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Abstract
In this work, we study how multi-head latent attention (MLA), a popular strategy for compressing
key/value memory, affects a transformer’s internal capacity during pretraining. Using a lightweight
suite of Marchenko–Pastur (MP) diagnostics, we analyze the spectrum of the QK⊤ Gram matrix
throughout training, comparing three variants: the standard multi-head attention (MHA) baseline,
MLA-PreRoPE with rotary applied before compression, and MLA-Decoupled, which shares a sin-
gle rotary sub-vector across all heads. Our random matrix analysis reveals three key findings.
First, capacity bottlenecks emerge locally: both MHA and MLA-PreRoPE exhibit sharp, early
spikes in specific layers that persist and propagate, disrupting the balance between bulk and outlier
directions. Second, these spikes coincide with rank collapse, concentrating the model’s expressivity
into narrow subspaces. Third, only the decoupled variant prevents this cascade, maintaining broad
spectral support and suppressing outlier formation across layers. These results underscore that
how rotary embeddings are applied is just as critical as where compression occurs. Sharing rotary
components across heads mitigates spectral fragmentation and preserves representational capacity.

1. Introduction

Modern large language models (LLMs) increasingly face inference latency bottlenecks, not due to
computational limitations, but primarily because of memory-bound key/value (KV) cache opera-
tions. To address this, recent architectures like DeepSeek-V2 and V3 have adopted Multi-Head La-
tent Attention (MLA) [10, 11, 14, 21], which compresses queries and keys into lower-dimensional
latent representations before computing attention scores. This approach significantly reduces the
KV cache size, often by over 50%, while maintaining competitive performance across various tasks.

Despite these practical advancements, the implications of latent-space compression on the in-
ternal dynamics of attention mechanisms remain underexplored. In particular, understanding how
MLA influences the learning dynamics of attention layers is crucial for highlighting its induc-
tive biases and potential limitations. While prior studies have applied Random Matrix Theory
(RMT) to analyze weight matrices, co-variance matrix, and nonlinear layers in neural networks
[2–7, 9, 13, 15–20], the spectral behavior of the attention Gram matrix, especially post-MLA com-
pression, has not been thoroughly investigated.

To bridge this gap, we aim to address these key questions: RQ1: Where do MLA-induced
spikes arise? Are they localized to specific layers or heads, or uniformly distributed? RQ2: Is width
compression alone sufficient to suppress spectral spikes, or does rotary-vector sharing play a critical
role? RQ3: What impact do residual spikes have on rank collapse and latent space utilization?
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While prior studies have quantified the memory efficiency of MLA, they often overlook the
underlying spectral dynamics that contribute to its performance. Our work addresses this shortfall
through a rigorous spectral analysis.

Contributions We summarize our contributions as follows.
1. RMT-based attention diagnostic framework. We introduce a lightweight framework that ana-

lyze the squared singular value spectrum of QK⊤ matrix using four metrics derived from the
Marchenko–Pastur (MP) law: MP-Gap, outlier count and energy, and MPSoft and stable rank.

2. The first spectrum-resolved analysis of MLA training. We benchmark classical MHA, MLA with
rotary applied before up-projection (MLA-PreRoPE), and a decoupled variant with rotary shared
across heads (MLA-Decoupled), integrating them in LLaMA architecture.

3. Identification of a mid-layer spike cascade. We discover that spectral spikes emerge early and
persist in MHA and MLA-PreRoPE models, causing severe rank collapse. PreRoPE partially
mitigates but does not eliminate these effects.

4. Demonstration of rotary-sharing as a mitigation Strategy. The MLA-Decoupled variant main-
tains a low MP-Gap, suppresses the growth of outliers, and preserves stable rank. This highlights
that the method of sharing rotary embeddings is as critical as latent width compression in pre-
venting spectral collapse.
By integrating memory-efficient attention mechanisms with heavy-tailed RMT-MP analysis, our

work provides both a practical diagnostic tool and a design insight: shared rotary embeddings are
essential in preventing spectral collapse where width compression alone is insufficient.

2. Method

To investigate how latent compression and rotary embedding strategies reshape the spectral structure
of the attention kernel during training, we log four Marchenko–Pastur (MP) diagnostics—MP-Gap,
outlier count, outlier energy, and soft/stable rank—on the QK⊤ Gram matrix at each transformer
layer [1], tracked across training with high temporal resolution. All measurements are conducted
under identical training conditions across three attention configurations, enabling controlled com-
parison of their spectral dynamics.

At each logging step, we compute the scaled Gram matrix as follows:

G =
1

dmodel
(QK⊤)(QK⊤)⊤, G ∈ Rm×m, m = H · dk,

and extract its eigenvalues via a single SVD on GPU.
Marchenko–Pastur edge. For aspect ratio γ = m/dmodel, the theoretical bulk spectrum is

bounded by [12]
λ± = σ2(1±√

γ)2.

