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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has been highly success-
ful in aligning large language models with human preferences. While prevalent
methods like DPO have demonstrated strong performance, they frame interactions
with the language model as a bandit problem, which limits their applicability in
real-world scenarios where multi-turn conversations are common. Additionally,
DPO relies on the Bradley-Terry model assumption, which does not adequately
capture the non-transitive nature of human preferences. In this paper, we address
these challenges by modeling the alignment problem as a two-player constant-sum
Markov game, where each player seeks to maximize their winning rate against the
other across all steps of the conversation. Our approach Multi-step Preference Op-
timization (MPO) is built upon the natural actor-critic framework (Peters & Schaal,
2008)). We further develop OMPO based on the optimistic online gradient descent
algorithm (Rakhlin & Sridharan, 2013; Joulani et al., [2017). Theoretically, we
provide a rigorous analysis for both algorithms on convergence and show that
OMPO requires O(e~ 1) policy updates to converge to an e-approximate Nash equi-
librium. We also validate the effectiveness of our method through experiments on
the multi-turn conversations dataset in MT-bench-101.

1 INTRODUCTION

In recent years, the integration of large-language models (LLMs) (Brown et al., [2020; |Achiam
et al.l 2023} Team et al., 2023) into various applications has highlighted the need for advanced
preference alignment methods (Ziegler et al.| 2019} |Stiennon et al |2020; Bai et al.| 2022} |Ouyang
et al.| 2022; Rafailov et al} [2023). As models increasingly engage in complex decision making or
reasoning scenarios, e.g., GPT-4o0 and 01[1_1 the ability to align their outputs with user preferences has
received more attention. However, existing works on reinforcement learning from human feedback
(RLHF) focus mostly on one-step preference (Rafailov et al. 2023; [Meng et al., [2024; Munos
et al., 2024; |Azar et al.| 2024} [Wu et al., 2024; [Zhang et al.| [2024)), which neglects indispensable
intermediate preferences within the answer and limits the model’s alignment ability. For example,
in multi-round conversations, alignment must occur at each turn to meet user needs. Similarly, in
mathematical reasoning with chain-of-thought prompting, step-by-step validation is essential to
ensure accuracy in the final result. The reliance on final-output feedback in most existing RLHF
methods (Wang et al., 2023;; |[Shani et al.| [2024) neglects these intermediate steps, highlighting the
need for multi-step preference optimization to enhance alignment capabilities.

Meanwhile, earlier alignment methods e.g., DPO and its variants step-DPO (Lai et al.|, 2024; |Lu
et al.| [2024), typically model the pairwise preference by the Bradley-Terry model (Bradley & Terry,
1952), which assigns a score for each answer based on its preference. This assumption of the
model cannot capture the non-transitive preference, which is often observed in the averaged human
preferences from the population (Tversky, |1969; (Gardner, |1970). While a recent line of work has
modeled the alignment process under the framework of general preference (Azar et al.,2024;|Munos
et al} [2024; Wu et al.| [2024; Rosset et al.| 2024])), and thus bypasses the BT model assumption, the
challenge of multi-step preference optimization remains underexplored.

In this paper, we first address this gap by formulating multi-step general preference optimization
within the framework of two-player Markov games (Shapleyl [1953)), where each player seeks to
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maximize their winning rate against the other across all steps of the conversation. Next, we in-
troduce Multi-step Preference Optimization (MPO) drawing on insights from the natural actor-critic
framework (Peters & Schaal,2008). We further develop OMPO which leverages the optimistic online
gradient descent algorithm and benefits from improved theoretical guarantees (Rakhlin & Sridharan,
2013; Joulani et al., 2017). Theoretically, we provide rigorous analysis for both algorithms on the
convergence to Nash equilibrium. Empirically, we demonstrate the effectiveness of our approach
through experiments on multi-turn conversation datasets, such as MT-bench-101. We firmly believe
that our framework and approach can enhance the responsiveness of LLMs to user feedback.

Based on our discussions above, we summarize the contributions as follows:

* We formulate multi-step preference optimization as a two-player partially observable Markov
game. Unlike Wang et al.| (2023); Swamy et al.| (2024); Shani et al.| (2024) who focus on the
preference feedback at the final state, we assume that the preference signal is received at each
step. Such feedback allows the model to better identify which steps are correct or erroneous,
potentially enhancing learning efficiency and accuracy.

* We propose Multi-step Preference Optimization (MPO) based on the natural actor-critic frame-
work and Optimistic Multi-step Preference Optimization (OMPO), built upon the optimistic online
gradient descent. Theoretically, we show that OMPO requires O(e~1) policy updates to converge
to an e-approximate Nash equilibrium, compared to O(e~2) by the algorithms provided in Wang
et al.| (2023); [Swamy et al.| (2024)); [Shani et al.| (2024). Our result cannot be trivially extended
by|Alacaoglu et al.[(2022) due to the partially observable nature of Markov game. Interestingly, we
bypass this difficulty by deriving our OMPO that parameterizes the game over occupancy measures.

* We provide practical implementations of both MPO and OMPO for LLM alignment. Numeri-
cal results show that the proposed methods achieve considerable improvement on multi-turn
conversation datasets, such as MT-bench-101, compared to the multi-step variant of DPO.

The remaining part of this paper is organized as follows: Sec. [2] provides a comprehensive review
and discussion of related work. In Sec.[3] we introduce the problem setting for the investigated multi-
step RLHF. Sec. 4.1 and Sec. {f.2]introduce the proposed MPO and OMPO and provide a theoretical
convergence analysis. Experimental results are present in Sec.[5] Conclusion, limitation, and future
work are discussed in Sec.

2 RELATED WORK

RLHF under Bradley-Terry model. Over the years, significant strides have been made towards
developing RLHF algorithms from various perspectives under the Bradley-Terry model Bradley
& Terry| (1952). Earlier RLHF pipelines usually included supervised fine-tuning, learning a reward
model, and reinforcement learning optimization with PPO (Ziegler et al.,[2019; Stiennon et al.,[2020;
Bai et al., 2022 Ouyang et al.| 2022)). Due to the instability and scaling issues of such a pipeline,
direct alignment methods such as DPO have been proposed to bypass the training of the reward
model (Rafailov et al.,[2023)). Several follow-up methods, such as generalized preference optimiza-
tion (GPO, [Tang et al.|[2024])), use offline preference data to directly optimize pairwise preferences
against a fixed opponent. A number of works have proposed reference-model-free method (Meng
et al.| [2024; Hong et al.|[2024). InMeng et al.|(2024), the impact of sequence length is mitigated by
averaging the likelihood over the length of the sequence. In the multi-step scenario, several multi-
step variants of DPO are introduced in the math reasoning task. |Lu et al.| (2024) initiate from an
intermediate step in a correct reasoning process and increase the temperature to produce a flawed
reasoning path leading to an incorrect answer. Meanwhile, |Lai et al.| (2024) leverage GPT-4 to detect
the first incorrect step in a multi-step reasoning trajectory, then regenerate from that point to obtain
the correct path. Together, these serve as the pair of samples for DPO.

RLHF under general preferences. The reward model in the Bradley-Terry model inherently im-
plies transitivity in preferences. However, human preferences, especially the resulting averaged
human preferences from populations, are usually nontransitive (Tverskyl |1969;|Gardner, [1970). To
this end, |Azar et al.|(2024) outline a general framework for RLHF starting from general preference
optimization and shows that DPO is a special case with the assumption of Bradley-Terry model.
They further proposed IPO without such an assumption. Subsequently, Munos et al.|(2024) try to
solve the alignment of non-transitive general preferences using two-player nash learning in a bandit
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setting. In their work, preferences are regularized through KL divergence to a reference policy, and
they prove the convergence of the last iterative. In|Swamy et al.| (2024)), multi-step alignment is
considered while preference signals are only applied at the final step. Swamy et al.| (2024) do not
demonstrate the effectiveness of this framework in large language models. |Wu et al.|(2024) propose
SPPO, studying bandit alignment under general preferences. They introduce a novel loss function
that increases the log-likelihood of the selected response while decreasing that of the rejected re-
sponse, in contrast to DPO. Rosset et al.|(2024) start with the nash learning framework and propose
Online DPO, which is an iterative version of DPO. [Wang et al.| (2023) provide theoretical analysis
on multi-step RLHF under general preference while practice application is not explored. In Wang
et al.| (2023), the preference signal is given for the entire trajectory of an MDP while in this paper
it is step-wise. |Shani et al.| (2024)) study multi-step alignment under general preferences. However,
unlike their approach where only preferences at the final states are considered, our work is built on a
two-player Markov game which assumes that human preference is received at each step rather than
only at the final step. Additionally, we leverage the optimistic online gradient descent to achieve
a better convergence rate than \Wang et al.| (2023); Shani et al.| (2024), and utilize Monte Carlo es-
timation with a small-scale pairwise reward model, avoiding the need for an additional function
approximator for the critic network.

