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Abstract
Recent years have seen significant progress in
Text-To-Audio (TTA) synthesis, enabling users
to enrich their creative workflows with synthetic
audio generated from natural language prompts.
Despite this progress, the effects of data, model ar-
chitecture, training objective functions, and sam-
pling strategies on target benchmarks are not well
understood. With the purpose of providing a holis-
tic understanding of the design space of TTA mod-
els, we set up a large-scale empirical experiment
focused on diffusion and flow matching models.
Our contributions include: 1) AF-Synthetic, a
large dataset of high quality synthetic captions
obtained from an audio understanding model; 2)
a systematic comparison of different architectural,
training, and inference design choices for TTA
models; 3) an analysis of sampling methods and
their Pareto curves with respect to generation qual-
ity and inference speed. We leverage the knowl-
edge obtained from this extensive analysis to pro-
pose our best model dubbed Elucidated Text-To-
Audio (ETTA). When evaluated on AudioCaps
and MusicCaps, ETTA provides improvements
over the baselines trained on publicly available
data, while being competitive with models trained
on proprietary data. Finally, we show ETTA’s im-
proved ability to generate creative audio following
complex and imaginative captions – a task that is
more challenging than current benchmarks1.

1. Introduction
The design space of text-to-audio (TTA) models is com-
plex, including a myriad of correlated factors. While our
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research community has attempted to understand this design
space and the contribution of each factor, drawing conclu-
sions between experiments is challenging. Our goal in this
work is not to explore novel model designs or methodolo-
gies. Instead, we aim to provide a holistic understanding
of existing paradigms for building TTA models, to identify
important aspects that allow for improving results, and to
assess scalability with respect to data and model size.

In this paper, we aim to elucidate the design space of TTA
model with respect to training data, model architecture and
implementation, model capacity, training objective, and
sampling methods during inference. In a controlled scenario
and with a vast sweep over factors, we offer insights on the
contribution of each factor. In addition to elucidating the de-
sign space of TTA models, our best configuration produces
a model – namely Elucidated Text-to-Audio (ETTA) – that
significantly improves over open-sourced baselines on both
AudioCaps (Kim et al., 2019) and MusicCaps (Agostinelli
et al., 2023) benchmarks with a single model.

Recent research has shown that scaling dataset size, com-
bined with a careful data filtering strategy, can yield sizable
improvements on benchmarks in other domains (Radford
et al., 2019; Betker et al., 2023). Comparatively, the datasets
used in TTA are generally much smaller, and their cap-
tions of varying quality, thus posing a challenge to scaling
datasets (Liu et al., 2023b; Huang et al., 2023c). In order to
circumvent these challenges, we introduce a large-scale and
high-quality dataset of synthetic captions, and show that it is
possible to leverage synthetic captions to obtain significant
improvements.

While Transformers (Vaswani, 2017) have become the de
facto architecture choice in many domains, sometimes their
efficiency and stability, specially in larger models, are
severely impaired by implementation details related to nu-
merical precision and weight initialization. 2 We improve on
several implementation details of the Diffusion Transformer
(DiT) (Peebles & Xie, 2023) in the area of TTA genera-
tion, and provide insights on which details are important for
improving benchmark scores.

In tandem, current trends have shown the benefits of scaling
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model size (OpenAI, 2024; Chung et al., 2024; Radford
et al., 2019), including better result on benchmarks and the
appearance of emergent capabilities. While increasing ca-
pacity overall can yield improvements, it is important to
strategically allocate capacity in a way that is Pareto opti-
mal, maximizing scores and alleviating inference costs. In
addition to increasing the decoder’s capacity, the community
has compared CLAP (Wu et al., 2023) and T5-based (Raffel
et al., 2020; Chung et al., 2024) text encoders (Liu et al.,
2023b; Ghosal et al., 2023; Liu et al., 2024), but the results
seem mixed and strongly dependent on the data and decoder
capacity at hand. We show in our experiments that, although
improvements can be obtained by scaling model size, some
strategies for increasing capacity yield better returns than
others.

Finally, the diffusion model literature (Ho et al., 2020; Song
et al., 2021) includes a wide range of training and sam-
pling methods on the shelf (Kingma et al., 2021; Salimans
& Ho, 2022; Lipman et al., 2022; Ho & Salimans, 2022;
Karras et al., 2022; Tong et al., 2023; Karras et al., 2024).
Through comprehensive experiments across various training
objectives and sampling methods, we determine the most
effective training method for our setting. In addition, we
provide deeper insights into how to optimally select the sam-
pling method for the best results by drawing Pareto curves
across various evaluation metrics.

We summarize our contributions below:

• We introduce a large-scale and high-quality synthetic
caption dataset called AF-Synthetic, and show that
it can significantly improve text-to-audio generation
quality on benchmarks.

• We ablate on major design choices in the text-to-audio
space, and elucidate the importance of each compo-
nent with respect to improving scores on benchmarks
with an emphasis on data, architectural design, training
objectives, and sampling methods.

• We introduce an improved implementation of diffusion
transformer (DiT) for text-to-audio.

• We present ETTA, the state-of-the-art text-to-audio
model trained on publicly available datasets. ETTA is
also comparable with models trained on much larger
proprietary data.

• We show ETTA’s improved ability to generate creative
audio following complex and imaginative captions.

2. Related Works
Diffusion and Flow Matching Based Models Diffusion
models (Ho et al., 2020; Song et al., 2021; Kong et al., 2021;

Kingma et al., 2021; Dhariwal & Nichol, 2021) are a type
of deep generative models that learn the data distribution
with optional conditions (e.g. text-to-X generation). They
learn a reverse stochastic process that gradually transforms
the Gaussian noise into clean data. The training objective of
diffusion models is to predict the score function, i.e. the gra-
dient of the log-likelihood with respect to data, via a neural
network. Alternatively, some flow matching models predict
the vector field related to the optimal transport between dis-
tributions (Lipman et al., 2022; Tong et al., 2023). These
models can also be trained in the latent space (Rombach
et al., 2022; Liu et al., 2023b) for better efficiency, scala-
bility, and quality. Appendix B includes the mathematical
details.

Text-to-Audio Models There are two main streams of
text-to-audio (TTA) models (including both audio and music
generation) in the research community. One line of work
uses diffusion and flow matching-based models. These
works proposed numerous architectural and training designs
for audio generation (Liu et al., 2023b; Ghosal et al., 2023;
Huang et al., 2023c;a; Liu et al., 2024; Kong et al., 2024b;
Xue et al., 2024; Haji-Ali et al., 2024; Hai et al., 2024;
Vyas et al., 2023) and music generation (Melechovsky et al.,
2023; Huang et al., 2023b; Evans et al., 2024a;b;c; Lam
et al., 2024; Schneider et al., 2024; Lan et al., 2024; Li et al.,
2024b;a; Fei et al., 2024). However, there is no systematic
study on their design choices, and a main challenge is that
the design space has too many variables to investigate. Our
work falls in this category and aims at conducting the first
systematic study on the design space of diffusion and flow
matching based TTA models, and we choose to use the
latest Stable Audio Open (Evans et al., 2024c) as our base
model to investigate. Another line of research focuses on
the language model approach and uses next token prediction
to train a language model on discrete token representation
of audio (Kreuk et al., 2022; Borsos et al., 2023; Agostinelli
et al., 2023; Copet et al., 2024). These works are orthogonal
to our study.

Audio-Caption Datasets AudioSet (Gemmeke et al.,
2017) pioneered large-scale audio-text dataset with labels
for about 2M audio segments. AudioCaps (Kim et al.,
2019) and MusicCaps (Agostinelli et al., 2023) are sub-
sets of AudioSet with high-quality human-annotated cap-
tions. They are among the most common benchmarks for
text-to-audio and text-to-music generation. With the rapid
progress in large language models (LLMs) in recent years,
LLM-enhanced audio-caption datasets such as WavCaps
(Mei et al., 2024) and Laion-630K (Wu et al., 2023) were
proposed, enabling large-scale audio-language models in-
cluding TTA and other tasks. However, the captions can be
noisy as the caption generation process does not depend on
the audio signals. In the domain of TTA, recent works have
used different collections of audio-caption pairs (mostly by
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combining existing datasets) in order to train powerful TTA
models. Examples include TangoPromptBank (Ghosal et al.,
2023), AudioLDM (Liu et al., 2024), and Make-an-Audio
(Huang et al., 2023c). However, these works mostly consti-
tute combination and/or augmentation of existing data.

Synthetic Data for Improved TTA Very recently, several
concurrent works have studied using audio captioning mod-
els to generate synthetic captions of unlabeled audio. This
leads to more accurate audio-caption pairs that could be
used to train better TTA models. In detail, Sound-VECaps
(Yuan et al., 2024) uses CogVLM (Wang et al., 2023) to
generate visual descriptions and EnClap (Kim et al., 2024)
to generate sound descriptions, and then use ChatGPT to
condense into captions. This approach does not apply to
audio data without video, and the captions may contain
excessive visual information that does not exist in audio.
Tango-AF is trained on AF-AudioSet (Kong et al., 2024b)
generated with Audio Flamingo (Kong et al., 2024a). It
has very high quality, but is very small in scale. GenAU
(Haji-Ali et al., 2024) is a concurrent study to ours, trained
on captions generated with AutoCap (Haji-Ali et al., 2024).
All these studies demonstrate synthetic captions could lead
to significant improvement of TTA generation quality. In-
spired by these pioneering studies, we propose a large-scale
synthetic dataset of captions leveraging an audio language
model followed by filtering that ensures high quality cap-
tions.

3. Methodology
In Section 3.1, we introduce our method for building a
large-scale, high-quality synthetic dataset used to train our
TTA models. In Section 3.2, we describe our ETTA model,
including architectural design, training objectives, and train-
ing methods of the variational autoencoder (VAE) and latent
diffusion model (LDM). In Section 3.3, we describe the
sampling algorithms that we will study in our experiments.

3.1. AF-Synthetic

Inspired by the recent success of synthetic captions in
the text-to-image domain (Betker et al., 2023; Nguyen
et al., 2024), we aim to build a large-scale and high-quality
synthetic captions dataset for better text-to-audio models.
While there are several in-the-wild datasets with paired text
and audio data, they have certain limitations that we aim
to overcome. Captions in WavCaps (Mei et al., 2024) and
Laion-630K (Wu et al., 2023) are noisy because they are
produced from text metadata only, not considering the actual
audio. Sound-VECaps does not apply to audio data without
video, and the captions may contain excessive visual infor-
mation that does not exist in audio. AutoCap (Haji-Ali et al.,
2024) and AF-AudioSet (Kong et al., 2024b) are closest to
ours; AF-Synthetic constitutes scaling this approach.

