern applications. We provide a more detailed review in the following.

• Tabular. There have been many studies on cooperative designs in multi-armed bandits (i.e., the tabular
setting), e.g., Hillel et al. (2013); Szorenyi et al. (2013); Landgren et al. (2016); Martínez-Rubio et al. (2019),
focusing on different learning targets and different communication protocols (e.g., through a communication
graph or with some randomly selected peers). Notably, in Wang et al. (2019), communication-efficient
designs are proposed via periodically aggregating local estimates and performing arm elimination globally.
We here also discuss another line of works on FMAB (Shi & Shen, 2021; Shi et al., 2021a; Réda et al., 2022;
Zhu et al., 2021; Chen et al., 2022; Shi et al., 2023). In their considered setting, the global rewards are
(weighted) averages of local observations; however the former is not directly observable. With maximizing
global rewards as the learning target, the agents need to collaboratively perform explorations and aggregate
local information. Despite the model differences, the design principle of FedIGW may still be beneficial for
studying this setting. Especially, it is worth considering replacing the UCB-based explorations commonly
adopted in Shi & Shen (2021); Shi et al. (2021a); Réda et al. (2022); Zhu et al. (2021); Chen et al. (2022)
with regression-based ones as in FedIGW to facilitate incorporation of FL studies.

• Linear. The most commonly studied FCB setting is federated linear bandits. There have been many
investigations in this direction. Especially, different environments have been tackled in different works, e.g.,
the finite-armed fixed-context setting (Wang et al., 2019; Huang et al., 2021b), the finite-armed stochastic-
context setting (Amani et al., 2022), the finite-armed adversarial context setting (Fan et al., 2023), the
infinite-armed fixed-context setting (Salgia & Zhao, 2022), and the infinite-armed adversarial-context setting
(Wang et al., 2019; Dubey & Pentland, 2020; Li & Wang, 2022a; He et al., 2022). Furthermore, many other
settings, e.g., unobserved context (Lin & Moothedath, 2023), and additional properties, e.g., privacy (Dubey
& Pentland, 2020; Zhou & Chowdhury, 2023), robustness (Jadbabaie et al., 2022), have been investigated.
As summarized in the main paper, these works mainly select arm elimination (AE) (Lattimore & Szepesvári,
2020) or LinUCB (Abbasi-Yadkori et al., 2011) as their CB designs, which require both model estimates
and confidence bounds. Thus, in their designed FL protocols, compressed local data (e.g., aggregated
local rewards and covariance matrices) are often directly shared to solve a global ridge regression and to
construct tighter confidence bounds. Compared with these studies, FedIGW can effectively solve the finite-
armed stochastic-context setting without sharing any raw or compressed local data but only communicate
processed model parameters (e.g., gradients). More detailed discussions and concrete results are provided in
Appendix D.3.

A detailed comparison of the obtained regrets and the amounts of communicated real numbers is provided
in Table 4. It can be observed that adapting FedIGW to the specific case of linear bandits does not provide
the same near-optimal performance as in previous works. This is not a surprise as (single-agent) IGW itself
has not yet been shown to achieve the lower-bound performance of linear bandits, while the previous works
are largely built upon the nearly optimal LinUCB design (Abbasi-Yadkori et al., 2011). However, as noted
in Remark 3.2, IGW only requires a learned reward function, instead of complicated data analytics such
as UCB, which grants it great flexibility to better incorporate FL advancements and handle more general
scenarios beyond the linear setting.
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Table 4: A comparison of settings and results of federated linear bandits; note that FedIGW is not
specifically designed and optimized to handle linear reward functions as previous designs.

Reference Arms Context Regret # of Numbers Communicated
Wang et al. (2019) Infinite Fixed Õ(d

√
MT ) O((dM + d log log(d)) log(T ))

He et al. (2022) Infinite Adversarial Õ(d
√

MT ) O(d3M2 log(MT ))
Huang et al. (2021b) Finite Fixed Õ(

√
dMT ) O(d2 + dK)M log(T ))

Amani et al. (2022)† Finite Stochastic Õ(
√

dMT ) O(dM log log(MT ))
FedIGW‡ Finite Stochastic Õ(

√
dKMT ) O(d2M log(T ))

FedIGW♭ Finite Stochastic Õ(
√

dKMT ) O(d log(d)
√

M3T )
†: assuming a homogeneous and known context distribution for all agents;

‡: solving the global ridge regression via directly sharing aggregated local rewards and covariance matrices
as in the other listed works;

♭: solving the global ridge regression via distributed accelerated gradient descent;

• Generalized Linear and Kernelized. As extensions of the linear reward functions, Li & Wang (2022b)
considers the generalized-linear class, and Li et al. (2022; 2023) study the kernelized one. The adopted basic
techniques are similar to the aforementioned ones in federated linear bandits, while efforts are focused on
fine-tuning communications (e.g., via Nyström approximation (Li et al., 2022; 2023)). It is worth noting that
Li & Wang (2022b) invokes the distributed accelerated gradient descent algorithm to solve their considered
distributed optimization with a generalized linear function class, which can be viewed as a preliminary
attempt of involving FL or distributed optimization designs in FCB. However, the motivation there is the
lack of a closed-form solution as in the linear case, while Li & Wang (2022b) additionally needs to share
the local covariance matrices to construct better confidence bounds. This work, instead, formally proposed
FedIGW which can rely only on canonical FL framework and accommodate flexible FL choices.

• Neural. A recent work of Dai et al. (2023) extends the advances on single-agent neural bandits (Zhou
et al., 2020) to the federated setting, where the neural tangent kernel (NTK) analyses are incorporated. With
NTK to “linearize” the considered over-parameterized neural network, Dai et al. (2023) still largely follows
the designs in the aforementioned federated linear bandits while some additional attempts have been made,
e.g., an extra one-round averaging of model parameters besides aggregating NTK. This work, instead, takes
a step further to fully leverage FL protocols, which often perform multiple (instead of one) rounds of model
aggregations that are often necessary to guarantee convergence. Also, the optimization and generalization
errors of a FedAvg variant with overparameterized neural networks are provided in Huang et al. (2021a),
which is conceivably compatible with FedIGW for the corresponding analyses. Moreover, as shown by the
additional experimental results in Sec. 5, FedIGW empirically outperforms FN-UCB (Dai et al., 2023) on
different tasks and is more computationally efficient.

C Proofs for Section 4.1

C.1 Notations

We first introduce notations that are repeatedly used. For the output function from the adopted FL protocol,
we characterize its performance via the following definition of its excess risk, which is commonly adopted in
the analysis of IGW-type CB algorithms (Simchi-Levi & Xu, 2022; Sen et al., 2021; Ghosh et al., 2021).

Definition C.1. Let p[M ] := {pm : m ∈ [M ]} be a set of M arbitrary independent arm selection distributions.
Given an overall dataset S[M ] := {Sm : m ∈ [M ]} where each dataset Sm consists of nm training samples of
the form (xm, am; rm(am)) independently and identically drawn according to (xm, rm) ∼ Dm, am ∼ pm(·|xm),
the federated protocol FLroutine(S[M ]) = {FLroutinem(Sm) : m ∈ [M ]} returns a predictor f̂(·), and its
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excess risk is defined as

E(F ; n[M ]) := ES[M],ξ

 ∑
m∈[M ]

nm

n
· Exm∼DXm

m ,am∼pm(·|xm)

[(
f̂(xm, am)− f∗(xm, am)

)2
] ,

where n[M ] := {nm : m ∈ [M ]} and ξ denotes the random source in the potentially stochastic FL algorithm.
We often abbreviate E(F ; n[M ]) as E(n[M ]) to simplify notations.