Two-player Markov game & optimistic online gradient descent. Two-player Markov games
have been widely studied since the seminal work (Shapley, |1953)). Particularly relevant to our work
is the research line on policy gradient algorithms for two-player Markov games such as|Daskalakis
et al.| (2020); Wei et al.| (2021); |Alacaoglu et al.[(2022). Our OMPO is strictly related to the idea of
optimistic online gradient descent (Popovl, |1980; (Chiang et al., 2012; |Rakhlin & Sridharanl [2013])
originally proposed in online learning to achieve small regret in case of slow varying loss sequences.
Our update that uses only one projection per update was proposed inJoulani et al.| (2017). The name
of our method is due to a similar algorithm introduced in the context of variational inequalities by
Malitsky & Tam|(2020).

3 MULTI-STEP RLHF AS TWO-PLAYER MARKOV GAMES

3.1 NOTATION

We define the prompt to the language model as x and the answer from the language model as a. For
a multi-turn conversation with turn H, the prompts and the answers are denoted by x;, and ay, Vh €
[H]. The concatenation of a prompt x and an answer a is denoted by [z, a] and can be generalized
to the concatenation of multiple prompts and answers, e.g., [£1,a1,...,2q,ag|. For any two sen-
tences, e.g., [, a] and [2/, a'], we define a preference oracle as o([z, a]>[z’, a]) € {0, 1}, which can
provide preference feedback with 0-1 scores, where 1 means the conversation [z, a] is preferred and
0 otherwise. We denote P([z,a] > [/, a’]) = Elo([z,a] = [2’,a])] as the probability that the con-
versation [z, a] is preferred over [2/, a’]. Moreover, we have P([z, a] > [¢/,d/]) =1 — P([2/,a] =
[z,a]). An autoregressive language model is denoted by (a|x) which receives input x and gen-
erates answer a. We denote the KL divergence of two probability distributions p and ¢ by D(p||q).
The Bregman Divergences between two points are denoted by D(pl||¢). The sigmoid function is
defined by o(z2) := Detailed definitions for the notations are summarized in Appx.

1
14+e—="
3.2 PROBLEM FORMULATION OF MULTI-STEP RLHF

In this section, we introduce the problem setting for multi-step RLHF and we defer the preliminaries
on single-step RLHF to Appx. [B} Specifically, we can cast the multi-step alignment process as a
finite-horizon Markov Decision Process (MDP). We define s, = [z1,a1,...,Zh—1,an—1,2Z}] as
the state at h > 1. We define the action a;, as the answer given s;. Particularly, we have s; = ;.
The prompt in the next state is sampled under the transition z4+1 ~ f(:|sn, ar), which is equivalent
to sp+1 ~ f(:|sn,an). The equivalence comes from the fact s,11 = [sp, ap,Tpt1] by using the
concatenation operator between sentences. The terminal state is sz 1. Our setting covers a number
of alignment problems, and we list some examples below.

Example 1 (Single-step alignment). In single-step alignment, a language model receives one
prompt and outputs one answer. Our framework covers the single-step alignment by dissecting the
answer into single tokens. Specifically, we set x| as the prompt, xs, ..., TH11 as empty sentences,
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and the answer ay, at each turn consists of only one token. Then the horizon H is the number of
tokens in the answer. The transition between each state is deterministic.

Example 2 (Chain-of-thought reasoning alignment). In the chain-of-thought reasoning, the horizon
H denotes the number of reasoning steps, where x, is the initial prompt and xs, ..., x4+ are
empty. Each ay, corresponds to a reasoning step. The transition between each state is deterministic.

Example 3 (Mutli-turn conversation alignment). In multi-turn conversation, the horizon H denotes
the total number of turns in the conversation. In the h-th turn, xy, is the prompt, and ay, is the answer.
The prompt in the terminal state, x ;1 1, is an empty sentence. The transition between each state can
be deterministic or stochastic.

Next, we define the pair-wise reward function of two state-action pairs as the preference of two
trajectories:
T(Sh, an, sy, ay) = P([sn, an] = [s,,a]) -

Upon this point, we can define the MDP as a tuple M = (S, A, f,r,v1, H), where S is the state
space, A is the action space, H is the horizon (total steps), the initial state distribution v is a
distribution over the initial prompt ;. Note that in a two-player game environment, each state in S
is a pair of s, and s}, generated by two policies. Our goal is to identify the Nash equilibrium (or von
Neumann winner) of the following two-player constant-sum Markov game:

H

* * . / /
(m*,m ):argInfuxInllnEslwl,lysh,ah,sba;L[ g 7(Sh, an, Sp,,an) |, (Game)
s
h=1

where s1 = s} =z, ap ~ 7(-|sn), a}, ~ 7' (-|s),), sn ~ f(-|sh—1,an—1), s}, ~ f(-|$h_1,ah_1)-

Here we make a few remarks on the benefit of incorporating human preferences at each step. More
detail on the motivation can be found at Appx.

Remark 1. If two conversations of H turns, sgy1 and 5}1+1, are globally similar but differ in the
early turns (e.g., so are better than s} ), more credit should be assigned to sp i1, encouraging the
model to align with it. This follows the principle that humans typically master simpler and earlier
tasks before progressing to more complex ones.

Remark 2. From a practical standpoint, including per-step preference data generates a richer
dataset for training, helping the model learn which reasoning steps are correct or wrong. This in-
cremental feedback can enhance overall performance by reinforcing the importance of foundational
steps in reasoning.

Next, we present some additional notation. We define the pair-wise value function as follows
H

Vi (s, 8') = E{Z r(shs g, 85,05 )|sn = 5, 8], = s'} ,
h=h
where aj, ~ 7, (-[s3,), af ~ 7 (-[57), 8541 ~ sy, a5), and s}~ (|5}, ). We will often
denote Vfr’” omitting the subscript, i.e., as ymr Moreover, notice that we consider potentially
non stationary policies, i.e. they are indexed by h. We denote by 7 the non stationary policy and by
mp, the distribution over actions at step h corresponding to the non stationary policy 7.

We define the pair-wise Q-function as follows:
H

!
Zﬂr (57%3’7(1’):r(s7a,8/,a/)+E[ Z T(S;L,ag78;l,a;l) )

>

where 55, ~ f(-[s;,,a;) and S%H ~ f(ls}, a3).

Lemma 1. (Adapted from |Puterman| (1994)) The pair-wise value function and pair-wise Q-value
function satisfy the following Bellman equation for all h € [H].

Qu" (5,0, a') =7(s,0,8", ') + Esop(s,a),5~sC1san Vg (5:5)].

! ’
Vhﬂ'ﬂf (S, 3/) = anﬂ'h('ls)7alwﬂ';,,('ls/)QZ)ﬂ- (87 a, 8/7 a/).
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By Lemmal[I] we can rewrite as follows:

H
. / / . R ’
(m*,7*) :argmgxn}:/nE[ E r(Sh, an, sy, ay,)| = arg max min Eg, ,, V™7 (s1,81). (1)

T ™
h=1

Given the above notation, we can formalize our objective. We look for a policy 7 satisfying the
following definition of approximate equilibrium.

Definition 1 (c-approximate Nash equilibrium). A policy 7 is said to be an approximate Nash
equilibrium if it holds that )
(i, V77) i (11, V7T) < ¢,
and
T\ T\ & .
I;gﬁ(@l,V > (1, V™) < e

Definition 2 (Occupancy measures). Given the policy m, the occupancy measure of m, is defined
at stage h as d}(s,a) = Pr(sp, = s,ap, = a) where s1 = x1 ~ vi,an ~ mp(-|sn), sn ~
f(|sh=1,an—1). We also define df(s,a)|s1 = Pr(sp, = s,an = a|s1 = s1) . In addition,
given the policies , T, the occupancy measure of (7, T) at stage h is defined as d;’" (s, a, s',a’) =
Pr(sp, = s,ap = a,s), = §',a}, = a'), where s1 = s} = @1 ~ vy, a, ~ 7(-|sp), aj, ~ 7' (:|s},),
sh~ f(|sn—1,an-1), and s}, ~ f(:[s},_y, a_y)-

Remark: The value function at the initial state can be represented as an inner product between

the reward function and the occupancy measure, i.e., V™7 = Zthl <r, dZ’W>. Given the structure
of the game where the sequences of sentences and answers are generated independently by the
two agents given the initial state s;, the occupancy measure at each step can be factorized as the
product of the two agents occupancy measures given s1. In particular, we have d; " (s, a, s',a’)|s1 =
di(s,a)|s1-di(s’,a’)|s1 forall h,s,a,s',a’.

