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Abstract

The advent of generative AI now enables large-
scale de novo design of molecules, but identify-
ing viable drug candidates among them remains
an open problem. Existing drug-likeness pre-
diction methods often rely on ambiguous neg-
ative sets or purely structural features, limiting
their ability to accurately classify drugs from non-
drugs. In this work, we introduce BOUNDR.E:
a novel modeling of drug-likeness as a compact
space surrounding approved drugs through a dy-
namic one-class boundary approach. Specifically,
we enrich the chemical space through biomed-
ical knowledge alignment, and then iteratively
tighten the drug-like boundary by pushing non-
drug-like compounds outside via an Expectation-
Maximization (EM)-like process. Empirically,
BOUNDR.E achieves 10% F1-score improvement
over the previous state-of-the-art and demon-
strates robust cross-dataset performance, includ-
ing zero-shot toxic compound filtering. Addi-
tionally, we showcase its effectiveness through
comprehensive case studies in large-scale in sil-
ico screening. Our codes and constructed bench-
mark data under various schemes are provided at:
github.com/eugenebang/boundr e.
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1. Introduction
The expansion of deep generative models have reshaped
the drug discovery landscape by rapidly producing vast li-
braries of de novo compounds (Guan et al., 2023; Lee et al.,
2023; Song et al., 2024), often conditioned by desired ac-
tivity or pocket structure. However, evaluating which of
these molecules are truly “drug-like” is yet an open problem.
Traditional property-based metrics, such as Rule of five (Lip-
inski et al., 1997), offer efficient preliminary screening but
lack a definitive criterion to separate truly viable drug can-
didates from non-drugs. Thus, in this era of generative AI,
a data-driven approach for precisely defining drug-likeness
in terms of chemical or compound space is now required.

Fundamentally, the approval of drugs depends on more than
just structural validity. A candidate must exhibit favorable
physicochemical properties and align with relevant biomed-
ical context, including biological target interactions and
disease pathway modulation. Yet, most existing predictive
models ignore these requirements, depending heavily on
structural features alone (Zhu et al., 2023).

Further complicating the problem, approved drugs are
highly scattered in the chemical space, with fewer than
two drugs typically sharing the same core scaffold. This
dispersion makes it challenging to define a compact decision
boundary without including non-drugs, as observed in our
initial studies (Appendix B). Specifically, defining such a
boundary poses two major challenges: 1) the absence of
definitive negatives, as any molecule could potentially be
drug-like, and 2) the vast scale of chemical space, estimated
to be up to 1060 compounds (Polishchuk et al., 2013), mak-
ing it impractical to sample a representative set for training.

Due to these challenges, supervised approaches that treat
non-drug molecules as “hard negatives” tend to over-restrict
the boundary (Sun et al., 2022), while purely unsupervised
methods often become too broad (Li et al., 2024). Positive-
unlabeled (PU) learning methods (Lee et al., 2022) also
assume a well-defined negative distribution, which is im-
practical for the unbounded compound space, where defin-
ing its representative set is challenging (Appendix A.7).
Traditional one-class classifiers (Schölkopf et al., 2001; Tax
& Duin, 2004; Ruff et al., 2018), though independent of neg-
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Figure 1: Overview of BOUNDR.E. Step 1 performs multi-modal mixup of two drug spaces: knowledge graph K and molecular
fingerprint S spaces into a unified space U . Step 2 performs EM-like boundary optimization, where in E-step boundary B is updated and
in M-step the latent space Z is updated by pushing the out-boundary non-drugs further while contracts drugs to the center.

ative samples, remain unused in drug-likeness prediction
due to their static nature and overly broad boundaries which
leads to high false positives.

In response, we propose BOUNDR.E: a novel approach that
frames drug-likeness prediction as constructing the chem-
ical space of approved drugs using deep one-class bound-
ary within a knowledge-integrated embedding space. A
desirable drug-likeness space should form a tight bound-
ary around approved drugs, including only a small fraction
of existing compounds as drug candidates. BOUNDR.E
achieves this by iteratively refining the boundary through
an Expectation-Maximization (EM)-like process, adaptively
enclosing drug-like molecules while pushing non-drug-like
compounds outward. Furthermore, we integrate the essen-
tial biomedical context via multi-modal mixup, merging
molecular structure representation with biomedical knowl-
edge graphs (Li et al., 2022) into a unified embedding space.

Through extensive experiments, we show that our approach
yields notable improvements in drug-likeness prediction
task, with robust performance across time-based splits,
scaffold-based splits, and cross-dataset validation on three
benchmark sets. Additionally, BOUNDR.E excels in zero-
shot toxic compound filtering, with comprehensive case
studies further showcasing its utility in large-scale screen-
ing of AI-generated compounds.

Our key contributions include: 1) Novel formulation of
drug-likeness prediction as a one-class classification with-
out reliance on negatives. 2) Proposal of deep EM-like
optimization of both the drug-likeness boundary and the
embedding space for accurate drug-likeness prediction. 3)
Knowledge-integrated multi-modal alignment of structure
and biomedical knowledge embeddings for defining drug-
likeness with machine learning. These advances collectively
establish BOUNDDR.E as a dynamic, data-driven tool for
initial screens of generated molecules, pushing the fron-
tiers of drug-likeness prediction and improving the overall

efficiency and reliability of AI-driven drug discovery.

2. Related Work
Computational Prediction of Drug-likeness Computa-
tional identification of drug-like compounds has long been
a focus in drug discovery (Clark & Pickett, 2000). Early
drug-likeness prediction relied on descriptor-based metrics
like Ro5 (Lipinski et al., 1997) and QED (Bickerton et al.,
2012), which serve as useful filters but fail to define a clear
decision boundary, as multiple studies have noted (Lee et al.,
2022; 2023; Li et al., 2024).

More recent supervised GNN-based methods, including D-
GCAN (Sun et al., 2022) and DeepDL (Lee et al., 2022),
treat drug-likeness prediction as a binary classification or PU
learning problem, respectively. However, their assumptions
on a tractable negative distribution makes them sensitive to
the selected negative set, as reported in Beker et al. (2020),
limiting their generalizability in open-world chemical space
where no representative set exists.

In contrary, unsupervised approaches, such as DrugMetric
(Li et al., 2024) (VAE + Gaussian Mixture Models), avoid re-
liance on negatives but often yield overly broad, ambiguous
boundaries that fail to precisely distinguish drug-like from
non-drug-like molecules. Most of all, existing approaches
rely solely on structural input, overlooking the critical role
of biomedical context in shaping drug-likeness.

Deep Multi-modal Alignment Multi-modal alignment
maps diverse data modalities, such as image, text and video,
into a unified embedding space to enable effective joint
learning and generalization (Girdhar et al., 2023). Notable
advancements include contrastive learning frameworks such
as CLIP (Radford et al., 2021) , which align text descrip-
tions with images. Recent methods have introduced im-
proved alignment strategies, including Geodesic Mixup (Oh
et al., 2024), which ensures that mixed samples from dis-
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Figure 2: Problem definition of drug-likeness prediction with
compound spaces X and datasets D.

tant modalities lie on a geodesic path, maintaining robust
representations on a hypersphere.

In the biochemical domain, contrastive learning has been
applied to chemical-bioassay image alignment (CLOOME)
(Sanchez-Fernandez et al., 2023), drug-target interaction
prediction (Ye et al., 2021), element knowledge integration
(Fang et al., 2023) and knowledge graph completion (Hoang
et al., 2024). However, no existing work has attempted
to align knowledge graph embeddings of drugs with the
structural embedding space for modeling drug-likeness.

3. BounDr.E: Drug-likeness Boundary
Optimization

Given the highly dispersed nature of drugs in chemical space
and their approval based on both structure and biomedical
knowledge, our framework combines these two modalities
into a unified space, followed by iterative refinement of
a hyperspherical one-class boundary to capture drug-like
compounds (Figure 1). The alignment of the two modali-
ties (Section 3.2) and the boundary optimization (Section
3.3) are the keys to addressing the challenges posed by
an unbounded chemical space and the absence of explicit
negatives.

3.1. Problem Definition

We propose a new perspective on the problem of drug-
likeness prediction as constructing a compact and adaptive
one-class boundary B around drug-like compounds in a the-
oretically unbounded chemical space (Figure 2). Let this
space of all compounds be denoted as Xcomp, with subset
Xdrug ⊂ Xcomp representing drug-like compounds. The ap-
proved drug dataset Ddrug represents a subset of the Xdrug,
while compound dataset Dcomp is a biased subset of Xcomp,
where its small yet unknown portion are potential drugs that
are to be rescued (Appendix A.7). As visualized in Figure
2, existing non-drug datasets Dcomp (e.g. ZINC, PubChem,
ChEMBL) form a distinct distribution and can not be a
representative set of the compound space (Appendix C.5).

We define the drug-likeness boundary through 1) training
encoders Eκ and Eσ for alignment of drugs’ knowledge
space K and structural space S into a unified embedding
space U , followed by 2) EM-like iterative optimization of

boundary Bc,r and its latent space Zθ. Notations throughout
this paper are organized in Appendix D.

3.2. Knowledge-integrated Multi-modal Alignment

Each drug can be represented by two complementary em-
beddings, which encode different aspects of drug-likeness:
molecular structure and biomedical context. The key ob-
jective is to learn a structural encoder that can also map
non-drugs, which have no corresponding biomedical infor-
mation, into a biomedical context-enriched space. The goal
is to unify the two embeddings into a common latent space
U , where both structural and knowledge representations of
drugs are aligned and consistent.

To achieve this, we introduce a knowledge-integrated multi-
modal mixup strategy. This involves softening the CLIP loss
(Radford et al., 2021) to encourage alignment between the
two embedding spaces based on semantic drug similarities
as prior knowledge. The alignment is further augmented
with geodesic mixup (Oh et al., 2024), which ensures that
the interpolated samples lie on a geodesic path between the
embeddings. By employing this strategy, we create a uni-
fied embedding space that leverages the contexts from both
molecular structure and biomedical knowledge, capturing a
richer representation of drug-like properties.

We begin by aligning two key embedding spaces of biomed-
ical knowledge graph embeddings kdrug ∈ K (Bang et al.,
2023) and molecular structural embeddings sdrug ∈ S (Mor-
gan Fingerprint). This integration is crucial as it enriches
drug representations by combining molecular structures
with their biomedical contexts. We train two encoders: a
knowledge encoder Eκ : K → U and a structural encoder
Eσ : S → U , where both map their respective embeddings
to a unified latent space U ⊂ Rd. The details of the aligned
spaces are explained in Appendix C.2.

3.2.1. SOFTENED CLIP LOSS WITH ATC SIMILARITY

In this section, we propose a novel knowledge-integration
strategy for multi-modal contrastive learning. We soften the
CLIP loss (Radford et al., 2021) by incorporating semantic
similarity (Jiang & Conrath, 1997) between drugs using
Anatomic Therapeutic Chemical (ATC) classification. For a
batch of data D = {(si,ki)}Mi=1, the original CLIP loss is
given by:

C(s,k) =
1

M

M∑
i=1

− log
exp(si ⊙ ki/τ)∑M

j=1 exp (si ⊙ kj/τ)

LCLIP =
1

2
(C(s,k) + C(k, s))

where C(s,k) is the contrastive loss for structural and
knowledge embeddings, si ⊙ ki = Eσ(s) · Eκ(k)T rep-
resents their dot-product similarity, and τ is the scaling
temperature factor.
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To introduce prior knowledge of drug similarities, we in-
corporate an ATC code similarity matrix WATC = [wi,j ],
where wi,j ∈ [0, 1] measures the semantic similarity be-
tween drugs i and j. The modified loss incorporating WATC
becomes a weighted sum over the soft labels (Eq. 1):

Csoft(s,k,WATC) =
1
M

∑M
i=1

∑M
j=1 wi,j

(
− log

exp(si⊙kj/τ)∑M
l=1 exp(si⊙kl/τ)

)
LsoftCLIP =

1

2
(Csoft(s,k,WATC) + Csoft(k, s,WATC)) (1)

Here, instead of assuming a hard one-hot target where
wi,i = 1 and wi,j = 0 for i ̸= j (as of the original CLIP
loss), the soft labels wi,j encourage similarity of drug pair
embeddings to match their semantic similarity. Details of
ATC similarity computation are provided in Appendix C.3.

3.2.2. GEODESIC MIXUP FOR EMBEDDING ALIGNMENT

Several studies have reported the problem of “modality gap”
in contrastive learning frameworks including CLIP (Wang
& Isola, 2020; Liang et al., 2022). To further improve align-
ment of the two domains, we apply geodesic mixup (Oh
et al., 2024) to interpolate between embeddings on a hy-
persphere, ensuring the points are aligned uniformly in the
latent space. Given two points a⃗ and b⃗, the mixup is per-
formed along the geodesic path:

mλ(⃗a, b⃗) = a⃗
sin(λϑ)

sin(ϑ)
+ b⃗

sin((1− λ)ϑ)

sin(ϑ)

where ϑ = cos−1(⃗a · b⃗), and λ ∼ Beta(α, α). Within the
batch of length M , geodesic mixup interpolates information
from data indices i and i′ = M−i with λ and 1−λ fraction,
respectively. This allows smooth interpolation between data
pairs, improving consistency within the latent space.

With our formulation, we introduce three forms of mixup
(visualized in Figure 11):

Structural Mix (S-Mix) Interpolates within the structural
embedding space:

CS(s,k) =
1

M

M∑
i=1

−λ log
exp(mλ(si, si′)⊙ ki/τ)∑M

j=1 exp(si ⊙ kj/τ)

−(1− λ) log
exp(mλ(si, si′)⊙ ki′/τ)∑M

j=1 exp(si ⊙ kj/τ)

LS-Mix =
1

2
(CS(s,k) + CS(k, s)) (2)

Knowledge Mix (K-Mix) Interpolates within the knowl-
edge graph embedding space and has the same formula with
S-Mix, except that it is applied to knowledge embedding-
side.

LK-Mix =
1

2
(CK(s,k) + CK(k, s)) (3)

Knowledge-Structural Mix (KS-Mix) Interpolates the
knowledge and structural embeddings simultaneously:

CKS(s,k) =
1
M

∑M
i=1− log exp(mλ(si,si′ )⊙mλ(ki,ki′ )/τ)∑M

j=1 exp(si⊙kj/τ)

LKS-Mix =
1

2
(CKS(s,k) + CKS(k, s)) (4)

These interpolations ensure the robustness of embedding
space by smoothing the transitions between similar drugs
and ensuring embeddings respect the L2-norm constraint of
the hypersphere.

