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ABSTRACT 

 
In recent years, salient object detection (SOD) has attracted 

more and more attention. However, the SOD in remote sens-

ing images (RSI-SOD) faces various issues, including large 

scene span, cluttered background and changeable object scale. 

To address these challenges, an edge complementary multi-

scale aggregation network (ECMANet) is proposed in this pa-

per. Specifically, a multi-scale feature aggregation module 

(MFAM) is designed to extract hierarchical multi-scale infor-

mation and reduce the noise interference of different scale in-

formation. In addition, foreground edge guidance module 

(FEGM) is designed to cross-refine foreground information 

and edge information. Finally, the foreground, edge, and 

background are generated by background-foreground fusion 

module (BFFM) to complement the overall network infor-

mation. Extensive experiments are conducted on two popular 

datasets demonstrate that the proposed method outperforms 

other state-of-the-art methods. 

 

Index Terms— Salient object detection, Edge Comple-

mentary, Multi-scale, remote sensing 

 

1. INTRODUCTION 

 

Salient object detection (SOD) aims at locating and segment-

ing the most visually attractive areas in an image, and it has 

shown successful applications in various computer vision 

tasks, such as semantic segmentation [1], image quality as-

sessment [2], change detection [3] and so on. Concurrently, 

SOD method has made vigorous development in natural im-

ages. However, due to the variable object scale and large 

scene span in remote sensing images (RSI), the salient object 

detection in remote sensing images (RSI-SOD) is facing more 

challenges than that in natural images. 

In recent years, researchers have begun to focus on RSI-

SOD. Zhang et al. [4] proposed a global context-aware atten-

tion module, which was used to capture the remote semantic 

context adaptively. Cong et al. [5] proposed a parallel multi-

scale attention scheme to recover detailed information Wang 

et al. [6] proposed a method of multi-scale feature integration 

with the explicit and implicit assistance for salient target de-

tection. This method explicitly expresses rich multi-scale 

depth features by integrating significant edge clues. However, 

most of the above methods ignore multi-scale information of 

objects of different sizes, and it is easy to cause feature re-

dundancy in the integration process. 

On the other hand, edge information can produce a clear 

and accurate salience map. Zhou et al. [7] introduced an ad-

ditional decoder to detect edge features, which was then used 

to guide the decoder to accurately locate salient objects. Fur-

ther, Gong et al. [8] performs multi-scale high-level feature 

integration with the help of the significant edge extraction 

module and skeleton extraction module to further improve the 

accuracy of the significance map. Luo et al. [9] proposed a 

semantics-edge interaction model, which enable close inter-

action between semantic and edges. However, most of these 

methods adopt a single edge detection method and the fore-

ground information closely related to the edge is ignored 

which either cannot make full use of the edge information, or 

the edge information generated is too rough to fully extract 

the boundary information of significant objects. 

To solve the above problems, an edge complementary 

multi-scale aggregation network (ECMANet) is proposed in 

this paper. Firstly, a multi-scale feature aggregation module 

(MFAM) is designed to extend the depth in-formation of the 

encoder to different scales, and it uses up-and-down infor-

mation propagation to integrate and branch across parallel 

volumes, to effectively keep the local details of salient objects. 

This module makes each branch learn different features from 

other branches and reduces redundant features when it effec-

tively adapts to targets of different sizes. At the same time, 

the foreground edge guidance module (FEGM) is proposed 

to cross-refine foreground information and edge information 

to achieve complementary effect, realize accurate extraction 

of edge information. Finally, Background-Foreground Fusion 

Module (BFFM) is designed to merge the whole scene infor-

mation. ECMANet achieves balance by integrating hierar-

chical multi-scale features and foreground edge perception, 

enhances salient regional features, and retains edge details. 
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2. PROPOSED METHOD 

 

2.1. Network Overview 

 

The framework of ECMANet is illustrated in Fig. 1. Firstly, 

the encoder is composed of modified VGG-16, that is, the last 

four layers of convolutional blocks are removed. Then, the 

enhancer will extract multi-scale information and generate 

foreground, edge, and background features. Finally, our de-

coder network infers salient objects through a progressive 

resolution restoration process.  