We follow and improve the caption synthesis pipeline
from AF-AudioSet. We use Audio Flamingo (Kong et al.,
2024a) to generate ten captions for each audio sample
and store the caption c with the highest CLAP similar-
ity cos(CLAPaudio(a),CLAPtext(c)) to the audio a (Wu
et al., 2023). We discard the caption if the similarity is be-
low 0.45, the optimal threshold according to AF-AudioSet
(Kong et al., 2024b). In addition, there are challenges
when applying this pipeline to larger-scale synthesis (be-
yond AudioSet), such as extremely long, homogeneous, or
low-quality audio. To address these challenges, we caption
each non-overlapping ten-second segment to obtain as many
captions as possible. We then use keywords, e.g. “noisy”,
“low quality”, or “unknown sounds”, to detect low-quality
audio. Finally, we also sub-sample long audio segments
except for music and speech. With this strategy, we are able
to generate 1.35M high-quality captions using audio from
AudioCaps (Kim et al., 2019), AudioSet (Gemmeke et al.,
2017), VGGSound (Chen et al., 2020), WavCaps (Mei et al.,
2024), and Laion-630K (Wu et al., 2023). 3 We name our
synthetic dataset AF-Synthetic.

Table 1 summarizes the comparison between AF-Synthetic
and existing synthetic datasets. Our dataset is both large-
scale (over 1M captions) and high-quality (CLAP ≥ 0.45).
We further apply our CLAP-similarity filtering to Sound-
VECapsA (denoted as Sound-VECapsA-0.45) and find that
over 90% of the captions are rejected. Figure 1 displays the
distributions of CLAP similarities. Our AF-Synthetic is over
8× larger than Sound-VECapsA-0.45 and AF-AudioSet,
and has systematically higher CLAP similarities (about
3.8% absolute improvement on the median) than these two
datasets. Table 9 in Appendix C.2 further shows that AF-
Synthetic significantly improves text adherence of the audio
compared to the baselines from human evaluations.

We then investigate the distributions of CLAP-similarity
scores between our synthetic captions and AudioCaps
and MusicCaps, two benchmarks we will use to eval-
uate our TTA. For each caption c in AudioCaps or
MusicCaps, we find its most similar caption x from
AF-Synthetic via the max-similarity max-sim(X, c) =
maxx∈X cos(CLAPtext(x),CLAPtext(c)). We plot the
distributions of max-sim in Table 2. We find AF-Synthetic
has captions that are more similar to MusicCaps than Au-
dioCaps, possibly due to caption lengths. We also find most
max-sim scores are less than 0.9, indicating AF-Synthetic
captions are quite different from these two datasets. We
display some examples of most similar caption pairs in Ap-
pendix C.3. In summary:

3Our dataset has no overlap with MusicCaps (Agostinelli et al.,
2023), which is also derived from AudioSet.
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Table 1: Overview of our proposed AF-Synthetic dataset compared to existing synthetic captions datasets. AF-Synthetic
improves the caption generation pipeline in AF-Audioset, and applies it to a variety of datasets, leading to a large-scale and
high-quality synthetic dataset of captions. It is the first million-size synthetic captions dataset with strong audio-caption
correlations (1.35M captions with CLAP similarity ≥ 0.45). † After CLAP-similarity filtering.

Dataset Generation Model Filtering Method # Hours # Captions

TangoPromptBank Collected None 3.5K 1.21M
Sound-VECapsA CogVLM + EnClap Removing visual-only data 14.3K 1.66M

Sound-VECapsA-0.45† CogVLM + EnClap CLAP ≥ 0.45 448 161K
AutoCap AutoCap Removing music or speech 8.7K 761K

AF-AudioSet Audio Flamingo CLAP ≥ 0.45 255 161K
AF-Synthetic (ours) Audio Flamingo CLAP ≥ 0.45 and others 3.6K 1.35M

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Sound-VECapsA

Sound-VECapsA-0.45

AF-AudioSet

AF-Synthetic (ours)

1.66M captions

161K captions

161K captions

1.35M captions

Distribution of CLAP similarities between audio and captions

Figure 1: Distributions of CLAP similarities between au-
dio a and caption c, cos(CLAPaudio(a),CLAPtext(c)), in
existing datasets and our AF-Synthetic. Empirically, we
consider a CLAP score of 0.4 as meaningful correlation,
0.45 stronger, and below 0.3 as weak. AF-Synthetic has
>1M strongly correlated audio-caption pairs.

0.6 0.7 0.8 0.9

GT=AudioCaps

GT=MusicCaps

Distribution of {max-sim(AFSynthetic, t) : t GT}

Figure 2: Distributions of max-similarities, max-sim(X, c)
= maxx∈X cos(CLAPtext(x),CLAPtext(c)), between
AF-Synthetic and real datasets. Results indicate AF-
Synthetic captions are quite different from AudioCaps and
MusicCaps because most max-sim scores are below 0.9.

AF-Synthetic is the first million-size synthetic caption
dataset with strong audio correlations.

3.2. ETTA

Our TTA model, dubbed Elucidated Text-To-Audio (ETTA),
is built upon the LDM (Rombach et al., 2022) paradigm
and its application to audio generation. First, a variational
autoencoder (VAE) (Kingma & Welling, 2014) is trained
to compress waveform into a compact latent space. Once
the VAE is trained, we freeze it and train a latent genera-
tive model in the VAE latent space. See Appendix B for
mathematical details. We conduct our experiments based on
the stable-audio-tools library,4 which provides the
most recent practices in building TTA models.

ETTA-VAE For training the VAE, we adopt a 44kHz
stereo Audio-VAE with 156M parameters using the same de-
fault configuration used in stable-audio-tools with
a latent frame rate of 21.5Hz. We refer to (Evans et al.,
2024c) and Appendix B for details. The Audio-VAE is
trained from scratch on our large-scale collection of pub-
licly available datasets (see Table 12). In terms of quality,
our Audio-VAE matches or exceeds Stable Audio Open, as

4https://github.com/Stability-AI/
stable-audio-tools commit id: 7311840

shown in Table 33 and Table 34 (Appendix G). 5

ETTA-LDM Next, we train a text-conditional latent gen-
erative model for TTA synthesis. The latent model can
be either a diffusion model (Ho et al., 2020; Song et al.,
2021; Salimans & Ho, 2022) or a flow matching model (Lip-
man et al., 2022; Tong et al., 2023). We parameterize our
model using the Diffusion Transformer (DiT) (Peebles &
Xie, 2023) architecture based on Evans et al. (2024c) and
Lan et al. (2024), with 24 layers, 24 heads, and a width
of 1536 as the default choices. We condition our model
on the outputs of the T5-base (Raffel et al., 2020) text
encoder, which outputs embeddings for variable-length text.
In our experiments, we also explore other common choices
and combinations of different text encoders – including T5-
based (Raffel et al., 2020; Chung et al., 2024) and CLAP
models (Wu et al., 2023) – to study the effect of this compo-
nent.

ETTA-DiT Finally, we provide several key improvements
to the DiT implementation in Evans et al. (2024c), and call
our implementation ETTA-DiT. Through experiments, we
find that solely replacing their architecture with ETTA-DiT
leads to improved training losses and evaluation results. Our

5Since our dataset includes speech data, it is noticeably better
in reconstructing speech signals.
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improvements include:

1) Adaptive layer normalization (AdaLN): We switch
from prepending to AdaLN timestep embedding and ap-
ply AdaLN. 6 Contrary to the baseline, we apply AdaLN to
all inputs: self-attention, cross-attention, and feed-forward
layer. The AdaLN parameters are initialized with scale = 1
and bias = 0 so that AdaLN does not modulate the feature
at initialization. When applying AdaLN, we enforce FP32,
use torch.autocast for numerical precision. Contrary
to the baseline, we use a bias term for the linear layer and
use unbounded gating (i.e. no sigmoid).

2) Final layers: Compared to the baseline, we initialize the
final projection layer of DiT to output zeros. This matches
the mean of the VAE latent distribution, and therefore leads
to improved stability and convergence rate. We also use
AdaLN in the final projection layer.

3) Other changes: we use the tanh approximation mode
of the GELU activation (Hendrycks & Gimpel, 2016). We
use rotary position embedding (RoPE) (Su et al., 2024)
in the self-attention layer, with rope base = 16384 to
inject relative positional information. We also ensure that
RoPE operates in FP32. We additionally apply dropout
with pdropout = 0.1 for all modules to enhance robustness
in parameter estimation.

3.3. Training objective and Sampling

Training For the diffusion model training objective, we
use the v-prediction loss function (Salimans & Ho, 2022).
For the flow matching training objective, we use the optimal
transport conditional flow matching (OT-CFM) loss func-
tion (Lipman et al., 2022; Tong et al., 2023). We refer to
Appendix B for details of these methods. Prior works also
found sampling t more often on intermediate steps leads
to better results (Esser et al., 2024; Lan et al., 2024). We
follow their approach and sample t from a logit-normal dis-
tribution, in practice t ∼ σ(N (0, 1)), when training ETTA
with OT-CFM.

Sampling We consider Euler and 2nd-order Heun (Karras
et al., 2022) methods for solving the ODE parameterized by
ETTA. We conduct an extensive sweep over hyperparame-
ters focusing on two major design choices: the number of
function evaluations (NFE) and the classifier-free guidance
(CFG) (Ho & Salimans, 2022) scale wcfg. We draw Pareto
curves across benchmark datasets and metrics to discover
the optimal choice for ETTA. In addition, we also explore
the effectiveness of a recently proposed guidance method,
autoguidance (Karras et al., 2024), in TTA applications.

6In our preliminary study using stable-audio-tools
with its vanilla implementation, switching from prepending
to AdaLN resulted in worse results.

4. Experiments
Our experiments thoroughly evaluate our framework ETTA
on benchmark datasets (AudioCaps and MusicCaps). We
start with a systematic comparison to elucidate the design
space of TTA in four major aspects: 1) training data, 2) train-
ing objectives, 3) architectural design and model sizes, and
4) sampling methods. Furthermore, we show ETTA’s im-
proved ability to generate creative audio following complex
and imaginative captions, a task that is more challenging
than current benchmarks. In our commitment to fully elu-
cidate all aspects of our investigation, we also document
the additional directions we explored, including numerous
additional ablations (in Appendix D and E) and mixed or
negative results (in Appendix F). We train all models using
8 A100 GPUs.

4.1. Training Data

We train ETTA on four different training datasets to as-
sess TTA quality: AudioCaps (50K captions), AF-AudioSet
(161K captions), TangoPromptBank (1.21M captions), and
our AF-Synthetic (1.35M captions). We fix audio length
to 10 seconds and sampling rate to 44.1kHz in all these
datasets.