The final multi-modal alignment loss is a weighted sum:

Lmulti-modal = λsoftCLIPLsoftCLIP+LS-Mix+LK-Mix+LKS-Mix

We optimize the parameters of encoders Eσ and Eκ using the
Adam optimizer (Kingma, 2014). The trained structure en-
coder Eσ is further utilized to project the chemical structural
features into the unified embedding space U for downstream
tasks including the drug-likeness boundary generation.

3.3. EM-like Iterative Optimization of Drug-likeness
Boundary

Once the multi-modal embeddings are aligned into the uni-
fied space U , we define a hyperspherical boundary B in a la-
tent space Z , which is generated by an encoder fθ : U → Z .
This boundary is characterized by its center c and radius
r, and the goal is to optimize B such that it encapsulates
as many drug-like compounds as possible while minimiz-
ing the inclusion of non-drug-like compounds, leading to
decreased in-boundary compound ratio ρ.

We formulate the optimization of this drug-likenss bound-
ary B as an iterative process inspired by the Expectation-
Maximization (EM) algorithm. The model adjusts the
boundary parameters (a hypersphere with center c ∈ Rd

and radius r) in the Expectation (E)-step, while refining
the embedding space Z and its encoder fθ during the Max-
imization (M)-step. This allows the boundary to evolve
throughout training, with each iteration improving the its
compactness and reducing the false-positive rate. The full
algorithm is provided in Appendix A.1.

3.3.1. EXPECTATION STEP: BOUNDARY UPDATE

In the E-step, we update c and r to enclose α ≈ 100%
of drug-like compounds, keeping the embedding function
fθ fixed. Given the set of embedded drug compounds
zdrug = {f(x; θ(t)) : x ∈ Xdrug} at iteration time step t,
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Figure 3: Schematic of latent space optimization during M-step.
The margin between drug and compound is increased through the
update of embedding function using the Lboundary objective.

the boundary parameters are updated as follows:

c(t+1) =
1

|zdrug|
∑

z∈zdrug

z,

r(t+1) = Qα
z∈zdrug

(
∥z − c(t+1)∥2

)
,

r(t+1)
comp = max

z∈zcomp

(
∥z − c(t+1)∥2

)
,

Here, c(t+1) is the center of the drug-like compounds at
iteration t + 1, r(t+1) is the radius of the smallest hyper-
sphere containing α ≈ 100% of drug-like compounds de-
fined by the α-th percentile (Qα) of the set of distances
∥z− c(t+1)∥2, and r

(t+1)
comp captures the boundary of all com-

pounds. Compounds outside the drug-like boundary are
treated as pseudo-negatives in the next M-step:

Xout := {x ∈ Xcomp | d(t)(x; θ, c) > r(t+1)},

where d(t)(x; θ, c) = ∥f(x; θ(t)) − c(t+1)∥2 is the Eu-
clidean distance from the boundary center.

3.3.2. MAXIMIZATION STEP: EMBEDDING FUNCTION
UPDATE

In the M-step, we optimize the embedding function fθ :
U → Z with parameters θ to reduce the inclusion of non-
drug-like compounds inside the boundary while keeping
drug-like compounds near the center. The total loss function
consists of two metric terms:

1. Drug loss Ldrug, which encourages drugs to be located
closer the center of the boundary:

Ldrug(θ) =
∑

x∈Xdrug
dt(x; θ, c)

2. Out-boundary loss Lout, which pushes non-drugs la-
beled as pseudo-negatives during the E-step to the com-
pound space boundary:

Lout(θ) =
∑

x∈Xout
max

(
r
(t+1)
comp − dt(x; θ, c), 0

)
The loss terms can be interpreted as reducing/increasing
the samples’ distances d(x) to 0 and r

(t+1)
comp for drugs and

out-boundary compounds, respectively. We then combine
the two loss terms to yield a total loss described as:

Lboundary(θ) = Ldrug(θ) + λout · Lout(θ) (5)

where λout controls the strength of the out-boundary penalty.
This loss iteratively improves the separation between drug-
like and non-drug-like compounds, increasing the mar-
gin

∑
xdrug∈Xdrug

∑
xcomp∈Xcomp

d(xcomp) − d(xdrug) between
drugs and compounds (Figure 3).

We show that minimizing the metric loss function (Eq. 5)
leads to a boundary B that encapsulates drug-like com-
pounds while excluding non-drug-like ones, improving drug-
likeness prediction accuracy:

Theorem 1 (Reduction of in-boundary non-drugs). Opti-
mizing a neural network encoder with the distance-based
loss function reduces the number of non-drugs inside the
boundary |Xin-boundary| between two successive steps t1 < t2,
where L(t1)

drug > L(t2)
drug and L(t1)

out > L(t2)
out .

The proof is provided in Appendix A.2.

Finally, convergence is determined by the in-boundary com-
pound ratio ρt = |X (t)

in-boundary|/|Xcomp|. The algorithm stops
when the change in ρt between iterations is smaller than a
threshold ϵ: |ρt+1 − ρt| < ϵ for npatience consecutive itera-
tions. In addition, a multi-initialization technique is applied
to avoid the EM-like models’ sensitivity to initialization,
further detailed in Appendix A.6.

Overall, our EM-like framework iteratively refines the
boundary and embedding space, resulting in a compact
boundary that effectively excludes non-drug-like com-
pounds. The knowledge-aligned embeddings of U further
enhances the model’s drug-likeness prediction capabilities.

4. Experiments
4.1. Setup

Dataset Approved drugs are sourced from DrugBank
v5.1.12 (Knox et al., 2024) and removed all withdrawn
drugs. 100k non-drug compounds are sampled from
ZINC20 (Irwin et al., 2020), limited to clean, annotated
entries. We evaluate our model on drug-likeness predition
under two split scenarios: scaffold-based and time-based.
The scaffold-based split ensures the molecular scaffolds in
train, validation, and test sets are mutually exclusive, using
the Bemis-Murcko scaffolds (Bemis & Murcko, 1996). This
evaluation scheme is applied to measure the models’ gen-
eralizablilty when an unseen scaffold compound is input,
where approved drugs exist extremely sparse in the scaf-
fold space (Appendix C.4.1). In the time-based split, drugs
are partitioned based on their approval year (e.g., drugs ap-
proved post-2011 are in the test set), to reflect the temporal
evolution of approved drug properties (Appendix C.4.2).

Baselines We compare our model to established drug-
likeness prediction models: DeepDL (Lee et al., 2022),
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Table 1: Drug-like compound identification performance with time-split setting. Mean and standard deviation of 10 fold CV are provided.
Best performance and its comparable results (paired t-test p < 0.05) are marked in bold, and second-best are underlined. (Avg: Average)

F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)
FP-Similarity-cutoff 0.389 (0.0388) 0.415 (0.0647) 0.080 (0.0603) 0.681 (0.0041) 0.437 (0.0063)
FP-KNN classifier (Cover & Hart, 1967) 0.297 (0.0134) 0.986 (0.0032) 0.476 (0.0251) 0.889 (0.0084) 0.331 (0.0208)
FP-SVM (Boser et al., 1992) 0.665 (0.0126) 0.823 (0.0111) 0.067 (0.0052) 0.963 (0.0021) 0.724 (0.0174)

FP-XGB (Chen & Guestrin, 2016) 0.692 (0.0141) 0.815 (0.0205) 0.055 (0.0048) 0.966 (0.0026) 0.775 (0.0213)

FP-OCSVM (Schölkopf et al., 2001) 0.090 (0.0025) 0.274 (0.0000) 0.489 (0.0101) 0.331 (0.0030) 0.148 (0.0022)
FP-DeepSVDD (Ruff et al., 2018) 0.166 (0.0087) 0.834 (0.0350) 0.840 (0.0381) 0.494 (0.0532) 0.097 (0.0157)

FP-nnPU (Kiryo et al., 2017) 0.608 (0.0239) 0.789 (0.0367) 0.083 (0.0081) 0.944 (0.0049) 0.706 (0.0261)
FP-PU with NN (Li & Liu, 2003) 0.634 (0.0224) 0.791 (0.0296) 0.072 (0.0079) 0.949 (0.0045) 0.720 (0.0214)

DrugMetric (Li et al., 2024)* 0.170 (0.0319) 0.767 (0.1271) 0.760 (0.2028) N/A N/A
D-GCAN (Sun et al., 2022) 0.669 (0.1770) 0.942 (0.0337) 0.160 (0.2808) 0.918 (0.1396) 0.613 (0.1874)
DeepDL (Lee et al., 2022) 0.740 (0.0584) 0.888 (0.0546) 0.054 (0.0225) 0.979 (0.0114) 0.886 (0.0374)

BOUNDR.E (ours) 0.846 (0.0165) 0.799 (0.0184) 0.009 (0.0031) 0.978 (0.0029) 0.908 (0.0096)
∗DrugMetric’s GMM classifier fails to provide prediction probabilities for AUROC and Average Precision calculation

D-GCAN (Sun et al., 2022), and DrugMetric (Li et al.,
2024), as well as several general machine learning classi-
fiers: SVM (Boser et al., 1992), XGBoost (Chen & Guestrin,
2016), Naive PU algorithm by Li & Liu (2003) implemented
with neural network, nnPU (Kiryo et al., 2017), OC-SVM
(Schölkopf et al., 2001), and DeepSVDD (Ruff et al., 2018).
We further evaluated the difficulty of drug-likeness predic-
tion using naı̈ve nearest-neighbor baselines as lower bound,
namely KNN classifier (Cover & Hart, 1967) and similarity-
cutoff approaches. The KNN classifier makes predictions
based on k-nearest neighbors, and the similarity-cutoff base-
line utilizes the distance to nearest approved drug in the
training set, with the threshold value tuned during training.
Each general baseline is provided with molecular finger-
prints as input features. Implementation details are provided
in Appendix C.7, along with discussion on the utility of
count-based fingerprints.

4.2. Drug-Likeness Prediction Performances

We evaluate performance of models in distinguishing ap-
proved drugs from ZINC compounds under both split
strategies—time-based split and scaffold-based split. We
report the results using F1-score, MCC, and two metrics:
In-boundary Drug Ratio (IDR) and In-boundary Compound
Ratio (ICR):

IDR =
|Drugs in boundary|
|Total drugs in test set|

= TPR,

ICR =
|Compounds in boundary|
|Total compounds in test set|

= FPR.

IDR, equivalent of True Positive Rate (TPR), reflects how
well the boundary captures drug-like compounds, while
ICR, representing False Positive Rate (FPR), measures how

well non-drug compounds are excluded. Reported AUROC
further measures the models’ capabilities in balancing the
trade-off between TPR and FPR. In addition, Average Preci-
sion (AP), Recall@k and Precision@k evaluates the quality
of recommended compounds (Appendix E.1).

As a result, our model consistently outperforms binary clas-
sifiers, PU learners, and one-class classification models
across both split settings. For the time-based split (Table 1),
our model achieves the highest F1, AUROC, and AP, demon-
strating its ability to adapt to unseen drug-like compounds.
Results for the scaffold-based split (Appendix E.2) further
confirm the robustness of our approach, highlighting its
capacity to generalize across diverse molecular structures.

To further assess performance under more realistic and chal-
lenging background distributions, we conducted an addi-
tional experiment in which the ZINC-derived non-drug set
was replaced with PubChem compounds. As described in
Appendix C.5, this setting reflects a closer property distribu-
tion to that of approved drugs, thereby posing a harder clas-
sification task. Across all models, performance degraded
under this shift, validating the difficulty of property-matched
background (Appendix E.3). Nevertheless, our model ex-
hibited strong relative stability, reinforcing its robustness
to distributional shifts, generalizing beyond background-
specific biases.

Cross-dataset Evaluation We further tested generaliz-
ability through cross-compound dataset evaluation. Models
are first trained on PubChem or ChEMBL compound sets
then tested with the ZINC compounds, with the drug set
(DrugBank) and its split setting fixed. As a result, binary
classifiers and PU-learning frameworks show heavy decline
in performances whereas one-class classifers show no effect.
BOUNDR.E demonstrate only moderate decline in both
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Figure 4: PCA visualization of knowledge-aligned embedding space and latent space at each epoch of boundary optimization. Box on
the upper-left corner displays the space within the drug-like boundary based on PC1 and PC2. Red circle and gray triangle display the
movement of drug and zinc compound samples respectively, as training proceeds.

Table 2: False-positive rate of toxic compounds. Lowest and its
comparable results (paired t-test p < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

FP-XGB 0.96 (0.003) 0.96 (0.003) 0.85 (0.010) 0.93 (0.010)
FP-OCSVM 0.69 (0.002) 0.53 (0.003) 0.25 (0.006) 0.86 (0.001)
FP-nnPU 0.95 (0.009) 0.94 (0.007) 0.87 (0.028) 0.86 (0.017)

DrugMetric∗ N/A 0.77 (0.073) 0.76 (0.118) 0.82 (0.087)
DGCAN 0.91 (0.020) 0.85 (0.023) 0.88 (0.045) 0.95 (0.017)
DeepDL 0.91 (0.016) 0.92 (0.018) 0.85 (0.042) 0.84 (0.025)

BOUNDR.E 0.51 (0.014) 0.54 (0.009) 0.20 (0.009) 0.19 (0.014)
∗DrugMetric fails to infer scaffolds not present in training datasets

scaffold-based and time-based splits (Appendix E.4). This
result shows the generalizability of our one-class boundary
approach by not relying on the non-drug set. Experimental
details are available in Appendix C.5.

4.3. Zero-shot Toxic Compound Identification

To test our model’s capacity to filter out potentially toxic
compounds, we performed a zero-shot evaluation on toxic
compound sets including DrugBank’s withdrawn drug list
and organ-toxicity groups (hepatotoxic, cardiotoxic, and
carcinogenic compounds, (Wu et al., 2023)).

As shown in Table 2, our model demonstrates lower false-
positive rate compared to baseline models, consistently iden-
tifying toxic compounds from diverse categories as out of
drug boundary. Furthermore, error analysis on the with-
drawn drugs reveal that among the 52% false-positive, most
of them are withdrawn from some regions yet approved in
others. These results indicates that our boundary, along with
its integrated biomedical contexts, can effectively generalize
to compounds with toxic properties, offering a promising
tool for early-stage toxicity filtering. Full table of baseline
model performances are provided in Appendix E.5.

Boundary Regularization via Partial Negatives To in-
vestigate the effects of partial negative supervision on bound-
ary formation, we introduced a subset of biologically mean-

Table 3: Drug-like compound identification with EM-like bound-
ary optimization on embedding space aligned with different align-
ment methods. Best and its comparable results (paired t-test p <
0.05) are marked in bold.