We apply empirical variance correction by estimating σ2 = Var([(QK⊤)ij ]) at each step, aligning
the MP bulk with observed data, essential for accurately resolving spectra in finite-width networks.

We summarize the four Marchenko–Pastur (MP) diagnostics that form the backbone of our
spectral analysis in Table 1. MP-Gap (∆) quantifies the strength of the dominant spike: a value of
zero implies the spectrum is entirely confined to the MP bulk, while larger values indicate that a
leading eigenvalue has detached from random noise. Outlier Count captures how many eigenvalues
exceed the MP upper edge, revealing the prevalence of spiking within a layer. Outlier Energy
measures the proportion of spectral mass captured by those spikes, translating the count into a
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fractional energy budget. Finally, MPSoft- and Stable-Rank translate spike behavior into usable
capacity metrics: soft-rank (ρ) quantifies the relative distance of the top spike from the bulk edge,
while stable-rank (rs) measures how much of the bulk dimension remains after excluding spikes.

Table 1: Summary of spectral measures and their interpretations

Name Formula Interpretation

MP-Gap ∆ = λ1 − λ+ Spike strength; ∆ = 0 ⇒ no detachment

Outlier Count #{λi > λ+} Spike population

Outlier Energy
∑

λi>λ+
λi∑

i λi
Spectral mass lost to spikes

MPSoft Rank [13] ρ = λ1
λ+

Normalized spike distance

Stable Rank [13] r+ =
∑ λi

λ1
Residual capacity

Computational cost. All four diagnostics are computed from a single forward-pass SVD on the
QK⊤ Gram matrix, imposing less than 1% runtime overhead. For instance, an SVD on a 768×768
matrix costs only 3.6M FLOPs, negligible compared to a transformer forward pass. The method
scales efficiently to larger models via subsampling of heads or layers, and leaves the backward
graph untouched, ensuring that training throughput is virtually unaffected.

3. Experimental Results

Setup. All three variants are trained from scratch for 20K steps on 2.2B tokens with a context
length of 256 on C4 dataset, following the hyper-parameter settings from [8] for LLaMA-130M
model. Training is performed with a global batch size 512, on 2 RTX 3090 (24 GB) GPUs. We use
a compression ratio of two, reducing the latent dimension from 64 to 32 in both MLA variants.
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(c) Upper Energy Comparison

Figure 1: Spectral-spike dynamics. We report three key spectral metrics: (a) MP-Gap, (b) outlier
count, and (c) outlier energy, for MHA (blue), MLA-Dec (orange), and MLA-Pre (green).
Curves represent mean values across layers; shaded bands indicate ±1 standard deviation
in LLaMA-130M model. Together, these metrics quantify the emergence and strength of
spectral outliers in the QK⊤ Gram spectrum during training.

Decoupled MLA eliminates spectral spikes Figure 1(a) presents the MP-Gap, the distance
between the largest eigenvalue (i.e., squared singular value) of the QK⊤ Gram matrix and the
Marchenko-Pastur (MP) bulk edge. In classical MHA, this gap rapidly surges to ≈ 2 within the
first 5k steps and then plateaus, indicating the emergence of a persistent, high-magnitude spectral
spike. Pre-RoPE MLA follows a similar trajectory but saturates at roughly one-fifth the amplitude,
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(a) MP-SoftRank Comparison
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(b) Stable Rank Comparison
Figure 2: Spectral-Capacity Dynamics. (a) MP-Soft-Rank (largest eigenvalue divided by the

Marchenko–Pastur edge) and (b) Stable Rank (
∑

λ/λ1) are shown for LLaMA-130M
model with MHA (blue), MLA-Pre (orange), and MLA-Dec (green). Curves show layer
means; shaded regions indicate ±1 standard deviation across 12 layers. Higher MP-Soft-
Rank signals sharper spectral spikes; higher Stable Rank indicates better bulk direction
usage. MLA-Dec converges rapidly to ideal values, while MHA and MLA-Pre exhibit
persistent spikes and rank degradation.

suggesting that compressing latent dimensions alone is insufficient to eliminate spike formation.
In contrast, Decoupled MLA maintains an MP-Gap near zero throughout, reflecting that its shared
rotary sub-vector across heads keeps all singular values inside the MP bulk.

Figure 1(b) shows the the number of outlier eigenvalues, exceeding the MP upper edge. MHA
and Pre-RoPE both stabilize at 60 to 65 outliers per layer (roughly 5 to 6 per head), while Decou-
pled MLA consistently exhibits zero, empirically confirming the absence of spectral outliers and
validating the collapsed MP-Gap. Figure Figure 1(c) quantifies outlier energy, the proportion of
total spectral energy carried by these spikes. MHA and Pre-RoPE MLA channel nearly 70% of
the spectrum into the spike subspace, signaling severe rank collapse. In contrast, Decoupled MLA
re-distributes this energy back into the bulk, dropping outlier energy below 30%.

