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Abstract
Audio editing is increasingly important in immersive applications such as VR/AR,
virtual conferencing, and sound design. While diffusion-based models have enabled
language-driven audio editing, existing methods rely on predefined instruction
formats and are limited to mono-channel audio. In this work, we introduce SmartDJ,
a novel framework for stereo audio editing that combines the reasoning capabilities
of Audio Language Models (ALMs) with the generative power of latent diffusion.
Given a high-level prompt, SmartDJ decomposes it into a sequence of atomic
editing steps, which are executed sequentially by a conditional diffusion model
trained to manipulate stereo audio. We also develop a scalable data synthesis
pipeline that generates training samples consisting of a high-level instruction, a
sequence of atomic edits, and the corresponding audio at each step of the editing
process. Experiments show that SmartDJ outperforms prior methods in perceptual
quality, spatial coherence, and alignment with complex user instructions.

1 Introduction
Audio editing is central to shaping a listener’s spatial and semantic perception of an environment,
with its growing importance in VR/AR, gaming, virtual conferencing, and post-production sound
design. Recent advances in diffusion-based generative models have enabled both text-to-audio
generation [10, 11, 20, 22, 25, 39, 40] and language-driven audio editing [28, 37, 55, 61]. However,
existing editing approaches typically rely on narrowly structured prompts or predefined templates
(e.g., add the sound of waves, remove the sound of car engines) and cannot interpret or execute
high-level and sometimes open-ended user instructions. Moreover, existing methods operate on
mono-channel audio and can not model or manipulate spatial properties such as directionality (e.g.
change the sound source from left to right), which are crucial for perceptual realism.

In practice, users often express their editing goals through short, high-level, and sometimes ambiguous
instructions, as crafting detailed, step-by-step edits is tedious and unintuitive [34]. For example, a
user might type a prompt such as "have this audio in a sunny forest" when editing a clip. Fulfilling
this instruction requires nuanced reasoning across multiple editing operations, such as removing rain
or thunder sounds, omitting unrelated elements like ocean waves, and enhancing subtle ambient cues
like rustling leaves or distant bird calls. As shown on the left of Fig. 1, existing text-driven audio
editors struggle with such prompts. They are unable to interpret high-level instructions and often
produce semantically inconsistent results that fail to align with the original audio context.

In this work, we propose SmartDJ, the first framework to leverage large language models (LLMs) for
intelligent audio editing guided by high-level user instructions. This approach is motivated by the
recent success of LLMs in multimodal grounding and reasoning [5, 17, 31, 41, 35]. As illustrated
on the right of Fig. 1, SmartDJ incorporates an Audio Language Model (ALM) that takes both the
original audio and a high-level instruction as input. The ALM reasons over the input and decomposes
the instruction into a sequence of atomic editing steps, each corresponding to a predefined atomic
operation – such as adding or removing a sound event, or modifying the volume or spatial direction
of an existing one. These steps are then executed sequentially by a conditional Latent Diffusion
Model (LDM), which operates in the latent space of a variational autoencoder trained on stereo audio.
This step-by-step editing process enables precise control over sound events, spatial positioning, and
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Figure 1: Left: Existing diffusion-based audio editors cannot interpret high-level editing instructions, producing
inconsistent outputs. Right: SmartDJ leverages an Audio Language Model to decompose it into atomic editing
steps, guiding the diffusion model to produce high-quality edited audio.

volume adjustment, all conditioned on natural language prompts. As a result, SmartDJ generates
high-fidelity, spatially immersive audio edits that preserve key elements of the original scene while
incorporating new content aligned with the user’s intent.

To train and evaluate SmartDJ, we develop a scalable dataset generation pipeline that constructs
editable audio scenes using a sound event library and an off-the-shelf LLM. For each data point, we
begin by randomly sampling a set of labeled sound event. We then prompt the LLM with carefully
designed instructions to generate both a high-level user editing command and a corresponding
sequence of atomic editing steps. The LLM also assigns initial volume and spatial direction to
each event. With basic audio processing, we render the spatial properties of each event and mix
them via superposition to construct the scene’s original audio. Crucially, since each sound source
is independently editable, we can simulate the effect of each atomic edit by directly modifying
event-level parameters, without altering other audio events. For example, to implement "turn up
the dog bark", we increase the volume of the dog bark event; to implement "move the footsteps to
the left", we adjust the spatial direction of the event accordingly. This allows us to generate the full
editing trajectory by progressively updating sound parameters and re-composing the audio in the
scene. These processes result in a large dataset containing high-level editing instructions, step-by-step
atomic edit actions, and corresponding audio outputs at each step of the editing process.

Experimental results show that SmartDJ delivers superior editing quality and better alignment with
high-level user instructions from both subjective metrics and human evaluations. Our latent diffusion
model for audio editing also outperforms existing baselines on single-step editing tasks. Ablation
studies show that the audio language model can effectively reason about and decompose high-level
user instructions, enabling the latent diffusion model to perform expressive audio editing.

In summary, our main contributions are as follows:
• We introduce an audio editing framework SmartDJ that leverages ALM to interpret high-level

instructions and generate detailed editing steps executed by a latent diffusion model.
• We design a scalable data generation pipeline for stereo audio editing with high-level instructions.
• We conduct extensive experiments and user studies with different baseline methods and demonstrate

that SmartDJ has the highest editing quality for both objective and subjective metrics.

2 Related work

Audio generation and editing. With the current advances in deep generative models, lots of methods
have achieved high-quality audio generation from text and multi-modal conditions [4, 10, 20, 25, 39,
40, 55]. Recently, spatial audio generation has attracted more attention [10, 22, 42, 52]. Parallel to
these generation efforts, text-guided audio editing also emerged as a powerful tool for modifying
existing audio recordings. Audit [55] introduced an end-to-end diffusion model conditioned on both
the input audio and simple, structured text commands, but its reliance on fixed editing templates
limits flexibility to interpret high-level user prompts. WavCraft [37] uses GPT-api to parse user
instructions, yet it expects fully specified prompts (e.g., "extract baby crying from the audio" or
"apply a low-pass filter to the wave crashing sound"). Recent works [28, 44, 61] adapt image-editing
techniques to monaural audio. They still require users to provide precise token-level manipulation
to complete the edit, struggle with high-level instructions, and offer no support for stereo or spatial
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audio editing. No existing work can interpret high-level user input to complete the audio editing and
they remain confined to monaural outputs and are ill-suited for immersive spatial scenarios.