 

2.2. Multi-Scale Feature Aggregation Module  

 

Inspired by [10], we propose MFAM to extract features of 

different scales and reduce the interference of noise. Initially, 

it consists of eight parallel dilated convolutions, where 𝑓𝑖 is 

the input image. Up sampling and down sampling are de-

signed to obtain a larger feature map 𝑓𝑢 and a smaller feature 

map 𝑓𝑑 The generated two feature maps pass through dilated 

convolutions with dilation rates 𝑟 = 1  and 𝑟 = 3 , respec-

tively, while the original feature map 𝑓𝑖  passes through di-

lated convolutions with dilation rates 𝑟 = 1,2,3,4. Further-

more, for dilated convolutions with dilation rates other than 

𝑟 = 1, we add their feature maps to the result of dilated con-

volution of the previous layer to form a residual cascade 

structure. The process can be summarized as follows: 

 
𝑓𝑢
𝑟 = DiConv𝑟(𝑓𝑢), 𝑟 ∈ {1}

𝑓𝑢
𝑟 = DiConv𝑟(𝑓𝑢 + 𝑓𝑢

1), 𝑟 ∈ {3}

𝑓𝑖
𝑟 = DiConv𝑟(𝑓𝑖), 𝑟 ∈ {1}

𝑓𝑖
𝑟 = DiConv𝑟(𝑓𝑖 + 𝑓𝑖

𝑟−1), 𝑟 ∈ {2,3,4}

𝑓𝑑
𝑟 = DiConv𝑟(𝑓𝑑), 𝑟 ∈ {1}

𝑓𝑑
𝑟 = DiConv𝑟(𝑓𝑑 + 𝑓𝑑

1), 𝑟 ∈ {3}

𝑓𝑜𝑢𝑡
𝑖 = Concat(𝑓𝑢

1, 𝑓𝑢
3, 𝑓𝑖

1, 𝑓𝑖
2, 𝑓𝑖

3, 𝑓𝑖
4, 𝑓𝑑

1, 𝑓𝑑
3)

(1) 

 

where DiConv𝑟  is a dilated convolution with dilation rate 𝑟. 
 

2.3. Foreground Edge Guidance Module 

 

Given the certain correlation between foreground features 

and edge features, we propose FEGM to guide the edge in-

formation and foreground information for mutually refine 

each other. The refining process can be calculated as follows: 
 

𝐸𝐺gate
𝑖 = Sigmoid(𝐸𝐺𝑖) ⊗ 𝐸𝐺𝑖 (2) 

𝐹𝐺𝑜𝑢𝑡
𝑖 = 𝐹𝐺𝑖 ⊕Conv3×3 (Conv3×3(Concat(𝐹𝐺

𝑖 , 𝐸𝐺gate
𝑖 ) ⊗ 𝐸𝐺𝑖)) (3) 

𝐸𝐺𝑜𝑢𝑡
𝑖 = 𝐸𝐺𝑖 ⊕Conv3×3 (Conv3×3(Concat(𝐹𝐺

𝑖 , 𝐸𝐺gate
𝑖 ) ⊕ 𝐸𝐺𝑖)) (4) 

 

where 𝐸𝐺𝑖 represents the edge map, 𝐹𝐺𝑖  represents the fore-

ground map, ⊕ is the elementwise summation, and ⊗ is the 

elementwise multiplication. 

 

2.4. Background-Foreground Fusion Module 

 

To address the complexity of scenes in RSI, inspired by [11], 

we propose BFFM to establish the relationship among fore-

ground, background and edges, which can jointly guide the 

detection of RSI-SOD. 

The original feature map is output as 𝑓𝑖
𝑀𝐹𝐴𝑀  after pass-

ing through MFAM, and then generates foreground map 

𝑎𝑓
𝑀𝐹𝐴𝑀  and the edge map 𝑎𝑒

𝑀𝐹𝐴𝑀  through channel attention 

and spatial attention. The edge map 𝐸𝑖 is supervised by the 

true edge map 𝐺𝑒, where 𝐺𝑒  is obtained based on paper [12]. 
Finally, 𝑎𝑓

𝑀𝐹𝐴𝑀  and 𝑎𝑒
𝑀𝐹𝐴𝑀 are cross-refined and fused to re-

alize the mutual complement 𝑎𝑓
𝐹𝐸𝐺𝑀  and 𝑎𝑒

𝐹𝐸𝐺𝑀 . Different 

from [11], BFFM realizes the complementarity of foreground 

and edge through cross thinning, which can make full use of 

the correlation of objects in the scene, as follows: 
 