4.2. Training Objective and Sampling

Audio VAE We train a 44.1kHz stereo Audio-VAE based
on stable-audio-tools with our collection of unla-
beled and public audio datasets (Table 12). We train the
Audio-VAE using AdamW (Loshchilov, 2017) with a peak
learning rate of 1.5×10−4 with exponential decay for 2.8M
steps, with a total batch size of 64 with 1.5 seconds per
sample. We train with full precision (FP32) to make the
waveform compression model as accurate as possible. The
latent dimension is 64 and the frame rate is 21.5 Hz.

Training Objective and Architecture We train ETTA-
LDM with ETTA-DiT as the backbone. We use the
T5-base text embedding with max length=512 trun-
cation to accommodate longer captions in AF-Synthetic.7

We train with both v-diffusion and OT-CFM objectives,
where we additionally apply logit-normal t-sampling for
OT-CFM (see Section 3.3). Our final model is trained for
1M steps using AdamW with a peak learning rate of 10−4

with exponential decay and total batch size of 128 with 10
seconds per sample. For ablation studies, we train each
model for 250k steps unless otherwise stated. We use BF16
mixed-precision training (Micikevicius et al., 2017) and
flash-attention 2 (Dao et al., 2022) to maximize
training throughput.

7Our reproduction of Stable Audio Open using AF-Synthetic
dataset also uses the same max length=512 for a fair compari-
son.
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Sampling For diffusion models, following (Evans et al.,
2024c) we use the dpmpp-3m-sde sampler 8 and CFG
scale wcfg = 7. For OT-CFM models, we compare between
Euler and 2nd-order Heun samplers and draw Pareto curves
for each method with respect to the number of function eval-
uations (NFEs) and CFG scale. After this extensive sweep,
we choose Euler sampling with NFE = 100, wcfg = 3.5 for
main results, and wcfg = 1 (no classifier-free guidance) for
ablation studies unless otherwise stated.

4.3. Results

Metrics We use a collection of established objective met-
rics for systematic evaluation. 1) Fréchet distance (FD) mea-
sures the distributional gap between generated and ground
truth audios using features extracted from an audio classi-
fier. We consider PANNs (Kong et al., 2020) (FDP ) and
OpenL3 (Cramer et al., 2019) (FDO). 9 2) Kullback–Leibler
divergence (KL) is an instance-level metric that measures
the difference between the posterior distributions of audio
events for the ground truth and generated audio samples.
This metric helps assess how close the generated audio
aligns with the ground truth on the single-sample level. We
report KL using PaSST (Koutini et al., 2022) (KLS) and
PANNs (KLP ). 3) Inception Score (IS) evaluates the di-
versity and specificity of the generated samples without
requiring ground truth. IS is calculated from the entropy
of instance posteriors and the entropy of marginal posteri-
ors, where a higher score reflects both better diversity and
sharper class predictions. We use PANNs for IS (ISP ). 4)
Finally, CLAP score measures the cosine similarity between
text and audio embeddings, which indicates the correlation
between the generated sample and the given prompt. For
extensive evaluation, we use two CLAP models: CLL for
LAION’s 630k-best checkpoint (Wu et al., 2023) fol-
lowing Vyas et al. (2023), and CLM for MS-CLAP 2023
version (Elizalde et al., 2023). We also perform 5-scale
subjective evaluation from mechanical turk following con-
ventional metrics: 1) OVL: an overall quality of sample
without seeing captions, and 2) REL: a relevance of the
sample to the provided caption.

Main Results Tables 2 and 3 present our main objective
results on AudioCaps and MusicCaps, respectively. Overall,
ETTA shows significant improvements compared to Stable
Audio Open (the base model) for both benchmarks with
a single model. Compared to other works, ETTA shows
competitive FDP , FDO, and KL scores. Notably, it shows
exceptionally high ISP for both general sounds and music,
demonstrating improved diversity and clarity of the gener-

8Implementation available in https://github.com/
crowsonkb/k-diffusion

9OpenL3 is the latest model with better embedding quality, and
FDO can measure up to 48kHz stereo quality (Evans et al., 2024c).

ated samples. Objective scores on MusicCaps are signifi-
cantly better than previous models using public datasets and
comparable to music specialist models (Li et al., 2024a;b;
Fei et al., 2024) that use proprietary data. Since FDO can
measure stereo audio, Stable Audio Open and ETTA are
noticeably better than previous mono models. Both CLL

and CLM show a preference towards ETTA, where our
improvements on CLM is more salient. Subjective scores
(OVL/REL) of ETTA are competitive with or outperforms
baselines and are consistent with the objective evaluation.

We then fine-tune ETTA on the AudioCaps training set
(FT-AC) for 50k and 100k additional steps. We find ETTA
can quickly adapt to the target distribution via fine-tuning.
Table 2 shows that ETTA keeps approximating the target
distribution with better FDP , which is close to Audiobox
Sound (Vyas et al., 2023) trained on proprietary dataset.
It is noteworthy that this also comes at a cost of shifting
to the target distribution as evidenced by Table 3, where
ETTA-FT-AC-100k starts to show noticeable degradation
for music generation. In summary, our results show that:

ETTA is the SOTA text-to-audio and text-to-music gen-
eration model using only publicly available data. It is
also comparable to models trained with proprietary and/or
licensed data.

Design Improvements Tables 4 summarize important
design choices that lead to significant improvements. We
use FDP , KLS , and CLM on MusicCaps as a summary
(Full results in Tables 13 and 14, Appendix D). First, we
reproduce Stable Audio Open using AF-Synthetic without
other modification (+AF-Synthetic). Results show notice-
able improvements from training data. Then, we switch the
DiT implementation to ours (+ETTA-DiT). Results again
show significant improvements. Next, we switch the train-
ing method from diffusion to OT-CFM (+OT-CFM) with
conventional uniform timestep sampling (t ∼ U(0, 1)). Em-
pirically, although OT-CFM slightly degrades some met-
rics without CFG, we find OT-CFM is more stable to train,
more consistent in quality especially with CFG, and more
robust under fewer sampling steps in agreement with pre-
vious works. Finally, we adopt logit-normal t-sampling
(t ∼ σ(N (0, 1))) (Esser et al., 2024) and find it marginally
improves FDP . Therefore, we conclude:

Our AF-Synthetic leads to the most significant improve-
ments in ETTA. Our improved ETTA-DiT, the OT-CFM
objective, and logit-normal t-sampling lead to further im-
provements.

Scalability with Data We assess the scalability of TTA
models with respect to training data in Table 5 (Full results
in Tables 21 and 22 in the Appendix E). First, AudioCaps
lacks in quantity: ETTA trained solely on AudioCaps sig-
nificaly underperforms on MusicCaps. TangoPromptBank
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Table 2: Main results of ETTA compared to SOTA baselines on AudioCaps. FT-AC-m: fine-tuned on AudioCaps training
set for m iterations. ⋆ Best reported numbers. † Uses proprietary data.

FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑ OVL↑ REL↑

Ground Truth – – – – 13.49 0.62 0.38 3.43 ± 0.11 3.62 ± 0.10
Audiobox (Vyas et al., 2023)⋆† 10.14 – – 1.19 11.90 0.70 – – –
Audiobox Sound (Vyas et al., 2023)⋆† 8.30 – – 1.15 12.70 0.71 – – –
Make-An-Audio (Huang et al., 2023c)⋆ 18.32 – — 1.61 7.29 – – – –
Make-An-Audio 2 (Huang et al., 2023a)⋆ 11.75 – – 1.32 11.16 – – – –
AudioLDM-L-Full (Liu et al., 2023b) 23.31 – – 1.59 8.13 0.43 – – –
AudioLDM2 (Liu et al., 2024) 26.44 156.64 1.81 1.79 8.14 0.50 0.36 – –
AudioLDM2-large (Liu et al., 2024)⋆ 32.50 170.31 1.57 1.54 8.55 0.45 – – –
AudioLDM2-large (Liu et al., 2024) 26.18 158.05 1.68 1.64 8.55 0.53 0.37 3.00 ± 0.11 3.11 ± 0.10
TANGO-Full-FT-AC (Ghosal et al., 2023)⋆ 18.47 – 1.20 1.15 8.80 0.56 – – –
TANGO-AF&AC-FT-AC (Kong et al., 2024b)⋆ 17.19 – – – 11.04 0.53 – – –
TANGO2 (Majumder et al., 2024)⋆ – – – 1.12 9.09 – – 3.08 ± 0.10 3.66 ± 0.09
GenAU-L (Haji-Ali et al., 2024)⋆ 16.51 – – – 11.75 – – – –
Stable Audio Open (Evans et al., 2024c)⋆ – 78.24 2.14 – – – – – –
Stable Audio Open (Evans et al., 2024c) 38.27 105.88 2.23 2.32 12.09 0.35 0.34 3.29 ± 0.11 3.15 ± 0.11
ETTA 13.12 80.13 1.22 1.42 14.36 0.54 0.43 3.43 ± 0.11 3.68 ± 0.10
ETTA-FT-AC-50k 11.13 65.35 1.12 1.26 15.05 0.59 0.43 – –
ETTA-FT-AC-100k 10.10 61.79 1.13 1.24 14.29 0.60 0.43 3.26 ± 0.10 3.77 ±0.10
ETTA (AudioCaps only) 12.21 71.84 1.19 1.30 10.07 0.58 0.40 – –

Table 3: Main results of ETTA compared to SOTA baselines on MusicCaps. FT-AC-m: fine-tuned on AudioCaps training
set for m iterations. ⋆ Best reported numbers. † Uses proprietary or licensed data.

FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑ OVL↑ REL↑

Ground Truth – – – – 4.49 0.53 0.45 3.88 ± 0.10 3.90 ± 0.10
Jen-1 (Li et al., 2024b)⋆† – – – 1.29 – – – – –
QA-MDT (Li et al., 2024a)⋆† – – – 1.31 2.80 – – – –
FluxMusic (Fei et al., 2024)⋆† – – – 1.25 2.98 – – – –
MusicGen-medium (Copet et al., 2024)⋆ – – 1.23 1.22 – – – – –
AudioLDM-M (Liu et al., 2023b)⋆ – – 1.29 – – – – – –
AudioLDM2 (Liu et al., 2024)⋆ – – 1.20 1.20 – – – – –
AudioLDM2 (Liu et al., 2024) 21.39 198.45 1.19 1.57 2.48 0.45 0.45 – –
AudioLDM2-large (Liu et al., 2024) 16.34 190.16 1.00 1.40 2.59 0.48 0.47 3.25 ± 0.10 3.15 ± 0.10
TANGO-AF (Kong et al., 2024b) 22.69 270.32 0.94 1.26 2.79 0.51 0.43 3.38 ± 0.09 3.31 ± 0.10
Stable Audio Open (Evans et al., 2024c) 36.42 127.20 1.32 1.56 2.93 0.48 0.49 3.92 ± 0.10 3.35 ± 0.11
ETTA 10.06 92.18 0.84 1.04 3.32 0.51 0.53 3.53 ± 0.10 3.57 ± 0.10
ETTA-FT-AC-50k 11.40 89.97 0.92 1.11 2.79 0.50 0.53 – –
ETTA-FT-AC-100k 13.49 89.56 1.07 1.15 2.77 0.49 0.52 3.30 ± 0.10 3.44 ± 0.12

Table 4: Improvements by adding each of the major design
choice of ETTA (evaluated on MusicCaps)

Ablation FDP ↓ KLS ↓ CLM ↑
Stable Audio Open 39.96 1.81 0.41
+ AF-Synthetic 26.22 1.57 0.43
+ ETTA-DiT 20.48 1.38 0.45
+ OT-CFM, t ∼ U(0, 1) 22.16 1.35 0.45
+ t ∼ σ(N (0, 1)) 21.59 1.41 0.45

Table 5: Ablation study on the results of ETTA trained on
different datasets (evaluated on MusicCaps).

Dataset (million captions) FDP ↓ KLS ↓ CLM ↑
AudioCaps (0.05) 76.14 3.20 0.27
TangoPromptBank (1.21) 24.72 1.73 0.38
AF-AudioSet (0.16) 21.40 1.45 0.44
AF-Synthetic (1.35) 21.59 1.41 0.44

is simillar to AF-Synthetic in quantity:10 while it scored

10In practice, we used 2.33M audio-caption pairs for Tango-
PromptBank due to repetitive captions for multiple 10-second

comparable FDP , other metrics (KLS and CLM ) are much
worse, suggesting that the quality of their music captions
is not as good as AF-Synthetic. AF-AudioSet contains
high-quality synthetic captions: it is competitive with AF-
Synthetic, emphasizing the importance of data quality. We
further evaluate on an out-of-distribution (OOD) dataset in
Table 24 (Appendix E), and AF-Synthetic results are consis-
tently better than AF-AudioSet. The results highlight that
AF-Synthetic is a powerful dataset that is comprehensive in
both quantity and quality. As such, we conclude:

Both training data sizes and quality have positive effect
on the results, where quality matters more.

Scalability with Model Size Table 6 provides the sum-
mary of scaling behavior of ETTA with respect to its model
size. We explore different depths, widths, and the convolu-
tional feed-forward layer kernel sizes (kconvFF) of ETTA-
DiT. We use wcfg = 1 to eliminate the effect of CFG.

As expected, most metrics show consistent improvements

segments in a long audio.

7



ETTA: Elucidating the Design Space of Text-to-Audio Models

Table 6: Ablation study on the results of ETTA with different
depths, widths, and kernel sizes (evaluated on AudioCaps).
⋆ Our best model choice.

Model Size(B) FDP ↓ KLS ↓ CLM ↑
depth = 4 0.38 36.46 2.15 0.30
depth = 12 0.81 29.48 2.05 0.32
depth = 24⋆ 1.44 28.46 2.00 0.32
depth = 36 2.08 27.08 1.95 0.32
width = 384 0.28 35.97 2.14 0.30
width = 768 0.52 31.03 2.04 0.32
width = 1536⋆ 1.44 28.46 2.00 0.32
kconvFF = 1⋆ 1.44 28.46 2.00 0.32
kconvFF = 3 2.34 28.72 2.04 0.31

as we grow depth or width of ETTA-DiT. We find the 1.44B
model with depth=24 and width=1536 leads to an op-
timal balance between model size and quality. On the
other hand, increasing kconvFF does not bring clear im-
provements, suggesting that allocating the model capacity
to self-attention parameters is more important. See tables
17 and 18 (Appendix D) for extended results. In summary,

In TTA tasks, increasing model size is helpful via in-
creasing depth and width of DiT’s self-attention block.
However, increasing the kernel size of the convolutional
feed-forward layer is not helpful.
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Figure 3: The effect of different sampling methods on the
generation quality of ETTA MusicCaps. We investigate Eu-
ler and Heun solvers. NFE: number of function evaluations.
CFG: classifier-free guidance scale.

Choice of Sampler and its Impact on Metrics Figure 3
and Figure 5 (Appendix D) present a comprehensive anal-
ysis of the impact of sampler choices. The results reveal
several key insights: 1) All metrics improve as the number
of function evaluations (NFE) increases, as expected. 2)
At lower NFE, the Heun sampler is noticeably better than
Euler; as NFE increases, they converge to similar results. 3)
FD behaves as a convex function with respect to the CFG
scale, indicating that FD penalizes low diversity caused by
CFG’s over-emphasis on text condition and/or distortion
caused by high CFG scales. 4) Metrics such as KL, IS, and
CL (Figure 5) show continuous improvement with higher
CFG scales, suggesting their preference for accuracy over
diversity. Therefore, one should be cautious when selecting
the CFG scale, as optimizing for these metrics alone may

lead to a trade-off between diversity and accuracy. Detailed
results on the choices of sampler and NFE are provided in
Table 19 (Appendix D). In summary:

Heun’s sampler is better than Euler at lower NFE. wcfg =
3.5 provides the best overall metrics, and one should be
cautious that a higher CFG scale potentially leads to lower
diversity.

Table 7: Subjective Evaluation Result of Creative Audio
Generation with 95% Confidence Interval.

Model AudioLDM2 TANGO2 Stable Audio Open ETTA

OVL↑ 3.95 ± 0.05 3.82 ± 0.05 3.94 ± 0.05 3.99 ± 0.05
REL↑ 3.79 ± 0.06 3.94 ± 0.05 3.95 ± 0.05 4.05 ± 0.05

Creative Audio Generation We test ETTA’s abilities to
generate creative audio and music samples that do not exist
in the real world, especially for complex and imaginative
captions. We ask ChatGPT to generate hard captions that
require blending and transformation of various sound ele-
ments towards creative audio. See Table 20 (Appendix D)
for the imaginative captions. We generate 20 samples for
each model and invite human listeners to measure 5-scale
rating of OVL and REL. Table 7 shows that ETTA signifi-
cantly improves its ability to follow the complex captions
as measured by the REL score (p < 0.05 from Wilcoxon
signed-rank test). We strongly encourage the readers to
listen to the audio samples in the demo page (Appendix A).
Therefore, we claim:

ETTA shows an improved ability to generate audio that
follows complex and imaginative captions.

5. Conclusion
In this paper, we setup a large-scale empirical experiment
to comprehensively understand the design space of modern
text-to-audio models. We provide insights on data scaling,
architectural design, model scaling, training methods, and
inference strategies. Based on our findings, we present
ETTA, a state-of-the-art text-to-audio model that results
from large-scale and high-quality synthetic captions, a better
DiT implementation, and a better VAE.

Future work While this work aims to elucidate the de-
sign space of TTA with large-scale experiments, there are
still several unexplored problems we plan to study in our
future work. (1) We plan to improve data augmentation
with caption rephrasing and audio re-mixing (Melechovsky
et al., 2023; Liu et al., 2023b; 2024; Huang et al., 2023c;a)
and systematically study the effect of data augmentation.
(2) We plan to investigate better evaluation methods and
benchmarks for text-to-audio generation that could reflect
both the accuracy and diversity of TTA models in a way that
corresponds with human perception.
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Impact Statement
This paper aims to contribute to the advancement of gen-
erative modeling of audio by introducing a method that
enhances the quality corresponding better to the input text
prompt. The approach has broad applicability across in-
dustries, such as media production and music composition.
However, responsible usage is crucial to ensure adherence
to copyright regulations in specific contexts.
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A. Links
The link to our demo page is:
https://research.nvidia.com/labs/adlr/
ETTA/

The link to our code repository is:
https://github.com/NVIDIA/
elucidated-text-to-audio

B. Mathematical Background
Let pdata be the data distribution and X ∼ pdata be N
i.i.d. training samples drawn from the data distribution.
In (unconditional) audio synthesis, we assume pdata is on
[−1, 1]L where L = 441000 is a fixed length for 10 seconds
of audio at 44.1kHz sampling rate. A generative model on
X aims to model pθ(x) ≈ pdata(x) and draw samples from
it. In text-to-audio synthesis, each sample x = (a, c) is
composed of an audio a ∈ [−1, 1]L and a corresponding
caption c in the natural language space. In this case, we aim
to model pθ(a|c) and draw samples conditioned on a given
caption c. For conciseness, we introduce all the mathemati-
cal background in the unconditional setting, and these can
be translated into the conditional setting by conditioning all
distributions on c.

B.1. Variational Auto Encoders

Variational auto encoders (VAEs) (Kingma & Welling, 2014)
include an encoder E and a decoder D. E aims to encode
a sample x into a lower-dimensional space, and D aims to
reconstruct E(x) to the original space with minimal infor-
mation loss. The training loss is

LVAE = Ex∼X [R(D(E(x)), x)+KL(qE(z|x) ∥ N (0, I))],

where R is a reconstruction loss that measures the distance
between the original sample x and the reconstructed sample
D(E(x)). qE(z|x) is the approximate posterior distribution
of the latent variable z given x using E, and the KL diver-
gence loss measures how close the posterior distribution is
to the prior N (0, I).

Stable Audio Open’s VAE (Evans et al., 2024c) is trained
with a combination of below losses:

1. A stereo sum and difference multi-resolution STFT loss
(Steinmetz & Reiss, 2020; Steinmetz et al., 2021) that com-
putes distances in the spectrogram space with different reso-
lutions:

LMRSTFT(x, x̂) =

m∑
i=1

(
∥stfti(x)− stfti(x̂)∥F

∥stfti(x)∥F

+
1

T

∥∥∥ log stfti(x)

stfti(x̂)

∥∥∥
1

)
, (1)

LStereoMRSTFT(x, x̂) =LMRSTFT(xsum, x̂sum)

+ LMRSTFT(xdiff, x̂diff), (2)

where T is the number of STFT frames, each stfti is the
STFT transformation with resolution i, and

xsum = xleft + xright, xdiff = xleft − xright. (3)

2. An adversarial hinge loss and feature matching loss from
Encodec (Défossez et al., 2023):

Ladv(x̂, x) =

K∑
k=1

(
max(0, 1−Dk(x))

+ max(0, 1 +Dk(x̂))
)
, (4)

Lfeat(x, x̂) =
1

KL

K∑
k=1

L∑
l=1

∥Dl
k(x)−Dl

k(x̂)∥1
mean(∥Dl

k(x)∥1)
, (5)

where Dl
k is the l-th layer of the k-th discriminator Dk.