Multimodal Large Language Model. Large language models (LLMs) are remarkable in natural
language processing tasks. Provided with multimodal inputs, such as images and audio, multimodal
LLMs (MLLMs) [9, 41, 35, 54, 32, 18] demonstrate exceptional performance across a wide range of
downstream visual-language and audio-language tasks. In the vision domain, LLaVA [41] enables
LLMs to achieve general-purpose visual and language understanding by fine-tuning on a multimodal
instruction-following dataset. In the audio domain, LTU [19] and Audio Flamingo [32, 18] enhance
LLMs with the ability to process non-speech sounds and non-verbal speech. With strong capabilities
of MLLMs, researchers introduced them into the field of visual content generation [58, 60, 57, 30, 13,
26], world modeling [56, 14, 43], and embodied AI [8, 36, 48, 53]. In image generation and editing,
various works [30, 13, 26] use VLM to guide diffusion models. However, in the audio domain,
existing methods have not exploited the reasoning capabilities of audio language models.

Diffusion-based Image Editing. In contrast to text-to-image generation, image editing focuses on
altering specific elements or attributes within an image while preserving the contents of the remaining
image. Diffusion models have been widely used in image editing tasks [7, 21, 27] by altering the
inversion process, which produces a latent representation that can reconstruct the image through the
generative process. SDEdit [46] first adds noise to the source image, and then subsequently denoises
the image through the SDE to produce the target image. P2P [21] adjusts the cross-attention features
according to the difference between the source and target captions to generate the target images.
Based on this, IP2P [1] finetuned a diffusion model on edit image triplets to enable image editing
with simple natural language instructions. Following works [16, 27] further scale up the dataset to
support more capable and generalized models. Furthermore, some works [13, 26] explore the usage
of vision-language models to guide diffusion models for image editing tasks.

3 Method

3.1 Problem Definition and Notations

Let a0 denote the original audio waveform, which contains multiple audio events (e.g., cat meowing,
rainfall), as shown in Fig. 1. A high-level editing instruction P specifies a desired transformation
of the audio scene, for example: “make it sound like a quiet morning in a sunny forest". Since P is
abstract and potentially ambiguous, it first needs to be decomposed into a sequence of atomic editing
steps S = {s1, s2, ..., sn}. Each step si either modifies an existing audio event in a0 or introduces
a new event required to fulfill P . We denote the audio after applying step si as ai, where a0 is the
original input and an is the final edited audio clip.

Specifically, each step si either modifies an existing audio event or introduces a new event required
to satisfy P . The atomic editing operations considered in this work are:

• Add: Mix a new sound event into the scene (e.g., inject bird chirps).
• Remove: Delete or suppress an existing sound event (e.g., remove car engine noise).
• Extract: Isolate a particular sound event from the original scene while removing background.
• Turn volume up/down: Adjust the volume of a specific event.
• Change direction: Modify the spatial location of an event.

For example, to transform the scene into a sunny forest soundscape, the atomic edit steps could be:

• Remove the sound of rain — inconsistent with a sunny scenario.
• Add gentle leaf rustling — enhances the outdoor atmosphere.
• Turn up the bird chirp — strengthens the perception of a lively forest.
• Change the sound direction of the bird chirp to the right — adds spatial diversity and realism.

The final goal is to produce a target edited audio clip an by applying the sequence of edits S to a0.
Importantly, this editing formulation must preclude shortcut solutions that ignore the original input
(e.g., re-generating an entirely new clip from scratch). Instead, the edited audio an must preserve all
unedited content from a0 while achieving the requested audio scene transformation.
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3.2 SmartDJ Framework
SmartDJ consists of an Audio Language Model (ALM) and a Latent Diffusion Model (LDM). We
leverage the ALM to interpret high-level instructions and generate a sequence of atomic editing steps.
The LDM then executes these edit steps sequentially to transform the original audio.
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High-level instruction 
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Step N
Step t
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Edited audio

Detailed 
recipe

LDM

ALM
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Figure 2: SmartDJ framework overview

Specifically, as illustrated in Fig. 2, the ALM takes
the original audio clip a0 and the high-level editing
instruction P as input, and outputs a sequence of
atomic editing steps S = {s1, s2, ..., sn}. These
editing steps are then executed sequentially by the
LDM, producing intermediate results a1, a2, . . . , an,
where an is the final edited audio. The overall process
is formulated as:

{s1,s2,...,sn}=ALM(a0;P) (1)
ai=LDM(ai−1;si), i=1,2, ...,n (2)

3.3 Audio Language Model for Atomic Editing Steps Generation
The Audio Language Model (ALM) takes as input the original audio clip and the high-level editing
instruction and generates a sequence of atomic editing steps. As shown at the top of Fig. 3, we first
encode a0 using a pretrained audio encoder (i.e., CLAP [59]) to obtain an audio embedding za, which
is injected into the ALM via adapter layers. In parallel, the instruction P is tokenized and encoded as
a sequence of embeddings (p1, p2, . . . , pk), which serve as the textual context for the ALM.

Our ALM is trained in an auto-regressive manner to generate the token sequence corresponding to
the atomic editing steps S, by minimizing the following objective:

LALM = −
l∑

t=1

logPθ(r
′
t=rt | za, r1:t−1, p1:k), (3)

where r and r′ are the ground truth and predicted text tokens for the atomic editing steps S, l is the
length of the tokens, and θ denotes the model parameters. To enable efficient fine-tuning, we freeze
the parameters of the CLAP audio encoder, apply Low-Rank Adaptation (LoRA) [24] to a small
subset of the LLM layers[18], and fully fine-tune the adapter layers.
3.4 Sequential Stereo Audio Editing with Latent Diffusion Model
The Latent Diffusion Model (LDM) in our framework performs audio editing conditioned on the
atomic editing steps S . To support this, we adopt a latent diffusion architecture [20, 50] and extend it
to enable editing of stereo audio with spatial effects.