This definition measures in expectation (w.r.t. the random data generation and the stochastic FL process)
how far the output of the adopted FL protocol is from the true reward function on the weighted data
distribution of all agents. Note that the excess risk bound E(n[M ]) would typically rely on some other
parameters in the adopted FL protocol (e.g., the step size and the number of iterations in gradient-based
approaches), which are currently not specified for generality.

Then, let Υl denote the sigma-algebra generated by the history up to epoch l, i.e., {(xm,tm
, am,tm

, rm,tm
) :

m ∈ [M ], tm ∈ [tm(τ l)]}, and the randomness in the adopted FL protocol up to epoch l, i.e., {ξi : i ∈ [l]},
where ξi denotes the random source in epoch i. Then, we denote lm(tm) := min{l ∈ N : tm ≤ tm(τ l)} as the
epoch that agent m’s tm belongs to. Also, let Ψm := AXm

m denote the set of deterministic functions from Xm

to Am for agent m and Ψ[M ] := ×m∈[M ]Ψm the Cartesian product of {Ψm : m ∈ [M ]}. Furthermore, for
any action selection kernel p[M ] = {pm : m ∈ [M ]}, where pm(am|xm) is the probability of selecting action
am ∈ A given context xm, and any policy π[M ] = {πm : m ∈ [M ]} ∈ Ψ, we define

Vm(pm, πm) := Exm∼DXm
m

[
1

pm(πm(xm)|xm)

]
,

Rm(πm) := Exm∼DXm
m

[f∗(xm, πm(xm))] ,

R̂l
m(πm | Υl−1) := Exm∼DXm

m

[
f̂ l(xm, πm(xm)) | Υl−1

]
,

Regm(πm) := Rm(π∗
m)−Rm(πm),

R̂eg
l

m(πm | Υl−1) := R̂l
m,tm

(π̂l
m | Υl−1)− R̂l

m,tm
(πm | Υl−1).

where π̂l
m(xm) := arg maxam∈Am

f̂ l(xm, am) for a given f̂ l (determined by Υl−1).

The following proofs are largely inspired by the single-agent contextual bandits work (Simchi-Levi & Xu,
2022), while major changes have been made to accommodate the more complex federated system considered
in this work.

C.2 Proofs of Theorem 4.1

First, the following lemma characterizes the relation between the excess errors and the selected learning
rates.
Lemma C.2. For all l > 1, it holds that

EΥl−1

 ∑
m∈[M ]

El−1
m∑

m′∈[M ] El−1
m′

· Exm∼DXm
m ,am∼pl−1

m (·|xm)

[(
f̂ l(xm, am)− f∗(xm, am)

)2
| Υl−1

]
≤ E(F ; El−1

[M ]) =
∑

m∈[M ] El−1
m Km∑

m∈[M ] El−1
m (γl)2

.

Proof. The first inequality is from the Assumption C.1, while the second is based on the choice of γl in
Theorem 4.1, i.e.,

γl =

√√√√ ∑
m∈[M ] El−1

m Km∑
m∈[M ] El−1

m E(F ; El−1
[M ])

,
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which leads to the lemma.

Then, the following lemma bounds the estimated rewards R̂l
m and true rewards Rm.

Lemma C.3. For any epoch l > 1, for any πm ∈ Ψm, conditioned on Υl−1, it holds that∣∣∣R̂l
m(πm | Υl−1)−Rm(πm)

∣∣∣ ≤√Vm(pl−1
m , πm | Υl−1)

√
E l−1

m (Υl−1),

where E l−1
m (Υl−1) := Exm∼DXm

m ,al−1
m ∼pl−1

m (·|xm)

[(
f̂ l(xm, al−1

m )− f∗(xm, al−1
m )

)2
| Υl−1

]
.

Proof. For simplicity, we abbreviate Exm∼DXm
m ,al−1

m ∼pl−1
m (·|xm)[·] as Exm,al−1

m
[·], and for any policy πm ∈ Ψm,

and any epoch l > 1, we define

∆l
m(πm(xm)) := f̂ l(xm, πm(xm))− f∗(xm, πm(xm))

which indicates that

R̂l
m(πm | Υl−1)−Rm(πm) = Exm

[
∆l

m(πm(xm) | Υl−1] ,

and

Exm,al−1
m

[(
∆l

m(al−1
m )

)2 | Υl−1
]
≥ Exm

[
pl−1

m (πm(xm)|xm)
(
∆l

m(πm(xm))
)2 | Υl−1

]
.

Furthermore, conditioned on Υl−1, we can obtain that

Vm(pl−1
m , πm | Υl−1) · Exm,al−1

m

[(
∆l

m(al−1
m )

)2 | Υl−1
]

= Exm

[
1

pl−1
m (πm(xm)|xm)

| Υl−1
]
Exm,al−1

m

[(
∆l

m(al−1
m )

)2 | Υl−1
]

≥

(
Exm

[√
1

pl−1
m (πm(xm)|xm)

Eal−1
m

[(
∆l

m(al−1
m )

)2] | Υl−1

])2

≥

(
Exm

[√
1

pl−1
m (πm(xm)|xm)

pl−1
m (πm(xm)|xm) (∆l

m(πm(xm)))2 | Υl−1

])2

=
(
Exm

[∣∣∆l
m(πm(xm))

∣∣ | Υl−1])2

≥
∣∣∣R̂l

m(πm | Υl−1)−Rm(πm)
∣∣∣2 .

As a result, it holds that∣∣∣R̂l
m(πm | Υl−1)−Rm(πm)

∣∣∣ ≤√Vm(pl−1
m , πm | Υl−1)

√
E l−1

m (Υl−1),

where the last step we use the definition that

E l−1
m (Υl−1) = Exm,al−1

m

[(
f̂ l(xm, al−1

m )− f∗(xm, al−1
m )

)2
| Υl−1

]
.

This concludes the proof.

Furthermore, the following lemma provides a characterization of the relation between the virtual loss R̂eg
l

m

and the true loss Regl
m.
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Lemma C.4. For any epochs l ≥ 1, for any policies π[M ] ∈ Ψ[M ], it holds that∑
m∈[M ]

El
mRegm(πm) ≤ 2

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]

+ ηl,

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]
≤ 2

∑
m∈[M ]

El
mRegm(πm) + ηl,

with

ηl := 9c2

γl

∑
m∈[M ]

El
mKm.

Proof. First, we note that for l = 1, it holds that∑
m∈[M ]

E1
mRegm(πm) ≤

∑
m∈[M ]

E1
m ≤ η1 = 9c2

∑
m∈[M ]

E1
mKm;

∑
m∈[M ]

E1
mR̂eg

l

m(πm) = 0 ≤ η1 = 9c2
∑

m∈[M ]

E1
mKm,

which means the lemma holds for the first epoch.

We then perform an inductive proof and start by assuming that for epoch l − 1 and any policies πm ∈ Ψm,
it holds that ∑

m∈[M ]

El−1
m Regm(πm) ≤ 2

∑
m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1
m (πm | Υl−2)

]
+ ηl−1

∑
m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1
m (πm | Υl−2)

]
≤ 2

∑
m∈[M ]

El−1
m Regm(πm) + ηl−1.