This shift reflects a broader effective rank and reinforces a key insight: how rotary embeddings
are applied matters. Head-shared rotary embeddings suppress spike formation entirely, whereas
conventional key/query compression schemes do not.

Decoupled MLA preserves substantially higher usable dimensionality Figure 2 comple-
ments the spike metrics from Figure 1 by examining how spectral spikes influence usable dimen-
sionality. Initially, the MP-Soft-Rank ratio (left) is high across all models due to random initializa-
tion placing the largest eigenvalue significantly above the bulk distribution. Within the first thousand
training steps, MHA stabilizes around a ratio of ≈ 2, Pre-RoPE MLA settles around ≈ 1.5, whereas
decoupled MLA rapidly converges closer to ≈ 1.1. This indicates that decoupling effectively an-
chors the largest eigenvalue near the Marchenko-Pastur bulk edge, whereas the other two methods
consistently maintain substantial separation.

The Stable-Rank plot (right) provides complementary insight. Following an initial transient
phase, decoupled MLA maintains an effective rank around 30, approximately three times higher
than both MHA and Pre-RoPE MLA, which plateau below 10. Taken together with Figure 1, these
observations clearly demonstrate that employing a shared rotary sub-vector across attention heads
not only mitigates spectral spikes but also preserves the global representational capacity of the
model. In contrast, classical MHA and basic key/query compression both experience persistent
rank collapse. See Appendix A for a detailed discussion.
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(a) MPGap in MHA
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(b) MPGap in MLA-Decoupled
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(d) StableRank in MHA
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(e) StableRank in MLA-Decoupled
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(f ) StableRank in MLA-PreRoPE
Figure 3: Layerwise spectral dynamics: (Top row)MP-Gap and (bottom row)StableRank

heatmaps. MHA exhibits strong mid-layer concentration in MPGap and declining Sta-
bleRank in later layers, while MLA-based methods spread representational changes more
evenly, maintaining higher stable ranks across depths

Capacity bottlenecks: Mid-layer spikes vs. uniform utilization The MP Gap and Stable
Rank heatmaps (Figure 3) reveal a clear capacity bottleneck in the MHA model, where a persistent
band of spectral spikes emerges in mid layers 6 to 8 and gradually spreads deeper. This spike pattern
reflects a strong separation between bulk and edge singular values and coincides with a collapse in
stable rank beyond layer 5. Pre RoPE MLA shows a much weaker version of this effect, with about
20 percent spike intensity and partial recovery in deeper layers, but still suffers capacity loss. In
contrast, the Decoupled MLA model avoids spike formation entirely and sustains more than 60
percent normalized rank across all layers and training steps. The absence of edge singularities in
Decoupled MLA suggests that redistributing rotary vectors across heads enforces uniform spectral
behavior and preserves stable representational capacity throughout the network.

4. Conclusion and Limitations

Our RMT analysis shows that sharing rotary embeddings across heads eliminates spectral spikes,
maintains MP Gap at the noise level with outliers close to one, and preserves over 60 percent
stable rank in MLA decoupled mode. In contrast, classical MHA and MLA Pre RoPE remain
spike dominated and lose around 70 percent of spectral energy to a few dominant directions. These
findings are based on a 12 layer LLaMA-130M trained for 20K steps on 2.2 billion C4 tokens.
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Random matrix theory improved fréchet mean of symmetric positive definite matrices. In
Forty-first International Conference on Machine Learning, 2024.

[3] Romain Couillet, Gilles Wainrib, Hafiz Tiomoko Ali, and Harry Sevi. A random matrix ap-
proach to echo-state neural networks. In International Conference on Machine Learning,
2016.

[4] Vasilii Feofanov, Malik Tiomoko, and Aladin Virmaux. Random matrix analysis to balance
between supervised and unsupervised learning under the low density separation assumption.
In International Conference on Machine Learning, 2023.

[5] Aymane El Firdoussi, Mohamed El Amine Seddik, Soufiane Hayou, Reda ALAMI, Ahmed
Alzubaidi, and Hakim Hacid. Maximizing the potential of synthetic data: Insights from ran-
dom matrix theory. In The Thirteenth International Conference on Learning Representations,
2025.

[6] Romain Ilbert, Malik Tiomoko, Cosme Louart, Ambroise Odonnat, Vasilii Feofanov, Themis
Palpanas, and Ievgen Redko. Analysing multi-task regression via random matrix theory with
application to time series forecasting. Advances in Neural Information Processing Systems,
2024.