Stereo Audio VAE. Given a stereo audio signal a ∈ R2×L, where L is the number of time-domain
samples and the leading dimension corresponds to the two audio channels (left and right). The audio
Variational Autoencoder (VAE) encodes a into a latent representation â ∈ RC×L′

, where C and
L′ denote the number of latent channels and the temporal length of the latent sequence. Similar to

Original audio

Large Language Model
LoRa

Audio 
Encoder

Adapter

VAE
encoder

Diffusion 
Transformer

High-level instruction: “Have this audio sounds like a sunny beach vibe”

VAE
decoder

Edited audio

Atomic edit steps:
Step 1: Remove train engine sound
Step 2: Add ocean waves at left by 1dB
Step n: Add people chatter at right by 
2db

𝐿!"#

𝐿$!#

Forward Process Training LossTrainable params Freeze params

Step 1	∼	Step n 

×n
Original latent

Noisy latent

Edited latent 

Figure 3: SmartDJ framework. Our method incorporates an audio language model that understands both the
original audio and the high-level instructions to generate detailed atomic edit steps. These atomic steps are then
fed into a diffusion-based audio editor to edit the audio sequentially.
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DAC [33] and Stable Audio Open [11], our audio VAE is based on a 1D-CNN autoencoder with a
continuous VAE bottleneck and snake activation functions. We train the VAE on AudioSet [15], aug-
mented with simulated binaural effects to ensure high-quality stereo compression and reconstruction.
The resulting latent â has C=128 and L′=L/480, yielding a compression ratio of 7.5×.

Latent Diffusion Model. Our diffusion model conditions on both the text description si at the i-th
editing step and the latent representation of the audio from the previous step, âi−1, to generate the
updated latent âi. We use the FLAN-T5 [6] text encoder Etext() to convert si to text embeddings. At
each editing step, we initialize a randomly noised latent â′i ∈ RC×L′

, which is concatenated with
âi−1 to form the input [âi−1; â

′
i] ∈ R2C×L′

to the diffusion model. The model is conditioned on
Etext(si) via cross-attention layers, and the diffusion timestep t is incorporated through a modified
AdaLN module [20] to reduce model parameters. We implement a Diffusion Transformer (DiT) that
learns to denoise the latent â′i across multiple timesteps by predicting the added noise. Let ϵ denote
the true added Gaussian noise, and let ϵθ(·) be the predicted noise output by the model. The training
objective is to minimize the following denoising loss:

LLDM = Eϵ∼N (0,I),t,si,âi−1,â′
i
∥ϵ− ϵθ(t, Etext(si), [âi−1; â

′
i])∥2 . (4)

During inference, we use DDIM sampling [51] with classifier-free guidance (CFG), which has proven
effective for text-guided generation and editing [23].

3.5 Complex Audio Editing Dataset Curation
Since no public dataset captures complex audio editing conditioned on high-level instructions, we
develop a scalable data generation pipeline using large-scale audio databases and off-the-shelf LLMs,
as illustrated in Fig. 4. For each data point, we first randomly sample K single-event audio clips from
public datasets, each labeled with tags such as {"car engine", "church bell ring", "goat bleat", ...}.
We feed these labels into GPT-4o and prompt it to generate a high-level editing instruction P that
transforms the original mix into a new scene (e.g., "Make this sound like a countryside morning"
or "Make it sound like a busy train station on a sunny afternoon"). We then prompt GPT-4o to
decompose P into a sequence of atomic edits S = {s1, s2, ..., sn}, including both add operations
and modifications to existing events (e.g., remove, turn up/down, change sound direction).

To generate edit audio pairs, we first synthesize the initial audio a0 by superposing the K audio
clips using LLM-assigned volumes and spatial directions. Spatial effects are rendered with direction-
dependent phase and amplitude on two channels. For each atomic edit si, we proceed as follows:
• If si modifies an existing event, we update its volume level or sound direction.
• If si is an add operation, we retrieve a new clip from the database with a matching label.
Since each sampled audio event is independently editable, an edit step si that modifies an existing
event can be converted into event-level parameter adjustments, without altering any other sources
in the mixture ai−1. For example, to simulate "remove the car engine sound" (Fig. 4), we set the
car engine clip’s volume to zero when generating a1; to simulate "add rooster crowing at right",
we retrieve a rooster clip, apply the specified spatial effect, and superpose it on a1 to obtain a2; to

…Audio composer
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Figure 4: Dataset synthesize pipeline. We first sample audio clips from databases with text labels and compose
them into original audio a0; These text labels are then fed into GPT-4o, which is prompted to generate a high-
level instruction P and the corresponding atomic editing steps S. We compose the target audio a1, a2, ..., an

following the atomic steps sequentially with rule-based editing.
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simulate "turn down the dog bark", we reduce the volume of the corresponding clip. This allows us to
generate a complete editing trajectory a1, a2, ..., an by progressively updating event-level parameters
and re-composing the audio scene. Our resulting dataset contains high-level editing instructions,
atomic edit sequences, and the audio for the full editing trajectory.

4 Experiment
4.1 Experiment setup
Dataset. We use a combination of datasets including AudioCaps [29], VGGSound [2], FSD50k [12],
ESC50 [49], and WavCaps [45]. We adopt a series of dataset cleaning pipelines following previous
work [20, 52, 55] by filtering events with noisy data labels or low clap scores. Each audio is trimmed
or padded into 10 seconds with a sampling rate of 24K. We sample 2-5 audio events and use GPT-4o
to create 50k training pairs and 1k evaluation pairs of complex audio editing data to train our audio
language model and evaluate the whole complex editing pipeline. We present the keyword of the
diverse high-level instructions in Fig 5a. In addition, we expand the size of single-step editing data
pairs (st, at−1, at) to 0.5M, where each step is an operation of add, remove, extract, turn up/down,
change sound direction to train our LDM audio editor. Fig 5b shows the proportion of each edit
action. Please find more details in the appendix.
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Figure 5: a) Key words in the
high-level instructions. b) Propor-
tion of single-step actions.