4 METHOD

We first develop our method Multi-Step Preference Optimization (MPO) based on the natural actor-
critical framework (Peters & Schaal| 2008} |Alacaoglu et al., [2022) in Sec. @ Next, we introduce
Optimistic Multi-Step Preference Optimization, dubbed OMPO, in Sec. The framework is in-
spired by the idea of optimism used in online learning and in min-max optimization with improved
theoretical guarantees (Popov, [1980; |Chiang et al., 2012 Rakhlin & Sridharan, 2013]).

4.1 MPO WITH NATURAL ACTOR-CRITIC

This section presents our first method to find an approximate solution to In order to find an
e-approximate Nash equilibrium, the MPO method builds upon the next lemma which decomposes
the difference of two value functions to the () function at each step. The lemma [2] is the exten-
sion of Kakade & Langford| (2002) to the multi-agent setting where the dynamics are controlled
independently by each player but the reward depends on the joint-state action tuple.

Lemma 2 (Value difference lemma (Adapted from |Kakade & Langford|(2002))). For a finite hori-
zon MDP with initial distribution vy it holds that:

H
_ ‘= -
<I/17 | VALK Ve A,7T> =Eg, 0, ZESng‘Sl |:<]E8’,a’~d;{|le;i ﬂT(s, ° 5’7 a’),ﬂhHS, 81) — 7'1';L(.|s7 sl)>] .

h=1

The proof can be found at Appx. In our setting, the initial state sy is a deterministic function
of the state s so we can remove s; from the conditioning in the policyﬂ To highlight this fact we

2This is motivated by practical LLM training, where system prompts such as “user” and “assistant” are in-
serted before every x5, and an, respectively. As a result, one can infer a unique s; for every s. The conditioning
of the policy on the initial state might appear unusual at the first glance but it is in fact common in the setting
of Contextual MDPs (see for example Levy et al.|(2023)). Indeed, the initial state s; could be interpreted as a
context and we optimize over policies that depend on both the initial context and the current state.
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Algorithm 1 MPO (Theory Version)

. . . 1 . _ logm—
input: reference policy 7, preference oracle P, learning rate g = T H2 , total iteration T'

fort=1,2,...,Tdo

t+1 t Trt,7rt /2]
™ (als) oc m, (als) exp [msgawdful(s)Qh (s,a,s,a)] Vh € [H], Vs,a.

end for . .
output: 77 (such thatd] = + 23:1 di , Yhe [H].).

Algorithm 2 MPO (Practical version)

input: reference policy 7!, preference oracle P, learning rate 3, number of generated samples K,
horizon H, total iteration 7.
fort=1,2,...,Tdo

Generates response by sampling s{ ~ vy and a}, ~ 7' (-|s},) for h € [H].

Clear the dataset buffer D;.

forh=1,2,...,H do

Setsff =, .. :s%:s}b

Generate K — 1 conversations by sampling a2 K~ t(-|s%K ) for h € [h, H].
Estimate E o’ QT (s}t,aﬁ, st ak "),Vk, k' € [K] via Eq. (5) with query to P.
Form the data pair {(s},a¥ | E o’ Q= (st,ar, s}, aﬁl)}ke[K] ,addto D, .

end for
Optimize 71, over D; according to

. arls / H—h+1\\?
7t arg mlnIE(log (f’%) _ ﬁ(Eak,Q”tvﬂt (st ak, st af) — f)) .
m mh( hlsh) h

end for

output: 771

denote as s1(s) the only initial state that can lead to s. By setting 7’ = 7 = 7! in Lemma [2|and
7 = 7 and summing from ¢ = 1 to 7" we obtain:

T
> (v V) By, ZZEW o [(B i @5 (50, i ) = mh (19))]

t=1 =1t=1
Since the sum over ¢ commutes with the expectation, we see that we can decompose the global
regret Z;T:l <V1, yrimt V”t7”t> into a weighted sum of local regrets at each stage h € [H], i.e.,

Eoars, [ZtT:l <]Es',a'~dgt Is1 Zt’”t (s,-, s, d"), 7 (-|s) — 77;1(|8)>:| Therefore, we can control
the global regret implementing at each state online mirror descent updates (Warmuth et al.||1997,
Orabonal2023, Chapter 6, |Cesa-Bianchi & Lugosi|2006), i.e., implementing the following update:

T () = argmax(m(1s). By, ety (g @5 " (5.5 8'.0')) — BD((|3)] [} (1))
where [ is a learning rate. The solution has the following form:
i, (als) oc ) (als) exp{BE, 4 get)s, (@ T (5,0,8",d)}, 2)

which corresponds to natural actor-critic (Peters & Schaall 2008) that utilizes a softmax-based
method for updating policies. The number of policy updates needed by the ideal version of MPO
(see Alg.[T) can be bounded as follows and the proof can be found at Appx.

Theorem 4. Consider Algorithm[I|and assume that the reference policy is uniformly lower bounded
by m, then there exists a policy &' such that dZT =1 Zthl d;{t,Vh € [H], and it holds that

forT = % the policy pair (71,77 is an e-approximate Nash equilibrium. Therefore,

16 H* logﬂ'

Algorithm|l|outputs an e-approximate Nash equilibrium after polzcy updates.
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Algorithm 3 OMPO (Theory Version)

input: occupancy measure of reference policy ! denoted as d*, preference oracle P (i.e. reward
function ), learning rate 3, Bregman divergence D, iteration T’
fort=1,2,...,T do

ditt = a];gglaxﬁ <d7 2By armat T(5 s s’ a') — ES,YG,Nd;—IT(y 8 a/)> —D(d,d}) Yh € [H] Vsi.
€Fsy §

end for

T (als) = % with dj, = -1 S/, d! for all h € [H] for the unique s; from which

s is reachable.
Output : 7°u

Remark 3. The above result generalizes the O(H?e~2) bound on the policy updates proven in
Swamy et al.|(2024)) in the setting of terminal-only reward. The additional H? factor in our theorem
is due to considering rewards that are not terminal-only. In Theorem 5| we show that Algorithm
improveiv)the number of policy updates needed to converge to an e-approximate Nash equilibrium to
O(He ).

Practical relaxations. For the above theorem, MPO requires the access of the () function, which is
unknown. Next, we are going to develop a practical algorithm to efficiently estimate the @) function
and implement Eq. (Z). Equivalently, Eq. (2)) can be written as

t

t
7 (als) exp{ﬁEs,ﬂ/ngtm(s)QZ (5,0, a')}

t+1 _ 3)
m  (als) =

h ( | ) Z};(S) )

where Z/ (s) is the partition function. Next, we express Eq. (3) as follows:
t+1
Th (a|s) _ wt, ror t
o8 by 7 = B i@ (0100 = lon 0. @

Next, we approximate Eq. (@) with an approximate solution of the following optimization program

H 2

Tl =argminy E  siev { (@nlsn) _ (E, , _xt Q”z’wt(sh,ah, s',a') —log Z} (sn))| -
m ;2::1 (smanydi' |sn L Th(anlsp) e~ s h "

Unfortunately, solving the above minimization exactly is out of hope. The first difficulty is the
t t
efficient estimation of IES,’a,N dztISIQZ "™ (sp,an,s’,a’). In particular, since s’ and s are sampled

from the same distribution, we will sample o’ from the state s, and use the Monte Carlo estimator:
H

K
ot ot 1
Ea'Nﬂt(‘|Sh)Qh ' (5h7 Qhy Sh, a,) ~ ? E P([S}},kv aihk]v [S}L,ka a;}?kb ) (5)
k=1 h

>

where the sequences {(s,},k, @ ko s}h o a}h k)}thh for k € [K] are generated by rollouts of the
policies pair (7, 7*). The second difficulty is Z} (s), which is difficult to compute for large action
spaces. In all states s, we replace log Z} (s) with ﬁ%.

Remark 4. The heuristics is motivated by the next observation. If the preference between ay, and
aj, in Eq. (3) results in a tie, then with such log Z} (s), the solution of Eq. (3) is '™ = 7', leaving
the model unchanged.

In summary, we provide a practical version of MPO in Alg.[2] In practice, we used a stationary policy
that we find to be sufficient to obtain convincing results.

4.2 OPTIMISTIC MPO: OMPO

In this section, we propose an alternative algorithm based on the optimistic gradient descent method
[ﬂby reformulating the optimization problem over occupancy measures. Here, we show that opti-

3The same update we use can also be seen as the Forward-Reflected-Backward (FORB) update proposed
inMalitsky & Tam|(2020) for variational inequalities. This point of view is taken by|Alacaoglu et al.|(2022) to
solve zero-sum Markov game.
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Algorithm 4 OMPO (Practical version)

input: reference policy 7!, preference oracle P, learning rate 3, number of generated samples K,
horizon H, total iteration 7', tunable bias term 7.
fort=1,2,...,T do

Generates response by sampling s} ~ vy and a}, ~ 7t(-|s},) for h € [H].