Then, it can be observed that

Regm(πm)− R̂eg
l

m(πm | Υl−1)

= Rm(π∗
m)−Rm(πm)−

(
R̂l

m(π̂l
m | Υl−1)− R̂l

m(πm | Υl−1)
)

≤ Rm(π∗
m)−Rm(πm)−

(
R̂l

m(π∗
m | Υl−1)− R̂l

m(πm | Υl−1)
)

= Rm(π∗
m)− R̂l

m(π∗
m | Υl−1) + R̂l

m(πm | Υl−1)−Rm(πm)
(a)
≤
√

Vm(pl−1
m , π∗

m | Υl−1)
√
E l−1

m (Υl−1) +
√

Vm(pl−1
m , πm | Υl−1)

√
E l−1

m (Υl−1)

≤ Vm(pl−1
m , π∗

m | Υl−1)
8cγl

+ Vm(pl−1
m , πm | Υl−1)

8cγl
+ 4cγlE l−1

m (Υl−1)

(b)
≤ Km + γl−1R̂eg

l−1
m (π∗

m | Υl−1)
8cγl

+ Km + γl−1R̂eg
l−1
m (πm | Υl−1)

8cγl
+ 4cγlE l−1

m (Υl−1),

where inequality (a) is from Lemma C.3 and inequality (b) is from Lemma C.10.

Then, summing over all M agents, we can obtain that

EΥl−1

 ∑
m∈[M ]

El
m

(
Regm(πm)− R̂eg

l

m(πm | Υl−1)
)

≤
∑

m∈[M ] El
mKm

4cγl
+ γl−1

8cγl

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l−1
m (π∗

m | Υl−1)
]
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+ γl−1

8cγl

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l−1
m (πm | Υl−1)

]
+ 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1

m (Υl−1)
]

(d)
≤
∑

m∈[M ] El
mKm

4cγl
+ cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1
m (π∗

m | Υl−1)
]

+ cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1
m (πm | Υl−1)

]
+ 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1

m (Υl−1)
]

(e)
≤
∑

m∈[M ] El
mKm

4cγl
+ cγl−1

4cγl

∑
m∈[M ]

El−1
m Regm(πm) + cγl−1

4cγl
· ηl−1

+ 4cγl
∑

m∈[M ]

El
mEΥl−1

[
E l−1

m (Υl−1)
]

(f)
≤
∑

m∈[M ] El
mKm

4cγl
+ 1

4
∑

m∈[M ]

El
mRegm(πm) +

9c2∑
m∈[M ] El

mKm

4γl
+

4c2∑
m∈[M ] El

mKm

γl
,

where inequality (d) is from the definition c := maxm∈[M ],l∈[2,l(T )] El
m/El−1

m . Inequality (e) is from the
induction assumption that∑

m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1
m (π∗

m | Υl−1)
]

=
∑

m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1
m (π∗

m | Υl−2)
]

≤ 2
∑

m∈[M ]

El−1
m Regm(π∗

m) + ηl−1 = ηl−1,

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1
m (πm | Υl−1)

]
=

∑
m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1
m (πm | Υl−2)

]
≤ 2

∑
m∈[M ]

El−1
m Regm(πm) + ηl−1.

Inequality (f) is based on the definition c := minm∈[M ],l∈[2,l(T )] El
m/El−1

m , c := c/c and ηl :=
9c2∑

m∈[M ] El
mKm/γl, also the assumption that γl ≥ γl−1 and Lemma C.2, which indicates that

EΥl−1

 ∑
m∈[M ]

El−1
m E l−1

m (Υl−1)

 ≤ ∑m∈[M ] El−1
m Km

(γl)2 .

Thus, we can obtain that

3
4
∑

m∈[M ]

El
mRegm(πm) ≤

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]

+
∑

m∈[M ] El
mKm

4cγl

+
25c2∑

m∈[M ] El
mKm

4γl

⇒
∑

m∈[M ]

El
mRegm(πm) ≤ 4

3
∑

m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]

+
∑

m∈[M ] El
mKm

3cγl

+
25c2∑

m∈[M ] El
mKm

4γl

≤ 2
∑

m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]

+ ηl
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Also, it similarly holds that

R̂eg
l

m(πm | Υl−1)− Regm(πm)
= R̂l

m(π̂l
m | Υl−1)− R̂l

m(πm | Υl−1)− (Rm(π∗
m)−Rm(πm))

≤ R̂l
m(π̂l

m | Υl−1)− R̂l
m(πm | Υl−1)−

(
Rm(π̂l

m)−Rm(πm)
)

= R̂l
m(π̂l

m | Υl−1)−Rm(π̂l
m) +Rm(πm)− R̂l

m(πm | Υl−1)

≤
√

Vm(pl−1
m , π̂l

m | Υl−1)
√
E l−1

m (Υl−1) +
√

Vm(pl−1
m , πm | Υl−1)

√
E l−1

m (Υl−1)

≤ Km + γl−1R̂eg
l−1
m (π̂l

m | Υl−1)
8cγl

+ Km + γl−1R̂eg
l−1
m (πm | Υl−1)

8cγl
+ 4cγlE l−1

m (Υl−1).

Then, summing over M agents, we can obtain that

EΥl−1

 ∑
m∈[M ]

El
m

(
R̂eg

l

m(πm | Υl−1)− Regm(πm)
)

≤
∑

m∈[M ] El
mKm

4cγl
+ cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1
m (π̂l

m | Υl−1)
]

+ cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1
m (πm | Υl−1)

]
+ 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1

m (Υl−1)
]

≤
∑

m∈[M ] El
mKm

4cγl
+ cγl−1

4cγl

∑
m∈[M ]

El−1
m EΥl−1

[
Regm(π̂l

m | Υl−1)
]

+ cγl−1

4cγl

∑
m∈[M ]

El−1
m Regm(πm) + cγl−1

4cγl
· ηl−1 + 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1

m (Υl−1)
]

(g)
≤
∑

m∈[M ] El
mKm

4cγl
+ γl−1

4γl
· ηl + γl−1

4γl

∑
m∈[M ]

El
mRegm(πm)

+ cγl−1

4cγl
· ηl−1 + 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1

m (Υl−1)
]

≤
∑

m∈[M ] El
mKm

4cγl
+

9c2∑
m∈[M ] El

mKm

4γl
+ 1

4
∑

m∈[M ]

El
mRegm(πm)

+
9c2∑

m∈[M ] El
mKm

4γl
+

4c2∑
m∈[M ] El

mKm

γl
,

where inequality (g) is from the previous derivation that∑
m∈[M ]

El−1
m Regm(π̂l

m | Υl−1) ≤ 2c
∑

m∈[M ]

El
mR̂eg

l

m(π̂l
m | Υl−1) + cηl = cηl

Thus, it holds that∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l−1
m (π̂l

m | Υl−1)
]
≤ 5

4
∑

m∈[M ]

El
mRegm(πm)

+
∑

m∈[M ] El
mKm

4cγl
+

17c2∑
m∈[M ] El

mKm

2γl
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⇒
∑

m∈[M ]

El
mEΥl−1

[
R̂eg

l−1
m (π̂l

m | Υl−1)
]
≤ 2

∑
m∈[M ]

El
mRegm(πm) + ηl.

With these two parts, the lemma can be obtained by induction.

Furthermore, the following lemma provides a characterization of the per-epoch loss of the federation.
Lemma C.5. For every epoch l > 1, conditioned on Υl−1, it holds that

EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm)

 ≤ 11c2

γl

∑
m∈[M ]

El
mKm,

where Ql(·|Υl−1) is a probability measure on Ψm defined in Lemma C.7

Proof. For any probability measures {Q̃l
m(·) : m ∈ [M ]}, where Q̃l

m(·) is on ΨM , it holds that∑
m∈[M ]

El
m

∑
πm∈Ψm

Q̃l
m(πm)Regm(πm)

(a)
≤ 2EΥl−1

 ∑
π[M]∈Ψ[M]

Q̃l(π[M ])
∑

m∈[M ]

El
mR̂egm(πm | Υl−1)

+ ηl

= 2EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Q̃l
m(πm)R̂egm(πm | Υl−1)

+ ηl,

where inequality (a) is from Lemma C.4 and Q̃l(π[M ]) :=
∏

m∈[M ] Q̃l
m(πm). Thus, we can obtain that

EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm)


≤ 2EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)R̂egm(πm | Υl−1)

+ ηl

(b)
≤ 2

γl

∑
m∈[M ]

El
mKm + 9c2

γl

∑
m∈[M ]

El
mKm

≤ 11c2

γl

∑
m∈[M ]

El
mKm,

where inequality (b) is from Lemma C.9.