Metrics. To evaluate edited audio quality and diversity, we use
common metrics in audio generation and editing [39, 55], including
Fréchet Distance (FD), Kullback-Leibler divergence (KL), Fréchet
Audio Distance (FAD), Inception Score (IS), and Log-Spectral Dis-
tance (LSD). We also adopt the CLAP score to measure the semantic
similarities between the edited audio and the text prompt. In terms of
spatial audio attributions, we calculate GCC MSE (GCC) based on
Generalized Cross-Correlation with Phase Transform (GCC-PHAT),
and use StereoCRW [3] to produce stereo audio features to evaluate
CRW MSE (CRW) and Fréchet Stereo Audio Distance (FSAD).

Baselines. To evaluate the complex audio editing task, we first
train an end-to-end version of Audit [55] that directly predicts the
final-step audio conditioned on the original audio and high-level
instruction in one step without ALM. We extend the mono-channel
Audit to our binaural setting by stacking the left and right channels of
the mel-spectrograms. We also evaluate common zero-shot editing
methods based on the ALM’s outputs to perform multi-step sequen-
tial editing. The zero-shot methods include SDEdit [46], DDIM
Inversion [47], ZETA [44], and AudioEditor [28], where we swap in
current audio generation backbones (Details in Appendix B.1). To
evaluate sequential editing with a trainable editor, we use an Audit baseline trained on single-step
audio editing data. These baseline models are also evaluated on single-step editing task.

Implementation details. Our ALM model is initialized from Audio Flamingo 2 [17] with 3B
parameters. Our LDM uses velocity prediction with Zero-SNR, and CFG rescaling technique [38] to
adjust the magnitude. Please find more details in the Appendix B.2.

4.2 Results
Results on the complex audio editing task. We first show several inference examples from our
ALM module in Fig. 6. The ALM-generated atomic editing steps accurately align both the original
audio contents and the high-level editing instructions. The generated steps include actions to remove
audio events that are semantically misaligned with the target audio scene. For example, it correctly
removes audio event engine roar when transferring audio scene into a busy family home vibe. It also
removes people whistle and adds pages turning to enhance the immersion of being in an old library.

We present the results of the complex audio editing task in Table 1. The first row is the end-to-end
Audit baseline that is directly trained on high-level instructions and the final target audio, showing
the worst performance overall. Since no prior method can interpret the complex instructions, we
use the same set of ALM-generated atomic steps to guide all audio editing models in the multi-step
evaluation, including the baselines and our method. We compare the edited audios from each method
with 1k reference audios. Our method achieves the lowest metric in FD, FAD, LSD, and comparably
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Make this sounds like
inside a busy family home

Atomic edit steps:
Remove engine roar
Add vacuum cleaner at left by 3dB
Add kitchen sounds at right by 2dB

Audio contents: 
baby cry, car engine rev

Make it sounds like recorded 
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Add crickets at left by -1dB
Add light wind at right by 0dB
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people snore, bird singing

Have this sounds like in
an old library
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Turn up clock tick by 2dB
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Audio contents: 
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Figure 6: Examples of ALM’s output detailed steps. Our ALM module identifies events in the original audio
clips and reasons on the given high-level instruction to produce aligned editing steps.

Figure 7: Examples of Add operations. Our method can add various new audio contents to the original audios.
Yellow box highlights the added contents.

low in KL, indicating the smallest discrepancy from the reference audios. It also delivers a high IS
metric, showing strong audio quality and diversity. In addition, the highest CLAP score demonstrates
the best semantic alignment between the edited audio and the complex text prompts.

Framework Method Training FD ↓ FAD ↓ KL↓ LSD↓ IS ↑ CLAP↑
w/o ALM Audit [55] ✓ 39.6 10.07 3.13 1.96 3.29 0.125

w/ ALM

SDEdit [46] ✗ 27.3 3.73 3.26 2.25 6.66 0.188
DDIM [47] ✗ 34.3 9.49 4.07 2.23 3.97 0.076
ZETA [44] ✗ 28.8 3.75 2.93 2.24 7.72 0.224

AE [28] ✗ 27.6 5.02 3.22 2.11 8.91 0.211
Audit [55] ✓ 29.4 5.71 2.81 1.51 3.95 0.197

SmartDJ (Ours) ✓ 14.7 1.53 2.85 1.42 8.36 0.238

Table 1: Quantitative results of the whole pipeline from high-level instructions to audio editing. AE denotes
AudioEditor and DDIM denotes DDIM Inversion.
Results on single-step audio editing tasks. We present the results of individual single-step audio
editing operations. Table 2a shows results on the add task, where new audio contents need to be
added to the original one. Our method consistently outperforms baseline methods in the edited audio,
including better similarities to the ideal target audio (lowest FD, FAD and KL), and higher quality
and diversity shown by the highest IS. Furthermore, stronger spatial metrics (GCC, CRW, and FSAD)
also indicate that the stereo audio characteristics are preserved better by SmartDJ.

Table 2a also shows the performance on remove and extract tasks. The results clearly indicate that
our approach delivers the best performance in aligning with the ground truth edited audio across both
operations. Furthermore, in Table 2b, we show the results on turn up/down and change sound direction
tasks. Training-free methods are excluded from the evaluations since the original backbones do not
provide detailed control over these features. Again, our method shows stronger performance over
Audit, which demonstrates SmartDJ has better fine-grained manipulation in audio event properties.

Some examples of spectrogram visualization are shown in Fig 7. More qualitative comparisons can
be found in Appendix C.2.