Clear the dataset buffer D;.

forh=1,2,...,Hdo

SetshK = .. :s,%:s}b
Generate K — 1 conversations by sampling a2 ~ 7*(-[s2') for h € [h, H].
Estimate E UQ” T (sk ak sk ok Wk K e [K] via Eq. li
ift > 1 then R ,
Estimate E,, Q™ 7 (st,af, st ak) Vk k' € [K] viaEq. '
Add {(Sllma}w A’Q7r ™ (shoaf,shaf ), E k’Q7r o (5;”‘1;1 9mah)}ke ] into Dy.
else
Add {(s}, aﬁ,Eaﬁr Q’Tt"’rt(s}t7 ak, sk a )} into Dy.
end if
end for

if £ > 1 then
Optimize 7,41 over D; according to

kol 2
i (ag|s B o d
ot arg Inln]E(log ( r( ’Z‘ };> ) ﬂ(?]E UQW - (‘Slnah: 5h “h) k’QW! e (%7“;1: 5}z7“2,> - T)) .
[

w(azlsy,)

else
Optimize ;41 over D; according to

k| g1 o h 2
A al'gmin]E(log < ﬂ(ah.‘s’J) ‘6’(]E W QT (shak sk al ) — $>) .

m(aj]s}) “ 2

end if
end for

output: 771

mistic online mirror descent with one projection (Joulani et al.| 2017) with an appropriately chosen
regularizer can be used to solve approximately the following program which corresponds to
lifted to the space of conditional occupancy measures.

H

d*,d*) = argmax min Eg, ,, dp(s,als1)r(s,a,s',a")d},(s',a|s
(d",d”) g max miy Yo > duls.alsur( (s’ a’ls1),

h=1s,a,s’,a’
where F is the product set of the Bellman flow constraints for a particular initial state, i.e.

F = X, csupp(v1)Fs1- We also introduced the Bellman flow constraints for a specific initial state

(v
Foo = {d= (i idn) s Xy dnia(s,0) = Sy o0 flsls' @) (s '), di(s) = 1 {s = s1} }
(n*

The policy pair (7*, 7*) solution of can be retrieved from the occupancy measure pair (d*, d*)

as 7*(als) = % Our idea is to apply the optimistic algorithm from Joulani et al.| (2017)

to the reformulation of [Game] over occupancy measures, we present the resulting algorithm, i.e.,
OMPO, in Alg.[3]

Remark 5. In a partially observable Markov game, lifting the problem to the occupancy measures
turns out to be fundamentally important for enabling each agent to learn a policy conditioned only
on their own state. This is different from the standard literature on Markov Games (Daskalakis
et al., 20205 \Wei et al.| 12021} |Alacaoglu et al.| |2022), which assumes that both agents share a
common state.

As the next theorem shows, in the ideal case where the updates can be computed exactly, Alg. 3|
finds an e-approximate Nash equilibrium using fewer updates compared to Alg. [T} and to (Swamy
et al,[2024] Algorithm 1). The proof can be found at Appx.
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Table 1: Evaluation results on MT-bench-101 dataset. Mistral-7B-Instruct is selected as the base
model. We can observe that both of the proposed algorithms MPO and OMPO considerably outper-
form the baseline in terms of the score (the higher the better).

Perceptivity Adaptability Interactivity
Model Memory | Understanding | Interference | Rephrasing | Reflection | Reasoning | Questioning
Avg. CM SI AR TS CC | CR FR | SC SA |MR GR | IC PI

Base(Mistral—7B-Instruct)‘6223‘ 7.202 ‘7.141 7.477 |7.839 8.294|6.526 6.480 | 4.123 4.836 | 4.455 5.061 | 5.818 5.641

DPO (iter=1) 6.361 | 7.889 |6.483 7.699 |8.149 8.973|7.098 7.423|3.448 6.123 |3.421 4.492 5639 5.858
DPO (iter=2) 6.327| 7.611 |6.206 8.106 |8.052 9.111|6.670 7.153|3.494 5.884 |3.360 4.691|5.837 6.078
DPO (iter=3) 5391 | 6.019 4521 6.890 |6.631 8.177 |5.437 5.723|3.448 5.295|3.142 4.015|5.256 5.529
SPPO (iter=1) 6.475| 7432 |7.464 7.714 |8.353 8.580|6.917 6.714|4.136 5.055 | 4.403 5.400| 6.036 5.966
SPPO (iter=2) 6.541 | 7.516 |7.496 7.808 |8.313 8.731|7.077 6.867|4.136 5.281 | 4.488 5.477|6.098 5.751
SPPO (iter=3) 6.577| 7.575 |7.547 7.944 |8.365 8.797 | 7.040 6.865|4.442 5.185|4.346 5.394|6.092 5.906

Step-DPO (iter=1) 6.433 | 7.463 |7.054 7.790 |8.157 8.593 |6.827 6.748 |4.234 4.849 | 4.236 5.519|5.982 6.171
Step-DPO (iter=2) 6.553 | 7.616 |7.043 7.925 |8.147 8.662|6.790 6.878 |4.331 5.048 | 4.366 5.734|6.391 6.254
Step-DPO (iter=3) 6.442 | 7.665 |7.023 7.767 |8.016 8.589 |6.723 6.581 |4.305 5.014 | 4.153 5.453|6.202 6.257

MPO (iter=1) 6.630 | 7.624 |7.846 8.085 |8.398 8.947|7.105 7.286 |4.208 4.993 | 4377 5.264 | 6.179 5.873
MPO (iter=2) 6.735| 7.838 |7.723 8.196 |8.590 9.027 | 7.347 7.209 | 4240 5.137 | 4.469 5.531|6.181 6.061
MPO (iter=3) 6.733 | 7.868 |7.686 8.289 |8.510 9.078 | 7.330 7.529 | 4.461 4.829 | 4.225 5.366 | 6.198 6.155
OMPO(iter=2) 6.736 | 7.733 | 7.723 8.257 |8.478 9.122|7.300 7.421|4.123 5.288 | 4.506 5.513|6.179 5.923
OMPO(iter=3) 6.776 | 7.649 |7.792 8.281 |8.578 9.136 | 7.424 7.635|4.377 5308 |4.312 5.455|6.187 5.954

Theorem 5 (Convergence of OMPO). Consider Algorithm [3|and let us assume that the occupancy
measure of the reference policy is uniformly lower bounded by d. Moreover, let D be 1/ ) strongly

—all? -1
convex, i.e. D(pllq) > %. Then, by setting T = % and 3 < \/%, we ensure that
(7oUt U ie. the output of Algorithm 3|is an e-approximate Nash equilibrium. Therefore, we
10H logd* .
need at most R Pa— policy updates.

In addition, not only [Swamy et al.| (2024, Algorithm 1) but also OMPO can be implemented using
only one player since in a constant sum game, the max and min player produce the same iterates.
The result is formalized as follows and the proof is deferred to Appx.[D.5

Theorem 6. Consider a constant sum two-player Markov games with reward such that
r(s,a,8',a") = 1 —r(s,d,s,a), then for each s; € supp(vy) the updates for d in Alg. 3| co-
incides with the updates for the min player that uses the updates
d;(als) = agg;ninﬁ <d7 2By qrmar (8’0 ) — ES,’G,NdrlT(s’, a,- )> +D(d,dy).
S1
Furthermore, we can avoid the projection over the set F implementing this update on the policy

space (see Appendix [E)). We achieve such results following the techniques developed in|[Bas-Serrano
et al.|(2021)); Viano et al.| (2022).

For the first iteration, we initialize d to be equal to d}, for all h. That is, at the first iteration, we
use the same update rule as in MPO. After the first iteration, we apply similar techniques as in MPO
by estimating the ) function and we use a tunable parameter to approximate the log Z term. We
illustrate the practical algorithm in Alg.

5 EXPERIMENTS

In this section, we test the proposed algorithms with multi-turn conversations in MT-bench-101 (Bai
et al.| [2024). Additional experimental detail, ablation studies, and experiments on math reasoning
tasks are deferred to Appx. [} We choose Mistral-7B-Instruct-v0.2 as the base model (Jiang et all
2023). We use a pre-trained PairRM E] as the preference oracle. Specifically, given two conver-
sations [sp,, ap] and [s},, a},], PairRM will return a score that indicates the probability that [sy,, az]

*https://huggingface.co/llm-blender/PairRM
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(a) Radar chart on different categories. (b) Winning rate against the base model.