Alignment method F1 (↑) ICR (↓)
No Alignment (only FP) 0.54 (0.032) 0.057 (0.0161)
Manifold Alignment 0.40 (0.045) 0.009 (0.0055)
CLIP 0.59 (0.022) 0.025 (0.0133)
Geodesic Mixup 0.69 (0.045) 0.025 (0.0133)

Ours - softCLIP 0.73 (0.037) 0.018 (0.0066)
Ours 0.85 (0.017) 0.009 (0.0031)

ingful negatives into the non-drug class. As a result, this
intervention induced minor reductions in classification ac-
curacy but yielded notable improvements in convergence
efficiency and decision boundary structure. Traditional clas-
sifiers exhibited heightened sensitivity to the induced class
heterogeneity, whereas BOUNDR.E demonstrated greater ro-
bustness under these conditions. The comprehensive results
and methodological details are listed in Appendix E.5.3.

4.4. Embedding Space Visualization

Figure 4 displays the evolution of our embedding space
as the EM-like boundary optimization proceeds. It is easy
to spot that the compounds from ZINC database are be-
ing pushed out of the boundary as FDA-approved drugs
form more compact space as training epochs increase. The
zoomed-in boxes of each epoch further visualizes how the
density of ZINC-compounds decreases as the embedding
space is optimized. This visualization effectively demon-
strates our model’s ability to iteratively refine the embedding
space, making it increasingly more drug-focused over time.

4.5. Ablation Studies

Effect of Multi-modal Alignment with Softened CLIP
Loss We compared our softened CLIP loss with alterna-
tive alignment strategies, including CLIP (Radford et al.,
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Figure 5: Change of F1 score with the decrease in drug-compound
ratio of the test set.

Table 4: Drug-like compound identification with different classi-
fiers on knowledge-aligned space. Best and its comparable results
(paired t-test p < 0.05) are marked in bold.

Aligned space F1 (↑) ICR (↓)
+ MLP 0.77 (0.020) 0.046 (0.0053)
+ SVM 0.86 (0.012) 0.050 (0.0050)
+ XGB 0.75 (0.012) 0.019 (0.0023)
+ naive PU 0.82 (0.011) 0.031 (0.0029)
+ DeepSVDD 0.32 (0.079) 0.351 (0.1148)

+ Ours − EM 0.44 (0.162) 0.259 (0.1931)
+ Ours 0.85 (0.017) 0.009 (0.0031)

2021), Geodesic Mixup (Oh et al., 2024), naive manifold
alignment (Ham et al., 2005), and unaligned space (i.e.,
molecular fingerprints) (Table 3). Our proposed method
significantly improves boundary quality due to the enriched
representation that aligns molecular structure with biomedi-
cal knowledge. The resulting embedding space produces a
tighter drug boundary, leading to improved drug-like com-
pound identification performances. The full ablation study
results including each component of S-Mix, K-Mix and KS-
Mix are provided in Appendix E.6, which also support the
utility of integrating all the components.

Effect of EM-like Optimization We evaluated the advan-
tage of our EM-like boundary optimization against tradi-
tional binary classifiers, PU learners, and one-class models
(Table 4). Our model achieves the lowest ICR (or FPR),
showcasing the strength of iterative boundary refinement,
which iteratively increases the out-boundary compounds
(Appendix A.3). Figure 5 shows the robustness of our
method under increasing compound-to-drug ratios (from
1:1 to 1:100), maintaining performance in more realistic
conditions of 1:50 and 1:100 ratios where non-drug com-
pounds vastly outnumber drugs.

These ablations confirm the complementary nature of multi-
modal alignment and boundary optimization in improving
drug-likeness prediction.

Figure 6: Distribution of drug-like scores of compound sets in
different drug discovery stages.

4.6. Distance Distribution of Compounds in Diverse
Stages

To validate the effectiveness of our distance metric, we
analyzed the drug-likeness scores for six compound sets
spanning different stages of drug discovery: AI-generated
compounds (Targetdiff (Guan et al., 2023) and MOOD
(Lee et al., 2023)), investigational compounds and world-
approved (ZINC20 (Irwin et al., 2020)), withdrawn, and
FDA-approved drugs (DrugBank (Knox et al., 2024)).

Figure 6 shows a clear progression, with compounds mov-
ing closer to the center of the drug boundary as they ad-
vance through the drug development pipeline. The result
reflects the increasing likelihood of drug-like properties as
a compound matures from early AI-generated candidates
to approved drugs. Our model effectively differentiates
AI-generated molecules from investigational and approved
drugs. This ability to rank candidates based on drug-likeness
provides a valuable tool for in silico screening, accelerating
early-stage compound prioritization.

4.7. Application to in silico Targeted Drug Discovery
Pipelines

In this section, we demonstrate the utility of our model for
initial screening and its potential real-world impact in target-
based drug discovery pipeline. Utilizing three well-known
anti-cancer targets, BCR-ABL, EGFR and CDK6, we first
generated 10k anti-cancer compounds with pocket-aware
generative model (Guan et al., 2023). Then, we compared
the filtering capability of our approach with property-based
filters, detailed in Appendix E.7.1. The results demonstrate
the outstanding filtering ratio of our approach compared
to others (Table 5). Additionally, by initially applying
BOUNDR.E followed by all other filters yielded approx-
imately 0.3% of screened compounds, a very practical num-
ber for wet lab validations (Figure 7). These outcome il-
lustrates how BOUNDR.E optimizes the workflow by min-
imizing the initial candidate pool for downstream experi-
mental validation and simultaneously saving computational
resources.
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Figure 7: Application case of BOUNDR.E in in silico drug discovery pipeline. Integration of BOUNDR.E for filtering 10,543 pocket-based
generated compounds yields realistic number for downstream validation compared to pipeline composed of conventional filters.

Table 5: Number of filtered compounds by different filters.

Filtering Method BCR-ABL EGFR CDK6

Total Generated 10,543 (100%) 12,550 (100%) 11,496 (100%)

PAINS filter 10,078 (95.7%) 11,878 (94.6%) 10,996 (95.6%)
Rule of Five 4,997 (47.5%) 6,520 (52.0%) 5,782 (50.3%)
Predicted IC50 2,786 (26.5%) 1,018 (8.10%) 4,734 (41.2%)
BounDr.E 300 (2.8%) 374 (3.00%) 264 (2.3%)

All filters−BounDr.E 1,320 (12.5%) 491 (3.9%) 2,710 (23.6%)
All filters 38 (0.36%) 17 (0.15%) 47 (0.40%)

Furthermore, downstream analyses reveal that the com-
pound list filtered by BOUNDR.E exhibits enhanced drug-
like properties (Table 6). The filtered compounds show a
more distinct distribution compared to the initially generated
molecules, with improvements in traditional drug-likeness
measures such as QED, Lipinski’s Rule of Five, and Syn-
thetic Accessibility Scores (SAS). Additionally, the filtering
process demonstrates a higher probability of identifying ex-
isting approved drugs, including imatinib (targeting BCR),
erlotinib (targeting EGFR), and ribociclib (targeting CDK6)
(Appendix E.7.2). The structures of the filtered molecules,
along with the most similar structured drugs for BCR-ABL
target are provided in Appendix E.9.

Lastly, to test our model’s capabilities to be adapted for
cancer drug discovery, we trained our model on a narrower
training set containing only approved cancer drugs (Ap-
pendix E.8). This anti-cancer variant, while showing strict-
ness for toxic compounds, provided a broader boundary for
generated anti-cancer compounds, showcasing our model’s
potentials to be tailored for specific therapeutic area.

5. Conclusion and Future Works
In this work, we introduced BOUNDR.E, a novel frame-
work for drug-likeness prediction that combines knowledge-
aligned embeddings with EM-like one-class boundary
optimization. By leveraging structural and biomedical
knowledge through application of softened CLIP loss and
Geodesic Mixup, BOUNDR.E creates a robust multi-modal
embedding space. Our experiments show that BOUNDR.E
consistently outperforms state-of-the-art models, excelling
at identifying drug-like compounds while effectively filter-
ing out toxic molecules, with case studies demonstrating its

Table 6: Various traditional drug-likeness measures of Targetdiff
generated molecules and filtered sets. Most desirable values are in
bold. (SAS: Synthetic Accessibility Score; Avg.: Average)

Target protein BCR-ABL (PDB: 1OPJ)

Groups SAS (↓) Avg. QED (↑) Ro5 ratio (↑)
TargetDiff 10k 4.956 0.425 0.474
Random sampled* 4.958 0.426 0.475
BOUNDR.E filtered 4.930 0.433 0.532

∗ Repeated 100 times

utility as initial screen of drug candidates.

Several opportunities for improvement remain in our frame-
work. The EM-like strategy still requires solid approaches
and theoretical support for reaching global optima, and
lower reliance to initialization points. Further experimental
validation of the screened compounds, including efficacy,
toxicity and PK/PD profiles, may provide more convincing
results on the utility data-driven drug filters in drug discov-
ery endeavours. In particular, the applicability of our model
to specific therapeutic area can be further elaborated.

Extending to the applicability of our model, we believe
it will action as a reliable early-stage filter within well-
characterized chemical spaces, such as me-too drug discov-
ery. However, we acknowledge its limitations in general-
izing to novel modalities (e.g., PROTACs) or compounds
for rare diseases lacking precedent. Machine learning ap-
proaches, trained on historical data, may struggle with novel
structures. In such cases, classical rule-based filters remain
valuable complements, particularly for evaluating synthesiz-
ability and basic drug-likeness. As the diversity of approved
drugs expands, we expect machine learning models to im-
prove in robustness and generalizability, broadening their
applicability in future drug discovery efforts.

Overall, we believe our model is a promising complemen-
tary solution for prioritizing drug-like compounds in early-
stage development for efficiency in in silico drug discovery.
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A. Details in EM-like boundary optimization
A.1. Algorithm of EM-like boundary optimization

Algorithm 1 EM-like Training for Drug Boundary Optimization

Require: Dataset X = {xi}Ni=1 = Xdrug + Xcomp, Learning rate ηθ , Convergence tolerance ϵ
Ensure: Optimized embedding space parameters θ∗ and boundary parameters c∗, r∗

1: Initialize neural network parameters θ(0), boundary parameters c(0), r(0)

2: X ← Eσ(X ) where Eσ is pretrained multi-modal structure encoder

3: ρ(0) =
|X (0)

in-boundary|
|Xcomp| where X (0)

in-boundary :=
{
x | ∥f(xcomp; θ

(0))− c(0)∥2 ≤ r(0)
}

4: Set t = 0
5: while |ρt+1 − ρt| ≥ ϵ do
6: E-step (Boundary update):
7: zdrug ← f(xdrug; θ

(t))
8: c(t+1) ← 1

|zdrug|
∑

zdrug

9: r(t+1) ← max
(
∥zdrug − c(t+1)∥2

)
, r

(t+1)
comp ← max

(
∥zcomp − c(t+1)∥2

)
10: Identify Xout
11: M-step (Embedding function update):
12: Lboundary(θ

(t))← Ldrug(θ
(t), c(t+1), r(t+1)) + λout · Lout(θ

(t), c(t+1), r(t+1))
13: θ(t+1) ← θ(t) − ηθ · Adam

(
∇θL(θ(t), c(t+1), r(t+1))

)
14: ρ(t+1) ← |X (t)

in-boundary|
|Xcomp| where X (t)

in-boundary :=
{
x | ∥f(xcomp; θ

(t+1))− c(t+1)∥2 ≤ r(t+1)
}

15: Increment t← t+ 1
16: end while
17: Return Optimized parameters θ∗, c∗, r∗

A.2. Proof of Theorem 1

To recap, the M-step of the EM-like iterative optimizes the latent space with the following loss terms:

Ldrug(θ) =
∑

x∈Xdrug

dt(x; θ, c) (6)

Lout(θ) =
∑

x∈Xout

max
(
r(t+1)

comp − dt(x; θ, c), 0
)

(7)

Lboundary(θ) = Ldrug(θ) + λout · Lout(θ) (8)

where dt(x; θ, c) = ∥f(x; θ(t)) − c(t+1)∥2 is the Euclidean distance of samples from the drug center, and λout is a
hyperparameter controlling the strength of the out-boundary penalty. The loss terms can be interpreted as reducing/increasing
the samples’ distances d(x) to 0 and r

(t+1)
comp for drugs and out-boundary compounds, respectively.

Theorem 1 (Reduction of In-boundary Non-drugs). Optimizing a neural network encoder with Euclidean distance loss to
regress distance of non-drugs toward a radius of rcomp and drugs toward 0 leads to a decrease in the number of non-drugs
in boundary |Xin-boundary| between two successive time steps t1 < t2 where L(t1)

drug > L(t2)
drug and L(t1)

out > L(t2)
out .

To prove this, we will break down the proof to show that the decreasing nature of r and the inconsistency that arises if the
number of points inside an arbitrary threshold ν increases during the optimization of the Euclidean distance-based loss.

Proposition 1 (Shrinkage of r): As the optimization of the Euclidean distance loss proceeds over time, the drug boundary
radius r, defined as the maximum distance of drug-like points from the center c, decreases.

Proof: Let Xdrug ⊂ Rd denote the set of drug-like compounds and c ∈ Rd be a center point. The drug loss function Ldrug
(Eq. 6) is given by:

Ldrug =
∑

x∈Xdrug

d(x) =
∑

x∈Xdrug

∥f(x; θ)− c∥2,

13
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where d(x) represents the Euclidean distance between point f(x; θ) and c.

The objective of the optimization process is to minimize Ldrug by penalizing larger distances more severely with the square
operation, while attracting points further away from c more strongly, and since the Euclidean distance norm is a strictly
convex function, any reductions in the loss Ldrug implies a reduction in the distance ∥f(x; θ)− c∥2 for each x ∈ Xdrug.

While Ldrug encourages all drug-like points to move toward the center c, this does not guarantee that the point defining
the radius (i.e., the farthest point) also moves. However, under typical optimization dynamics and due to the stronger
gradient signals applied to farther points in convex losses, the maximum distance r is often reduced. This trend is supported
empirically in Figure 9 of Section A.3, where the relative drug radius consistently decreases over iterations. □

Lemma 1 (Impact of Compounds Inside ν to Lout): The contribution to the out-boundary loss Lout from points x with
d(x) < ν is greater than the contribution from points with d(x) ≥ ν.

Proof: The out-boundary loss Lout (Eq. 7) is given by:

Lout(θ) =
∑

x∈Xout

max (rcomp − d(x), 0) ,

where d(x) represents the Euclidean distance between the compound x and the center c. Considering the loss contribution
of a point x ∈ Xout with distance d(x), the individual contribution to the loss for this point is

Lout,x = max (rcomp − d(x), 0) .

So, for points x such that x with d(x) < ν with given an arbitrary threshold radius, we have

rcomp − d(x) > rcomp − ν.