Human evaluations. We evaluate the subjective preference via a user study. We provide users with
data pairs consisting of the original audio, the editing prompt, SmartDJ edited result, and edited
results from a random competing baseline. We ask the user to select the one that has higher audio
quality, the one that has better alignment with the text or spatial instructions, and aligns with the
original audio. We conducted extensive evaluations with 19 participants and 20 (10 complex audio
editing, 10 single-step editing) data pairs per participant. We separate the evaluation for complex
audio editing and single-step editing in Fig 8. In both tasks, SmartDJ is much preferred over all
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Method
Add Remove/Extract

FD ↓ FAD ↓ KL ↓ LSD ↓ IS ↑ GCC ↓ CRW ↓ FSAD ↓ FD↓ FAD↓ KL↓ LSD↓ GCC↓ CRW↓ FSAD↓
SDEdit 33.0 3.92 2.59 2.01 4.71 143.3 131.4 0.42 46.6 4.64 2.38 1.89 159.5 157.9 0.45
DDIM 36.9 6.28 2.64 2.02 4.57 131.2 116.1 0.11 53.9 5.69 2.75 1.85 159.6 138.5 0.29
ZETA 37.6 3.64 2.46 1.71 5.04 143.3 127.6 0.52 40.6 3.78 1.92 1.99 161.7 155.9 0.43

AE 30.5 3.66 2.13 1.84 5.51 133.5 145.8 0.55 47.1 3.65 2.43 2.01 164.0 165.6 0.58
Audit 36.5 4.49 1.95 1.42 4.37 145.7 136.3 0.31 54.5 7.56 2.12 1.65 189.2 204.5 1.07

SmartDJ 22.7 1.82 1.39 1.35 5.96 76.5 41.3 0.03 26.0 2.57 1.03 1.71 15.9 5.5 0.02

(a) Audio editing operation add and remove/extract

Method
Turn Up/Down Change

FD↓ FAD↓ KL↓ LSD↓ GCC↓ CRW↓ FSAD↓ FD↓ FAD↓ KL↓ LSD↓ GCC↓ CRW↓ FSAD↓
Audit 47.1 5.6 1.51 1.04 136.8 139.0 0.89 42.5 4.9 1.34 1.02 170.3 163.5 0.99

SmartDJ 11.8 1.0 0.27 1.01 23.3 2.86 0.01 13.0 0.88 0.33 1.00 59.6 36.6 0.02

(b) Audio editing operation turn up/down, change sound direction
Table 2: Quantitative results on all individual audio editing operations.

Ours 80.00 ZETA
Ours 95.52 AE
Ours 90.41 Audit
Complex edit quality

Ours 87.00 ZETA
Ours 91.04 AE
Ours 93.15 Audit

Complex edit alignment

Ours 77.36 ZETA
Ours 86.27 AE
Ours 95.35 Audit
Single step quality

Ours 88.89 ZETA
Ours 84.92 AE
Ours 96.76 Audit

Single step alignment

Figure 8: User study results. In terms of audio quality or text/audio alignment, our method is consistently
preferred over baselines in both the complex editing task and single-step tasks.

competing methods. Our method delivers the best audio quality and the best alignment with both the
complex edit instruction and the single-step instruction from user perception.

4.3 Ablation studies
Audio quality over multi-round editing. Since the complex audio editing task involves a sequence
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Figure 9: Similarity with original
audio after multi-rounds.

of editing, unchanged content must remain intact after multiple
editing steps. We design a "round-trip" edit experiment: we per-
form the operations "add the sound of A" and "remove the sound
of A" on an audio clip for five rounds, with A a pseudo audio label.
For an ideal audio editor, this round-trip operation should exactly
reconstruct the original audio. We measure the log spectrogram
distance between each round’s edited output with the original au-
dio clip in Fig 9. Across all rounds, SmartDJ consistently achieves
the lowest LSD, indicating the smallest drift from the original
content. This demonstrates that our method effectively preserves
the unedited audio content under repeated editing actions

Effectiveness of ALM. To evaluate the contribution of ALM in handling complex audio editing tasks,
we conduct an ablation by removing the ALM module and training a variant of SmartDJ end-to-end.

SmartDJ FD↓ FAD↓ KL↓ LSD↓ IS↑ CLAP↑
w/o ALM 23.6 3.14 2.91 1.84 4.63 0.137
w/ ALM 14.7 1.53 2.85 1.42 8.36 0.238

Table 3: Ablation on the ALM module.

In this baseline, the LDM is directly conditioned on
the high-level instruction and the original audio clip
to predict the final edited output. As shown in Table 3,
SmartDJ performs significantly worse without the
ALM module, highlighting the importance of ALM’s
intermediate reasoning capabilities. By decomposing complex instructions into a sequence of
interpretable atomic edit steps, ALM enables the model to produce semantically coherent edits
aligned with the complex instruction and the original audio.

5 Discussion
Conclusion. SmartDJ is the first framework for complex instruction guided stereo audio editing that
utilizes the reasoning capability of audio language models. Our approach produces atomic editing
steps and executes them sequentially to achieve stereo audio transformations. Evaluations on both
subjective audio metrics and human perceptual studies demonstrate that SmartDJ outperforms prior
methods, and preserves spatial fidelity in complex scenes.

Limitations. Supporting a new task-specific editing operation on the LDM requires retraining the
diffusion model. However, these edits can usually be achieved through a combination of our proposed
atomic steps. Besides, our two-stage pipeline depends on a standalone ALM to translate high-level
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user instructions into detailed steps. A future direction is an end-to-end joint training strategy that
combines reasoning with audio editing.
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A Dataset curation process

A.1 Dataset preparation

We construct our training corpus by merging several publicly-available audio dataset, including VGG-
Sound, AudioCaps, WavCaps, ESC-50, and FSD50K. Since some of these sets provide audio captions
rather than discrete audio label, we first convert every caption to audio labels with GPT-4o-mini
API. We only retain single-labeled audio clip and any clip whose caption maps to multiple events is
discarded. A CLAP model scores the semantic correspondence between the audio and its new label.
Samples with a similarity score below 0.3 are filtered out. The remaining clips from all sources are
finally mixed into one large dataset that we use for subsequent data curation.

A.2 Atomic edit actions

We explain the details on creating the single-step atomic edit data pairs. For this single-step audio
editing, we have an original audio ai−1, a single atomic edit operation si. Base on atomic edit
operation si, we can generate the edited audio ai.

Add. Assume the original audio is a mix of audio content A+B+C. To add a new content into this
original audio, we sample a new audio content D from the database and mix the D with the original
audioA+B+C+D. The atomic template is "Add the sound of {dog barking} at {right} with {3} db".
The contents inside the {} can be changed to other sound events or sound attributions. We support
various sound direction (left, front and right) and dynamic volume adjustment.

Remove. Given an original mix A+B+C, let B be the undesired source. We suppress B so the output
becomes A+C. THe atomic template is Atomic template: "Remove the sound of {bird chirping} {at
right}". The directional phrase in braces is optional. If there are similar audio contents in the same
clip, the spatial features enables to manipulate it precisely.