[7] Noam Levi and Yaron Oz. The underlying scaling laws and universal statistical structure of
complex datasets. arXiv preprint arXiv:2306.14975, 2023.

[8] Pengxiang Li, Lu Yin, and Shiwei Liu. Mix-LN: Unleashing the power of deeper layers by
combining pre-LN and post-LN. In The Thirteenth International Conference on Learning
Representations (ICLR), 2025.

[9] Zhenyu Liao and Romain Couillet. The dynamics of learning: A random matrix approach. In
International Conference on Machine Learning, 2018.

[10] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

[11] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024.

[12] VA Marchenko and Leonid A Pastur. Distribution of eigenvalues for some sets of random
matrices. Mat. Sb.(NS), 72(114):4, 1967.

6



LEARNING DYNAMICS OF MULTI-HEAD LATENT ATTENTION

[13] Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural net-
works: Evidence from random matrix theory and implications for learning. Journal of Ma-
chine Learning Research, 2021.

[14] Fanxu Meng, Zengwei Yao, and Muhan Zhang. Transmla: Multi-head latent attention is all
you need. arXiv preprint arXiv:2502.07864, 2025.

[15] Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss surfaces via random
matrix theory. In International conference on machine learning, 2017.

[16] Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning.
Advances in neural information processing systems, 30, 2017.

[17] Max Staats, Matthias Thamm, and Bernd Rosenow. Locating information in large language
models via random matrix theory. arXiv preprint arXiv:2410.17770, 2024.

[18] Matthias Thamm, Max Staats, and Bernd Rosenow. Random matrix theory analysis of neural
network weight matrices. In High-dimensional Learning Dynamics 2024: The Emergence of
Structure and Reasoning, 2024.

[19] Malik Tiomoko, Romain Couillet, Florent Bouchard, and Guillaume Ginolhac. Random ma-
trix improved covariance estimation for a large class of metrics. In International Conference
on Machine Learning, 2019.

[20] Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models pre-
dict how real-world neural representations generalize. In International conference on machine
learning, 2022.

[21] Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Huazuo Gao, Jiashi Li, Liyue
Zhang, Panpan Huang, Shangyan Zhou, Shirong Ma, et al. Insights into deepseek-v3: Scaling
challenges and reflections on hardware for ai architectures. arXiv preprint arXiv:2505.09343,
2025.

7



LEARNING DYNAMICS OF MULTI-HEAD LATENT ATTENTION

Appendix A. Outlier Energy Distribution Shows Spectral Compression vs. Spread

The violin plot (Figure 4) depicts the distribution of outlier energy across all 12 layers at the fi-
nal training steps. In both the classical MHA and Pre-RoPE MLA variants, the distribution peaks
around 0.70 with wide tails, indicating that approximately 70% of the spectral energy remains con-
centrated in a few dominant directions. This suggests persistent rank compression even at conver-
gence.
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Figure 4: Upper Energy Violin Plot

In contrast, the Decoupled MLA variant exhibits tightly clustered violin plots centered near 0.30,
reflecting a substantial shift of spectral mass away from outliers and toward the bulk. Moreover,
this pattern is consistent across all layers, suggesting a structurally broader use of representational
capacity. These distributions align with the averaged outlier trends reported in Figure 1 (where
MHA and Pre-RoPE plateau near 0.7 and MLA-Decoupled stabilizes near 0.3), and reinforce the
heatmap observations from Figure 3, which showed suppressed MP-Gap and sustained stable rank
in the decoupled design.

In summary, the violin plots confirm that only the decoupled architecture effectively returns
spike energy to the bulk, thereby preserving a broader and more effective rank across layers.

Appendix B. Attention Entropy Distribution in MHA and MLA

MLA improves information flow and stability across layers Our entropy analysis in Figure 5
highlights significant differences in information flow across three attention mechanisms. Vanilla
MHA displays a clear bifurcation: early layers (L0-L3) quickly reach an entropic-overload state
(>4 bits), while a deep entropy drop around layer 5 plunges below 1.5 bits and fails to fully recover.
This rigid stratification suggests rich information flow at the network’s start but significant starvation
in the middle and deeper layers.

MLA-Decoupled softens these extremes, moderating both overload and starvation. MLA-PreRoPE
further improves the entropy distribution: the middle-layer entropy dip nearly disappears, deeper
layers recover rapidly within the first 5,000 steps, and the overall stack stabilizes twice as quickly
as MHA. Thus, combining latent compression with pre-RoPE positional embeddings yields a more
uniform and rapidly converging information flow, highlighting how nuanced architectural adjust-
ments can significantly enhance transformer performance.
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(a) Attention entropy MHA
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(b) MLA-Decoupled
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(c) MLA-PreRoPE

Figure 5: Attention entropy patterns in classical MHA and MLA variants (decoupled and Pre-
RoPE)
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