On the other hand, for points where d(x) ≤ ν, we have

rcomp − d(x) ≤ rcomp − ν.

Since the out-boundary loss Lout is the sum of the individual contributions for each point in Xcomp, increasing the number of
points for which d(x) < ν will increase the overall loss Lout more than increasing the number of points with d(x) ≥ ν.
Therefore, the points with the threshold radius ν contribute more to the loss than those outside. Thus, the contributions of
points with d(x) < ν is greater than that of points with d(x) ≥ ν. □

Proposition 2 (Decrease in Points Inside ν): If the out-boundary loss Lout decreases with each iteration step, that is,
L(t2)

out < L(t1)
out , then the number of points x such that d(x) < ν decrease between steps t1 and t2.

Proof: For given iterative steps t1 and t2, assume that the number of points x such that d(x) < ν increases between iterative
steps, meaning that more points fall within the threshold ν at step t2 than at step t1. From Lemma 1, we know that the
contribution to the out-boundary loss Lout from points within the threshold ν is greater than the contribution from points
outside ν. Specifically, for any point x where d(x) < ν, the contribution to the loss satisfies

rcomp − d(x) > rcomp − ν.

Thus, if the number of points x such that d(x) < ν increase at step t2, the out-boundary loss Lout at step t2 should increase
relative to its value at step t1, since the points inside ν contribution more to the loss. This would imply that the loss at step
t2, L(t2)

out , is greater than or equal to the loss at step t1, L(t1)
out .

However, this contradicts the assumption that L(t2)
out < L(t1)

out , i.e., the loss decreases over steps. Therefore, our assumption
that the number of points with d(x) < ν increases between iterations is false.

This reasoning suggests that, under the assumption of our loss formulation and typical optimization behavior, a decrease in
Lout is associated with fewer points falling within the threshold ν. This aligns with the empirical trend observed in Figures 8
and 9 of Section A.3, where the in-boundary compound ratio decreases as optimization progresses.

□

Corollary 1 (Upper Bound of r): The radius r(t1) serves as an upper bound on the maximum distance of drug-like points
from the center at t2 where t1 < t2. As r(t1) > r(t2), fewer compounds lie inside this radius at t2, implying that the
boundary of the drug-like space shrinks and becomes more compact.

14



Predicting Drug-likeness via Biomedical Knowledge Alignment and EM-like One-Class Boundary Optimization

Proof: By Proposition 1, the drug boundary radius r, defined as the maximum distance of drug-like points from the center,
decreases over steps. In other words, r(t2) < r(t1) for t2 > t1, meaning the boundary becomes tighter as the optimization
progresses.

And then, by Proposition 2, the number of points x such that d(x) < ν is decreases over steps for any fixed threshold
radius ν. This implies that between steps t1 and t2. the number of compounds within the radius r(t2) decreases more than
the number of compounds within the radius r(t1).

Since r(t1) encompasses all drug-like points at time t1 and r(t2) < r(t1), we conclude that r(t1) remains an upper bound on
the maximum distance of drug-like points from the center at time t2 even as the boundary shrinks. Therefore, as r decreases
with step, the drug boundary become increasingly compact, with fewer compounds lying within the shrinking boundary. □

Based on the above proofs, we now move on to the proof of Theorem 1.

Proof of Theorem 1: By Proposition 1, we know that the radius r, which represents the boundary of drug-like points,
decreases over steps as the Euclidean distance loss is minimized. This shrinking boundary implies that the space enclosing
the drug-like compounds becomes more compact as the optimization proceeds from t1 to t2.

From Proposition 2, we concluded that if the out-compound loss Lout decreases over steps, the number of points inside an
arbitrary radius ν decreases. Thus, the number of non-drug points within the boundary shrinks as t progresses.

By Lemma 1, the contribution to the out-compound loss Lout from non-drug points inside a given radius ν is larger than
from points outside. Hence, as the number of in-boundary points decreases, the out-compound loss decreases, consistent
with the assumption that L(t1)

out > L(t2)
out .

According to the Corollary 1, the drug boundary radius r(t1) serves as an upper bound on the maximum distance of drug-like
points from the center, and this boundary becomes more compact over steps. As r(t2) < r(t1), fewer non-drug points will lie
inside the boundary at step t2. □

Combining these results, we see that as the optimization proceeds, both the drug boundary shrinks and the number of
non-drug points within this boundary decreases. Given that Ldrug and Lout both decrease between steps t1 and t2, we
conclude that the number of non-drug points inside the boundary |Xin-boundary| decreases as well.

A.3. Evolution of Boundary Metrics During EM Optimization

Figure 8: Iterative improvement of out-boundary com-
pound ratio. Line shows mean over 10 trials; shaded area
spans min–max values.

The core advantage of our method lies in its iterative updates to
both the decision boundary and the encoder. Unlike other classifiers
including MLP, which relies on fixed embeddings, our algorithm
dynamically adjusts the feature space and boundary across multiple
iterations as following:

1. An initial, coarse boundary is set using the contrastive embed-
dings.

2. The encoder refines these embeddings based on feedback from
the initial boundary, adjusting the representation.

3. A new boundary is established using these refined embeddings.

4. This process repeats, allowing the model to fine-tune both the
decision criteria and the feature space.

This iterative refinement can also be seen in Figure 8, where the
ratio of out-boundary compounds increases and converges over time
with each EM iteration. This progressive refinement demonstrates the limitations of a static MLP approach, reinforcing the
necessity of our iterative EM-like strategy for accurate boundary learning.

Furthermore, three plots in Figure 9 display the empirical development of boundaries and in-compound ratio per iteration
of 10 repetitive experiments. The colored areas are between maximum and minimum values of the repetitions, while the
bold line indicate the average value. The left panel display the decrease of relative drug radius (Rdrug/Rcomp) over epochs.
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Figure 9: Development of boundary radius and in-compound ratio per iteration.

Table 7: Performances of BOUNDR.E with two different convergence metrics. (ICR: In-boundary compound ratio, Avg.: Average)

Convergence metric F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑) Avg. Epochs (↓)

Time-based split
ICR 0.826 (0.0486) 0.781 (0.0326) 0.012 (0.0086) 0.973 (0.0075) 0.877 (0.0419) 47.7 (4.20)
Lboundary 0.833 (0.0463) 0.806 (0.0236) 0.014 (0.0098) 0.973 (0.0071) 0.885 (0.0463) 202.7 (99.20)

Paired t-test p-value 0.737 0.055 0.615 0.956 0.723

Scaffold-based split
ICR 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 0.938 (0.0049) 0.590 (0.0369) 68.5 (4.39)
Lboundary 0.653 (0.0297) 0.793 (0.0348) 0.063 (0.0059) 0.941 (0.0084) 0.639 (0.0431) 174.2 (21.76)

Paired t-test p-value 0.892 0.594 0.937 0.158 0.040

The center panel display the increase of compound radius (Rcomp) over epochs. The right panel display the decrease of
in-boundary compound ratio (ICR) over epochs. These results visualize the non-monotonic increase or decrease of each
metric during EM-like drug-likeness boundary optimization.

A.4. Convergence criterion of EM-like optimization

For our EM-like optimization algorithm, we applied a convergence criterion based on the in-boundary compound ratio (ICR)
metric. We initially considered using a traditional loss-based convergence criterion, which would directly correspond to
the model’s objective of distance minimization. However, due to the nature of our distance metric, convergence using a
loss-based criterion proved challenging; it occasionally led to expansions or contractions of the latent space that risked
numerical instability (e.g., overflow/underflow issues). Consequently, we adopted the in-boundary compound ratio as the
convergence criterion with following reasons.

Theoretical Alignment Following the proof of theorem 1 in the Appendix A.2, optimizing the distance metric inherently
results in a decrease in the in-boundary compound ratio. This proof establishes a theoretical link between loss minimization
and our chosen convergence criterion, indicating that both approaches are consistent with the model’s objectives.

Empirical Stability We conducted experiments to empirically compare the performance of our model when using the
loss-based criterion versus the in-boundary compound ratio (Table 7). The results show no significant difference in final
model accuracy, with a p-value of 0.737 which is greater than 0.05 based on a two-sided paired t-test, demonstrating that the
two methods converge to similar solutions. Furthermore, the average number of training epochs needed for convergence was
slightly reduced when using the in-boundary compound ratio, indicating faster stabilization.
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A.5. Computational complexity analysis

In this section, we provide the detailed computational complexity analysis, further supporting our model’s efficiency and
scalability.

E-step (Boundary Update): The E-step in our model relies on computing the Euclidean distance from the center, with a
time complexity linear in both the number of samples (N ) and the dimensionality (D) of the data, resulting in O(N ×D).
This ensures that the boundary update is scalable even for high-dimensional datasets.

M-step (Neural Network Optimization): In the M-step, the primary computational effort involves neural network
optimization. If we denote H as the number of layers, Fh as the number of operations in layer h, and N as the dataset
size, then the complexity for a forward pass is O(N ·

∑H
h=1 Fh). Given that the backward pass is approximately twice as

computationally expensive, the overall complexity for each EM iteration is O(N ×D) +O(N ·
∑H

h=1 Fh).

These complexities illustrate the model’s linear behavior with respect to data size and dimensionality, making it efficient for
large-scale drug discovery tasks. To validate these claims empirically, we trained our model with approximately 200 drugs
and 2,000 non-drug compounds around 100 epochs using single NVIDIA RTX 3090 GPU, and the total training time was
consistently under 5 minutes, demonstrating the alignment between theoretical analysis and practical performance.

A.6. Multiple-EM approach for avoidance of local optima

Avoiding local optima and searching for globally optimal parameters is the core challenge of machine learning. However,
classical EM algorithms, including K-means clustering and GMMs, are prone to local optima convergence due to their
deterministic and hill-climbing nature of monotonic increase in likelihood, which leads to the model’s sensitivity to
initialization conditions.

Our model is optimized through the Adam optimizer, a stochastic approach for gradient descent that allows flexibility
in escaping EM algorithm’s monotonic increases during training. On top of this, the biomedical knowledge-aligned
embedding space offers an informative initialization point; however, we aimed to develop a more direct solution to address
the initialization sensitivity of our framework.

Inspired by successful strategies in EM-based models, such as the Multiple Expectation maximizations for Motif Elicitation
(MEME) gene motif search algorithm (Bailey & Elkan, 1995), we initialize our boundary optimization process multiple
times from different random seeds (for our experiments, 0 ∼ 9) and retain the best-performing model based on the validation
set performance without any reliance on the test data. This approach has proven effective in enhancing performance by
mitigating the risk of poor local optima.

A.7. Problem formulation details and comparison with PU learning

Our problem setting roots on the idea to rescue any non-drugs from the compound libraries by not treating any as ‘negative
drugs’. This motivation naturally led us to apply an one-class classification based approach.

On the other hand, PU learning typically assumes that the distribution of unlabeled data, Punlabeled, can be expressed as a
mixture model: Punlabeled ∼ Ppositive + Pnegative. This leads to training objectives rooted in empirical risk minimization that
assume a tractable and bounded space of both positive and negative examples with the dataset as a representative subset of
such space. In this context, PU methods often aim to minimize classification error with cross entropy-based loss functions
by estimating the contribution of a negative distribution, frequently relying on class prior (ratio of positive/negative in the
dataset) estimates.

Conventional methods in drug-likeness prediction mainly employ binary classification and sometimes Positive-Unlabeled
(PU) learning frameworks, seeking to classify compounds by minimizing the risk of misclassification between positive
(drug-like) and negative (non-drug-like) examples with cross entropy-based objectives. However, these approaches rely on
defined negative sets or a representative dataset from Pnegative distribution, which may not be feasible in the vast and partially
known chemical space.

In contrast, our formulation of the drug-likeness prediction task does not assume a well-defined Pnegative. The chemical
space is vast, partially explored, and inherently complex, with any sampled “negative” set non-representative of the true
distribution of non-drug compounds. Therefore, instead of attempting to estimate a boundary between positive and potential
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Table 8: Key differences between binary classification, PU-learning setting and proposed definition of drug-likeness prediction.

Binary classification PU-learning One-class Drug-likeness prediction

Goal Decision boundary between
positive and negative

Decision boundary between positive
and unseen negative

Boundary around positives
(here, approved drugs)

Train set composition Positive + Negative Positive + Unlabeled Drug + Compound

Positive data distribution Positives (Ppositive) Positives (Ppositive) Xdrugs as subset of Xcompound

Unlabeled data
distribution - (Only negative data) Ppositive + Pnegative (unseen) Xcompound

Assumption of
unlabeled dataset - Representative of Ppositive and Pnegative Biased subset of intractable Xcompound

Characteristics Strong reliance to negative set,
lower generalizability

Reliance to unlabeled set,
lower generalizability

Low reliance to compound set,
higher generalizability

Objective Risk minimization with
cross-entropy

Risk minimization with class prior
and cross-entropy Metric learning (one-class hypersphere)

negatives, we propose a one-class classification framework that constructs a drug-likeness boundary to capture the compact
space of drug-like compounds directly, optimized based on distance-based metric learning terms. We summarize the key
differences between binary classification, PU-learning and our proposed problem definition of drug-likeneess prediction in
Table 8.

B. Initial Study Details
Scaffold-based distribution of approved drugs We analyzed 2,610 approved drugs from DrugBank using the Bemis-
Murcko scaffold split, which partitions molecules into rings and the linker atoms between them. This decomposition resulted
in 1,324 unique scaffold sets, with an average of 1.97 molecules per scaffold. These findings indicate a well-dispersed
distribution of approved drugs in the chemical space, with minimal structural overlap. Notably, 1,074 scaffold sets (81.1%)
contained only a single compound, further emphasizing the low scaffold redundancy among approved drugs.

Evaluating how models generalize to unseen scaffolds is crucial given the extreme sparsity of the scaffold distribution and
its potential impact on model generalization, which encouraged us to perform a scaffold-based splitting scheme, further
detailed in Appendix C.4.

(a) Fingerprint (b) GraphMVP

Figure 10: PCA visualization of embedding spaces of approved drugs (red) and 100k ZINC compounds (gray).

Distribution of approved drugs in representation spaces To explore the spatial distribution of approved drugs and
non-drug compounds, we represented the structural features of 2,610 approved drugs and 100k ZINC compounds in two
distinct spaces: Morgan fingerprints and pretrained GraphMVP embeddings (Liu et al., 2022). Morgan fingerprints, a
type of circular fingerprint, capture molecular structure by encoding atom environments within a specified radius. Each
substructure, or circular neighborhood of bonds, is hashed into a bitstring, where each bit indicates the presence or absence
of specific substructures in the molecule. This approach creates a fixed-length binary vector, efficiently capturing the
molecular topology. In contrast, GraphMVP uses a GNN-based encoder, pretrained to align 2D and 3D molecular structures,
to generate embeddings that reflect both graph-level and spatial information about molecules.