3. The KL divergence loss:

KL(qE(z|x) ∥ N (0, I)). (6)

The VAE is trained using randomly chunked unlabeled audio
data without captions.

B.2. Diffusion Models

Diffusion models (Ho et al., 2020; Song et al., 2021) include
two processes:

1. A fixed Markov chain diffusion process

dx = f(x, t)dt+ g(t)dw,

where x represents data, t ∈ [0, 1] represents time, f is the
drift term, g is the diffusion term, and dw is the standard
Brownian motion.

2. A learned Markov chain reverse process

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄,

where dw̄ is the reverse Brownian motion.

A neural network sθ(x, t) is used to substitute the score
function ∇x log pt(x) and therefore trained to approximate
the true score function ∇x log q(x|x0) at time t, leading to
training objective

Et∼U(0,1),x0∼pdata,xt∼q(xt|x0)∥sθ(xt, t)−∇xt log q(xt|x0)∥2,

where we could write xt in terms of noise ϵt ∼ N (0, I) :
xt =

√
αtx0 +

√
1− αtϵt for a pre-defined schedule αt,
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Table 8: Detailed breakdown of our proposed AF-Synthetic dataset compared to existing datasets.

Dataset Total Number of captions
Hours Total AudioCaps AudioSet Laion-630K WavCaps VGGSound

TangoPromptBank 3.5K 1.21M 45K 108K - 1.05M -
Sound-VECapsA 14.3K 1.66M - 1.66M - - -

AutoCap 8.7K 761K - 339K 295K - 127K
AF-AudioSet 255 161K - 161K - - -
AF-Synthetic 3.6K 1.35M 33K 165K 282K 783K 92K

and ∇xt
log q(xt|x0) = −ϵt/

√
1− αt. For this reason, the

standard loss function is called the ϵ-prediction.

One can predict other quantities to train diffusion models
as well. One example is the x-diffusion, where we train a
network to predict x̂t = (xt −

√
1− αtϵt)/

√
αt. Another

example is the v-diffusion (Salimans & Ho, 2022), where
the network predicts v̂t =

√
αtϵt −

√
1− αtx0.

B.3. Optimal Transport Conditional Flow Matching

Optimal Transport Conditional Flow Matching (OT-CFM)
(Lipman et al., 2022; Tong et al., 2023) is an alternative
method to train diffusion models via flow matching. Instead
of predicting ϵ it directly predicts the vector field f(x, t)−
g(t)2∇x log pt(x), leading to the following loss function:

LOTCFM = Et∼U(0,1),x0∼pdata,xt∼q(xt|x0)∥∥vθ(xt, t)−
(
f(xt, t)− g(t)2∇xt log q(xt|x0)

)∥∥2 .
B.4. Latent Diffusion Models

Latent diffusion models (LDMs) (Rombach et al., 2022; Liu
et al., 2023b) combine VAE with diffusion models, training
the diffusion models within the latent space of the VAE. In
this approach, the VAE’s latent variable z serves as the target
for generation. Rather than directly modeling pdata, LDMs
model the pushforward distribution E#pdata, utilizing the
frozen encoder and decoder from the VAE to transition
between the original data space and the latent space.

B.5. Classifier-Free Guidance

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) ad-
justs the balance between diversity and quality in generative
models by over-emphasizing conditioning. The model is
trained both conditionally and unconditionally by randomly
replacing the condition c with a null embedding ∅. During
sampling, the guided output is given by:

vθ(xt, t|c) = vθ(xt, t) + wcfg · (vθ(xt, t|c)− vθ(xt, t)),

where wcfg is a guidance scale. wcfg = 1 disables guidance
and wcfg > 1 amplifies the conditioning.

C. Dataset Details
C.1. AF-Synthetic Details

Table 8 provides a detailed breakdown of sources of data
from which each audio-caption dataset is built. Compared to
previous datasets, AF-Synthetic include diverse data source
to construct synthetic captions, which enables strong gen-
eralization to numerous audio types when training TTA
model.

We use Laion-CLAP 630k-audioset-fusion-best
checkpoint to compute CLAP similarity (Wu et al., 2023).
We use the following keywords to filter low-quality audio
samples:

ambiguous, artifact, background noise, broken up,

buzzing, choppy, clipping, compromised, crackling,

deficient, distant, distorted, dropout, echo,

faint, faulty, feedback, flawed, fluctuating, fuzzy,

garbled, gibberish, glitch, hissing, imprecise,

inadequate, inaudible, incoherent, indistinct,

inferior, insufficient, interference, irregular,

irrelevant, lacking, low quality, low volume,

low-quality, mediocre, misheard, misinterpretation,

muffled, murmur, noise, noisy, off-mic, overlapping

speech, overmodulated, poor, popping, reverberation,

scrambled, second-rate, sibilance, skipped, skipping,

static, suboptimal, substandard, uncertain, unclear,

undermodulated, unintelligible, unknown sounds,

unreliable, unsatisfactory, unspecific, vague.

C.2. Subjective Evaluation of AF-Synthetic Captions

Table 9 shows the 5-scale REL scores of AF-Synthetic com-
pared to the original baseline captions for three subsets:
1) AudioSet, where the baseline captions are drawn from
Laion-630k, 2) FreeSound subset of Laion-630k along with
the original captions, and 3) WavCaps, where the captions
are from LLM rephrasing of the original metadata. We ran-
domly sampled 100 audio-caption pairs for each subset and
used the same human evaluation protocol to measure the
REL scores. For all subsets we consider, AF-Synthetic gives
significant improvements in text adherence by human raters,
consistent with the objective results using CLAP similarity.
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C.3. Most Similar AF-Synthetic Captions to AudioCaps
and MusicCaps

In Table 10 and Table 11 we show some captions from
AudioCaps or MusicCaps and their most similar captions
from AF-Synthetic. These examples, together with Figure
2, demonstrate that AF-Synthetic captions are quite dif-
ferent from these two datasets, which further proves the
generalization ability of our ETTA that is only trained on
AF-Synthetic.

Table 9: REL Scores for AF-Synthetic Caption Quality with
95% Confidence Interval.

REL↑ AudioSet FreeSound WavCaps

Baseline 3.82 ± 0.11 3.68 ± 0.13 3.92 ± 0.11
AF-Synthetic 4.04 ± 0.10 3.83 ± 0.11 4.02 ± 0.10

C.4. Training Data for ETTA-VAE

Table 12 shows the training data of our ETTA-VAE.

D. Additional Ablation Study on ETTA-DiT
Table 13 and 14 show an extended ablation study of our ar-
chitectural design from ETTA-DiT. Figure 4 shows training
loss comparisons to further justify the main design choices
of ETTA. Tables 15 and 16 discuss additional setups we
explored: setting a RoPE frequency base, the use of dropout.
Tables 17 and 18 provide extended study regarding model
capacity.

Training loss comparison Figure 4 displays training loss
plots over several configurations to illustrate the rationale
behind each of the design choices of ETTA. The result shows
that: 1) Stable Audio-DiT plateaus around 300K steps and
starts to diverge early. ETTA-DiT continues to improve its
quality with better loss for the same training steps. This
shows clear benefits of the ETTA-DiT architecture. 2) For
prolonged training (e.g. over 500K steps), v-diffusion starts
to be unstable, whereas OT-CFM provides better stability
up to 1M steps. This shows practical advantages of OT-
CFM over v-diffusion and is a motivation to use it for ETTA.
3) AF-AudioSet quickly diverges around 250K steps and
is unable to continue its training, whereas AF-Synthetic
provides better convergence with continued improvements
up to 1M steps, meaning that AF-Synthetic helps ETTA
converge better from its scale.

RoPE frequency base We decide to use
rope base=16384 which can be considered as
significantly “longer” than the length ETTA would usually
be exposed to (up to 512 for text token embedding, and
215 for the VAE latent window). This design is inspired by
recent trends in LLM where applying longer rope base
during training helps improving extrapolation to longer
sequence generation. Considering usual I/O length of
ETTA, we also tried using shorter rope base=512. We
find that the early training loss is slightly better but the
difference in objective metrics is small, mostly within an
expected margin of error. While the shorter rope base
may have been sufficient, our final model uses the longer
one towards scalability to longer text and audio window
beyond what we have explored in this work.

Different RoPE frequency base does not affect the results
significantly. However, we conjecture longer value can
help for models with longer window.

Dropout Although turning off dropout pdropout = 0.0
yields slightly better benchmark scores (FD scores and KLS ,
for example) measured at 250k training steps, we decide to
use pdropout = 0.1 for the final model where we speculate
that it may provide improved generalization and enhance
robustness in parameter estimation, leading to a more robust
model in real-world captions beyond benchmark datasets.
We do not draw a conclusion that turning off dropout is
better or worse in this work, and it remains to be seen if it
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Table 10: Examples of captions from AudioCaps and their most similar caption from AF-Synthetic.

AudioCaps caption Most similar AF-Synthetic caption
An airplane engine running. The audio primarily features the continuous roar of an aircraft engine, with a high-pitched whoosh, swoosh, or swish sound also

present.
Multiple cars are racing, speeding and roar-
ing in the distance.

The audio features the distinct sounds of a race car and other racing vehicles. The race car engine is the dominant sound throughout
the audio, while the other racing vehicles can be heard intermittently.

A consistent, loud mechanical motor. The audio features an aircraft engine, which produces a loud, continuous, mechanical sound. The wind sound is also audible
throughout the audio.

A small tool motor buzzes and an adult
male speaks.

The audio features a man speaking intermittently, with the sound of an electric shaver running throughout. There are also instances
of a high-pitched beeping sound.

A mid-size motor vehicle engine is idling. The audio primarily consists of the sound of a large truck engine idling, with occasional engine revving sounds. There is also a
high frequency, random-frequency content present throughout the audio.

Insect noises with people talking. The audio features a child speaking, with the sound of insects and background noise throughout. There’s also a brief sound of a
buzzing, repetitive cricket.

A very short spray and then silence after
that.

The audio contains the sound of a spark and a hiss, which are often heard when a spark is created in a gas or a fluid.

Multiple dogs bark, people speak. The audio features a dog barking and yipping, along with the sound of a television playing in the background. There’s also a
conversation happening, with a woman speaking at certain intervals. Additionally, there are instances of a human voice and laughter.

Table 11: Examples of captions from AudioCaps and their most similar caption from AF-Synthetic.