Extract. Starting from the same mix A+B+C, we isolate one target source A and mute everything
else, yielding only A. The atomic template is "Extract the sound of {speaking} {at the right}". The
direction is optional.

Turn up/down To change loudness of a specific source B, we scale it by α, where α>1 is for “up”
and 0<α<1 is for “down". The resulted audio clip is A+ αB + C. The atomic template is "Turn
{up / down} the sound of {engine rev} by {2} dB". We also support a dynamic range of volume
adjustment.

Change sound direction. We alter only the spatial cues of a specific source C, producing an edited
version C ′ while leaving the other tracks untouched: A+B+C ′. The atomic template used is "Change
the sound of {baby crying} {from front} to {right}". The “from” clause could also be omitted.

A.3 Complex audio editing dataset curation

In the dataset curation process, we first sample 2-5 audio labels in the database, with LLM randomly
assigned volume and sound directions. We then call the GPT-4o batch API with sound sources
and attributions. For each API call, we provide 15 sets of sound sources. Through API call, each
set of sound sources will return a single data pair containing high-level editing instruction and the
corresponding atomic editing steps. We follow these atomic editing steps to manually generate the
step-by-step target edited audio with the rules in A.2. We generate 50K data pairs for complex audio
editing for training. We generate 1K data pairs from AudioCaps test/validation set for evaluation.

Starting from these 50K complex audio editing pairs, we collect the generated corresponding step-by-
step atomic actions and produce about 200K single step audio editing pairs (si, ai−1, ai). We further
scale up the this dataset size to 500K to train the LDM audio editor and we also generate another
1K extra audio data pairs to evaluate the performance of single step audio editing. This scaled-up
single step audio editing dataset keeps some instructions with audio captions, improving the LDM’s
robustness to different audio contents in the atomic edit instructions.

We provide the details of our Base Prompt for dataset curation as follow:
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Prompt

You are an expert in spatial audio editing and sound design.

Your task is to generate complex audio editing instructions based on a given list of sound sources (labels).
The sound sources will be provided as a list of full sentences (as strings), not character lists. Treat each
sentence as a single atomic sound unit. Do not tokenize or split the sound sources into characters.

For example, if you are given: "a baby crying and a man talking; a bird is chirping; dog barking". You
should consider "a baby crying and a man talking" as a complete sound source. "a bird is chirping" is
another complete sound source and "dog barking" is another sound source. You then generate the
step-by-step audio editing instructions based on the given complex instructions.

Task: you need to first brainstorm a complex audio editing instruction

- Imagine a realistic and creative soundscape editing for the given audios.
- You are not limited to the provided audio contents for the editing instruction. And the complex editing

instructions should be brief.
- The complex editing instructions could be a soundscape transformation. For example:

- - Make this sound like it was recorded in a bookstore
- - Make this sound like a busy coffee shop
- - Make this sound like a train station
- - Make this sound like a forest at night
- - Make this sound like a beach
- - Make this sound like a sunny day
- - Craft this sound to feel like a park
- - Make this audio sound like a quiet farm
- - Make this audio sound like a firework show

- Your generated complex instructions can be broader than these provided examples. Use your
imaginations!

- But remember to keep them brief, the complex editing instructions ideally should not contain the actual
sound sources.

- Then, based on the given sound event, give me the detailed editing instructions.

You then generate detailed editing instructions based on the complex audio editing instruction.

- Ensure the editing makes sense (e.g., no waves in a desert, no sheep indoors, rustling leaves in the forest,
seas waves in the beach, no raining in the sunny day).

- You are encouraged to remove the original audio contents, but you are required to maintain at least one
sound source, not removing all of them.

- Do not split or partially reference a sound source when applying operations.
- Use a combination of simple operations (but NOT necessarily all of them). For example:

- - Add (e.g., thunderstorm, cat meowing) (for the add operation, you should add up to two additional
sources that best align with the complex editing instructions)

- - Remove (For remove, you should remove at least one sound sources (up to two sound sources), but
you must keep at least one sound source!)

- - Turn up/down (e.g., turn up/turn down the sound of xxx by xxx db (between 0 and 6db))
- - Change sound direction.

- Each "target" in remove/turn up/turn down/change must exactly match one of the provided "sound
sources"

- For the "add" operation:

- - The "target" must clearly describe the new sound being added (e.g., "crowd chatter", "rain",
"footsteps on gravel").

- - The "effect" should specify the volume and direction (e.g., "at front by 4dB").
- - Do NOT use "none", "null", or placeholder values as the target. The target must always be a

descriptive label of the added sound.
- - The added sound should not duplicate any original sound source.

- The same operation can be repeated for multiple targets.
- When doing add, you can also have volume and direction attributes
- When editing existing sound sources, you can also have mixed attributes in terms of the volume and

sound directions.
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- You must ensure each step logically contributes to the final transformation.

Return the output in the following structured JSON format:

{

"sound sources": ["...", "..."], here you should put the sound sources you are given
"complex editing instruction": "...",
"atomic editing steps": [

{"operation": "add", "target": "...", "effect": "at xxx(left, front, right) by xxxdB"},
{"operation": "remove", "target": "...", "effect": "None"},
{"operation": "turn up/turn down", "target": "...", "effect": "xxxdB"},
{"operation": "change", "target": "...", "effect": "to xxx (left, right, or front)"},

]

}

Do NOT break down sound sources into individual words or characters. Sound sources are complete strings
and must remain so in the JSON.
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B Implementation Details

B.1 Baselines implementation

We present the following baseline methods to evaluate the complex audio editing task. One of the
baselines is an end-to-end version of Audit without using ALM. All other baseline methods perform
multi-step sequential editing with ALM’s atomic editing step outputs.

End-to-End Audit. We first train an end-to-end version of Audit that directly predicts the final-step
edited audio an conditioned on the original audio a0 and high-level instruction P in one step without
ALM. We extend the mono-channel Audit to our binaural setting, where we stack the left and right
channels of the mel-spectrograms as the model inputs. Follow the original implementation, we
convert 10s of audio into mel-spectrograms with a size of 80×624. using a hop size of 256, a window
size of 1024, and mel-bins of size 80. We use the same model configurations in the original paper.