With the previous lemmas, we can obtain the final Theorem 4.1, which is restated in the following.
Theorem C.6 (Restatement of Theorem 4.1). Using a learning rate

γl = O


√√√√√ ∑

m∈[M ]

El−1
m Km/

 ∑
m∈[M ]

El−1
m E(El−1

[M ])




in epoch l, denoting K̄l :=
∑

m∈[M ] El
mKm/

∑
m∈[M ] El

m, the regret of FedIGW can be bounded as

Reg(T ) = O

 ∑
m∈[M ]

E1
m +

∑
l∈[2,l(T )]

c
5
2

√
K̄lE(El−1

[M ])
∑

m∈[M ]

El
m

 .
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Proof of Theorem 4.1. The expected regret can be bounded as

Reg(T ) = E

 ∑
m∈[M ]

∑
tm∈[Tm]

(f∗(xm,tm
, π∗

m(xm,tm
))− f∗(xm,tm

, am,tm
))


≤ E

 ∑
l∈[2,l(T )]

∑
m∈[M ]

∑
tm∈[tm(τ l−1)+1,tm(τ l)]

(f∗(xm,tm
, π∗

m(xm,tm
))− f∗(xm,tm

, am,tm
))

+
∑

m∈[M ]

E1
m

=
∑

l∈[2,l(T )]

EΥl−1

Exm,al
m

 ∑
m∈[M ]

El
m (f∗(xm, π∗

m(xm))− f∗(xm, am)) | Υl−1

 | Υl−1

+
∑

m∈[M ]

E1
m

(a)=
∑

l∈[2,l(T )]

EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm) | Υl−1

+
∑

m∈[M ]

E1
m

(b)
≤

∑
l∈[2,l(T )]

11c2

γl

∑
m∈[M ]

El
mKm +

∑
m∈[M ]

E1
m

(c)=
∑

l∈[2,l(T )]

11c2

√√√√∑m∈[M ] El−1
m E(F ; El−1

[M ])∑
m∈[M ] El−1

m Km

∑
m∈[M ]

El
mKm +

∑
m∈[M ]

E1
m

≤
∑

l∈[2,l(T )]

11c2
√

KE(F ; El−1
[M ])

∑
m∈[M ]

El−1
m +

∑
m∈[M ]

E1
m,

where equality (a) is from Lemma C.8, inequality (b) is from Lemma C.5, and inequality (c) is from the
choice of γl. The proof is then concluded.

C.3 Supporting Lemmas

The following supporting lemmas can be similarly obtained by the corresponding proofs in Simchi-Levi &
Xu (2022).
Lemma C.7 (Lemma 3, Simchi-Levi & Xu (2022)). For any epoch l ∈ N, conditioned on Υl−1, there exists
a probability measure Ql

m(·|Υl−1) on Ψm such that

∀am ∈ Am,∀xm ∈ Xm, pl
m(am|xm, Υl−1) =

∑
πm∈Ψm

1{πm(xm) = am}Ql
m(πm|Υl−1).

Lemma C.8 (Lemma 4, Simchi-Levi & Xu (2022)). Fix any epoch l ∈ N, we have

Exm∼DXm
m ,al

m∼pl
m(·|xm)

[
f∗(xm, π∗

m(xm))− f∗(xm, al
m) | Υl−1]

=
∑

πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm).

Lemma C.9 (Lemma 5, Simchi-Levi & Xu (2022)). Fix any epoch l ∈ N, conditioned on Υl−1, we have

∑
π∈Ψm

Ql
m(πm | Υl−1)R̂eg

l

m(πm | Υl−1) ≤ Km

γl
.

Lemma C.10 (Lemma 6, Simchi-Levi & Xu (2022)). Fix any epoch l ∈ N, for any policy πm ∈ Ψm, we
have

Vm(pl
m, πm | Υl−1) ≤ Km + γlR̂eg

l

m(πm | Υl−1).
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D Proofs for Section 4.2

D.1 Proofs of Corollary 4.2

First, with realizability, i.e., Assumption 3.1, the following characterization can be obtained.
Lemma D.1 (Lemma 4.2, Agarwal et al. (2012)). Fix a function f ∈ F . Suppose we sample xm, rm from the
data distribution Dm, and an action am from an arbitrary distribution such that rm and am are conditionally
independent given xm. Define the random variable

ℓm(f) := (f(xm, am)− rm(am))2 − (f∗(xm, am)− rm(am))2
.

Then, we have

Exm,rm,am
[ℓm(f)] = Exm,am

[
(f(xm, am)− f∗(xm, am))2

]
and

Vxm,rm,am [ℓm(f)] ≤ 4Exm,rm,am [ℓm(f)] ,

where V[·] denotes the variance of a random variable.

Then, we establish an upper bound for the excess risk bound required in Definition C.1 via the following
lemma
Lemma D.2. Under the setup of Assumption C.1, if the adopted FL protocol provides an exact minimizer
for the optimization problem in Eqn. (1) with quadratic losses, i.e.,

f̂ = arg min
f∈F

1
n

∑
m∈[M ]

∑
i∈[nm]

(
f(xi

m, ai
m)− yi

m

)2
,

then, with probability at least 1− δ, it holds that∑
m∈[M ]

nm

n
· Exm∼DXm

m ,am∼pm(·|xm)

[(
f̂(xm, am)− f∗(xm, am)

)2
]
≤ 25 log(|F|/δ)

n
.

As a result, Definition C.1 holds with

E(δ, n[M ]) ≤ O (log(|F|n)/n) .

Proof. For simplicity, we abbreviate the quadratic loss associated with a fixed function f ∈ F as

ℓi
m(f) = ℓm(f(xi

m, ai
m); ri

m) :=
(
f(xi

m, ai
m)− ri

m

)2
, ∀m ∈ [M ].

Then, with a probability at least 1− δ, for a fixed f ∈ F , it holds that∑
m∈[M ]

∑
im∈[nm]

Exi
m,ri

m,ai
m

[
ℓi

m(f)− ℓi
m(f∗)

]
−
∑

m∈[M ]

∑
i∈[nm]

[
ℓi

m(f)− ℓi
m(f∗)

]
(a)
≤ 2

√ ∑
m∈[M ]

∑
im∈[nm]

Vxi
m,ri

m,ai
m

[ℓi
m(f)− ℓi

m(f∗)] log(1/δ) + 4
3 log(1/δ)

(b)
≤ 4

√ ∑
m∈[M ]

∑
im∈[nm]

Exi
m,ri

m,ai
m

[ℓi
m(f)− ℓi

m(f∗)] log(1/δ) + 4
3 log(1/δ),

where inequality (a) leverages Bernstein’s inequality and inequality (b) is based on Lemma D.1.
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With

X(f) =
√ ∑

m∈[M ]

∑
im∈[nm]

Exi
m,ri

m,ai
m

[ℓi
m(f)− ℓm,i(f∗)];

Z(f) =
∑

m∈[M ]

∑
i∈[nm]

[
ℓi

m(f)− ℓm,i(f∗)
]

; C =
√

log(1/δ),

applying a union bound to the above inequality indicates that with probability 1 − |F|δ, for all f ∈ F , it
holds that

X(f)2 − Z(f) ≤ 4CX(f) + 4
3C2 ⇒ (X(f)− 2C)2 − Z(f) ≤ 16

3 C2.

Since f̂ satisfies that Z(f̂) ≤ 0, we can obtain that

X(f̂)2 ≤ 25C2,

In other words, with probability 1− δ, it holds that∑
m∈[M ]

∑
im∈[nm]

Exi
m,ri

m,ai
m

[(
f̂(xi

m, ai
m)− ri

m

)2
−
(
f∗(xi

m, ai
m)− ri

m

)2
]

=
∑

m∈[M ]

nmExi
m,ai

m

[(
f̂(xi

m, ai
m)− f∗(xi

m, ai
m)
)2
]
≤ 25 log(|F|/δ),

where the equality is from the realizability in Assumption 3.1. The first half of the lemma is then proved.