𝑓ca
𝑀𝐹𝐴𝑀 = CA(𝑓𝑖

𝑀𝐹𝐴𝑀) ⊙ 𝑓𝑖
𝑀𝐹𝐴𝑀

𝑎𝑓
𝑀𝐹𝐴𝑀 = SA(𝑓ca

𝑀𝐹𝐴𝑀)

𝑎𝑒
𝑀𝐹𝐴𝑀 = SA(𝑓ca

𝑀𝐹𝐴𝑀)

𝑎𝑓𝑒
𝐹𝐸𝐺𝑀 = 𝑎𝑓

𝐹𝐸𝐺𝑀 ⊕ 𝑎𝑒
𝐹𝐸𝐺𝑀

(5) 

Optical RSI

Saliency Map

Encoder

E1 E2 E3 E4 E5

MFAM MFAM MFAM MFAM MFAM

FEGM FEGM FEGM FEGM FEGM

BFFM BFFM BFFM BFFM BFFM

Decoder

D1 D2 D3 D4 D5

E

MFAM

FEGM

BFFM

D

Encoder Convolutional Block

Multi-scale Feature 

Aggregation Module

Foreground Edge Guidance 

Module

Background-Foreground 

Fusion Module

Decoder Convolutional Block

Deconv+Concat

U

D

C
o

n
ca

t

𝑓𝑖  
𝑓𝑖
𝐹𝑀𝐴𝑀 

𝑓𝑢  

𝑓𝑑  

r=3

r=1

r=4

r=3

r=2

r=1

r=3

r=1

Element-wise Summation

D Down Sample

U Up Sample

Element-wise Multiplication

MFAM

Sigmoid

𝐹𝐺𝑜𝑢𝑡
𝑖  𝐹𝐺𝑖  

𝐸𝐺𝑖  𝐸𝐺𝑜𝑢𝑡
𝑖  

Concat

FEGM

Conv

𝑓𝑖  

BFFM

M

F

A

M

F

E

G

M

CA
SA

SA
RA C

o
n
c
at

𝑓𝑖
𝐵𝐹𝐹𝑀 

CA

SA

RA

Channel Attention

Spatial Attention

Reverse Attention  
Fig. 1: Overall framework of the proposed ECMANet. 
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where CA denotes the channel attention, ⊙ is the channel-

wise multiplication, and SA is the spatial attention. 

In BFFM, the background attention opposite to the fore-

ground edge attention is obtained by inversion. This and the 

foreground edge attention are multiplied with the channel-at-

tention processed feature map 𝑓ca
𝑀𝐹𝐴𝑀 , enhancing foreground 

and background aspects. The process can be calculated as fol-

lows: 

 
𝑓𝑓𝑒 = 𝑎𝑓𝑒

𝐹𝐸𝐺𝑀 ⊗𝑓𝑐𝑎
𝑀𝐹𝐴𝑀

𝑎𝑏
𝐹𝐸𝐺𝑀 = 1⊖ 𝑎𝑓𝑒

𝐹𝐸𝐺𝑀

𝑓𝑏 = 𝑎𝑏
𝐹𝐸𝐺𝑀 ⊗𝑓𝑐𝑎

𝑀𝐹𝐴𝑀

𝑓𝑖
𝐵𝐹𝐹𝑀 = Conv3×3(Concat(𝑓𝑓𝑒, 𝑓𝑏) ⊕ 𝑓𝑖)

(6) 

 

Where 1 refers to a matrix of the same size as 𝑎𝑓𝑒
𝐹𝐸𝐺𝑀 , and all 

elements are 1, ⊖ is the element-wise subtraction. 

 

3. EXPERIMENTS 

 

3.1. Dataset and implementation Details 

 

The datasets of ORSSD [13] and EORSSD [4] are used in this 

experiment. ORSSD contains 800 images and EORSSD con-

tains 2000 images. We trained our method on the PyTorch 

platform using an NVIDIA RTX 4060Ti GPU (16GB 

memory). The batch size is 8 and initial learning rate is 1e−4, 

which was divided by 10 after 30 epochs. For the dataset, we 

trained for 38 epochs. 