Figure 1: (a): Result of OMPO on the MT-bench-101 dataset; (b) Winning rate against the base
model with different approximations for the () functions. When optimizing a;, at the h step, only
considering the preference of sy, is sufficient compared to using sy, ..., SH41.

is better than [s},a},], which can be used to considered as the preference oracle P defined in the
previous section. We select iterative DPO (Dong et al., |2024)), iterative SPPO (Wu et al., 2024),
and iterative Step-DPO as our baselines. For both iterative DPO and iterative SPPO, we sample
K = 5 complete conversations starting from sy, and estimate the winning rate P([s%;_,,a}, ] >

(shy 1 ak; 4+1))Vk, k' € [K]. Then we select both the best and worst conversations according to
their winning rates against others, which is defined as & S 1 _ P([shy, 1, afy 1] = [sh. 1, abr,])
for the conversation [s§;_ ;, ak, 41)- Such a pair is used to train DPO while the winning rate is used

to train SPPO. For both Step-DPO, MPO, and OMPO, we do the same strategy with starting at sy,.
In MPO, and OMPO, we estimate Q (s, an, Sp, ay,) by P([sn, an], [sn, a},]) to enhance the efficiency.

For OMPO, the Q”t 7 term is estimated by calculating the winning rate between two answers (the
best and the worst) generated by the current policy 7! and the five answers previously generated by
wt=1, the 7 is selected as zero. Each method is trained with epochs number selected from {1, 2},
learning rates from {5e-6, 5e-7}, and § values from {0.1,0.01,0.001}. The final model is chosen
based on the highest winning rate against the base model, as determined by the PairRM model. We
use full-parameter fine-tuning for all methods with bf16 precision. A batch size of 64 is used. The
maximum output length and maximum prompt length during training are both set as 2048. We use
AdamW optimizer (Loshchilov & Hutter, |2019) and cosine learning rate schedule (Loshchilov &
Hutter, [2017) with a warmup ratio of 0.1. Each round of dialogue is rated on a scale of 1 to 10
by GPT-40 mini, with the mean score reported for each dialogue. All methods are run for a total
of 3 iterations. The results are summarized in Tab. 1} showing significant improvements over the
baselines with the proposed MPO and OMPO approaches. In Fig.[I(a)] we present the Radar chart on
different categories and we can see that the proposed OMPO leads to improvements generally along
the iterations. Fig. shows that using the entire trajectory to estimate the () function can lead to
subtle improvement at the first two iterations while it finally achieves a similar winning rate when
compared to the one that only use one step.

6 CONCLUSION

This work presents a novel framework to enhance the preference alignment of large language models
in multi-step settings by casting the alignment process as a two-player Markov game. We introduce
novel algorithms based on natural actor-critic and optimistic online gradient descent, supported by
both theoretical analysis and empirical results. However, the limitations of this work include the
finite-horizon assumption in our theoretical framework, which may not fully capture real-world
conversations or reasoning processes that often span with different steps instead of a fixed step
H. Additionally, our practical algorithm requires querying a preference oracle, which may limit
its applicability in cases where such preference oracles are unavailable or when collecting human
feedback is costly. Future work should explore extending the theoretical framework to infinite-
horizon settings and finding more scalable methods for gathering preference feedback.

10
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ETHICS STATEMENT

Our work focuses on algorithmic innovations related to reinforcement learning with human feed-
back. We do not create any new benchmarks for human preferences nor solicit human preferences
for this study. As such, we do not expect any potential violations of ethical standards, including
those concerning the use of human data. Our contributions are primarily methodological and theo-
retical analysis of the convergence, and we have taken care to ensure that our work complies with
all relevant ethical guidelines.

REPRODUCIBILITY STATEMENT

In this work, we have provided the details on the experimental setup and the description of the dataset
at Sec. [5|and Appx.[F.I] The dataset and language models used in this work are publicly available.
The source code of MPO and OMPO will be made public in the camera-ready version. Regarding the
theoretical results, we have clearly mentioned all of the assumptions, and all the complete proofs
can be found at Appx.[D]and Appx.[E]
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CONTENTS OF THE APPENDIX

The Appendix is organized as follows:

* In Appx.[A]l we summarize the symbols and notation used in this paper.

* Preliminaries on single-step RLHF can be found in Appx.

* In Appx.[D| we provide the proofs for the theoretical results.

* Appx. [E] shows the implementation of Algorithm 3] with updates over policies.

* Appx. [EI| provides an overview of the MT-bench 101 benchmark in the experiment.

A SYMBOLS AND NOTATION

We include the core symbols and notation in Tab. [2to facilitate the understanding of our work.

Table 2: Core symbols and notations used in this paper.

Symbol \ Dimension(s) & range \ Definition
Th - Prompt at step h
an - Answer (action) at step h
Sh - State at step h
s1(sn) - The only initial state that can lead to sp,
m Language model (policy)
V1 Initial distribution of state s
dy (s, a) [0, 1] Occupancy measure of 7 at stage h

Transition function

Pr(sp = s,an = a) [0,1] Joint probability of s, = a and ap, = a
o {0,1} Preference oracle
P([s,al,[s’,a’)] [0,1] Winning probability of [s, a] against [s, a)]
D(p|lq) KL divergence of two probability distributions p and ¢
D(pllq) Bregman Divergences between two points ¢ and p.
D Dataset buffet at iteration t
Ax [0, 1] Set of probability distributions over the set X’
0,0,Qand © | - | Standard Bachmann—Landau order notation

We additionally use a compact notation for representing the Bellman flow constraints. We denote
by E € RISIXIANISI the matrix such that (E2)(s,a) = z(s) for all vectors z € RIS, Additionally,
we denote by F' the matrix such that (Fz)(s,a) = >, f(s'|s,a)z(s") for all vectors z € RISI.

B PRELIMINARY ON SINGLE-STEP RLHF

In this section, we review the earlier methods in single-step RLHF. Classical RLHF methods (Ziegler
et al.|[2019; Ouyang et al.,|2022) assume that the preference oracle can be expressed by an underly-
ing Bradley-Terry (BT) reward model (Bradley & Terryl [1952), i.e.,

P(fx1, a1] = [21,01]) = o(r(21,01) = (21, a1)) -
Thus, one can first learn a reward model and optimize the policy based on the following KL-

constrained RL objective with PPO:

= arg maXEw1~V1,a1~ﬂ'(»|w1) (7’(331, al) - /BD(T(('|x1)||7Tref('|x1))) )
where (3 is a parameter controlling the deviation from the reference model 7. Another line of
work, e.g., DPO (Rafailov et al.}[2023)) avoids explicit reward modeling and optimizes the following
objective over pair-wise preference data (x1,a¥’, a}).

. r(a¥lan) “life)
* =argmaxE . ,w.yop|logo | flog ———% — flog———= | | .
8 e ap ) Dl oo (s 7y s )
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More recently, several studies (Swamy et al.}[2024; Munos et al.|,[2024; Wu et al.} 2024} [Zhang et al.}
2024}, Rosset et al.| [2024) have circumvented the Bradley-Terry (BT) assumption by directly model-

ing the general oracle P, avoiding the reliance on the reward model which is transitive. Specifically,
the goal is to identify the Nash equilibrium (or von Neumann winner) of the following two-player
constant-sum game:

(7, 7™) :argmgxrr}ri,nExlwl,a1~n(.|x1),ag~w(-|x1)P([xlaal] = [501761/1])'

C ADDITIONAL DISCUSSION ON RELATED WORK

C.1 RELATED WORK ON TOKEN-LEVEL PREFERENCE OPTIMIZATION

A line of work formulates the alignment of contextual bandit problems in LLMs (Example[T) from
token-level MDPs perspective (Rafailov et al.,[2024};Zeng et al.|[2024; [Liu et al., 2024d). In[Rafailov
(2024), by defining the reward at each token before the terminal token as the generation like-
lihood and using the maximum entropy RL objective, the authors derive the original objective of
DPO from a new perspective that incorporates token-level rewards. assume that
the reward for a response can be decomposed into token-level rewards at each token. Then they de-
sign a token-level objective function based on Trust Region Policy Optimization, adding token-level
KL divergence constraints to the DPO objective in the final algorithm. More recently, [Liu et al.
study how the difference in average rewards between chosen and rejected responses affects
the optimization stability, designing a new algorithm where importance sampling weights are as-
signed to each token-level reward. There are two main differences between the multi-step alignment
approach in our work and those in previous work. First, while [Rafailov et al.| (2024)); [Zeng et al.
(2024); L1u et al.| (20244a) develop alignment methods based on the Bradley-Terry model with tran-
sitive rewards, our framework is motivated by a two-player game with relative rewards. Secondly,
although [Rafailov et al (2024)); Zeng et al| (2024); [Liu et al| (2024a)) formulate the alignment pro-
cess as an MDP, their final objective is tailored to a contextual bandit problem in LLMs. In contrast,
our objective is designed for a multi-step alignment problem, suited for multi-turn conversation or
chain-of-thought reasoning.