With δ = 1/n, the second half can be obtained as

ES[M]

 ∑
m∈[M ]

nm

n
· Exm,am

[(
f̂(xm, am)− f∗(xm, am)

)2
] ≤ 25 log(|F|n)

n
+ 1

n
,

which concludes the proof.

Based on the established excess risk bound, Corollary 4.2 can be obtained as follows.
Corollary D.3 (Restatement of Corollary 4.2). If |F| <∞ and the adopted FL protocol provides an exact
minimizer for Eqn. (1) with quadratic losses, with τ l = 2l, FedIGW incurs a regret of

Reg(T ) = O(
√

KMT log(|F|MT ))

and a total O(log(T )) calls of the adopted FL protocol.

Proof of Corollary 4.2. With Theorem 4.1 and Lemma D.2, under the choice of τ l = 2l, the regret can be
bounded as

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
KMEl log(|F|MEl)


= O

 ∑
l∈[2,⌈log2(T )⌉]

√
KM2l log(|F|MT )


= O

(√
KMT log(|F|MT )

)
,

and the exponentially growing epoch length naturally leads to O(log(T )) calls of the adopted FL protocol,
which concludes the proof.
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D.2 Proofs of Corollary 4.4 and Additional Results

In the following, we first prove Lemma 4.3 while also noting that this result is general and does not rely
on the specific parameterization of F , although we presented it with the d-dimensional parameterization
considered in Section 4.2.
Lemma D.4 (Complete Version of Lemma 4.3). If the loss function lm(·; ·) is µf -strongly convex in its first
coordinate for all m ∈ [M ], i.e.,

lm(z′
1; z2)− lm(z1; z2) ≥ dlm(z1; z2)

dz1
· (z′

1 − z1) + µf

2 (z′
1 − z1)2, for any z1, z′

1 and z2,

and

inf
y∈R

Erm
[lm(y, rm(am))|xm, am] = Erm

[l(fω∗(xm, am), rm(am))|xm, am] (3)

for all m ∈ [M ], (xm, am) ∈ Xm ×Am, Definition C.1 holds with

E(F ; n[M ]) ≥ 2
(
εopt(F ; n[M ]) + εgen(F ; n[M ])

)
/µf ,

where

εgen(F ; n[M ]) := ES,ξ[L(f
ω̂S

)− L̂(f
ω̂S

;S)];

εopt(F ; n[M ]) := ES,ξ[L̂(f
ω̂S

;S)− L̂(fω∗
S

;S)].

Proof. First, for any ω̂S , it holds that

L(f
ω̂S

)− L(fω∗)

=
∑

m∈[M ]

nm

n
Exm,i,am,i,rm,i

[
ℓ(f

ω̂S
(xm,i, am,i); rm,i)− ℓ(fω∗(xm,i, am,i); rm,i)

]
≥ µf

2
∑

m∈[M ]

nm

n
Exm,i,am,i

[(
f

ω̂S
(xm,i, am,i)− fω∗(xm,i, am,i)

)2
]

where the inequality is due to the strong convexity of ℓ(·; ·) w.r.t. its first coordinate and the optimality of
fω∗ assumed in Eqn. (3). Thus, we obtain that∑

m∈[M ]

nm

n
Exm,i,am,i

[(
f

ω̂S
(xm,i, am,i)− fω∗(xm,i, am,i)

)2
]
≤ 2

µf

(
L(f

ω̂S
)− L(fω∗)

)
.

Furthermore, it holds that

ES,ξ

[
L(f

ω̂S
)
]
− L(fω∗)

= ES,ξ

[
L(f

ω̂S
)
]
− ES,ξ

[
L̂(f

ω̂S
;S)
]

+ ES,ξ

[
L̂(f

ω̂S
;S)
]
− L(fω∗)

≤ ES,ξ

[
L(f

ω̂S
)
]
− ES,ξ

[
L̂(f

ω̂S
;S)
]

+ ES,ξ

[
L̂(f

ω̂S
;S)
]
− ES,ξ

[
L̂(fω∗

S
;S)
]

,

where the last inequality is due to

L(fω∗) = ES

[
L̂(fω∗ ;S)

]
≥ ES

[
L̂(fω∗

S
;S)
]

.

The proof is then concluded.

Then, for the generalization error analyses, the following lemma can be obtained via standard proofs (e.g.,
Theorem 6.4 in Zhang (2023); Theorem 3.3 in Mohri et al. (2018)).
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Lemma D.5. It holds that

εgen(F ; n[M ]) := ES,ξ[L(f
ω̂S

)− L̂(f
ω̂S

;S)] ≤ 2R(F ; n[M ]).

Here, the distributional-independent upper bound R(F ; n[M ]) on the Rademacher complexity is defined as

R(F ; n[M ]) := sup

ES[M],σ

sup
ω

 ∑
m∈[M ]

1
n

∑
i∈[nm]

σm,i · ℓm(fω(xm,i, am,i); rm,i)


 , (4)

where the outside supremum is over possible distributions of dataset S defined in Definition C.1 and the
expectation is w.r.t. the generation of dataset S[M ] following a fixed distribution and independent Rademacher
random variables σ := {σm,i : m ∈ [M ], i ∈ [nm]}.

The optimization error of FedAvg (McMahan et al., 2017) and SCAFFOLD (Karimireddy et al., 2020)
are presented in Appendices F.1 and F.2. Combining the generalization error and optimization error via
Lemma 4.3 into Theorem 4.1, Corollary 4.4 can be obtained, which is restated in the following.
Corollary D.6 (Restatement of Corollary 4.4). Under the condition of Lemma 4.3, the regret of FedIGW
can be bounded as

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
K
(
Rl−1 + εl

opt)
)

/µf MEl

 ,

where Rl := R(F ; {El : m ∈ [M ]}) and using ρl rounds of agents-server communications (i.e., global
aggregations) and κl rounds of local updates in epoch l, under certain assumptions,

• with FedAvg as FLroutine(·), if L̂m(fω;Sl
[M ]) is µω-strongly convex and βω-smooth w.r.t. ω for all m ∈

[M ] while the gradients are unbiased, have a σ2
b -bounded variance and have a Gb-bounded dissimilarity, the

output f
ω̂l satisfies that εl

opt := εopt(F ; nl
[M ]) ≤ Õ(σ2

b (µωρlκlM)−1+βωG2
b(µωρl)−2), when ρl ≥ Ω(βω/µω)

(see Lemma F.1 for the full statement);

• with SCAFFOLD as FLroutine(·), if L̂m(fω;Sl
[M ]) is µω-strongly convex and βω-smooth w.r.t. ω for

all m ∈ [M ] while the gradients are unbiased and have a σ2
b -bounded variance, the output f

ω̂l satisfies that
εl

opt := εopt(F ; nl
[M ]) ≤ Õ(σ2

b (µωρlκlM)−1), when ρl ≥ Ω(βω/µω) (see Lemma F.6 for the full statement);.