MusicCaps caption Most similar AF-Synthetic caption
The low quality recording features a ballad song that contains sustained strings, mellow piano melody and soft female
vocal singing over it. It sounds sad and soulful, like something you would hear at Sunday services.

The audio features a calming piano melody and soft
vocals.

A male voice is singing a melody with changing tempos while snipping his fingers rhythmically. The recording
sounds like it has been recorded in an empty room. This song may be playing, practicing snipping and singing along.

The audio features a male voice, which is singing a catchy
melody with a folk style.

This song contains digital drums playing a simple groove along with two guitars. ne strumming chords along with
the snare the other one playing a melody on top. An e-bass is playing the footnote while a piano is playing a major
and minor chord progression. A trumpet is playing a loud melody alongside the guitar. All the instruments sound
flat and are being played by a keyboard. There are little bongo hits in the background panned to the left side of the
speakers. Apart from the music you can hear eating sounds and a stomach rumbling. This song may be playing for
an advertisement.

The audio features a synth, drums, and a guitar. The
synth is playing a repetitive melody, the drums are play-
ing a beat, and the guitar is strumming chords.

This clip is three tracks playing consecutively. The first one is an electric guitar lead harmony with a groovy bass
line, followed by white noise and then a female vocalisation to a vivacious melody with a keyboard harmony, slick
drumming, funky bass lines and male backup. The three songs are unrelated and unsynced.

The audio contains a distorted rock song, playing on top
of acoustic drums. There are also sounds of a crowd and
clapping, which contribute to the overall energetic and
lively feel of the music.

A male singer sings this groovy melody. The song is a techno dance song with a groovy bass line, strong drumming
rhythm and a keyboard accompaniment. The song is so groovy and serves as a dance track for the dancing children.
The audio quality is very poor with high gains and hissing noise.

The audio features a strong bass and electronic drum
beats, which are characteristic of this genre. There’s also
the sound of a female voice singing, which adds a unique
element to the overall sound.

Someone is playing a high pitched melody on a steel drum. The file is of poor audio-quality. The audio features a steelpan being played to music.
Low fidelity audio from a live performance featuring a solo direct input acoustic guitar strumming airy, suspended
open chords. Also present are occasional ambient sounds, perhaps papers being shuffled.

The audio features the sustained, mellow strumming of
a nylon string guitar in free time. There are also high
pitched, thin strings being plucked.

The instrumental music features an ensemble that resembles the orchestra. The melody is being played by a brass
section while strings provide harmonic accompaniment. At the end of the music excerpt one can hear a double bass
playing a long note and then a percussive noise.

The audio features a variety of strings and brass instru-
ments playing a fast melody.

Figure 4: Training loss comparison across three setups: (left) Stable Audio Open-DiT vs. ETTA-DiT, using the same
v-diffusion objective and AF-Synthetic training dataset. (center) v-diffusion vs. OT-CFM, using the same ETTA-DiT
architecture and AF-Synthetic training dataset. (right) AF-AudioSet vs. AF-Synthetic, using the same OT-CFM training
objective and ETTA-DiT architecture.

would help or not as we scale data and model further.

Dropout does not affect the overall results significantly.
We speculate that adding dropout could enhance robust-
ness in parameter estimation as we scale the TTA models.

Scalability with Model Size while CFG turned on Ta-
bles 17 and 18 show additional result on the model size
scaling experiment using wcfg = 1 or wcfg = 3. Compared
to wcfg = 1, the difference of metrics between model of dif-
ferent sizes is smaller. This suggests that while the quality

16



ETTA: Elucidating the Design Space of Text-to-Audio Models

Table 12: Datasets used for training ETTA-VAE.

Dataset URL

HiFi-TTS https://www.openslr.org/109/
MSP-PODCAST-Publish-1.9 https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html
SIWIS https://datashare.ed.ac.uk/handle/10283/2353
Spanish-HQ https://openslr.org/72/
TTS-Portuguese-Corpus https://github.com/Edresson/TTS-Portuguese-Corpus
VCTK https://datashare.ed.ac.uk/handle/10283/3443
css10 https://github.com/Kyubyong/css10
indic-languages-tts-iiit-h http://festvox.org/databases/iiit_voices/
l2arctic https://psi.engr.tamu.edu/l2-arctic-corpus/
CREMA-D https://github.com/CheyneyComputerScience/CREMA-D
emov-db https://github.com/numediart/EmoV-DB
jl-corpus https://github.com/tli725/JL-Corpus
ravdess https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio
tess https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess
AudioSet https://research.google.com/audioset/download.html
Laion630k-audio (2022) https://github.com/LAION-AI/audio-dataset
Clotho-AQA https://zenodo.org/records/6473207
Clotho-v2 https://github.com/audio-captioning/clotho-dataset/tree/master
CochlScene https://github.com/cochlearai/cochlscene
DCASE17Task4 https://dcase.community/challenge2017/task-large-scale-sound-event-detection-results
ESC-50 https://github.com/karolpiczak/ESC-50
FMA https://github.com/mdeff/fma
FSD50k https://zenodo.org/records/4060432
GTZAN https://www.tensorflow.org/datasets/catalog/gtzan
IEMOCAP http://sail.usc.edu/iemocap/
MACS https://zenodo.org/records/5114771
MELD https://github.com/declare-lab/MELD
MU-LLAMA https://github.com/shansongliu/MU-LLaMA?tab=readme-ov-file
MagnaTagATune https://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
Medley-solos-DB https://zenodo.org/records/3464194
Music-AVQA https://gewu-lab.github.io/MUSIC-AVQA/
MusicNet https://www.kaggle.com/datasets/imsparsh/musicnet-dataset
NSynth https://magenta.tensorflow.org/datasets/nsynth
NonSpeech7k https://zenodo.org/records/6967442
OMGEmotion https://www2.informatik.uni-hamburg.de/wtm/OMG-EmotionChallenge/
OpenAQA https://github.com/YuanGongND/ltu?tab=readme-ov-file#openaqa-ltu-and-openasqa-ltu-as-dataset
SONYC-UST https://zenodo.org/records/3966543
SoundDescs https://github.com/akoepke/audio-retrieval-benchmark
UrbanSound8K https://urbansounddataset.weebly.com/urbansound8k.html
VocalSound https://github.com/YuanGongND/vocalsound
WavText5K https://github.com/microsoft/WavText5K
AudioCaps https://github.com/cdjkim/audiocaps
chime-home https://code.soundsoftware.ac.uk/projects/chime-home-dataset-annotation-and-baseline-evaluation-code
common-accent https://huggingface.co/datasets/DTU54DL/common-accent
maestro-v3 https://magenta.tensorflow.org/datasets/maestro
mtg-jamendo https://github.com/MTG/mtg-jamendo-dataset
MUSDB-HQ https://zenodo.org/records/3338373

Table 13: Improvements by adding each of the major design choices of ETTA (evaluated on AudioCaps).

Ablation FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 47.10 127.82 3.14 3.13 6.81 0.18 0.24
+ AF-Synthetic 37.40 125.33 2.45 2.69 5.37 0.28 0.29
+ ETTA-DiT 28.20 92.31 2.07 2.19 6.04 0.37 0.33
+ OT-CFM, t ∼ U(0, 1) 30.39 89.44 2.03 2.26 5.48 0.37 0.31
+ t ∼ σ(N (0, 1)) 28.46 89.60 1.99 2.21 5.64 0.37 0.32

Table 14: Improvements by adding each of the major design choices of ETTA (evaluated on MusicCaps).

Ablation FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 39.96 119.54 1.81 2.11 3.19 0.34 0.41
+ AF-Synthetic 26.22 127.90 1.57 1.73 2.37 0.39 0.43
+ ETTA-DiT 20.48 100.53 1.38 1.50 2.21 0.42 0.45
+ OT-CFM, t ∼ U(0, 1) 22.16 98.84 1.35 1.49 2.10 0.42 0.45
+ t ∼ σ(N (0, 1)) 21.59 92.30 1.41 1.51 2.20 0.41 0.45

of model grows with its total size, small models can also
generate high-quality samples with CFG at a cost of having
potentially lower diversity.

Classifier-free guidance helps smaller models to be closer
to large models in objective metrics.

Full results on the sampling methods Table 19 and Fig-
ure 5 show the full results on the effect of sampling methods,
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Table 15: Ablation study on the effect of other architectural designs of ETTA on generation quality (evaluated on AudioCaps).

Ablation FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
ETTA 13.01 81.23 1.29 1.50 12.42 0.52 0.41
ETTA + rope base = 512 12.64 79.49 1.32 1.51 12.45 0.52 0.41
ETTA + pdropout = 0.0 13.04 76.30 1.28 1.50 12.27 0.53 0.41

Table 16: Ablation study on the effect of other architectural designs of ETTA on generation quality (evaluated on MusicCaps).

Ablation FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
ETTA 12.15 96.46 0.88 1.08 2.93 0.51 0.52
ETTA + rope base = 512 12.11 95.04 0.84 1.08 2.94 0.51 0.52
ETTA + pdropout = 0.0 11.75 88.74 0.75 1.10 2.97 0.51 0.51

Table 17: Ablation study on the results of ETTA with different depths, widths, and kernel sizes (evaluated on AudioCaps).
The classifier-free guidance wcfg = 1. ⋆ Our best model choice.

Model Size(B) FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
depth = 4 0.38 36.46 103.35 2.15 2.39 4.88 0.33 0.30
depth = 12 0.81 29.48 93.13 2.05 2.28 5.73 0.36 0.32
depth = 24⋆ 1.44 28.46 89.61 2.00 2.22 5.65 0.37 0.32
depth = 36 2.08 27.08 82.60 1.95 2.18 5.87 0.38 0.32
width = 384 0.28 35.97 100.58 2.14 2.43 4.99 0.33 0.30
width = 768 0.52 31.03 93.74 2.04 2.29 5.49 0.36 0.32
width = 1536⋆ 1.44 28.46 89.61 2.00 2.22 5.65 0.37 0.32
kconvFF = 1⋆ 1.44 28.46 89.61 2.00 2.22 5.65 0.37 0.32
kconvFF = 3 2.35 28.72 82.49 2.04 2.28 5.84 0.36 0.31

Table 18: Ablation study on the results of ETTA with different depths, widths, and kernel sizes (evaluated on AudioCaps).
The classifier-free guidance wcfg = 3. ⋆ Our best model choice.