C.2 DISCUSSION ON THE DIFFERENCE FROM SPPO

Next, we elaborate on the difference with SPPO 2024) below: Firstly, the theoretical
analysis of the proposed MPO differs from that of SPPO due to differences in the settings. SPPO
considers the contextual bandit problem and builds its analysis based on the game matrix from Fre-|
und & Schapire] (1999). In our case, however, we frame the problem as a Markov game and employ
a distinct theoretical analysis apart from [Freund & Schapire| (1999). Specifically, in our proof, we
(1) use the performance difference lemma to rewrite the global regret as weighted average of local
regrets and (ii) control the local regrets with multiplicative weights updates. Secondly, a new algo-
rithm, OMPO, is developed in this work with a novel theoretical guarantee. In the case where the
horizon H = 1, the update of OMPO reduces to

7' (a|s) o< 7 (als) exp [B(2P(a = 7' (:|s)) — P(a = 7'~ (-|s)))],
while the update of SPPO is
7' (a|s) o 7 (als) exp [B(P(a = 7' (-]5)))].
As a result, OMPO enables O(e~!) policy updates to converge to an e-approximate Nash equilib-
rium instead of O(e~2), according to our theoretical analysis.

D PROOFS

D.1 PROOF oF LEMMA[II

Proof. By the definition of the state action value function for the policy pair (7, ') we have that
H

Z’W/(s,a,s',a')zr(s,a,s',a')—i—E[ Z T(Shy Qpry Spys )| -
h'=h+1
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Now, using tower property of the expectation we have that

’
™,

h (S,CL,S/,CI/)
H

/ / / / " / =
=7r(s,a,8,0") + Egropis,a),5mf (|5 ar) {]E[ E T(Shy Qnrs Sprs Q)| Shg1 = 87, 8), 11 = SH
h'=h+1
" =

=7(s,a,5,a") + Egrop(s,0),5~ (|57 ,a") {V”’” (s 7s)},

where the last equality follows from the definition of the state value function. O

D.2 PROOF OF LEMMA 2]

Proof. Let us consider the Bellman equation in vectorial form for the policy pair (7, 7), that is
7T',7'r

7r',7?
Th+FVh+1 =@,

where I denoted the transition matrix induced by the transition function f : S2 x A — Agxs.
Now, multiplying by the occupancy measure of the policy pair (7, 7) at stage h we obtain

(dorn) + (77 FVIT ) = (477 Q7).
At this point, using the Bellman flow constraints |Puterman| (1994), it holds that
Frdp™ = ETdpT,,

where E € RISPIAIXISI guch that (ETV)(s,a) = V(s) forall V € RISI”. Plugging this equality
in the Bellman equation above we obtain

(dr )+ (il BV ) = (a7 Q7).
Now, subtracting on both sides <d2’ﬁ, E V}ZTI’T_F> and rearranging, it holds that

(d™ o)+ (0 BV ) = (7 BV T) = (di7 QT — BV
After this, taking sum from h = 1 to H and recognizing that for all policy pairs (m, 7’) it holds that
Vil = 0, it holds that
H - - /= H - - -
STy = (AT BV Y = S (dp QT - BV T,
h=1 h=1

Then, notice that for all policies 7, 7 it holds that Zthl <d2’ﬁ, rh> = {v1, V™). Plugging in these
observations, we get

(n,vmm v = XH: (™, Qp "~ BV,

Therefore, expanding the expectation, and noticing that dZ’ﬁ(s, a,s',a'|s1) =
d7 (s,als1)d;(s',d'|s1) forall h, s, a, s’, o’ and conditioning s, we get that

<l/1, Vﬂ',‘l_r o V7r/,7?>

H
.
= Eoran 3 Baagloy |(Bor g s, QF 7 (555, ), mlcls, 1) = (s, 1) )|
h=1
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D.3 PROOF OF THM.[]

Zt 1 dh (Sh ah)
ST dp (sn)
state s, and 77 = (71)iL . We shows that i’ = L7 d7' by induction. h = 1 holds by

definition. Assuming on step h, the equation holds we have

Proof. We set 71 (ap|sn) = , where d(s) is the marginal distribution of d(s,a) on

-T -T _
df 1 (shi1sant1) = diy (Sh41) T (@nga[sngn)
=T
= Z d, (shsan)f(sny1lsn, ah)ﬁz+1(ah+l|5h+1)

Slzyah"/ﬁ'z('lsh)

— Z 7 de(sh,ah)f(shﬂ\sh,ah)ﬁ}?+1(ah+1|3h+1)

shyap~al(-|sp)  t=1

t —
-7 Z d2+1(3h+1)ﬂg+1(ah+1 |Sht1)
t=1

1T
t

-7 Zd2+1(5h+1,ah+1),
t=1

where the last equation holds by definition of 7} 41 Therefore, h + 1 holds, and the 7T satisfy all
equations for h € [H].

Using the value difference Lemma 2] we have that for any 7* € II

*x t ot
<l/1,V7T YT ,7r>

H
=B 3 Bt oy (B0 @ 7 (5128, 0),mh () = wh (1))
h=1

Therefore, summing over ¢ from ¢t = 1 to 7" we obtain

T

> (mve

t=1
H

:E51~V1 E :]Eswd’}:*|sl
h=1

Therefore, we need to control the local regrets at each state s with loss £} (s,s1) =

T

t ot
Z <Es’,a’~d2t\sl ;lr ” (87'78/,0/)771';(~|8) - T;L(|S)>‘| .

t t
E, , . Q7" (s,-,s',a’). To this end, we can invoke a standard convergence result for on-
s',a'~d7" |81 Y h ’
line mirror descent (Orabonal, 2023, Theorem 6.10) we obtain that at each state we have

Sl st () — 7)) < 2RI 53 s,
t=1 t=1

Now, noticing that we have ||¢ (s, s1)|, < H it holds that

- 18), 7L (1))
> (U (s), mh(ls) — mh(]s)) < 5 + BTH?.
t=1

Finally, using the assumption that w'(als) > =« for all s,a € S x A it holds that

D(7*(-|s), 7' (-|s)) < logm~?. Therefore, choosing 3 = / 10%?1;1 it holds that

T
Z 0, (s, s1), 7 (|s) — @' (:|s)) < 2H/Tlog w1
t=1

18
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Thus, we conclude that

T
Z <1/17V7r*”7t — V”t’”t> < 2H?\/Tlogm—!.

t=1
By the antisimmetry of the game, the same proof steps
T

Z <V17V7Tt,71't _ V‘n—tﬁ*> < 2H2 /Tlogﬂ_l.

t=1
Therefore, it holds that for all 7*, 7* € II
T

Z <V1’V7T*77Tt . Vﬂ—t’ﬂ-*> S 4H2 /Tlogﬂ_l.

t=1

Then, define 77 the trajectory level mixture policy as in|Swamy et al. (2024), i.e. such that d’ZT =
+ Zthl dr" for all stages h € [H]. This implies that yEoT = % Zle vt and VTR =
1 T Vﬂ'*,m

T Zt:l -

Therefore, we have that

* =T

<V1, V7r , T

Finally, selecting 7* = <y1, arg max . cyy V””?T> and T = <1/1, argmin_ ¢ V’?T7”>, we obtain
that

_ _ 1 -1
max <V1,V”’”T> — min <V1,V”T’”> < 4H? o8
mell mell T
This implies that
T _ 1 —1
<1/1, V’TT’”T> — min <V1, V”T’“> < 4H? 08T ,
well T
and
T —T _T log r—1
7‘/7'r,7'r >_< ,Vﬂ 7T ><4H2 = ;
e V) A
Therefore, setting 7' = Mélii‘;gfl we obtain an e-approximate Nash equilibrium. O

D.4 PROOF OF THEOREM

Proof. The optimization problem

H
argmaxmiQEsleZ Z dn(s,als1)r(s,a,s,a’)d),(s',a|s1)

deF d'EF h=1s,a,s’,a’

can be carried out individually over possible initial states. That is for each s; € supp(v1) we aim at
solving

H
arg max min Z Z dp(s,als1)r(s,a,s a’)d)(s',a|s1)
deFs, e h=1 s,a,s’,a’

To this end for any s1, we consider ¢}, € F and ¢! € F which are generated by the following
updates

¢1}51+1 = aig glaxﬁ <¢7 QES’,a’Nwtrh('a ) Slv CL/) - Es’,a’Nwtflrh(H ) S/a Cl/)> - D(¢7 QS;L))
E 51

and

;‘/l+1 = aig;ninﬂ <1/), 2B armpttn(s',a ) = Eg grgr—1ra(s’,d' -, )> + D (e, k),
€Fs,
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In order to prove convergence to an e-approximate Nash equilibrium, we need to control the quantity