SDEdit. SDEdit is a zero-shot method that does not require training a new audio editing model. It
uses an off-the-shelf text-to-audio (TTA) generation model, which we use Stable-Audio-Open, as it
supports binaural audio generation. We use the default 200 total diffusion steps and start the reverse
process from a timestep of 100. We use a classifier-free-guidance (CFG) scale of 7.5. The target
caption is composed by concatenating the individual event captions after each editing step.

DDIM Inversion. Similar to SDEdit, we also use Stable-Audio-Open as the TTA generation model.
We use the default 200 total diffusion steps and start the reverse process from a timestep of 100. We
use a CFG scale of 7.5 for both the target and the source. The source text prompt and the target text
prompt are composed by concatenating the individual event captions before and after each editing
step, respectively.

ZETA. Similar to SDEdit and DDIM Inversion, we also use Stable-Audio-Open as the TTA generation
model. We use the default 200 total diffusion steps and start the reverse process from a timestep
of 100. We use a CFG scale of 7.5 for the target and a CFG scale of 1 for the source. The source
text prompt and the target text prompt are composed by concatenating the individual event captions
before and after each editing step, respectively.

AudioEditor. Specifically in AudioEditor, we replace Affusion with the spatial generator SpatialSonic
in BEWO to support binaural editing. We use the default 100 total editing steps with 5 iterations
per step to update text embedding for null-text inversion. For the addition task, we use the default
punishment ratio (alpha) of -0.001. For the remove or extract task, we use the default punishment
ratio (alpha) of 1.

Audit with ALM. To evaluate sequential editing with a trainable editor, we use an Audit baseline
trained on single-step audio editing data with input audio ai−1, atomic instruction si, and output
edited audio ai. The model and data configurations are the same with the end-to-end Audit baseline
variant.

B.2 SmartDJ implementation

ALM. Our ALM module is initialized from Audio Flamingo 2. This model contains an AF-CLAP
audio encoder module to encode the mono channel audio. The input 10 seconds audio is first
resampled to 16KHz and transformed into a dense audio features za ∈ R64×2048. This audio encoder
is followed by a representation transformation layers that expand the model capacity. This module
has three self-attention layers to the audio feature representation, each with 8 heads and an dimension
of 2048. Following this, gated cross-attention layers are used to condition audio representations on
the LLM. The LLM uses Qwen2.5-3B, a decoder-only casual LLM with 3B parameters, 36 hidden
layers, and 16 attention heads. During training, we keep both the AF-CLAP and LLM frozen during
training. The audio representation transformation layers are fully optimized. We apply LoRA only to
the gated cross-attention layers with rank of 16. We fine-tune ALM for 20 epochs with a batch size
of 24.

DiT architecture We conduct experiments at 24KHz audio sample rate. The waveform latent
representation operates at 50Hz and consists of 128 channels. Our DiT model has 24 blocks, each
with a channel of 1024, 16 attention heads, and an FFN (Feed-Forward Network) dimension of 4096,
resulting in total of 597M parameters. During training, we begin with a 50K linear warm-up phase
and the result is training with a cosine learning rate decay. In the inference, we use 100 diffusion
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steps and a guidance scale of 4, with guidance rescale of 0.8. our LDM uses velocity prediction
with Zero-SNR, and CFG rescaling technique [38] to adjust the magnitude of the predicted velocity
and avoid over-exposure. It is trained on single-step editing data with a batch size of 256 of 500k
iterations. 10% text is replaced with empty strings to enable unconditional modeling. The learning
rates for the ALM and LDM training is 1e-5 and 5e-5 with AdamW. All experiments are conducted
with four NVIDIA L40S GPUs.

C Additional results

In this section, we provide more qualitative results on the ALM-inferenced editing steps and the
LDM edited audio results.

C.1 Results on ALM-inferenced atomic editing steps

We show multiple examples on ALM-inferenced atomic editing steps. In each example, the "audio
labels" are the ground truth audio labels for reference and they are not provided to the ALM module.
Only the corresponding audios are provided to the ALM. We then input the high level instruction to
the ALM and it output the atomic editing steps.

Prompt

Example 1: Make this sound like a quiet afternoon in a garden Audio labels: clock tick, bird chirp, wind

High-level instructions: Make this sound like a quiet afternoon in a garden

Atomic editing steps:

- Remove the sound of clock tick
- Turn up the the sound of bird tweet by 3dB
- Add the sound of gentle breeze at front by 2dB

Prompt

Example 2: Make this sound like a busy city street Audio labels: engine rev, church bell ring

High-level instructions: Make this sound like a busy city street

Atomic editing steps:

- Remove the sound of bell ring
- Turn down the sound of engine rev by 2dB
- Add the sound of distant siren at left by 2dB
- Add the sound of traffic noise at front by 3dB

Prompt

Example 3: Make this sound like a bustling park on a sunny day. Audio labels: children scream, insect buzz,
bird call, chainsaw run

High-level instructions: Make this sound like a bustling park on a sunny day.

Atomic editing steps:

- Remove the sound of chainsaw run
- Add the sound of laughter at left by 3dB
- Turn down children scream by 2dB
- Change the sound of bird call to front

Prompt

Example 4: Make this sound like a serene beach Audio labels: water waves, whistling, music playing

High-level instructions: Make this sound like a serene beach

Atomic editing steps:
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- Remove the sound of whistling
- Turn up the sound of wave crash by 4dB
- Add the sound of seagulls calling at front by 3dB

Prompt

Example 5: Make this sound like a busy office Audio labels: typewriter tap, power tool drill

High-level instructions: Make this sound like a busy office

Atomic editing steps:

- Remove the sound of drilling
- Turn up the sound of typewriter type by 2dB
- Add the sound of phone ringing at right by 3dB

Prompt

Example 6: Make this sound like a military base Audio labels: fire truck siren, gunshot, vehicle move

High-level instructions: Make this sound like a military base

Atomic editing steps:

- Remove the sound of fire truck siren
- Turn up the sound of gunshot by 3dB
- Add the sound of helicopter blades at right by 2dB

Prompt

Example 7: Make this sound like a calm night in the countryside Audio labels: snoring, machine run, wind
blow

High-level instructions: Make this sound like a calm night in the countryside

Atomic editing steps:

- Remove the sound of machine run
- Turn down the sound of wind blow by 2dB
- Add the sound of owl hooting at right by 2dB

Prompt

Example 8: Make this sound like a bustling urban street Audio labels: horn honk, cat, siren blare, male laugh

High-level instructions: Make this sound like a bustling urban street

Atomic editing steps:

- Remove the sound of cat
- Turn down the sound of siren blare by 2dB
- Add the sound of people chatter at front by 3dB
- Add the sound of traffic noise at left by 2dB

C.2 Results on atomic editing steps

We provide more atomic editing results on add in Fig 10. As shown by the comparison with the
original audio and the edited one, while baseline method tends to replace the original clips and
completely generate a new audio clip, SmartDJ can successfully keep the original contents and add
new sound events into it.