Model Size(B) FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
depth = 4 0.38 15.81 81.71 1.41 1.55 11.35 0.50 0.40
depth = 12 0.81 13.88 83.62 1.36 1.54 12.52 0.52 0.41
depth = 24⋆ 1.44 13.01 81.23 1.29 1.50 12.42 0.52 0.41
depth = 36 2.08 12.37 75.51 1.30 1.49 12.24 0.52 0.40
width = 384 0.28 16.08 76.01 1.40 1.59 11.31 0.49 0.39
width = 768 0.52 14.32 77.97 1.33 1.55 12.62 0.51 0.40
width = 1536⋆ 1.44 13.01 81.23 1.29 1.50 12.42 0.52 0.41
kconvFF = 1⋆ 1.44 13.01 81.23 1.29 1.50 12.42 0.52 0.41
kconvFF = 3 2.35 13.87 78.74 1.38 1.56 11.71 0.49 0.40

Table 19: Results on choice of sampler and number of sampling steps using AudioCaps test set. We used the main ETTA
model trained for 1M steps and wcfg = 3.

Sampler Steps NFE FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Heun 100 199 12.09 79.60 1.20 1.41 13.57 0.55 0.42
Heun 50 99 12.00 79.24 1.19 1.41 13.61 0.55 0.43
Heun 25 49 12.20 80.06 1.18 1.40 13.64 0.55 0.43
Heun 10 19 12.22 85.27 1.21 1.40 13.23 0.55 0.43
Heun 5 9 13.27 97.45 1.27 1.43 12.22 0.52 0.42
Euler 200 200 12.26 79.77 1.19 1.41 13.56 0.55 0.43
Euler 100 100 12.10 80.67 1.18 1.42 13.90 0.55 0.43
Euler 50 50 11.83 81.49 1.18 1.39 13.45 0.55 0.43
Euler 20 20 12.36 90.85 1.19 1.39 13.15 0.54 0.42
Euler 10 10 14.74 112.65 1.31 1.43 11.46 0.50 0.42

including the solver, number of function evaluations, and
classifier-free guidance.

Heun sampler is better than Euler at lower NFE under all
metrics. Increasing wcfg improves most objective metrics
(KL, IS, and CL) except for FD.
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Figure 5: The effect of different sampling methods on the generation quality of ETTA on AudioCaps and MusicCaps. We
investigate both Euler and Heun solvers. NFE: number of function evaluations. CFG: classifier-free guidance scale.

Table 20: List of imaginative captions used to generate creative audio.

Caption

A hip-hop track using sounds from a construction site—hammering nails as the beat, drilling sounds as scratches, and metal clanks as rhythm accents.

A saxophone that sounds like meowing of cat.

A techno song where all the electronic sounds are generated from kitchen noises—blender whirs, toaster pops, and the sizzle of cooking.

Dogs barking, birds chirping, and electronic dance music.

Dog barks a beautiful and fast-paced folk melody while several cats sing chords while meowing.

A time-lapse of a city evolving over a thousand years, represented through shifting musical genres blending seamlessly from ancient to futuristic sounds.

An underwater city where buildings hum melodies as currents pass through them, accompanied by the distant drumming of bioluminescent sea creatures.

A factory machinery that screams in metallic agony.

A lullaby sung by robotic voices, accompanied by the gentle hum of electric currents and the soft beeping of machines.

A soundscape with a choir of alarm siren from an ambulance car but to produce a lush and calm choir composition with sustained chords.

The sound of ocean waves where each crash is infused with a musical chord, and the calls of seagulls are transformed into flute melodies.

Mechanical flowers blooming at dawn, each petal unfolding with a soft chime, orchestrated with the gentle ticking of gears.

The sound of a meteor shower where each falling star emits a unique musical note, creating a celestial symphony in the night sky.

A clock shop where the ticking and chiming of various timepieces synchronize into a complex polyrhythmic composition.

An enchanted library where each book opened releases sounds of its story—adventure tales bring drum beats, romances evoke violin strains.

A rainstorm where each raindrop hitting different surfaces produces unique musical pitches, forming an unpredictable symphony.

A carnival where the laughter of children and carousel music intertwine, and the sound of games and rides blend into a festive overture.

A futuristic rainforest where holographic animals emit digital soundscapes, and virtual raindrops produce glitchy electronic rhythms.

An echo inside a cave where droplets of water create a cascading xylophone melody, and bats’ echolocation forms ambient harmonies.

A steampunk cityscape where steam engines puff in rhythm, and metallic gears turning produce mechanical melodies.

Creative captions Table 20 contains the creative captions
for subjective evaluation.
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E. Extended Evaluations
In this section, we present an extended model evaluation
including additional out-of-distribution (OOD) benchmark
on SongDescriber dataset (Manco et al., 2023). Table 21
and 22 show an extended ablation study on the choice of
training dataset. Table 23 includes the OOD evaluation
results compared to baseline models. ETTA achieves the
lowest FDO and FDP as well as the highest CLAP scores
compared to baseline models. With only synthetic captions,
ETTA matches the REL of Stable Audio Open which is
trained on numerous music data and captions. Table 24
compares the AF-AudioSet and AF-Synthetic training sets
on the OOD benchmark. Results indicate that ETTA trained
with the larger AF-Synthetic leads to significantly better
OOD generation results than the smaller AF-AudioSet.

F. Mixed or Negative Results
In this section, we document additional directions we ex-
plored when building ETTA inspired by previous work, but
resulted in mixed or worse results in our study. Our goal is
not to claim that the methods described below don’t work;
again, we aim to provide a holistic understanding of design
choices commonly found in the TTA literature and speculate
that these have been ineffective specific to our experimental
setup. We believe that below methods we explored hold the
potential to improve results further in future work.

Pretraining TTA with audio inpainting This experiment
is inspired by SpeechFlow (Liu et al., 2023a) that presented
improvement of various speech tasks (e.g., Text-to-Speech
(TTS)) by pretraining the flow matching model with an
inpainting task using unlabeled data.

We follow the masking method in (Liu et al., 2023a) and
concatenate the masked feature with the noisy input. Note
that we do not feed the masked feature to cross-attention
input, so the cross-attention parameters are not activated dur-
ing pretraining. We pretrain the model with this inpainting
task for 700k steps. Then, we reset the first input projection
layer of DiT and optimizer, and switch to the main TTA
task starting from the pretrained weight. We observe that
the training loss starts much lower for the pretrained model.

Table 25 summarizes the benchmark results with or without
the inpainting as pretraining task. We find that the result is
mixed where AudioCaps result worsened and some Mus-
icCaps metrics improved such as FD and IS. We speculate
that the pretrained weight focuses more on the music sig-
nal because of our unlabeled audio collection has a higher
proportion of music compared to speech. We also conjec-
ture that the result would be different if we use the masked
feautre to the cross-attention input in pretraining stage in-
stead of concatenation.

Pretraining with the audio inpainting task produces mixed
results, possibly due to data imbalance or sub-optimal
implementation details.

While the current experimental setup did not bring posi-
tive result, we believe that introducing multiple tasks into
a single model will enable a generalist model. We leave
exploring alternative ways to ingest the inpainting task into
better TTA to future work.

Choice of Text Encoder Many previous works have im-
plemented different text encoders for TTA, but the results
are mixed. Researchers have experimented with various
models such as BERT, T5, and CLAP to find the optimal
text encoder for improving TTA result (Liu et al., 2023b;
2024; Ghosal et al., 2023; Melechovsky et al., 2023; Ma-
jumder et al., 2024; Huang et al., 2023c;a). We also explore
the text encoder choice in a controlled environment, where
we train multiple models with different text encoders. We
consider T5-base, T5-large, FLAN-T5-base, and
FLAN-T5-large. In addition, we experiment with a
dual text encoder setup (Huang et al., 2023a; Liu et al.,
2024; Haji-Ali et al., 2024) by using CLAP as additional
global text embedding. We use a different CLAP checkpoint
(LAION’s music audioset epoch 15 esc 90.14)
to the benchmark CLAP models (CLL and CLM ) to rule
out a possibility of inflated result from the same representa-
tion. In this experiment, we start training with a pretrained
weight from the inpainting task for 700k training steps, 11

and trained each model with different text encoder for 300k
steps.

Table 26 summarizes the result on different text encoder
choices evaluated on AudioCaps. Unfortunately, we were
not able to discover noticeably better choice compared to
others. Nevertheless, we find interesting observations: 1)
FLAN-T5-base scores relatively better than T5-base
for FDO, but the opposite can be observed for other metrics
such as KLS . 2) for our setup, we have not found strong
evidence that dual text encoder with CLAP is better; it
worsened most metrics except for FLAN-T5-large. 3)
larger T5 encoder may not necessarily be better in improving
results, where base model generally scored better metrics
than largemodel. T5-large showed surprisingly worse
result compared to others for two independent training runs
(with or without CLAP). While this seems counter-intuitive,
it also suggests that the optimal choice of text encoder would
depend on other factors such as training dataset and the main
TTA model capacity at hand.

11We launched this experiment based on the preliminary obser-
vation of the lower training loss. We speculate that the observation
would not change if we train the models from scratch.
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Table 21: Ablation study on the results of ETTA trained on different datasets (evaluated on AudioCaps).

Dataset (million captions) FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AudioCaps (0.05) 22.60 95.99 1.49 1.63 6.73 0.48 0.35
TangoPromptBank (1.21) 33.44 77.07 2.39 2.72 4.64 0.29 0.27
AF-AudioSet (0.16) 25.06 108.31 1.81 2.01 6.32 0.42 0.34
AF-Synthetic (1.35) 28.46 89.60 1.99 2.21 5.64 0.37 0.32

Table 22: Ablation study on the results of ETTA trained on different datasets (evaluated on MusicCaps).

Dataset (million captions) FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AudioCaps (0.05) 76.14 279.44 3.20 3.63 2.05 0.12 0.27
TangoPromptBank (1.21) 24.72 86.17 1.73 2.02 2.27 0.35 0.38
AF-AudioSet (0.16) 21.40 107.00 1.45 1.52 2.36 0.40 0.44
AF-Synthetic (1.35) 21.59 92.30 1.41 1.51 2.20 0.41 0.44

Table 23: Additional results of ETTA compared to SOTA baselines on SongDescriber.

Model FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑ OVL↑ REL↑
Ground Truth – – – – 1.88 0.48 0.38 4.37 ± 0.07 4.26 ± 0.09
AudioLDM2 16.02 335.37 0.74 0.78 1.93 0.42 0.45 – –
AudioLDM2-large 10.50 324.38 0.67 0.75 1.95 0.44 0.48 3.37 ± 0.10 3.38 ± 0.11
TANGO-AF 21.49 233.32 0.79 0.88 1.96 0.43 0.44 3.32 ± 0.10 3.36 ± 0.11
Stable Audio Open 34.76 129.88 0.99 1.01 2.19 0.42 0.47 3.92 ± 0.10 3.80 ± 0.10
ETTA 9.98 95.66 0.80 0.76 2.15 0.44 0.53 3.70 ± 0.09 3.79 ± 0.10

Table 24: Ablation study on the results of ETTA trained on different datasets (evaluated on SongDescriber).