For each representation space, we calculated the center point of the drug embeddings (centroid) and defined the drug
boundary as the maximum distance from the centroid to any drug. We then computed the distance of all 100k ZINC
compounds from this centroid to determine the in-boundary compound ratio (ICR).
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Table 9: Distribution of drugs and compounds in the two latent spaces. Max: Maximum; ICR: In-boundary compound ratio.

Representation Max. Drug distance Max. Compound distance ICR

GraphMVP 29.33 25.78 1.0
Morgan Fingerprint 12.02 10.01 1.0

Our results indicate that all 100k ZINC compounds were positioned within the drug hypersphere in both the Morgan
Fingerprint and GraphMVP spaces. Specifically, the maximum distance of approved drugs from the centroid (i.e., the drug
radius) was consistently smaller than the maximum distance of ZINC compounds, confirming that non-drug compounds are
distributed further from the drug center in both embedding spaces (Table 9).

C. Experimental Details
C.1. Overview of Softened CLIP and Geodesic Mixup

Figure 11: Comparison of contrastive losses using structural encoder Eσ and knowledge encoder Eκ. CLIP enforces pair-wise similarity
between knowledge graph and structural embeddings from a single entity. Softened CLIP allows pair-wise similarity between knowledge
graph and structural embeddings to match the prior similarity matrix (WATC). S-Mix (and K-Mix), KS-Mix performs intra-modality
interpolation.

C.2. Multi-modal Alignment Spaces

Biomedical knowledge graph space To represent the biomedical context of drugs, we use embeddings from DREAMwalk
(Bang et al., 2023), which has shown efficacy in tasks of drug-disease association prediction and drug repurposing.
DREAMwalk employs a heterogeneous skip-gram model to encode entities from the Multi-scale Interactome (MSI) network
(Ruiz et al., 2021) into a 300-dimensional vector space. The MSI network integrates information on drugs, genes, diseases,
and Gene Ontology terms, enriching each drug representation with biomedical knowledge. We utilize the embeddings of
1,449 approved drugs from DREAMwalk for alignment with their structural representations.

Molecular Fingerprint Space For the structural representation of drugs, we use Morgan Fingerprints, a widely adopted
method that encodes molecular structures based on substructure patterns. In this study, we employ 1,024-dimensional
Morgan Fingerprints for multi-modal alignment, capturing the structural diversity of the molecules.

C.3. Semantic drug similarity calculation with ATC codes

Anatomical Therapeutic Chemical Classification of drugs The ATC classification system categorizes drugs based on
their therapeutic, pharmacological, and chemical properties. Each drug is assigned a unique ATC code that reflects its
primary mechanism of action and target area. The hierarchy is naturally a tree-structured acyclic graph, and on the highest
level (Level 1) exists 14 foundational categories, including A (Alimentary tract and metabolism), B (Blood and blood
forming organs), C (Cardiovascular system), and more.

A direct modeling of such complex hierarchical structure as prior knowledge in model training is challenging. In order
to retain the essence of the hierarchical ATC relationships without complex adjustments to the architecture that may
significantly increase computational overhead and complicate the model training process, we utilized the concept of semantic
similarities between terms within the hierarchy and integrated them as prior knowledge to our softened CLIP loss.
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Information Content (IC) We adopt the semantic similarity measure introduced by Jiang & Conrath (1997). To quantify
the semantic similarity of drugs within the ATC hierarchy, we first need to calculate the Information Content (IC) of each
entity. IC measures how informative an entity is, based on its frequency or position within a hierarchical structure. For a
term c, IC is inversely proportional to the number of child terms Nchild(c), meaning that terms with fewer descendants have
higher IC, as they provide more specific information. The IC for a term in a tree-structured hierarchy is computed as:

IC(c) = 1− log(Nchild(c) + 1)

log(Nchild(root))

This formulation ensures that IC values are normalized within the range [0, 1], where the root entity has an IC of 0.

Semantic Similarity Given two entities c1 and c2 and their Most Informative Common Ancestor (MICA), the semantic
distance between them is calculated as:

dist(c1, c2) = IC(c1) + IC(c2)− 2× IC
(
MICA(c1, c2)

)
Since the maximum possible distance is 2 (when IC is 1 for both entities), we normalize the distance into a similarity score
in the range [0, 1) using the following equation:

sim(c1, c2) = 1−
(

dist(c1, c2)
2

)
We compute pairwise similarities for all drugs based on their ATC codes, generating a similarity matrix S ∈ Rn×n, where n
is the number of approved drugs.

C.4. Data splitting schemes

Two data splitting schemes are employed to rigorously evaluate model generalizability to unseen compounds: a scaffold-
based split, which ensures structurally novel compounds appear in the test set, and a time-based split, where drugs approved
after a certain time point are assigned to the test set. Since the structural complexity of approved drugs tends to increase over
time, with molecular properties diverging (Stegemann et al., 2023), the time-based split is considered a more challenging
evaluation compared to scaffold-based splits.

To simulate real-world drug discovery conditions, where the chemical space is much larger than the number of approved
drugs, we follow a multi-step procedure: first, split the approved drugs into train-valid-test sets in an 8:1:1 ratio, then sample
10 times the number of test drugs from the 100k ZINC compounds to account for the larger compound space.

C.4.1. SCAFFOLD-BASED SPLIT

In drug discovery, scaffold diversity is a key concern, as new drugs often emerge from novel scaffolds that were previously
untested. The scaffold-split evaluation aligns closely with these real-world scenarios, making it a more rigorous and realistic
test of generalization than a random split, where similar scaffolds are likely to appear in both training and test sets.

Drugs are first grouped based on their scaffolds, defined using Bemis-Murcko scaffolds (Bemis & Murcko, 1996), which
capture core molecular ring systems and linkers, ensuring that structurally similar drugs are grouped together. Then, the
scaffold sets are split into 10 parts for 10-fold cross-validation (CV), with an 8:1:1 ratio for train, validation, and test sets.
Each fold ensures that test sets contain unseen scaffolds. The 100k ZINC compounds are also grouped by Bemis-Murcko
scaffolds, then split similarly to match the number of drug scaffolds in each fold. For the test set, ZINC scaffolds are
sampled to include 10 times the number of drugs.

Our pilot study demonstrates how prediction performance significantly decreases when using scaffold-split compared
to randomly splitted setting (Table 10), indicating that the model’s ability to handle unseen scaffolds is inherently more
challenging. This underscores the necessity of scaffold-split as a more appropriate evaluation scheme for understanding the
impact of scaffold sparsity and further evaluate the models’ generalizability.

C.4.2. TIME-BASED SPLIT

The properties of approved drugs have evolved over the past decades, particularly with the emergence of new therapeutic
modalities and technologies. For example, kinase-targeted drugs and biologics became prominent in the 2000s, leading
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Table 10: Prediction performances of BOUNDR.E when applied on different split schemes. Our model displays significant decrease
in prediction performances when applied with scaffold split, a splitting scheme to evalutate the models’ generalizability in the sparse
distribution of approved drugs’ scaffolds. The best performance and comparable values (p-value < 0.05) are marked in bold.

F1 IDR ICR AUROC Average Precision

Scaffold-based split 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 0.938 (0.0049) 0.590 (0.0369)
Random split 0.689 (0.0142) 0.742 (0.0291) 0.041 (0.0060) 0.942 (0.0037) 0.663 (0.0379)

Paired t-test p-value 4.4E-4 4.6E-4 1.6E-04 0.082 0.008

to an increase in molecular complexity, larger molecular weights, and drugs that often fall outside traditional Rule-of-5
constraints (DeGoey et al., 2017). Additionally, the advancement of drug delivery systems has allowed for a higher range of
LogP values (lower solubility) among approved drugs (Vargason et al., 2021).

Drugs are first split based on their approval date, with approximate splits of 8:1:1 for train, validation, and test sets. The
cut-off years are 2000 and 2011. Drugs approved before 2000 are assigned to the training set, those approved between
2000 and 2010 to the validation set, and drugs approved after 2011 to the test set. Then, The ZINC compound scaffolds are
sampled following the same procedure as the scaffold-based split, ensuring 10 times more compounds in the test set.

To validate that our time-based split reflects these temporal trends, we have conducted a detailed analysis of drug properties
over the periods represented in our dataset (Table 11). Specifically, we tracked changes in key chemical characteristics (e.g.,
molecular weight, LogP, polar surface area) across different temporal splits, observing clear shifts that align with known
trends in drug development.

Table 11: Molecular properties averaged over drugs in the train set (approved before 2011) and test set (approved since 2011). Drugs in
the test set show significant difference from the train set drugs, according to the temporal evolution of approved drugs. (Ro5: Number of
passed criterions with the Lipinski’s Rule of Five)

Ro5 Molecular Weight LogP Polar Surface Area

Train (Before 2011) 3.652739 398.120084 2.142421 100.041105
Test (Since 2011) 3.379032 540.368339 2.937724 137.452177

Paired t-test p-value 0.000396 0.000583 0.024349 0.033635

C.4.3. INVESTIGATION ON DISTRIBUTION OF TRAIN/TEST SETS FOR THE TWO SPLIT SCHEMES
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Figure 12: Train-test set Tanimoto simi-
larity distribution on DrugBank dataset.

To assess the underlying distributional shifts between training and test sets under
different dataset partitioning schemes, we analyze the similarity and molecular
property distributions in the DrugBank dataset under two commonly used data
splitting strategies: time-based and scaffold-based splits.

Figure 12 shows the distribution of pairwise Tanimoto similarities between training
and test compounds for both splitting strategies. Despite the intuitive assumption
that scaffold-based splitting would lead to more structurally distinct test compounds,
the empirical similarity distributions are not significantly different (independent
t-test p = 0.568). This suggests that scaffold split may not always induce a larger
domain shift than time split when fingerprint-based similarity is used as a indicator
for chemical relatedness.

To further explore potential distributional discrepancies, we compare the distribu-
tions of key molecular descriptors in the training and test sets under the time-based
split (Figure 13). Eight widely-used drug-like property metrics are considered, including molecular weight (Mw), number of
hydrogen bond donors (HBD), acceptors (HBA), rotatable bonds, aromatic ring count, quantitative estimate of drug-likeness
(QED), and synthetic accessibility score (SAS).

The results highlight that, under the time-split setting, the test compounds tend to exhibit distinct physicochemical
characteristics from those seen during training. This includes notable shifts in properties such as molecular weight,
flexibility, and hydrogen bonding capacity. These shifts imply a latent distributional shift that may not be captured purely
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through structural fingerprint similarity. The only property without significant difference is SAS, suggesting that synthetic
accessibility remains consistent over time, likely reflecting stable medicinal chemistry practices.

In addition, we investigate the extent of biological overlap between training and test drugs by analyzing their shared
therapeutic annotations. Specifically, we quantify how many test-set positive examples (i.e., approved drugs) are associated
with the same therapeutic targets or disease areas as those in the training set. Using Anatomical Therapeutic Chemical
(ATC) classification codes as an approximation of therapeutic indication, we find that only 9.6% of test drugs share an ATC
code with any drug in the training set. This low rate of overlap indicates limited therapeutic redundancy across splits and
highlights the biological distinctiveness of the test compounds.

Overall, this analysis emphasizes the need to consider multiple facets of molecular distribution—both structural and
physicochemical—when evaluating generalization performance. Apparent similarity under one metric (e.g., Tanimoto
distance) does not preclude meaningful distributional shifts in other biologically relevant dimensions.
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Figure 13: Molecular property distribution of train and test set drugs in time-split setting. (Mw: Molecular weight; HBD: number of
hydrogen bond donor, HBA: number of hydrogen bond acceptor, Rot bonds: number of rotatable bonds, Aromatic rings: number of
aromatic rings, QED: quantitative estimate of drug-likeness, SAS: synthetic accessibility score, ns: 5.00e-02 < p ≤ 1.00e+00, *: 1.00e-02
< p ≤ 5.00e-02 , **: 1.00e-03 < p ≤ 1.00e-02 , ***: 1.00e-04 < p ≤ 1.00e-03, ****: p ≤ 1.00e-04)

C.5. Cross-compound dataset evaluation

We have further performed the performed cross-dataset validation using PubChem and ChEMBL. PubChem contains a
vast array of bioassays covering numerous biological targets, while ChEMBL provides curated information on chemical
compounds linked to bioactivity against biological targets. These external repositories are widely recognized for their
breadth and diversity in assay-centric compound data. We have carefully examined how these datasets complement our
original validation set, ZINC20, and their distributions compared with approved drug distribution.

Specifically, we first measured the distributions of three key molecular properties in drug discovery: molecular weight (Mw),
LogP and polar surface area (PSA) (Figure 14). The distances between the distributions were computed using 1-Wasserstein
distance metric, which display the similarity between ChEMBL compounds and DrugBank approved drugs, followed by
PubChem then ZINC20 compounds.

However, the pairwise Tanimoto similarity distribution of molecular fingerprint between DrugBank and other three compound
sets reveal that PubChem molecules display the highest average similarity (0.112) compared to ZINC20 (0.111) and ChEMBL
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(0.013) (Figure 15) Overall, the dissimilarity between datasets demonstrate the uniqueness of each database, and these
discrepancies necessitate cross-dataset evaluation for testing the generalizability of drug-likeness prediction models.

Figure 14: Distribution of molecular properties of DrugBank, ZINC20, PubChem and
ChEMBL datasets. The numbers between the distributions represent the Wasserstein
distance between the two distributions.

Figure 15: Distribution of pairwise
similarities between DrugBank and
compound datasets.

C.6. Model Parameterization and Training Details

The chosen hyperparameter search space (Table 12) aligns with prior work in drug-likeness prediction and molecular property
prediction, where 2-3 layers with 256-1024 dimensions are commonly used due to their balance between expressiveness and
computational efficiency. The selected configuration was validated through a search on a validation set.

Multi-modal alignment Our multi-modal alignment encoders consists of 2-layer multi-layer perceptrons (MLPs) with
LayerNorm and ReLU activation. The aligned space is set to output dimension=512. The model is trained using the
Adam optimizer (Kingma, 2014) with a learning rate=0.001 and batch size=32.

EM-like boundary optimization For models requiring boundary optimization, we use a 2-layer MLP architec-
ture with LayerNorm, ReLU activations, and a hidden dimension=512. When generating latent spaces, the
output dimension is set to 2. The model is trained with the Adam optimizer (Kingma, 2014) using a
learning rate=0.0005 and batch size=1024.

Table 12: Hyperparameter search space and selected values.