By further setting a suitable number of global aggregations for each epoch such that the optimization error is
on the same order as the generalization error, the following more specific corollary can obtained for FedAvg
and SCAFFOLD, which can be easily extended for other FL designs.
Corollary D.7. Under the conditions of Lemma 4.3 and Corollary D.6, FedIGW incurs a regret of

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
KRl−1/µf MEl


with the following bounds on the rounds of communications

Õ

 ∑
l∈[l(T )]

βω

µω
+ σ2

b

µωRlκlM
+

√
βωG2

b

µ2
ωR

l

 (using FedAvg);

Õ

 ∑
l∈[l(T )]

βω

µω
+ σ2

b

µωRlκlM

 (using SCAFFOLD),

where Rl := R(F[M ], {El : m ∈ [M ]}) and κl is the number of local updates in epoch l.

33



Published in Transactions on Machine Learning Research (07/2024)

Proof. From Corollary D.6, when using FedAvg as the adopted FL protocol in FedIGW, the optimization
error in epoch l of form

Õ

(
σ2

b

µωρlκlM
+ βωG2

b

µ2
ω(ρl)2

)
,

when ρl = Ω(βω/µω). Thus, if the communication rounds

ρl = Θ̃
(

βω

µω
+ σ2

b

µωRlκlM
+

√
βωG2

b

µ2
ωR

l

)
.

we are guaranteed to have the optimization error on the order of O(Rl).

Then, the regret in Corollary 4.4 is of order

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
KRl−1/µf MEl


while the overall communication rounds can be bounded as

∑
l∈[l(T )]

ρl = Õ

 ∑
l∈[l(T )]

βω

µω
+ σ2

b

µωRlκlM
+

√
βωG2

b

µ2
ωR

l

 ,

which concludes the proof for FedAvg. The result of using SCAFFOLD can be similarly obtained.

D.3 A Linear Reward Function Class

We here provide a detailed discussion on the linear reward function class considered in Remark 4.5 at the
end of Section 4.2. Especially, following standard assumptions in linear bandits (Abbasi-Yadkori et al.,
2011) and federated linear bandits (Li & Wang, 2022a; He et al., 2022; Amani et al., 2022), we consider
µm(xm, am) = ⟨ϕ(xm, am), ω∗⟩, where ϕ(·) is a known d-dimensional mapping and ω∗ is an unknown d-
dimensional system parameter. Then, it is sufficient to consider a linear function class F , where fω(·) =
⟨ω, ϕ(·)⟩ and f∗(·) = ⟨ω∗, ϕ(·)⟩. Moreover, for convenience, we assume that ∥ϕ(xm, am)∥2 ≤ 1 and ∥ω∗∥2 ≤ 1.

As mentioned in Remark 4.5, the FL problem can be formulated as a standard ridge regression with

ℓm(fω(xm, am); rm) := (⟨ω, ϕ(xm, am)⟩ − rm)2 + λ∥ω∥2
2.

In other words, Eqn. (1) can be restated as

min
ω∈Rd

L̂(fω;S) :=
∑

m∈[M ]

1
n

∑
i∈[nm]

(
⟨ω, ϕ(xi

m, ai
m)⟩ − ri

m

)2 + λ∥ω∥2
2, (5)

which has an exact minimizer as

ω∗
S =

 1
n

∑
m∈[M ]

∑
i∈[nm]

ϕ(xi
m, ai

m)ϕ(xi
m, ai

m)⊤ + λI

−1 1
n

∑
m∈[M ]

∑
i∈[nm]

ϕ(xi
m, ai

m)ri
m

 . (6)

We provide an excess risk bound required in Definition C.1 through the following decomposition:

ES,ξ

 ∑
m∈[M ]

nm

n
Exm,am (⟨ω̂S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2


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≤ 2ES,ξ

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω̂S , ϕ(xm, am)⟩ − ⟨ω∗
S , ϕ(xm, am)⟩)2


+ 2ES,ξ

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω∗
S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2


= 2ES,ξ

[
∥ω̂S − ω∗

S∥
2
Σ

]
+ 2ES

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω∗
S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2


≤ 2ES,ξ

[
λmax(Σ) ∥ω̂S − ω∗

S∥
2
2

]
=: term (A)

+ 2ES

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω∗
S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2

 =: term (B)

where

Σ :=
∑

m∈[M ]

nm

n
Exm,am

[
ϕ(xm, am)ϕ(xm, am)⊤]

and λmax(Σ) denotes the maximum eigenvalue of Σ. With ∥ϕ(x, a)∥2 ≤ 1, it can be verified that λmax(Σ) ≤ 1.
In the above decomposition, term (A) can be interpreted as the optimization error, while term (B) is the
generalization error.

We can then plug in the aforementioned explicit formula of ω∗
S into term (B) and demonstrate that term (B) =

Õ(d/n) with λ = 1/n under the assumption that ∥ω∗∥2 ≤ 1 and rm ∈ [0, 1] (e.g., following Theorem 9.35 in
Zhang (2023)).

For the ridge regression problem in Eqn. (5), previous designs on federated linear bandits typically (Wang
et al., 2019; Dubey & Pentland, 2020; Li & Wang, 2022a; He et al., 2022; Amani et al., 2022) have agents
collaboratively provide the exact minimizer in Eqn. (6) via directly communicating their local rewards aggre-
gates, i.e.,

∑
i∈[nm] ϕ(xi

m, ai
m)ri

m, and local covariance matrices, i.e.,
∑

i∈[nm] ϕ(xi
m, ai

m)ϕ(xi
m, ai

m)⊤. Thus,
one round of agent-server communication is sufficient, where O(Md2) real numbers are shared. However,
directly sharing such compressed data is often undesired in FL studies due to privacy concerns. We refer to
this protocol as the “direct method” for simplicity in the following discussions.

With the flexible FL choice in FedIGW, it can accommodate many other efficient optimization algorithms.
In particular, a distributed version of accelerated gradient descent (AGD) (Nesterov, 2003) takes only
O(
√

κ log(1/ε′)) rounds of communications of gradients to have an optimization error of ε′, where κ is
the condition number (i.e., the ratio between the smooth and strongly convex parameter in the consid-
ered problem). With λ = 1/n, it holds that κ = O(n); thus O(

√
n log(d/n)) rounds of communications of

gradients are sufficient to obtain an optimization error of order Õ(d/n), where each agents’ gradients are
intuitively d-dimensional.

With the above illustration, the following corollary regarding the performance FedIGW with a linear reward
function class is then a straightforward extension from Theorem 4.1.
Corollary D.8. In the considered linear reward function class with shared true parameters, using the direct
method or distributed AGD as the adopted FL protocol to solve the FL problem in Eqn. (5) and τ l = 2l,
FedIGW obtains a regret of

Reg(T ) = Õ

 ∑
l∈[log2(T )]

√
Kd

M2l−1 M2l

 = Õ
(√

MKdT
)
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and the amount of real numbers communicated can be bounded as

O

 ∑
l∈[log2(T )]

Md2

 = O(Md2 log(T )) (using the direct method);

O

 ∑
l∈[log2(T )]

Md
√

M2l log(d/(M2l))

 = O(d log(d)
√

M3T ) (using distributed AGD).