Dataset (million captions) FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AF-AudioSet (0.16) 12.97 125.16 1.03 0.89 2.36 0.41 0.50
AF-Synthetic (1.35) 10.29 104.16 0.80 0.76 2.06 0.43 0.51

Table 25: Results on pretraining with the audio inpainting task vs. training from scratch. In either case, ETTA is trained on
the TTA task for 250k steps.

Dataset Pretrain FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑

AudioCaps ✓ 12.90 90.77 1.40 1.54 11.87 0.49 0.40
✗ 13.01 81.23 1.29 1.50 12.42 0.52 0.41

MusicCaps ✓ 10.87 81.19 0.91 1.10 3.03 0.51 0.50
✗ 12.15 96.46 0.88 1.08 2.93 0.51 0.52

Table 26: Effects of different text encoders in ETTA (evaluated on AudioCaps). We initialize weights from a checkpoint that
is pretrained on the audio inpainting task for 700k steps and train each model on the TTA task for 300k steps.

EncT5 Encclap FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
T5-base ✗ 12.93 91.81 1.42 1.57 12.57 0.49 0.40
T5-base ✓ 12.87 85.40 1.42 1.58 11.91 0.48 0.39
T5-large ✗ 16.80 213.71 1.61 1.63 11.91 0.45 0.36
T5-large ✓ 18.73 219.93 1.67 1.74 9.44 0.43 0.35
FLAN-T5-base ✗ 13.01 80.67 1.50 1.61 13.26 0.48 0.40
FLAN-T5-base ✓ 13.51 84.08 1.50 1.62 11.37 0.47 0.39
FLAN-T5-large ✗ 15.94 103.15 1.63 1.70 10.60 0.45 0.38
FLAN-T5-large ✓ 13.28 81.64 1.52 1.63 11.80 0.47 0.39

No single text encoder consistently outperformed others.
The effectiveness of text encoders seems to depend on
specific metrics and setup. Larger text encoders do not
always lead to better results.

Autoguidance Recently, (Karras et al., 2024) showed
that the improvement in perceptual quality of CFG stems
from its ability to eliminate unlikely outlier samples, but it
may reduce diversity from over-emphasis. They proposed
a new way of guiding the model, called autoguidance, that
uses a bad version of the same model (either by under-
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Table 27: Results on AutoGuidance (evaluated on AudioCaps). We use our best 1.44B ETTA model (trained for 1M steps).
Modelag denotes the bad model used for AutoGuidance. Same: same 1.44B model architecture as ETTA. XS: the smallest
0.28B model using width=384.

Modelag (steps) wcfg wag FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 25.33 93.03 1.77 2.00 6.41 0.42 0.34
XS (50k) 1 2 14.51 86.14 1.63 1.73 9.10 0.51 0.38
XS (50k) 3 2 12.15 80.24 1.20 1.41 13.64 0.55 0.43
XS (100k) 1 2 14.19 83.52 1.63 1.72 8.54 0.50 0.38
XS (100k) 3 2 14.15 94.08 1.37 1.49 13.83 0.55 0.42
Same (100k) 1 2 16.49 91.79 1.58 1.78 7.63 0.48 0.37
Same (100k) 3 2 12.72 81.85 1.27 1.50 13.80 0.56 0.42
– 3 – 12.10 80.67 1.18 1.42 13.90 0.55 0.43

Table 28: Results on AutoGuidance (evaluated on MusicCaps). We use our best 1.44B ETTA model (trained for 1M steps).
We report the results using the best combination according to Table 27.

Modelag wcfg wag FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 19.89 101.15 1.28 1.43 2.21 0.42 0.46
XS (50k) 1 2 13.17 104.43 1.12 1.32 2.59 0.48 0.49
XS (50k) 3 2 9.83 97.63 0.78 1.03 3.19 0.50 0.53
– 3 – 9.82 98.19 0.78 1.03 3.18 0.50 0.53

training and/or with smaller model) that increases diversity
while ensuring high-quality output as follows (omitting the
condition c for brevity):

vθ(xt, t) = vθag(xt, t) + wag · (vθ(xt, t)− vθag(xt, t)),

where θag denotes a bad model and wag is the scale for
autoguidance. Same as CFG, wag = 1 disables the guidance
and wag > 1 amplifies the main model’s prediction.

We conducted experiments applying autoguidance to eval-
uate its effectiveness to our TTA setup. The results are in
Tables 27 and 28. From our grid search of wag from 1 to
2.5 with 0.25 interval, wag = 2 provided the best possible
metrics.

Subjectively, we observed that while autoguidance could
produce more diverse audio samples corroborating (Karras
et al., 2024), but these samples sometimes lacked realism.
We find that the method is sensitive to the choice of the
bad model and its guidance scale wag. In terms of improv-
ing benchmark results, despite our best efforts and various
combinations including different bad models (either under-
trained versions or smaller models) and guidance scales,
we were unable to identify a setup that clearly outperforms
plain CFG with wcfg = 3. Similar benchmark metrics could
only be achieved by combining both CFG and autoguidance,
but at an increased cost with 2x NFE.

We conjecture that our search space may have been incom-
plete. However, we do observe noticeable increase in diver-
sity from autoguidnace where the same ETTA checkpoint
can sometimes generate even more “interesting” samples,

so we believe autoguidance holds its potential towards cre-
ativity. We leave exploring recently proposed methods for
sampling from the model for better TTA results in future
work.

AutoGuidance increases diversity but does not consis-
tently outperform CFG in objective metrics. It shows
potential for diversity, though its effectiveness is sensitive
to model and scale choices.

Min-SNR-γ training strategy (Hang et al., 2023) We use
γ = 5 per convention, and trained ETTA-DiT for 250k steps
with the v-diffusion objective. Results can be found in Table
29 and 30 (wcfg = 3). Most metrics became worse, but and
FD O and ISP are slightly better in music generation.

CFG on a limited interval (Kynkäänniemi et al., 2024) We
remove CFG for the initial 40% of diffusion steps and then
apply CFG for the remaining 60% steps. We inference and
evaluate both with and without AutoGuidance. Results can
be found in Table 31 and 32. Most metrics became worse,
but is slightly better in audio generation using the small
(XS) model.
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Table 29: Additional Results on training strategies (evaluated on AudioCaps).

Ablation FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 38.27 105.88 2.23 2.32 12.09 0.35 0.34
+ AF-Synthetic 18.50 86.13 1.58 1.74 14.96 0.47 0.40
+ ETTA-DiT 16.43 90.26 1.29 1.47 14.49 0.53 0.42
+ Min-SNR-γ (γ = 5) 18.00 100.86 1.36 1.56 13.85 0.52 0.40

Table 30: Additional Results on training strategies (evaluated on MusicCaps).

Ablation FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 36.42 127.20 1.32 1.56 2.93 0.48 0.49
+ AF-Synthetic 14.59 103.59 1.00 1.20 3.19 0.50 0.52
+ ETTA-DiT 12.48 98.19 0.82 1.06 3.30 0.50 0.52
+ Min-SNR-γ (γ = 5) 13.04 97.44 0.89 1.12 3.66 0.50 0.50

Table 31: Additional Results on Guidance on Limited Interval (evaluated on AudioCaps).

Modelag (steps) wcfg wag FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 25.33 93.03 1.77 2.00 6.41 0.42 0.34
XS (50k) 3 2 12.15 80.24 1.20 1.41 13.64 0.55 0.43

+ CFG @ [0, 0.6] 3 2 11.74 89.18 1.44 1.59 10.59 0.54 0.40
– 3 – 12.10 80.67 1.18 1.42 13.90 0.55 0.43

+ CFG @ [0, 0.6] 3 – 16.13 93.28 1.45 1.66 8.35 0.48 0.38

Table 32: Additional Results on Guidance on Limited Interval (evaluated on MusicCaps).

Modelag wcfg wag FDP ↓ FDO ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 19.89 101.15 1.28 1.43 2.21 0.42 0.46
XS (50k) 3 2 9.83 97.63 0.78 1.03 3.19 0.50 0.53

+ CFG @ [0, 0.6] 3 2 11.40 102.66 1.02 1.26 2.79 0.49 0.50
– 3 – 9.82 98.19 0.78 1.03 3.18 0.50 0.53
+ CFG @ [0, 0.6] 3 – 16.43 100.18 1.12 1.27 2.37 0.44 0.48

G. Vocoder/Autoencoder Reconstruction
Results

Table 33 and 34 show objective results of our VAE we
used (ETTA-VAE) in this work. Our 44kHz stereo VAE
is identical to the one used in Stable Audio Open (Evans
et al., 2024c), but trained from scratch using our large-scale
unlabeled audio collection based on public datasets. We also
attach BigVGAN-v2 (Lee et al., 2023), the state-of-the-art
mel spectrogram vocoder in 44kHz mono, as a reference of
waveform reconstruction quality from the models.

Despite being 4x lower in latent frame rate (21.5Hz) com-
pared to conventional mel spectrogram vocoder (86Hz),
ETTA-VAE shows competitive reconstruction quality. It
matches the quality of Stable Audio Open-VAE on music
data (MUSDB18-HQ (Rafii et al., 2017)) and outperforms
on speech data (LibriTTS (Zen et al., 2019)), because our
dataset contains considerably high portion of speech signals.

Our ETTA-VAE matches or exceeds the reconstruction
quality of Stable Audio Open’s VAE. This is because we
use larger-scale public audio datasets.
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Table 33: Comparison of waveform vocoder/auto-encoder on LibriTTS (dev-clean and dev-other).

Model Framerate PESQ↑ UTMOS↑ ViSQOL↑ M-STFT↓ SI-SDR↑
Ground Truth - 4.64 3.86 4.73 – –
BigVGAN-v2 86 Hz 4.14 3.73 4.69 0.71 -7.86
Stable Audio Open-VAE 21.5 Hz 2.75 3.13 4.31 1.00 7.15
ETTA-VAE 21.5 Hz 3.18 3.76 4.37 0.79 9.92

Table 34: Comparison of waveform vocoder/autoencoder on MUSDB18-HQ test set.

Model Framerate ViSQOL↑ M-STFT↓ SI-SDR↑
Ground Truth - 4.73 – –
BigVGAN-v2 86 Hz 4.63 0.94 -22.06
Stable Audio Open-VAE 21.5 Hz 4.25 1.00 9.34
ETTA-VAE 21.5 Hz 4.27 0.95 10.59
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