Parameter Search space Selected value

Alignment hidden dim [512] 512
Alignment num layers [2,3] 2
Alignment drop out [None, 0.1] 0.1
λsoft (Soft CLIP loss weight) [0.01, 0.1, 0.5, 1] 0.1

Boundary hidden dim [128,512,1024] 512
Boundary out dim [2,16,128,512] 2
Boundary num layers [2,3,4] 2
Boundary drop out [None, 0.1] 0.1
Boundary learning rate [1e-4, 5e-4, 1e-3] 5e-4
Boundary batch size [256, 512, 1024] 1024
α (drug boundary percentile) [90, 95, 99, 99.9, 100] 95
λout (out-boundary loss weight) [0.1, 1, 1.5, 2] 1
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C.7. Baselines

C.7.1. DRUG-LIKENESS PREDICTION MODELS

DrugMetric DrugMetric1 (Li et al., 2024) is an unsupervised drug-likeness prediction model based on JT-VAE (Jin
et al., 2018) and Gaussian Mixture Models (GMMs). JT-VAE encodes molecules as tree-structured graphs of predefined
substructures, with the VAE generating a latent space that follows a Gaussian distribution. Ensemble of GMMs are
applied to model this latent space for predicting drug-likeness, and the drug-likeness score is computed using a Wasserstein
distance-based metric.

DeepDL DeepDL2 (Lee et al., 2022) introduces two models: (1) an unsupervised LSTM-based model for drug-likeness
scoring and (2) a PU learning-based Graph Convolutional Network (GCN) for binary drug-likeness classification. The
LSTM model predicts the next token likelihood based on a molecule’s string representation, aggregating these probabilities
into a drug-likeness score. As this method does not perform strict classification, we focus on the PU learning GCN for
comparison.

D-GCAN D-GCAN3 (Sun et al., 2022) is a graph convolution attention network designed for binary drug-likeness
classification. The model encodes molecular subgraphs into atom-level vector embeddings using graph convolutional layers,
followed by graph attention layers, global sum pooling, and dense layers to learn representations from molecular structures.
We reproduce results using the official repository.

C.7.2. GENERAL CLASSIFIERS

To comprehensively evaluate our model’s performance in drug-likeness prediction, we compare it against a range of
classifiers for binary classification, PU-learning, and one-class classification tasks. Each model is trained on Morgan
fingerprint vectors of dimension 1,024 as molecular input representations.

For comparisons with plain MLP-based architectures, we ensured that both our model and the baselines had identical numbers
of layers and parameters. Specifically, each baseline was adjusted to match the total parameter count and architectural
capacity of our model, ensuring comparable expressibility. For machine learning-based baseline models, we conducted
limited search across a range of hyperparameters, including number of estimators. This search was performed using
cross-validation to ensure that the most effective configurations were applied consistently across all models.

Binary classifiers For binary classification of drugs and non-drugs, we compare our model with traditional machine
learning classifiers, including Support Vector Machine (SVM) (Boser et al., 1992) and eXtreme Gradient Boosting
(XGBoost) (Chen & Guestrin, 2016). XGBoost is a gradient-boosting framework that excels in handling structured data
and is widely used for molecular property prediction tasks due to its ability to capture complex patterns in sparse input
spaces. SVM constructs a hyperplane (or multiple hyperplanes) to separate data points in high-dimensional space, often
using a Radial Basis Function (RBF) kernel to model nonlinear decision boundaries. Both models have demonstrated
strong performance in molecular property prediction, often surpassing neural network-based models for certain biological
endpoints (Wu et al., 2023). For XGBoost model, we searched its number of estimators parameter among [50, 100,
200] and chose 100 as the best parameter.

For both the XGBoost and SVM models, we conducted a hyperparameter search over class weighting factors for the positive
class, using values in the range {0.5, 1, 2, 5, 10, 50, 100}. The resulting performance differences were marginal and did not
yield consistent improvements. Therefore, we report results using the unweighted (i.e., standard) versions of the models as
baselines.

PU-learning baselines Positive-Unlabeled (PU) learning algorithms are well-suited for scenarios where only positive
examples (drug-like compounds) and a large set of unlabeled examples are available. We benchmark our model against two
PU-learning methods:

• Naive PU (Li & Liu, 2003): This method uses the Rocchio classification algorithm, which computes centroids for

1github.com/renly0313/DrugMetric
2github.com/SeonghwanSeo/DeepDL
3github.com/JinYSun/D-GCAN
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the positive class and an unlabeled set to form a decision boundary. We adapt this approach with a neural network
classifier identical to our model to capture more complex decision boundaries in molecular data.

• nnPU (Kiryo et al., 2017): nnPU is an advanced PU-learning algorithm that mitigates overfitting by introducing a
non-negative correction term in the risk estimator. This method has shown strong empirical performance in cases where
positive and unlabeled data exhibit significant overlap, providing a more robust solution for PU-learning tasks in drug
discovery.

One-Class Classification Baselines One-class classification methods are designed to distinguish a single target class (e.g.,
drug-like compounds) from all other compounds without explicitly modeling the negative class. We evaluate the following
one-class models:

• OCSVM (Schölkopf et al., 2001): One-Class Support Vector Machines (OCSVM) estimate the support of a high-
dimensional distribution, fitting a hyperplane that encompasses most of the positive (drug-like) examples. This is
widely used in anomaly detection tasks, including outlier detection in chemical spaces.

• SVDD (Tax & Duin, 2004): Support Vector Data Description (SVDD) is an extension of SVMs for one-class
classification, which minimizes the radius of a hypersphere that encloses the positive data points. The method is
particularly effective in constructing compact decision boundaries around the positive class.

• DeepSVDD (Ruff et al., 2018): DeepSVDD extends SVDD by utilizing deep neural networks to learn a transformation
of input data into a latent space, where the decision boundary is optimized. This method is well-suited for handling
high-dimensional and non-linear representations of molecular structures, making it a strong baseline for drug-likeness
prediction tasks in high-dimensional spaces.

C.7.3. NAÏVE DISTANCE-BASED METHODS

To establish a basic performance reference point, we implement two non-parametric, distance-based classifiers that do not
rely on any learned representations or parameter optimization. These methods serve as lower-bound baselines and are useful
for quantifying the intrinsic separability of the data in the input space defined by molecular fingerprints. Both methods use
the Tanimoto distance computed on Extended Connectivity Fingerprints (ECFPs).

K-Nearest Neighbors (KNN) The K-Nearest Neighbors classifier (Cover & Hart, 1967) predicts the label of a test
compound by majority vote among its k nearest neighbors in the training set. Similarity is assessed using the Tanimoto
distance over ECFP representations. Although simplistic, this method captures local structure in the chemical space and
provides a benchmark for evaluating more sophisticated, representation-based models.

Similarity Cutoff (Sim-Cutoff) The Sim-Cutoff classifier makes binary predictions based on the distance between a test
compound and the most similar approved drug in the training set. Formally, given a test compound x, we compute:

dnn(x) = min
x′∈train drugs

d(x, x′),

where d(·, ·) denotes the Tanimoto distance between ECFP fingerprints. The classifier assigns a “drug” label if dnn(x) < γ,
and a “non-drug” label otherwise. The similarity threshold γ is a hyperparameter, selected using a validation set.

This method directly reflects how structurally similar a test molecule is to known approved drugs. The Sim-Cutoff baseline
offers a clear and intuitive measures of out-of-distribution generalization.

D. Notation
Data Sets

Xcomp the set of all chemical compounds Xin-boundary the set of non-drugs inside the boundary

Xdrug the set of drug-like compounds zdrug the set of embedded drug compounds

Xout the set of pseudo-negatives D the set of batch data
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Embedding Spaces and Arrays

S the structural embedding space scomp the structural embedding vector

K the biomedical knowledge embedding space kdrug the knowledge embedding vector

U the unified latent space Z the latent space at EM-like training

Functions

Eσ a structural encoder from space S to U C(·) the contrastive loss function

Eκ a knowledge encoder from space K to U L(·) the loss function

fθ an encoder from space U to Z ⊙ the dot-product similarity operator

B a hyperspherical boundary d(·) the Euclidean distance from the boundary
center

Parameters

c the center of the drug-like compounds ρ the in-boundary compound ratio

r the radius of the smallest hypersphere τ the scaling temperature factor

rcomp the radius for all compounds η learning rate

t the number of iteration steps ϵ convergence tolerance

θ neural network parameters ν an arbitrary threshold radius

E. Additional Evaluation Results
E.1. Rank-based evaluation

Since the core concept of our drug-likeness prediction problem lies in treating compound dataset as potential drugs, using
classification-centric metrics including F1 score, is not perfectly fit for evaluation of drug-likeness prediction. Since our
dataset does not have absolute negative samples, we here provide further evaluation of models using average precision,
precision@k and recall@k metrics in Table 13. These metrics further measure how well models identify drug-like compounds
among the vast chemical space.

Table 13: Drug-like compound ranking performance with time-based split setting. Mean and standard deviation of 10 fold cross-validation
are provided. Best performances marked in bold and second-best underlined.

Avg. Precision Prec@50 Prec@100 Prec@200 Rec@50 Rec@100 Rec@200

FP-SVM 0.724 (0.0174) 0.852 (0.0160) 0.777 (0.0090) 0.540 (0.0067) 0.344 (0.0065) 0.627 (0.0072) 0.871 (0.0108)

FP-XGB 0.775 (0.0213) 0.868 (0.0458) 0.773 (0.0155) 0.538 (0.0117) 0.350 (0.0185) 0.623 (0.0125) 0.868 (0.0188)

FP-OCSVM 0.148 (0.0022) 0.280 (0.0000) 0.180 (0.0100) 0.132 (0.0023) 0.113 (0.0000) 0.145 (0.0081) 0.212 (0.0037)

FP-SVDD 0.143 (0.0022) 0.240 (0.0000) 0.144 (0.0049) 0.108 (0.0040) 0.097 (0.0000) 0.116 (0.0040) 0.174 (0.0064)

FP-DeepSVDD 0.097 (0.0157) 0.098 (0.0569) 0.106 (0.0420) 0.101 (0.0274) 0.040 (0.0230) 0.085 (0.0339) 0.164 (0.0442)

FP-nnPU 0.706 (0.0261) 0.846 (0.0457) 0.713 (0.0279) 0.500 (0.0101) 0.341 (0.0184) 0.575 (0.0225) 0.807 (0.0163)

FP-PU 0.720 (0.0214) 0.864 (0.0367) 0.712 (0.0248) 0.502 (0.0147) 0.348 (0.0148) 0.574 (0.0200) 0.810 (0.0237)

DeepDL 0.886 (0.0374) 0.976 (0.0233) 0.846 (0.0393) 0.513 (0.0172) 0.448 (0.0215) 0.777 (0.0390) 0.942 (0.0289)

DGCAN 0.613 (0.1874) 0.512 (0.2461) 0.464 (0.2520) 0.499 (0.1687) 0.217 (0.1047) 0.393 (0.2126) 0.884 (0.2857)

BOUNDR.E 0.908 (0.0096) 0.988 (0.0098) 0.923 (0.0135) 0.569 (0.0070) 0.398 (0.0040) 0.744 (0.0108) 0.918 (0.0113)
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E.2. Drug-likeness Prediction with Scaffold Split

Drug-compound identification performances with scaffold split are provided in Table 14.

Table 14: Drug-like compound identification performance with scaffold-split setting. Mean and standard deviation of 10 fold cross-
validation are provided. Best performances marked in bold and second-best underlined.

MCC (↑) F1 (↑) IDR (↑) ICR (↓) IDR/ICR (↑)

FP-Similiarity-cutoff 0.417 (0.1273) 0.567 (0.1704) 0.114 (0.0536)

FP-KNN classifier 0.315 (0.0179) 0.991 (0.0091) 0.427 (0.0297)

FP-SVM 0.597 (0.0120) 0.597 (0.0090) 0.951 (0.0286) 0.122 (0.0061) 7.798 (0.2746)

FP-XGB 0.599 (0.0166) 0.602 (0.0181) 0.941 (0.0281) 0.118 (0.0112) 8.059 (0.6524)

FP-OCSVM 0.060 (0.1159) 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 1.223 (0.4332)

FP-SVDD -0.132 (0.0287) 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.909 (0.0211)

FP-DeepSVDD -0.120 (0.1607) 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.890 (0.1871)

FP-nnPU 0.546 (0.0213) 0.550 (0.0182) 0.923 (0.0385) 0.146 (0.0110) 6.362 (0.4021)

FP-PU 0.549 (0.0239) 0.555 (0.0188) 0.907 (0.0491) 0.135 (0.0130) 6.776 (0.5185)

DrugMetric -0.028 (0.0794) 0.160 (0.0238) 0.692 (0.2932) 0.690 (0.3452) 1.115 (0.3095)

D-GCAN 0.599 (0.0340) 0.594 (0.0456) 0.859 (0.0966) 0.109 (0.2808) 8.145 (1.9174)

DeepDL 0.528 (0.0298) 0.523 (0.0403) 0.889 (0.0608) 0.137 (0.0248) 6.661 (0.8857)

BOUNDR.E 0.626 (0.0211) 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 12.808 (1.4438)

E.3. Drug-likeness Prediction on Time Split with PubChem as Background Set

We evaluate drug-likeness prediction under a temporal split using PubChem as the background compound distribution.
Models are trained on the combined DrugBank-PubChem training set and evaluated on a held-out PubChem test set
(Table 15).

Compared to the ZINC background, molecules from PubChem exhibit physicochemical properties that more closely
resemble those of approved drugs, as previously observed in our molecular profiling analyses. This increased similarity
introduces a more challenging classification setting by reducing the distributional gap between positive (approved) and
negative (non-approved) classes.

Table 15: Performance of models on PubChem-time split. The mean and standard deviation of 10 fold-CV on time-split setting are
provided. Best performances are marked in bold and second-best underlined.

F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

FP-XGB 0.364 (0.0174) 0.673 (0.0150) 0.208 (0.0122) 0.810 (0.0080) 0.375 (0.0195)

FP-SVM 0.351 (0.0132) 0.655 (0.0101) 0.213 (0.0114) 0.813 (0.0065) 0.320 (0.0122)

FP-PU 0.345 (0.0168) 0.639 (0.0301) 0.212 (0.0133) 0.791 (0.0118) 0.369 (0.0278)

FP-nnPU 0.311 (0.0168) 0.660 (0.0317) 0.268 (0.0224) 0.767 (0.0141) 0.280 (0.0284)

DeepDL 0.367 (0.0408) 0.804 (0.0473) 0.288 (0.0491) 0.796 (0.0273) 0.212 (0.0300)

DGCAN 0.289 (0.0235) 0.702 (0.0571) 0.255 (0.0365) 0.768 (0.0135) 0.213 (0.0167)

BOUNDR.E 0.579 (0.2092) 0.685 (0.1158) 0.199 (0.3540) 0.839 (0.1928) 0.552 (0.2341)
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E.4. Cross-dataset evaluation results

We extended our experiments to cross-dataset evaluation two additional well-established datasets: PubChem and ChEMBL
as training background (non-drug) set, then applied the model to be tested on test set with ZINC as background. Both
datasets encompass a wide range of chemical scaffolds and molecular properties, making them suitable for testing our
model’s ability to generalize across varied chemical spaces. As shown in Tables 16 and 17, our model maintains stable
prediction performance across these diverse datasets, demonstrating its ability to generalize effectively beyond the trained
negative distribution.