E Details of Section 6

E.1 Personalized Learning: Details of Section 6.1

Additional details for the personalized learning setting in Section 6.1 are discussed here. In particular, the
overall algorithm structure still follows Algorithm 1, while the major difference is that a personalized FL
problem is considered:

min
ωα,ωβ

[M]

L̂(fωα,ωβ

[M]
;S[M ]) :=

∑
m∈[M ]

nm

n
L̂m(fωα,ωβ

m
;Sm),

where

L̂m(fωα,ωβ
m

;Sm) := 1
nm

∑
i∈[nm]

ℓm(fωα,ωβ
m

(xi
m, ai

m); ri
m).

Furthermore, to bound the generalization error, similar to the Rademacher complexity in Eqn. (4), a slightly
different Rademacher complexity is introduced as

P(F[M ]; n[M ]) = sup

ES,σ

 sup
ωα,ωβ

[M]

 ∑
m∈[M ]

1
n

∑
i∈[nm]

σm,i · ℓm(fωm
(xi

m, ai
m); ri

m)


 ,

which is suitable for the considered personalized setting with parameters [ωα, ωβ
[M ]] involved. A similar

notation is also adopted in Mohri et al. (2019).

The following corollary can then be established for the personalized version of FedIGW with the LSGD-PFL
algorithm (Hanzely et al., 2021) adopted to solve the personalized FL task.
Corollary E.1. Under the conditions of Lemmas 4.3 and F.7, with LSGD-PFL as the adopted personalized
FL protocol, FedIGW incurs a regret of

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
KPl−1/µf MEl


with

Õ

 ∑
l∈[l(T )]

max{βωβ (κl)−1, βωα}µ−1
ω + σ2

b (µωκlMPl)−1 +
√

βωα(G2 + σ2)(µ2
ωP

l)−1


rounds of communications, where Pl := P(F[M ], {El : m ∈ [M ]}) and κl is the number of local updates in
epoch l.

The proof largely follows that of Corollary D.7: decomposing excess risk to generalization and optimization
errors; using Rademacher complexity to characterize the generalization error; using FL convergence analyses
to characterize the optimization error; and combining them together such that the optimization error does
not dominate the generalization error. As the LSGD-PFL protocol (Hanzely et al., 2021) is adopted to solve
the personalized FL task as an illustration, its corresponding convergence analyses should be incorporated,
which is presented in Lemma F.7.
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E.1.1 A Linear Reward Function Class

As an extension of the linear reward function in Appendix D.3, we consider that

µm(xm, am) = ⟨ϕ(xm, am), ω∗
m⟩, ∀m ∈ [M ], (xm, am) ∈ Xm ×Am,

and the true model parameters {ω∗
m : m ∈ [M ]} follow Assumption 6.2, i.e., ω∗

m = [ωα,∗, ω∗,β
m ] with ωα,∗

shared among all agents.

It can be further realized that the above problem setting is identical to a d̃-dimensional linear system, where
d̃ := dα +

∑
m∈[M ] dβ

m: the overall true model parameter is

ω̃∗ =
[
ω∗,α, ω∗,β

1 , · · · , ω∗,β
M

]
∈ Rd̃.

and a correspondingly feature mapping ϕ̃(·) is

ϕ̃(xm, am) =
[
ϕ(xm, am)[1:dα], Odβ

1
, · · · , Odβ

m−1
, ϕ(xm, am)[dα+1:dm], Odβ

m+1
, · · · , Odβ

M

]
,

i.e., an expanded version of the original feature, where ϕ(xm, am)[i:j] ∈ Rj−i+1 denotes the sub-vector
containing [i : j]-th elements in ϕ(xm, am) and Oi ∈ Ri an i-dimensional null vector.

With this reformulated problem, discussions from Appendix D.3 can be directly leveraged. Especially,
Corollary D.8 indicates the following result.
Corollary E.2. In the considered linear reward function class with partially true parameters, using dis-
tributed AGD as the adopted FL protocol to solve the FL problem in Eqn. (5) with reformulated feature
mapping ϕ̃(·) and τ l = 2l, FedIGW incurs a regret of

Reg(T ) = Õ
(√

MKd̃T
)

and the amount of real numbers communicated can be bounded as O(dα log(dα)
√

M3T ).

E.2 Robustness, Privacy, and Beyond: Details of Section 6.2

We here provide some additional discussions on incorporating appendages in FL studies to provide robustness
and privacy guarantees for FedIGW among some other directions, e.g., fairness guarantees (Mohri et al.,
2019; Du et al., 2021), client selections (Balakrishnan et al., 2022; Fraboni et al., 2021), and practical
communication designs (Chen et al., 2021; Wei & Shen, 2022; Zheng et al., 2020). The key is that as long as
one FL protocol can provide an estimated function f̂ (which is used in IGW interactions), it can be adopted
in FedIGW; thus the desirable properties of the selected FL protocol are naturally inherited to FedIGW.

For example, Yin et al. (2018); Pillutla et al. (2022); Fu et al. (2019); Li et al. (2021); Zhu et al. (2023)
studied how to handle malicious agents, who can deviate arbitrarily from the FL protocol and tamper with
their updates, during learning. The commonly adopted approach is to invoke certain robust estimators (e.g.,
median and trimmed mean). Under suitable assumptions, existing approaches have shown that as long as
the proportion of malicious agents does not exceed a threshold (typically, 1/2), the estimators calculated
by federation can still converge within certain amounts of error due to the malicious agents. A recent work
(Zhu et al., 2023) provides a summary of convergence rates with different robust estimators, which can be
leveraged to establish theoretical understandings of FedIGW with robustness.

On the privacy side, many mechanisms have also been studied in FL (Wei et al., 2020; Yin et al., 2021; Liu
et al., 2022), to guarantee differential privacy (DP), where the most common approach is to insert noises of
suitable scales. Convergence rates have also been established under suitable assumptions, e.g., in Wei et al.
(2020); Girgis et al. (2021); Wei et al. (2021). With those analyses, the theoretical behavior of FedIGW with
DP can also be similarly established as Corollaries D.7 and E.1.
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F Algorithm Sketches and Convergence Analyses of FL Designs

F.1 FedAvg

The FedAvg algorithm (McMahan et al., 2017) is one of the most standard and well-adopted FL protocol.
Following it, agents perform local stochastic gradient descents (SGD) with their local objective functions
for certain steps and then communicate the updated local models to the server; the server aggregates local
models to a global one via a weighted average, which is then communicated to the agents to perform further
local SGDs.

Many theoretical analyses have been provided for FedAvg (e.g., Li et al. (2020b)). We adopt the one from
Karimireddy et al. (2020) in the following.
Lemma F.1 (Theorem V in Karimireddy et al. (2020) without client sampling). For any dataset S, if

• L̂m(fω;Sm) is µω-strongly convex w.r.t. ω (see Definition F.2) for all m ∈ [M ];

• L̂m(fω;Sm) is βω-smooth w.r.t. ω (see Definition F.3) for all m ∈ [M ];

• the stochastic gradients are unbiased and have a σ2
b -bounded variance (see Definition F.4);

• the gradients have Gb-bounded dissimilarity (see Definition F.5),

with FedAvg as the adopted FL protocol, the output ω̂ satisfies that

Eξ[L̂(f
ω̂S

;S)− L̂(fω∗
S

;S) | S] ≤ Õ

(
σ2

b

µωρκM
+ βωG2

b

µ2
ωρ2 + µω∥ω0 − ω∗

S∥2
2 exp

(
− µωρ

16βω

))
when ρ ≥ 8βω

µω
, where ρ denotes the round of communications (i.e., number of global aggregations), κ is the

number of local updates (i.e., SGD) between each communication, and ω0 is the initialization. Note that the
last term which decays exponentially w.r.t. ρ is omitted in Corollary D.6 and the following derivations for
simplicity.