Gap,, = TZZ 0}, b}, — ZZ<<z,wz—w;>,
h=1t=1 h=1t=1

for 0}, (s,a) = 3", o ¥(s",a")ra(s, a,8',a") and (s, a’) = =3, ¢, (s,a)rn(s,a, 5, a’). At
this point, we bound the local regret term with the OMPO update. We have that for any ¢, € F

B0 =0, dn =) = B(OL =0, 60— 1)
+ﬁ<0 9t+1 o 975 17¢) ¢t+1>
= B(0h = 0L on—0,")
+ B0, — 0, o — oh)
+ﬂ<0t Ht 17¢h t+1>
S ACARNCTE A

At this point, we work on the third summand above
- _ 1
B — 017" 0 — 6h) < BAIGL — 05 % + oy llgh — o7

In addition, we have that||0}, — 0| < [l&h — ¥.~ ||, and we can apply the 1/ strong convexity
of D, we obtain

_ _ 1
B} — 6171 0h — 0hTh) < ABPIIYL — w4 5 D6 o)
On the other hand, by the three point identity we have that for all ¢ € F
D(¢n, ¢3,") = D(¢n, ¢) = D@, 8h) + (VD9 64,), 63,7 — ¢n)

Then, using the property of the update rule, we obtain that
(VD(¢h, ¢h), ot — dn) < B(20, — 0571 on — 6,T) .
Putting all the pieces together we have that
D(¢n, &) < D(dn, ¢h) — D(¢5, 0) + 5(26], — 657", o — 83,7 (1))
< D((]S}L, d)Z) - (¢t+1? ¢h)
+6<0t 70t+1 d) 7¢t+1
+B(0, =0, o — 1)
_ 1
+ B2k — i T + 5D 6h)
+ B0 o —oh)
Now, rearranging the terms we get

1

S84, 64)

B0 on = &i"") < D(on,61) — D(en, 611) -
+ B0, — 0, on — o37)
+ 80, — 0, on — ¢h)
+ Ak — v
Now, denoting ®; := D(¢n, ¢},) + B(6), — 0}, ", ¢n — ¢},) and summing over ¢ we obtain

T

T
BY (04, 0n—dh) <D @ - — ZD% +62AZ||w Sk
t=1

t=1
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Similarly we get

/32 (¢H(s, )0 — wh><2<b“ !, — meh, +62AZH¢ — i3,

Now, using 1/ strong convex1ty of D and summing the two terms we have that

1 T

ATGap,,, < @ = @7 =55 (B, i)+ D(6}, 417)

t=1

T
+2ﬁ2)‘Z(D( Zil’ 272)—’_]1))( ;:1’ ;1,72))7
t=1

with & = @fﬁ + <I>f/). At this point, setting 3 < \/#27\, we obtain a telescopic sum

BTGapshh
T

g@Of@T*I%Z( (Who ™) + Do}, 67— D w7 — D6y 67%)
t=1

<0 — Tt 4 ( (whvwh)+D(¢ha¢h))

Now recalling that by assumptlon the occupancy measure of the reference policy is lower bounded,

ie. d™ > d, we can upper bound ®° — &7 < 2logd ™' + 8 that allows to conclude that for all
n € [N] and setting ¢ = 1} and ¢} =

-1 -1
Gap, ;LSQIOgd +86§ 10logd .

1, ﬁT 5T
Now, notice that Gap can be rewritten as

H
Gap,, = Z Gapy,

T
122 Z 1/12(8/70/)7";1(5,@,s'7a’)¢2(s7a)

t=1 h=1 s,a,s’,a’

H
_%ZZ Y k(s d)ru(s,a,8' d)ej (s, )

t=1 h=1 s,a,s’,a’

—Zzwhsarhsasa Zqzﬁhsa

h=1 s,a,s’,a’

—Z Z Zd)hsarhsas a')¢r (s, a)

h=1 s,a,s’,a’

H H
=3 S i as, d)dalsa) =3 S Gulsd)ra(s 0, )i (s, ).
h=1 s,a,s’,a’ h=1 s,a,s’,a’
: : out (5 a) out 1/’(5 a) 1o
At this point, let us define 73" (as) = S 55.) and 7" (als) = S i) For such policies and

by appropriate choice for 1/)* and ¢ it follows that
Gap,, = mfx Yty (s1) — m(gn Yo (s1)-

By the bound on Gap,, for each s, € supp(v1), it follows that

out . out 10H log d_l
<l/17 mfx VT ¥ _ rrgn Vo > =E; Gapsl < T,
therefore T' > wb{}@%fl. The proof is concluded invoking Thm. |§| that ensures that the policies
7o and 73" coincide. O
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D.5 PROOF OF THEOREM

Proof. Let us consider two players performing the following updates
2—&-1 = arg max 3 <¢, 2Eg it Th (-5 8 a") =By g fopt=1TR (- > D(¢, ¢%),
PEF s,
and
w?_l = ai%gnnﬂ <¢, 2E5’,a’~¢‘rh(5/7 CL/, Y ) - Es’,a’r\z(b"*lrh(slv CL/, K )> + D(U]a QZJZ)
s1

The goal is to proof that the iterates generated by the two updates are identical. We will prove this
fact by induction. The base case holds by initialization which gives ¢) = 19 for all h € [H]. Then,
let us assume by the induction step that ¢, = ¢! for all h € [H], then

t+1

h

= arg max 3 <¢, 2B armptTh (-5, 8", a") — By grmge—1rp (e, 8, a’)> —D(¢, %)
$EF.,

= argmaxﬂ <¢a 72Es’7a’~w‘7ﬂh(3/7 alv Y ) + E ,a’ ~pt— 1rh y Ay > ]D) d) ¢h) + B <¢)a >
PEFs,

(Antisymmetric Reward)

= arg max 3 <¢, —2By qrmpt i (8,0, ) + By groge—1rn(s’,d, )> —D(¢, ¢%) + B
PEFs,

(Normalization of ¢)
= arg max 3 <q5, —2By armgptTh (8,0 ) + By groge—1rn(s’,d, )> —D(¢, %)

$EF,,
(8 does not depend on ¢)
= arg max 3 <¢, —2Eg qrmptrn(s’,a -, 0) + Es’,a’~¢t*1rh(s/7 a,-, )> —D(¢,9})
PEF s

(Inductive Hypothesis)
= arg min 3 <w, 2By ormgtrn(s,a ) = Eg grgr—arn(s’,d s, )> + D(2p, h)
YEFs,

(Renaming the optimization variable and arg max f(x) = arg min — f(z))

t+1
ho:

E IMPLEMENTATION OF ALGORITHM 3] WITH UPDATES OVER POLICIES.

In this section, we explain how the update in Algorithm 3] for different choices of . In both cases,
we will derive an update that can be summarized by following template. Let us define 7} (s,a) =

Esl,alwdzr(s, a,s’,a’) and rf;l(s, a) = Es/,awd};lr(s’ a,s',a)

* Compute the @}, function corresponding to the reward function 2r} — rfl_l minimizing a
loss function that depends on the choice of D.

» Update the policy as
. (als) o 7, (als) exp (BQ} (5, a)) -
Finally, in Appx. [E:3] we show that for D being the conditional relative entropy and for 3 small
enough the value function Q}, is well approximated by the standard Bellman equations.
Remark 6. Both choices of the Bregman divergence are 1 strongly convex so Thm. |5\ applies with
A=1

In the following we consider a generic reward function 7. In our setting, we will apply the following
results for 7, = 2rf — rf;l in order to implement the updates of Alg. for the different values of h
and ¢.
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E.1 1D CHOSEN AS THE SUM OF CONDITIONAL AND RELATIVE ENTROPY

In this section, we explain how to implement the occupancy measure update in Algorithm
over policies. We use the machinery for single agent MDPs introduced in [Bas-Serrano et al.
(2021). In particular, we consider the Bregman divergence given by the sum of the relative en-

tropy D(d,d’) = Zs’a d(s,a)log (;,((SS’(Z))) and of the conditional relative entropy given, i.e.

H(dd) = ¥, d(s,a)log (;;;((‘;'I?)) with 74(als) = d(s,a)/ 3, d(s,a). Under this choice
for D, the update of Algorithm [3|for particular values of h, ¢, s; corresponds to the solution of the
following optimization program

H
1 1
it = argmax Y (dp, ™) — =D(dn, d) — =H(dp, d},),
deAH g B
st. ETd, =FTd,_, VhelH]. (Update T)

Theorem 7. The policy ﬂ'Z‘H with occupancy measure dffl defined in Eq. (Update I)) can be com-
puted as follows

7TZ+1(CL|S) o 7} (als) exp (BQZ(S, a)) ,

where QY is the minimizer of the following loss

H
5 D108 Y h(5,0)exp (8(27% + PVi = Q)5 0)) + (1, i)
h=1

s,a

while V,fH is given by the following closed form.

Vi(s) = % log >}, (als) exp(BQ}, 41 (s, a)).