Table 16: Drug-like compound identification performance on scaffold-split setting with cross-dataset evaluation setting. Models are
trained using PubChem or ChEMBL as background, then tested on ZINC as background set. Mean and standard deviation of 10 fold
cross-validation are provided. Best performances marked in bold.

PubChem + DrugBank ChEMBL + DrugBank

F1 IDR ICR Avg. Precision AUROC F1 IDR ICR Avg. Precision AUROC

FP-SVM 0.268 (0.0194) 0.835 (0.0734) 0.434 (0.0174) 0.334 (0.1912) 0.795 (0.0759) 0.371 (0.0519) 0.681 (0.1427) 0.195 (0.0200) 0.494 (0.1982) 0.819 (0.0768)

FP-XGB 0.254 (0.0209) 0.810 (0.0804) 0.451 (0.0197) 0.320 (0.1181) 0.773 (0.0741) 0.358 (0.0589) 0.675 (0.1411) 0.206 (0.0213) 0.469 (0.1839) 0.814 (0.0784)

FP-OCSVM 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 0.366 (0.2717) 0.576 (0.1949) 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 0.366 (0.2717) 0.576 (0.1949)

FP-SVDD 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.055 (0.0019) 0.235 (0.0173) 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.055 (0.0019) 0.235 (0.0173)

FP-DeepSVDD 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.080 (0.0146) 0.415 (0.1224) 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.080 (0.0146) 0.415 (0.1224)

FP-nnPU 0.244 (0.0182) 0.833 (0.0727) 0.504 (0.0637) 0.240 (0.0816) 0.749 (0.0556) 0.327 (0.0525) 0.666 (0.1337) 0.241 (0.0374) 0.380 (0.1999) 0.778 (0.0812)

FP-PU 0.241 (0.0265) 0.664 (0.1219) 0.379 (0.0528) 0.228 (0.0556) 0.702 (0.0560) 0.311 (0.0495) 0.653 (0.1477) 0.250 (0.0311) 0.396 (0.1701) 0.778 (0.0874)

DeepDL 0.170 (0.0199) 0.764 (0.0754) 0.598 (0.0481) 0.092 (0.0112 0.590 (0.0233) 0.195 (0.0389) 0.681 (0.1329) 0.530 (0.1553) 0.102 (0.0196) 0.612 (0.0686)

DGCAN 0.213 (0.0232) 0.775 (0.0643) 0.520 (0.0653) 0.1352 (0.0153) 0.685 (0.0436) 0.314 (0.0620) 0.652 (0.1283) 0.285 (0.2380) 0.211 (0.0601) 0.737 (0.1076)

Ours 0.501 (0.0232) 0.759 (0.0441) 0.126 (0.0148) 0.460 (0.0380) 0.875 (0.0157) 0.513 (0.0451) 0.746 (0.0281) 0.117 (0.0190) 0.435 (0.0889) 0.869 (0.0258)

Table 17: Drug-like compound identification performance on Time Split setting with cross-dataset evaluation setting. Models are
trained using PubChem or ChEMBL as background, then tested on ZINC as background set. Mean and standard deviation of 10 fold
cross-validation are provided. Best performances marked in bold.

PubChem + DrugBank ChEMBL + DrugBank

F1 IDR ICR Avg. Precision AUROC F1 IDR ICR Avg. Precision AUROC

FP-SVM 0.223 (0.0046) 0.576 (0.0115) 0.365 (0.0137) 0.177 (0.0085) 0.663 (0.0073) 0.252 (0.0068) 0.385 (0.0079) 0.171 (0.0088) 0.200 (0.0080) 0.624 (0.0077)

FP-XGB 0.216 (0.0087) 0.575 (0.0165) 0.382 (0.0241) 0.214 (0.0256) 0.655 (0.0098) 0.248 (0.0108) 0.415 (0.0103) 0.198 (0.0139) 0.232 (0.0152) 0.638 (0.0123)

FP-OCSVM 0.136 (0.0028) 0.250 (0.0000) 0.248 (0.0052) 0.168 (0.0031) 0.371 (0.0029) 0.136 (0.0028) 0.250 (0.0000) 0.248 (0.0052) 0.168 (0.0031) 0.371 (0.0029)

FP-SVDD 0.139 (0.0024) 0.766 (0.0000) 0.947 (0.0034) 0.143 (0.0020) 0.360 (0.0032) 0.139 (0.0024) 0.766 (0.0000) 0.947 (0.0034) 0.143 (0.0020) 0.360 (0.0032)

FP-DeepSVDD 0.158 (0.0071) 0.810 (0.0439) 0.860 (0.0344) 0.096 (0.0132) 0.480 (0.0362) 0.158 (0.0071) 0.810 (0.0439) 0.860 (0.0344) 0.096 (0.0132) 0.480 (0.0362)

FP-nnPU 0.212 (0.0116) 0.621 (0.0130) 0.430 (0.0235) 0.139 (0.0135) 0.632 (0.0144) 0.229 (0.0153) 0.447 (0.0333) 0.253 (0.0246) 0.163 (0.0130) 0.616 (0.0215)

FP-PU 0.188 (0.0218) 0.491 (0.1036) 0.381 (0.0941) 0.151 (0.0348) 0.579 (0.0386) 0.217 (0.0285) 0.398 (0.0312) 0.234 (0.0318) 0.176 (0.0310) 0.608 (0.0300)

DeepDL 0.200 (0.0166) 0.786 (0.0618) 0.575 (0.0548) 0.108 (0.0090) 0.621 (0.0285) 0.207 (0.0362) 0.658 (0.0539) 0.506 (0.0707) 0.111 (0.0183) 0.617 (0.0406)

DGCAN 0.256 (0.0377) 0.810 (0.0707) 0.467 (0.1835) 0.155 (0.0267) 0.700 (0.0724) 0.318 (0.0691) 0.639 (0.1352) 0.251 (0.1072) 0.220 (0.0647) 0.739 (0.0732)

Ours 0.769 (0.0426) 0.796 (0.0137) 0.029 (0.0125) 0.760 (0.0492) 0.941 (0.0093) 0.816 (0.0149) 0.749 (0.0288) 0.009 (0.0038) 0.870 (0.0149) 0.950 (0.0047)
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E.5. Zero-shot Toxic Compound Identification

E.5.1. FULL TABLE OF MODEL PERFORMANCES

We provide the full table of zero-shot toxic compound identification performances on all baseline models in Table 18.
DrugMetric in particular fails to yield predictions for withdrawn compound set since JTVAE is capable of encoding only the
scaffolds present in the training set, in this case the combined set of ZINC and DrugBank approved drugs.

Table 18: False-positive rate of toxic compound groups. The best performances and the comparable values (paired t-test p-value < 0.05)
are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

FP-SVM 0.98 (0.001) 0.98 (0.001) 0.86 (0.006) 0.98 (0.002)

FP-XGB 0.96 (0.003) 0.96 (0.003) 0.85 (0.010) 0.93 (0.010)

FP-SVDD 0.95 (0.002) 0.93 (0.002) 0.92 (0.003) 0.99 (0.001)

FP-OCSVM 0.69 (0.002) 0.53 (0.003) 0.25 (0.006) 0.86 (0.001)

FP-DeepSVDD 0.81 (0.022) 0.80 (0.020) 0.87 (0.032) 0.56 (0.063)

FP-PU 0.95 (0.007) 0.94 (0.005) 0.87 (0.021) 0.85 (0.009)

FP-nnPU 0.95 (0.009) 0.94 (0.007) 0.87 (0.028) 0.86 (0.017)

DrugMetric∗ N/A 0.77 (0.073) 0.76 (0.118) 0.82 (0.087)

DGCAN 0.91 (0.020) 0.85 (0.023) 0.88 (0.045) 0.95 (0.017)

DeepDL 0.91 (0.016) 0.92 (0.018) 0.85 (0.042) 0.84 (0.025)

BOUNDR.E 0.51 (0.014) 0.54 (0.009) 0.20 (0.009) 0.19 (0.014)

∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets

E.5.2. ERROR ANALYSIS ON “PARTIALLY-WITHDRAWN” DRUGS

Figure 16: Partially-withdrawn drug ratio
between in- and out-drug-boundary sets.

We conducted an in-depth error analysis on the false-positive withdrawn drugs
predicted as “in-drug-boundary” by our model, identifying a trend of predictions
involving drugs referred to as “partially-withdrawn”—drugs that are approved
in some regions but withdrawn in others, in contrary to “fully-withdrawn” drugs.
This category represents complex cases where the criteria for withdrawal may
vary.

Our analysis across 10 trials revealed a significantly higher presence of partially-
withdrawn drugs in the in-drug-boundary predicted set (61.2%) compared to
out-drug-boundary ones (38.8%) with p-value of 7.8E-3 (paired t-test) (Fig. 16).
This suggests that our model’s predictions reflect real-world complexities in
regulatory approval, while maintaining a false positive ratio of 0.52, with 60%
of these false positives falling into this partially-withdrawn category.

E.5.3. EFFECT OF PARTIAL NEGATIVE-DRIVEN BOUNDARY OPTIMIZATION

Based on the idea that incorporating partial negative sets—such as known toxic scaffolds—can provide valuable guidance
for boundary refinement by encouraging the model to contract more meaningfully, we introduced toxic compounds (total
2,316 hepatotoxic, cardiotoxic, and carcinogenic compounds) into the non-drug training set. This adjustment aimed to
influence the decision boundary more explicitly during training.

Interestingly, as shown in Table 19, while this strategy led to a modest decrease in classification performance across all
models—possibly due to increased heterogeneity in the negative class—it also resulted in significantly faster convergence
during training (15% shorter training from average 47.7 epochs to 41.1 epochs). This suggests that even noisy but biologically
meaningful negatives can serve as strong regularizers in the boundary contraction process. Furthermore, while ML classifiers
(XGBoost and SVM) experienced severe performance drop when heterogeneous toxicity compounds were included in
the negative set, our BOUNDR.E model showcased its robustness to negative set with only a minor decline in overall
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metrics. Additionally, the drastic decrease of both IDR and ICR for ML models indicate the overly tight decision boundary
formulated via inclusion of toxic compounds, yielding fewer test molecules predicted as drugs.

Table 19: Performances of comparison models with/without toxic compounds as negatives on Scaffold-split setting. Mean and standard
deviation of 10-fold CV are provided.

Model (negative set) F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

BOUNDR.E (unlabeled non-drugs) 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 0.938 (0.005) 0.590 (0.0370)

BOUNDR.E (with Tox negatives) 0.601 (0.0390) 0.756 (0.0369) 0.076 (0.0149) 0.910 (0.0124) 0.510 (0.0495)

Difference -0.054 -0.04 0.013 -0.028 -0.08

FP-XGB (unlabeled non-drugs) 0.602 (0.0181) 0.941 (0.0281) 0.118 (0.0112) 0.972 (0.0120) 0.811 (0.0810)

FP-XGB (with Tox negatives) 0.341 (0.1664) 0.266 (0.1599) 0.023 (0.0060) 0.838 (0.0666) 0.424 (0.1573)

Difference -0.261 -0.675 -0.095 -0.134 -0.387

FP-SVM (unlabeled non-drugs) 0.597 (0.0090) 0.951 (0.0286) 0.122 (0.0061) 0.971 (0.0120) 0.765 (0.1010)

FP-SVM (with Tox negatives) 0.287 (0.1958) 0.195 (0.1815) 0.004 (0.0019) 0.762 (0.0906) 0.420 (0.1737)

Difference -0.31 -0.756 -0.118 -0.209 -0.345

E.6. Additional ablation study results

E.6.1. EFFECT OF MULTI-MODAL ALIGNMENT WITH SOFTENED CLIP LOSS

Our multi-modal alignment loss encompases four modules; softened-CLIP loss, S and K-mix, and KS-mix. While softened-
CLIP loss is designed to integrate prior knowledge as ATC semantic similarity, geodesic mixup-inspired loss terms—S-mix,
K-mix, and KS-mix—facilitate the learning of the intermediate space between conflicting representations. Specifically:

• S-mix & K-mix: These loss terms focus on intra-space interpolation within the structural (S-mix) and knowledge-based
(K-mix) embeddings, respectively. By encouraging the model to interpolate between known data points, it learns a
smoother and more continuous embedding space, reducing sensitivity to local conflicts.

• KS-mix: This component specifically targets inter-space interpolation, blending structural and biomedical representa-
tions. It creates synthetic data points that reflect a balanced compromise between structural and biomedical features,
enabling the model to harmonize inconsistencies and achieve a unified representation.

We evaluated the performance of the model by selectively removing each component the final setup (Table 20). The results
indicate that each component contributes uniquely to the model’s performance. Replacing the softened CLIP loss with
the original CLIP loss brought 10 percent point loss in F1 score, highlighting the importance of knowledge integration
in our model’s accurate performances. Removing both S-mix and K-mix resulted in a drop of 36 percent points in F1

Table 20: Drug-like compound identification with EM-like boundary optimization on embedding space aligned with alignment method
ablations on time-based split scheme. Best performance and comparable values in bold.

Alignment method F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

Ours w/ Original CLIP 0.727 (0.0365) 0.670 (0.0605) 0.018 (0.0066) 0.801 (0.0506) 0.755 (0.0481)

Ours w/o S,K-mix 0.466 (0.1705) 0.745 (0.1058) 0.270 (0.3446) 0.818 (0.1825) 0.420 (0.1995)

Ours w/o KS-mix 0.604 (0.2238) 0.858 (0.0734) 0.241 (0.3782) 0.849 (0.2091) 0.576 (0.2546)

No alignment (only FP) 0.539 (0.0324) 0.571 (0.0176) 0.057 (0.0161) 0.907 (0.0144) 0.557 (0.0461)

Ours (softened CLIP + S,K,KS-mix) 0.826 (0.0486) 0.781 (0.0326) 0.012 (0.0086) 0.973 (0.0075) 0.877 (0.0419)

Ours + Multiple-EM 0.846 (0.0165) 0.799 (0.0184) 0.009 (0.0031) 0.978 (0.0029) 0.908 (0.0096)
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score, indicating their contribution to aligning embeddings across diverse drug classes and scaffolds in each of structural
and knowledge spaces. Additionally, without KS-mix, the model showed a reduction of 22 percent point in F1 score,
underscoring the importance of a balanced contribution from both structural and semantic features.