For comprehensive and fair evaluation, the widely used 

metrics are applied in this paper, including S-measure (𝑆𝛼), 

max F-measure (𝐹𝛽
𝑚𝑎𝑥), adaptive F-measure (𝐹𝛽

adp
), max E-

measure (𝐸𝛽
𝑚𝑎𝑥), adaptive E-measure (𝐸𝛽

adp
) and mean abso-

lute error (MAE, ℳ) 

3.2. Comparison with State-of-the-arts 

 

The proposed method is compared with seven RSI-SOD 

methods, including DAFNet [4], SARNet [14], RRNet [5], 

Corrnet [15], ERPNet [7], CRNet [16], SEINet [9] and 

SeaNet [17]. The results are shown in Table 1. It can be seen 

that the proposed method achieves better scores on two da-

tasets. Fig. 2 shows a visual comparison of the saliency maps 

predicted by different methods. The proposed method can ac-

curately locate the salient target and delineate the boundary. 

Additionally, we compared the Precision-Recall (PR) curves 

of various methods across two datasets. As illustrated in Fig. 

3 and Fig. 4, our method consistently shows excellent perfor-

mance. In summary, the proposed method can extract more 

complete and clear significance objects in complex back-

ground. 

 

Image GT Our SEINet ERPNet CorrNet SARNet DAFNet  
Fig. 2: Visual comparison between our results and other 

methods. 

 
Fig. 3: Comparison of PR curves of ours with other SOTA 

methods on ORSSD. 

Table 1: Quantitative comparison of our method with seven other methods. ↑ and ↓ denote larger and smaller, respec-

tively. The top three results are marked in red, blue, and green, respectively. 
 

EORSSDORSSD

𝑆𝛼 ↑ 𝐹𝛽
max ↑ ℳ ↓ 𝑆𝛼 ↑ 𝐹𝛽

max ↑ ℳ ↓ 

Ours 0.91610.9461 0.0096 0.9391 0.8935 0.0064

DAFNet21[4] 0.9191 0.8928 0.0060
SARNet21[14] 0.9134 0.8850 0.0099

RRNet21[5] 0.9311 0.9011 0.0075
CorrNet22[15] 0.9380 0.9129 0.0083
ERPNet22[7] 0.9254 0.8974 0.0089
CRNet23[16]
SEINet23[9] 0.9382 0.9090 0.0076

𝐹𝛽
adp

↑ 𝐸𝜉
max ↑ 𝐸𝜉

max ↑ 𝐸𝜉
adp

↑ 𝐸𝜉
adp

↑ 

0.9166
0.9240
0.9266
0.9289
0.9210

0.9283

0.0113
0.0187
0.0104
0.0098
0.0135

0.0097

0.8614
0.8719
0.8781
0.8778
0.8632

0.8788

0.8879 0.9814 0.9728 0.8474 0.9758 0.9679

0.7876 0.9771 0.9360 0.6427 0.9861 0.8446
0.8512 0.9557 0.9464
0.8252 0.9722 0.9479
0.8875 0.9790 0.9721
0.8356 0.9710 0.9520

0.8816 0.9771 0.9682

0.8304 0.9620 0.9536
0.7251 0.9716 0.9034
0.8311 0.9696 0.9593
0.7554 0.9603 0.9228

0.8587 0.9723 0.9678
0.9389 0.9107 0.8695 0.9793 0.9711 0.0091 0.9370 0.8873 0.8140 0.9743 0.00630.9563

SeaNet23[17] 0.9260 0.8942 0.8625 0.9767 0.9670 0.0098 0.9208 0.8649 0.8304 0.9710 0.9651 0.0073

𝐹𝛽
adp

↑ 
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Fig. 4: Comparison of PR curves of ours with other SOTA 

methods on EORSSD. 

 

4. CONCLUSION 

 

This paper presents a novel ECMANet to detect salient 

objects in RSI. The key is to solve the feature redundancy 

problem of multi-scale fusion and integrate multiple contents 

in the scene. MFAM can reduce the noise interference of dif-

ferent scale information while extracting hierarchical multi-

scale information. FEGM guides the edge information and 

foreground information to cross-refine each other for obtain 

clearer boundary features. BFFM integrates multiple contents 

including background to make full use of the information in 

the scene. These components adaptively complement each 

other and can accurately detect salient objects in optical RSI. 

Experimental results on two public datasets confirm the su-

periority of ECMANet. 
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