We show more editing examples on remove and extract in Fig 11 and 12. Compared with baseline
method, SmartDJ can effectively either remove unwanted or extract wanted audio contents. The
edited results show good alignment with the ground truth edited audios.

Figure 13 presents additional qualitative results for the change sound direction task. The y axis
in each figure is the sound direction heatmap. SmartDJ consistently relocates the source to the
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requested spatial direction, and its outputs align well with the ground truth edited audios. By contrast,
Audit can not alter spatial effect, showing the limitations of using spectrogram audio encoder for
direction-aware editing.

Figure 10: Examples on add operation. The top row is the original audio and the rest rows are the edited results.
Only SmartDJ can keep the original audio clips while add new audio contents.
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Figure 11: Examples on remove operation. The top row is the original audio and the bottom row is the target
audio. Only SmartDJ can completely remove unwanted audios parts and keep the remaining part unchanged.

C.3 Human Subjective Studies Details

We provide more details on the subjective user study. We provide users with data pairs consisting
of the original audio, the editing instruction, the SmartDJ edited result, and the edited results from
a random competing baseline. In the case of single-step audio editing tasks remove, extract, turn
up/down, change sound direction where there exists a ground-truth editing solution, we also provide
it as the reference audio as shown in Fig. 14b. We conduct evaluations with 19 participants and 20
(10 complex audio editing, 10 single-step editing) data pairs per participant.

In the 10 complex audio editing question pairs, we ask the user to select between the SmartDJ edited
audio and the edited results from a random competing baseline (randomly sampled from AudioEditor,
ZETA and Audit) according to the following three questions:

Question list for complex audio editing user study

- Between Audio 1 and Audio 2, which one do you feel aligns with the original audio and the
editing instruction better?

- Between Audio 1 and Audio 2, which one do you feel has the better audio quality?
- Between Audio 1 and Audio 2, which one do you feel better preserves some of the original

audio’s contents?

In the single-step editing for add operation (3 pairs in total), we compare SmartDJ with a randomly
sampled method from three baselines (AudioEditor, ZETA and Audit). We ask the user to answer
four questions, with one additional question listed below:

Additional question for add operation user study

- Between Audio 1 and Audio 2, which one do you feel the added spatial effect aligns with the
text instruction?

For the single-step remove and extract tasks (4 pairs) we compare SmartDJ with a randomly chosen
baseline model. For turn-up/turn-down and change direction (3 pairs) we benchmark only against
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Figure 12: Examples on extract operation. The top row is the original audio and the bottom row is the target
audio. Only SmartDJ can extract wanted audios that are clean and of high quality.

Figure 13: Examples on change operation. The top row is the original audio and the bottom row is the target
audio. Only SmartDJ can perfectly edit the sound directions that are matching closely with the target.

AUDIT, since the other baselines cannot perform these operations. Each pair includes a ground-truth
reference, and listeners answer the three evaluation questions listed below.

Questions list for the Remove, Extract, Turn up/down, Change sound direction operation user study

- Between Audio 1 and Audio 2, which one do you feel aligns with the original audio and the
editing instruction better?

- Between Audio 1 and Audio 2, which one do you feel has the better audio quality?
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(a) User interface for complex audio editing task (b) User interface for change direction editing task

Figure 14: The audio pairs, questions, and user interfaces for different audio editing tasks

- Between Audio 1 and Audio 2, which one do you feel aligns better with the Reference Audio
overall?

Across all tasks, SmartDJ is consistently preferred over all baseline methods. For complex audio
editing task, SmartDJ receives at least 80% of user votes over the baselines for audio quality, and at
least 87% for alignment with the high-level editing instruction and original audio. This shows that
SmartDJ faithfully performs the requested scene transformation while preserving the key elements of
the original audio. In the single-step editing task, our method receives more than 77% of user votes
for audio quality, and 84% for alignment with the single-step editing text prompt, spatial description,
and original or reference audio (when applicable). These results demonstrate that SmartDJ achieves
the highest user preference across both quality and alignment metrics, outperforming all competing
methods.

D Social impact

SmartDJ can broaden access to high-quality spatial sound design for creators who lack studio
resources, lowering the barrier for indie games, VR storytelling, language-learning apps, and ac-
cessibility tools for the blind. Educators can synthesize realistic acoustic scenes for teaching. In
virtual meeting platforms, our method can be used to suppress or enhance ambiance to reduce listener
fatigue. On the other hand, the same technology could fabricate deceptive ambiance, e.g. fake
emergency sirens. To mitigate this issue, one could embed inaudible watermarks in edited audio
segment enabling provenance tracing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contributions in the abstract and introduction and conduct
extensive experiments to support our claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations in the Discussion session.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: Our work does not involve any mathematical assumption.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly detailed our methods and parameters for the training of the network.
The code and the dataset will be open-sourced once the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24



Answer: [No]

Justification: Our code and dataset will be open-sourced after the review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have all the training and testing details, including data splits, hyperparame-
ters and the description of the used optimizer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We exclude error bars because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have all details in the experiment setup in the main tex and the supplemen-
tary results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics and preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We mention potential societal impacts in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the safeguards against the misuse of our audio language models
and editing models in the supplementary materials.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the corresponding paper when needed and follow the corresponding
license when using public datasets and the license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We discuss the model architecture details, training details, dataset composition
process in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our paper finetuned an audio language model to interpret the complex editing
instructions. LLMs are also used to create the dataset, as declared in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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