Overall, our results show that the combination of all three strategies yields the best performance, with a synergistic effect
that improves both classification accuracy and stability, effectively integrating knowledge and simultaneously resolving
conflicts between structural and biomedical spaces.

E.7. Filtering AI-generated anti-cancer molecules

E.7.1. DETAILS ON UTILIZED PROPERTY-BASED FILTERING CRITERIA

PAINS filter The PAINS (Pan-Assay Interference Compounds) filter is designed to identify and eliminate molecules
that are likely to produce false-positive results in high-throughput screening assays. These compounds often interfere with
biological assays through non-specific mechanisms such as covalent binding, redox activity, or fluorescence interference.
The PAINS filter operates by detecting specific substructures known to cause assay interference. In our pipeline, each
compound is scanned against a comprehensive library of PAINS substructure patterns. Compounds that do not contain any
of these substructures are considered clean and retained for further analysis. This filter ensures that the remaining molecules
have a reduced likelihood of assay-related artifacts, enhancing the reliability of downstream predictions.

Lipinksi’s Rule of 5 Lipinski’s Rule of Five (Ro5) is a widely accepted guideline to assess the drug-likeness of a molecule
based on its physicochemical properties. The rule includes four criteria:

1. Molecular Weight must be less than or equal to 500 Daltons.

2. LogP (Partition Coefficient) must be less than or equal to 5, ensuring favorable lipophilicity.

3. No more than 5 hydrogen bond donors (sum of OH and NH groups).

4. No more than 10 hydrogen bond acceptors (sum of O and N atoms).

Compounds that adhere to all four criteria are considered to have favorable pharmacokinetic properties, such as good oral
bioavailability and permeation, and are retained for further consideration. By applying this rule, we effectively filter out
molecules that are less likely to succeed in later stages of drug development due to poor absorption or bioavailability.

Predicted IC50 Binding affinity prediction is a critical step for assessing the potential biological activity of a compound.
We employed XGBoost models to predict IC50 values, which represent the concentration of a compound required to inhibit
a biological process by 50%. These models were trained on bioassay datasets from with IC50 values in ChEMBL database,
specifically: BCR-ABL (CHEMBL2096618), EFGR (CHEMBL203), and CDK6 (CHEMBL2508) (accessed 16 November
2024).

The input features for these models were Morgan molecular fingerprints, which capture key structural and functional aspects
of each compound. Compounds predicted to have an IC50 below 10 µM are classified as “active” and retained. This
threshold was selected to balance the need for potent biological activity with the feasibility of further development, ensuring
that only promising candidates proceed to subsequent stages of evaluation.

E.7.2. CHARACTERISTICS OF IN-DRUG-BOUNDARY COMPOUNDS

In this section, we provide detailed experimental results in investigating the potentials of our model as a complementary
data-driven filter in a AI-driven rational drug discovery pipeline. To be specific, our model can serve as an efficient,
early-stage filtering tool that can significantly narrow down the search space in large chemical libraries, thereby easing the
computational burden on subsequent analyses.

We applied our model to filter 10,000 AI-generated compounds from TargetDiff, using three widely-known anti-cancer
targets: BCR, EGFR and CDK6, each targeted by cancer drugs imatinib, erlotinib and ribociclib, respectively. After
screening with our drug boundary, we retained 300, 374 and 264 in-boundary compounds for each target. For comparison,
we randomly sampled the equal amount of molecules (repeated 100 times) and measured key molecular properties of the
filtered drugs, including polar surface area (PSA), molecular weight (Mw), and logP.
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Figure 17: Distribution of molecular properties of Targetdiff generated molecules on BCR protein pocket (PDB: 1OPJ) and its filtered
sets. BOUNDR.E-filtered set shows more distant distribution of molecular properties from the original 10k molecules.

Table 21: Various traditional drug-likeness measures of Targetdiff generated molecules and filtered sets. Most desirable values are in bold.
(SAS: Synthetic Accessibility Score; Avg.: Average)

Target protein BCR (PDB: 1OPJ) EGFR (PDB: 4HJO) CDK6 (PDB: 5L2T)

Groups SAS (↓) Avg. QED (↑) Ro5 ratio (↑) SAS (↓) Avg. QED (↑) Ro5 ratio (↑) SAS (↓) Avg. QED (↑) Ro5 ratio (↑)

TargetDiff 10k 4.956 0.425 0.474 5.562 0.410 0.521 5.378 0.384 0.507

Random sampled* 4.958 0.426 0.475 5.586 0.409 0.514 5.353 0.382 0.508

BOUNDR.E filtered 4.930 0.433 0.532 5.477 0.413 0.546 5.523 0.392 0.532

∗ Repeated 100 times

Figure 17 highlights a significant shift in key drug-like properties in the BOUNDR.E-filtered compounds compared to
randomly sampled compounds generated for BCR. Furthermore, Table 21 shows a marked increase in average QED,
Ro5-passing ratio and Synthetic Accessibility Score (SAS), implying the sampled compounds are more drug-like whens
cross-measured through conventional metrics. In detail, the Wasserstein distance of the three properties from the starting
10k compounds reveal that our filtering strategy significantly alters the distribution of the key molecular properties of filtered
compounds (Table 22).

Table 22: Properties of filtered Targetdiff-generated molecules and their distributional distance from to the original distribution of 10k
generated molecules for three protein targets (BCR, EGFR, CDK6). (W-distance: 1-Wasserstein distance)

Groups
W-distance from BCR-10k W-distance from EGFR-10k W-distance from CDK6-10k

Mw PSA logP Mw PSA logP Mw PSA logP

Random sampled 6.122 2.205 0.058 6.882 2.566 0.099 5.997 5.584 0.266

BOUNDR.E filtered 17.695 1.979 0.187 16.834 2.298 0.168 10.903 5.032 0.135

∗ Repeated 100 times

In addition, the Probability Density Function (PDF) of approved drugs, imatinib, erlotinib and ribociclib among the three
properties also increased, implying identifying the approved drugs among the filtered molecules is more likely with our
filtered set (Table 23).

The Wasserstein distance and Probability Density Function (PDF) of imatinib properties are measured using gaussian KDE.
The properties of the approved drugs are computed with rdkit python package.

These findings demonstrate the practical utility of our model in filtering AI-generated compounds, enabling efficient virtual
screening and improving the quality of early-stage candidates.
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Table 23: PDF of approved drugs with the distribution of three key molecular properties on different filtered sets, originated from 10k
generated molecules for three protein targets (BCR, EGFR, CDK6). (Mw: Molecular weight; PSA: Polar surface area)

Groups
PDF of imatinib (BCR) PDF of Erlotinib (EGFR) PDF of Ribociclib (CDK6)

Mw PSA logP Mw PSA logP Mw PSA logP

TargetDiff 10k 4.00E-03 1.02E-03 2.26E-01 2.88E-03 5.10E-03 2.14E-01 3.64E-03 9.49E-03 2.06E-01

Random sampled* 4.02E-03 1.03E-03 2.27E-01 2.84E-03 5.05E-03 2.14E-01 3.68E-03 9.57E-03 2.06E-01

BOUNDR.E filtered 3.94E-03 1.05E-03 2.32E-01 3.09E-03 5.32E-03 2.26E-01 3.49E-03 8.87E-01 2.18E-01

∗ Repeated 100 times

E.8. Anti-cancer specific BOUNDR.E results

In this section, we provide experimental results on the anti-cancer variant of our model, demonstrating our model’s potential
real-world impact in targeted drug discovery.

One of the strengths of our one-class boundary approach is its adaptability to domain-specific contexts by relying solely on
the input positive labels. To explore this flexibility, we newly designed and conducted a concept study, using anti-cancer
drugs. We first filtered our training set to include only drugs classified under the ATC code ‘L’ (Antineoplastic and
immunomodulating agents), which specifically targets the anti-cancer domain. This narrowed training set of 239 drugs
allowed our model to learn a more focused boundary representative of the anti-cancer chemical space. We investigated this
anti-cancer BOUNDR.E model with two scenarios:

Broader boundary for anti-cancer compounds When filtering the 10k generated compounds with anti-cancer target
protein pocket as conditions, the anti-cancer-boundary obtained much higher ratio of drug candidates compared to the
general drug boundary, which means the model adequately learned the protein target context of anti-cancer drugs (Table 24).

Table 24: Filtering anti-cancer target-based generated molecules with general BOUNDR.E and anti-cancer-BOUNDR.E models. Approxi-
mately 10k molecules were generated and filtered for BCR, EGFR and CDK6, three well-known anti-cancer targets. Compared to general
BOUNDR.E model, Anti-cancer-BOUNDR.E model recommends more candidates, according to the generated compounds’ context.

Filtering Method BCR EGFR CDK6

Total Generated 10,543 (100%) 12,550 (100%) 11,496 (100%)

Anti-cancer BounDr.E 434 (3.9%) 434 (3.9%) 495 (4.9%)

General BounDr.E 300 (2.8%) 374 (3.0%) 264 (2.3%)

Strict boundary in toxic compound filtering On contrary and interestingly, false-positive ratio on toxic and carcinogenic
compounds was significantly reduced when applying the anti-cancer-specific boundary, highlighting the model’s ability
to filter out irrelevant or potentially harmful compounds more effectively (Table 25) with more compact boundary, while
encompassing the contexts of anti-cancer drugs. The results imply that our model’s anti-cancer variant, while providing a
broader boundary for anti-cancer generated compounds, shows strictness for toxic compounds, tailored for anti-cancer drug
discovery.

Table 25: Toxic compound filtering comparison with best performances marked in bold. The anti-cancer BOUNDR.E model displays
significant reduction in false positive rate compared to general BOUNDR.E model.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

General BounDr.E 0.523 (0.0414) 0.541 (0.0284) 0.207 (0.0190) 0.208 (0.0436)

Anti-cancer BounDr.E 0.195 (0.0363) 0.151 (0.029) 0.149 (0.0356) 0.148 (0.0321)

Paired t-test p-val 2.30E-09 6.80E-12 2.20E-04 1.00E-03
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E.9. Filtered Compounds

Figure 18 visualizes remaining 38 molecules after BOUNDR.E-integrated filtering pipeline to TargetDiff-based generation
for BCR-ABL protein. The closest drug and Tanimoto similarity are provided.

Figure 18: Structures of filtered molecules and their closest drugs for molecules generated with Targetdiff using BCR-ABL pocket
structure.
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E.10. Statistical validation results

In this section, we provide the statistical validation results for the tables in the main text (Tables 1 ∼ 5), computed with
one-sided paired t-test to compare the significance compared to the best performing models (Tables 26 to 30).

Table 26: Statistical validation for drug-like compound identification performance with time-split setting (Table 1). Mean and standard
deviation of 10 fold CV are provided. Best performance and its comparable results (paired t-test p < 0.05) are marked in bold

.

F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

SVM 1.0 1.0 1.0 1.0 1.0

XGB 1.0 1.0 1.0 1.0 1.0

OCSVM 1.0 1.0 1.0 1.0 1.0

DeepSVDD 1.0 0.9999 1.0 1.0 1.0

nnPU 1.0 1.0 1.0 1.0 1.0

naive PU 1.0 1.0 1.0 1.0 1.0

DrugMetric* 1.0 1.0 1.0 1.0 1.0

DGCAN 0.9947 Best 0.9311 0.9988 0.8841

DeepDL 0.9999 0.9905 0.9999 Best 0.4459

BounDr.E Best 1.0 Best 0.07378 Best

Table 27: Statistical validation for cross-dataset evaluation of drug-like compound identification performance on scaffold-split setting,
trained on PubChem/ChEMBL and evaluated with ZINC20 compounds (Table 16). One-sided paired t-test p-values of 10 trials compared
to the best model are provided. Best and its comparable performances (paired t-test p < 0.05) are marked in bold.

Train set
PubChem + DrugBank ChEMBL + DrugBank

F1 (↑) Average Precision (↑) AUROC (↑) F1 (↑) Average Precision (↑) AUROC (↑)

SVM 1.0 0.9981 0.9985 1.0 0.9204 0.9765

XGB 1.0 0.9714 0.9939 1.0 Best 0.9735

OCSVM 1.0 1.0 1.0 1.0 0.9997 1.0

DeepSVDD 1.0 1.0 1.0 1.0 0.9999 1.0

nnPU 1.0 1.0 0.9999 1.0 1.0 0.9976

PU 1.0 1.0 1.0 1.0 1.0 0.9957

DGCAN 1.0 1.0 1.0 1.0 0.9997 0.998

DeepDL 1.0 1.0 1.0 1.0 0.9999 1.0

BOUNDR.E Best Best Best Best 0.560 Best
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Table 28: Statistical validation for false-positive rate of toxic compound groups (Table 2). One-sided paired t-test p-values of 10 trials
compared to the best model are provided. Lowest and its comparable results (paired t-test p < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

XGB 1.0 1.0 1.0 1.0

OCSVM 1.0 Best 1.0 1.0

nnPU 1.0 1.0 1.0 1.0

DrugMetric N/A 0.9616 0.9995 1.0

DGCAN 1.0 1.0 1.0 1.0

DeepDL 1.0 1.0 1.0 1.0

BOUNDR.E Best 0.9875 Best Best

∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets

Table 29: Statistical validation for drug-like compound
identification with EM-like boundary optimization on
embedding space aligned with different alignment meth-
ods (Table 3). One-sided paired t-test p-values of 10
trials compared to the best model are provided. Lowest
and its comparable results (paired t-test p < 0.05) are
marked in bold.

Alignment method F1 (↑) ICR (↓)

No Alignment (only FP) 1.0 0.7489

Manifold Alignment 1.0 Best

CLIP 1.0 0.4685

Geodesic Mixup 0.9998 0.001325

Ours - softCLIP 0.9992 8.50E-06

Ours Best 9.86E-08

Table 30: Statistical validation for drug-like compound identification
with different classifiers on knowledge-aligned space (Table 4). Best
performance in bold and second best underlined. One-sided paired t-test
p-values of 10 trials compared to the best model are provided. Lowest
and its comparable results (paired t-test p < 0.05) are marked in bold.

Aligned space F1 (↑) ICR (↓)

+ MLP 1.0 1.0

+ SVM Best 0.9863

+ XGB 1.0 1.0

+ naive PU 1.0 0.9999

+ DeepSVDD 1.0 1.0

+ Ours − EM 1.0 0.9978

+ Ours 0.9816 Best
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