A few definitions used above are made precise in the following, which are inherited from Karimireddy et al.
(2020) and presented here for completeness:

Definition F.2 (Strongly Convex). L̂m(fω;S) is µω-strongly convex w.r.t. ω for µω > 0 if

L̂m(fω′ ;S)− L̂m(fω;S) ≥
〈
∇ωL̂m(fω;S), ω′ − ω

〉
+ µω

2 ∥ω
′ − ω∥2

2 , for any ω and ω′.

Definition F.3 (Smooth). L̂m(fω;S) is βω-smooth w.r.t. ω for βω > 0 if

L̂m(fω′ ;S)− L̂m(fω;S) ≤
〈
∇ωL̂m(fω;S), ω′ − ω

〉
+ βω

2 ∥ω
′ − ω∥2

2 , for any ω and ω′.

Definition F.4 (Stochastic Gradients with Bounded Variances). The stochastic gradients have a σ2
b -bounded

variance if

1
nm

∑
i∈[nm]

∥∥∥∇ωℓm(fω(xi
m, ai

m); ri
m)−∇ωL̂m(fω;Sm)

∥∥∥2

2
≤ σ2

b , for any ω and m.

Definition F.5 (Gradients with Bounded Dissimilarity). The gradients have a Gb-bounded dissimilarity if

1
M

∑
m∈[M ]

∥∥∥∇ωL̂m(fω;Sm)
∥∥∥2

2
≤ G2

b , for any ω.
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F.2 SCAFFOLD

The SCAFFOLD algorithm is proposed in Karimireddy et al. (2020), which enhances FedAvg via leveraging
variance reduction to correct drifts in heterogenous agents’ local updates. The following result is established
in Karimireddy et al. (2020) to characterize the convergence of the SCAFFOLD protocol.
Lemma F.6 (Theorem VII in Karimireddy et al. (2020) without client sampling). For any dataset S, if

• L̂m(fω;Sm) is µω-strongly convex w.r.t. ω (see Definition F.2) for all m ∈ [M ];

• L̂m(fω;Sm) is βω-smooth w.r.t. ω (see Definition F.3) for all m ∈ [M ];

• the stochastic gradients are unbiased and have a σ2
b -bounded variance (see Definition F.4),

with SCAFFOLD as the adopted FL protocol, the output ω̂ satisfies that

Eξ[L̂(f
ω̂S

;S)− L̂(fω∗
S

;S) | S] ≤ Õ

(
σ2

b

µωρκM
+ µωD̃2 exp

(
−min

{
ρ

30 ,
µωρ

162βω

}))
when ρ ≥ max{ 162βω

µω
, 30}, where ρ denotes the round of communications (i.e., number of global aggregations),

κ is the number of local updates (i.e., SGD) between each communication, D̃2 is a distant measure w.r.t. the
initialization defined in Karimireddy et al. (2020). Note that the last term which decays exponentially w.r.t.
ρ is omitted in Corollary D.6 and the following derivations for simplicity.

F.3 LSGD-PFL

The LSGD-PFL protocol is summarized in Hanzely et al. (2021), which is a general design for personalized
federated learning problems. It largely follows FedAvg (McMahan et al., 2017), while only the globally shared
parameters are communicated and aggregated. The following lemma is provided in Hanzely et al. (2021) to
characterize the convergence of LSGD-PFL.
Lemma F.7 (Theorem 1 in Hanzely et al. (2021)). For any dataset S, if

• L̂m(fωm
;Sm) is µω-strongly convex w.r.t. ωm (see Definition F.2) for all m ∈ [M ];

• L̂m(fωα,ωβ
m

;Sm) is βωα-smooth w.r.t. ωα and Mβωβ -smooth w.r.t. ωβ
m (see Definition F.3) for all

m ∈ [M ];

• the stochastic gradients w.r.t. ωα is unbiased and have a σ2
b -bounded variance (see Definition F.4);

• the stochastic gradients w.r.t. {ωβ
m : m ∈ [M ]} is unbiased and have a σ2

b -bounded variance (see
Definition F.4);

• the gradients w.r.t. ω have Gb bounded dissimilarity (see Definition F.5),

with LSGD-PFL as the adopted FL protocol, the output ω̂ has εopt(F[M ]; n[M ]) ≤ ε′ after

Õ

(
max{βωβ κ−1, βωα}

µω
+ σ2

b

µωκMε′ + 1
µω

√
βωα(G2 + σ2)

ε′

)
rounds of communications, where κ is the number of local updates.

G Experiment Details

This section first provides a comprehensive description of the experimental settings and procedures. The
codes and detailed instructions have been uploaded in the supplementary materials so as to
execute the experiments and reproduce the results.
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Experimental details. In the experiments, the system is designed as a synchronous one, i.e., tm(t) =
t,∀m ∈ [M ], and for both tasks, two-layer multi-layer perceptrons (MLPs) with a hidden layer having a
constant 256 width are used to approximate the reward functions.

For practical conveniences, instead of selecting a theoretically sound but sophisticated choice of γ for FedIGW
as in Theorem 4.1, we set it as a constant hyper-parameter and perform some preliminary manual selections
with the final adopted values reported in Table 5. We believe this approach is more practically appealing
as it does not need to scale γ consistently; a similar choice of using constant γ’s is also adopted in Agarwal
et al. (2023). Also, the temperature parameter ζ used in softmax can be found in Table 5.

Table 5: Hyperparameter choices for FedIGW in Bibtex and Delicious

Task Learning Rate Batch Size Communications Parameter γ Parameter ζ
Bibtex 0.1 64 100 7000 0.02

Delicious 0.2 64 100 7000 0.02

Multiple standard FL protocols including FedAvg (McMahan et al., 2017), SCAFFOLD (Karimireddy et al.,
2020) and FedProx (Li et al., 2020a) are adopted as the FL component in FedIGW. During each FL process,
the local batch size, the number of communications, and the local learning rate are specified in Table 5.
Moreover, the epoch length is designed to be growing exponentially as in Corollaries 4.2, D.8 and E.2, i.e.,
τ l = 2l, while culminating at an upper limit of 4096 to maintain timely updates. The same FedAvg setup is
also used in experiments with greedy and softmax to ensure fair comparisons.

Additional comparisons with single-agent baselines. In Fig. 3, comparisons between FedIGW and
the state-of-the-art FN-UCB are provided, demonstrating the superiority of FedIGW. Here we further report
Fig. 5, containing comparisons between FedIGW and two single-agent baselines:

• AGR. The adaptive greedy (AGR) algorithm (Chakrabarti et al., 2008) is selected as one of the
single-agent baselines due to its strong empirical performance on Bibtex and Delicious reported in
Cortes (2018). The algorithmic details can be found in Cortes (2018), and we also leveraged the
code provided in Cortes (2018) to build this baseline.

• FALCON. The other single-agent baseline, FALCON, is proposed in Simchi-Levi & Xu (2022), which
is essentially the single-agent version of FedIGW. We still adopt the same algorithmic configurations
as FedIGW (i.e., epoch length, parameter γ, local batch size, and local learning rate) except that
the MLP is optimized locally instead of in a federation, i.e., there are no communications.

It can be observed that FedIGW (with M = 10 participating agents and the basic FedAvg) can outperform
the two single-agent baselines on both tasks, demonstrating the benefit of learning in a federation.

Figure 5: The averaged reward collected by each agent via FedIGW (with FedAvg and M = 10
participating agents) and two single-agent baselines on Bibtex (left) and Delicious (right) datasets.
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