Proof. Let us introduce an auxiliary variable pj, = dj, for all h € [H], then we can rewrite the
optimization program as
a 1 1
argmax max » (un,7n) — =D (un, i) — = H(dp, dy),
deat peAT L~ 5 B
st. ETd,=FTu,  Vhel[H],
st. up = dn, Vhe [H]
Then, by Lagrangian duality we have that

H
1 1
. AN——-D ty ZH(d dt
ax ﬂrgig 16517151h:1 (ton,T) 3 (#ons 2,) 3 (dn. dy,)
+ (—E"dp + FT -1, Vi) + (Qn. di, — )
H
= max max min (pp, ™+ FVii1 — Qpn) + (dp, Qrn — EV3)

deAH peAH Q,V Pyt
1=

*%DWmﬁﬂfémeﬁ)

+ (1, Vi) =L".
Then, by Lagrangian duality, we have that the objective is unchanged by swapping the min and max

H

L£* = min max max T+ FVigr — + {dp,Qn — EV}
Tin max, max h:1<luh h ht1 — Qn) + (dn, Qn h)

- %D(Mmﬂﬂ) - %H(dh»dﬁ) + (1, V)
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The inner maximization is solved by the following values

1 (Q,V) o< uy, ® exp (B(F, + FVis1 — Qn)) s
T (Q,Vis) oc my(+]s) © exp (B(Qn(s,-) = Vi(s))),

where © denotes the elementwise product between vectors. Then, replacing these values in the

Lagrandian and parameterizing the functions V}, by the functions ()}, to ensure normalization of the

policy, i.e. V},(s) = % log >, 7 (als) exp(BQn(s,a)) we have that

H
Lr = mc;i)n % ZlogZuZ(s, a) exp (B(Frn + FVihy1 — Qn)(s,a)) + (11, V1) .
h=1

s,a

Therefore, denoting

H
1 _
Q! = argémn 3 Zlogz,u’;l(s, a) exp (B(Frn + FVihy1 — Qn)(s,a)) + (11, V1),

h=1 s,a
and Vi = $1og ", 7}, (als) exp(BQ}, (s, a)), we have that the policy m,"" (-[s) = m! (Q',V';s)

has occupancy measure equal to d?l for all h € [H]. This is because by the constraints of the

problem we have that df:rl satisfies the Bellman flow constraints and that the policy 7TZ+1 satisfies

™ Hals) = dj(s,a)/ Y2, dj, (s, a). O
E.2 1D CHOSEN AS CONDITIONAL RELATIVE ENTROPY INEU ET AL.[(2017))

In this section, we study the update considering ID chosen as sum of the conditional relative entropy
over the stages b’ s.t. 1 < h/ < I, i.e. we study the following updateE]

H h
1
d'™! = arg max E <<dh,fh> ~3 E H(d}y,d%;)) )

deAT oy h'=1
st. ETd,=FTd,_, Yhel[H]. (6)

Theorem 8. The policy 7TZ+1 with occupancy measure d’;fl defined in Eq. @ can be computed as
follows

7 als) o el exp (5 Qs

where Qj, and V! | satisfies the following recursion
t = t
Qh =Tp+ FVh+1

H—-h+1
Vi (s) = T—i_ logZﬂ'fl(cﬂs)exp (HﬁhHQZH(S,aO .

Remark 7. The above recurrencies are sometimes called soft Bellman equations |Ziebart| (2010));
Fox et al.|(2015)).

Proof. Let us introduce an auxiliary variable uj, = dj, for all h € [H], then we can rewrite the
optimization program as

" h
1
§ F 77§:Hd/dt,
argmaxmﬁmx ((,uh,rh> 3 (dn, h))

deAH h=1 h=1
st. Eld,=FTu,  VhelH]
S.t. up = dp, VYhe [H]

>The sum over previous stages is taken to ensure l-strong convexity.  Indeed, it holds that
Sy H(dp,dy) > D(dn,dy) > L||dn — dj||3. The first inequality is proven in (Neu & Olkhovskaya,
2021, Lemma 7).
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Notice that importantly, we do not constraint the variable p. Then, by Lagrangian duality we have
that

H h
1
1 r — = H d / dt/
e maxwmin ) {fm, ) ~ 5 > H(dw.dj)
h=1 h'=1
+ (=E"dp + FT 1, Vi) + (Qn dn — pin)
H

= max maxmin sTh + FVig — ~+ (dp, — BV,
R TRV 2 (Hn, Th h+1 — Qn) + (dn, Qn h)

h
1
- — Z H(dh/,dz/) + <V17V1>
6}1’:1
H

= mi r FV; — d — EV,
min max max (BhsTh + FVig1 — Qn) + (dn, Qn h)

h=1
H—h+1
B

where the last equality holds by Lagrangian duality and by Zthl 22,21 H(dy ,d},) = ZhH:1 (H-

h-+1)H (dp, d},). Now since 4 is unconstrained we have that max,, Zthl (o, T + FVpi1 — Qp)
is equivalent to impose the constraint 7, + FV,y1 = Qp for all h € [H|. More-
over, as in the proof of Thm. the optimal d;, needs to satisfies that mg, (als) =

dn(s,a)/ Y, dn(s,a) is equal to m} (Q,V;s) = mh(-]s) ® exp (H_LW(Q}L(S, )= Vh(S))) for
Vi(s) = HfTh“ log >, 7} (als) exp(H_LhHQh(s, a)). Plugging in, these facts in the expression
for £*, we have that

H(dhadZ) + <V17‘/1> = E*a

L= Hgn <l/1,V1> st. T+ FVyp = Qn Yhe [H]

Since the above problem as only one feasible point, we have that the solution is

the sequence @ satisfying the recursion 7, + FV! , = Eowith  Vi(s)

% log 3=, m,(als) eXP(ﬁQ%(s,a)). 0

E.3 APPROXIMATING SOFT BELLMAN EQUATIONS BY STANDARD BELLMAN EQUATIONS.

Unfortunately, implementing the update for the V' value as in Theorem [7]is often numerically insta-
ble. In this section, we show a practical approximation which is easy to implement and shown to be
accurate for g sufficiently small.

Theorem 9. Let us denote (3, = and let us assume that the values Q% generated by the soft

B
H—ht1
Bellman equations in Thm. |8 are uniformly upper bounded by Q,.x, and let us choose B, <
Sorall h € [H]. Then, it holds that

1
Qmax

S

(mh(:18), Qh(s, ) < A

log ) (als) exp(BrQf, (s, a)) < (m},([s), Q(5,-)) + BrQrax -

Proof.

" o 3 7 el x4 5. 0) > = 52 mhlals) o exp(5:Qh 5 0)
= <7T;L('|3)7 Qlfsz(sv )> ;
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where the above inequality holds for Jensen’s. For the upper bound, we first use the inequality
e® <1+ x + z2 for x < 1 we have that

5 log Z 7 exp(BrQ}, (s, )

< 5] 1og27rh (14 Br@Q(s,0) + Br Q%) (Using Q1,(s,0) < Qumax)

F log 1 + Bh Zﬂ—h a’| Qh(s CL) + ﬁthax)

ﬁ th (als)Br@: (s,a) + Br Q2% .. (Using log(1 + z) < x)

< Qh( )> + Bthax
O

Remark 8. Given this result, in the implementation for deep RL experiment, i.e. Algorithm 4| we
compute the standard Q) value satisfying the standard Bellman equations (given in Lemmall)) rather
than the soft Bellman equation in Thm. [7| In virtue of Thm.[9} the approximation is good for 3
reasonably small.

F ADDITIONAL EXPERIMENT

F.1 EXPERIMENT IN MT-BENCH 101

The tasks in MT-bench 101 include Context Memory (CM), Anaphora Resolution (AR), Separate
Input (SI), Topic Shift (TS), Content Confusion (CC), Content Rephrasing (CR), Format Rephrasing
(FR), Self-correction (SC), Self-affirmation (SA), Mathematical Reasoning (MR), General Reason-
ing (GR), Instruction Clarification (IC), and Proactive Interaction (PI). We list the description of
each task in Tab. [3] The default evaluation mode of MT-bench 101 is that the GPT model requires
to access the conversation based on the given ground truth of previous steps, provided in MT-bench
101. However, in our problem setting, the answers among the conversation is also generated by
the model. We use “gpt-40-mini-2024-07-18” to evaluate the conversation. The maximum output
length and maximum sequence length of gpt-4o are set as 4096. We use a batch size of 8 with a
temperature of 0.8. We use the same prompt for gpt-4o as in Bai et al.| (2024). Our experiment
is conducted on 4 H200 GPUs. We use the PyTorch platform and the Transformer Reinforcement
Learning (TRL) for finetuning.

Table 3: A detailed description of each task in MT-bench 101 (taken from Bai et al.| (2024)).)

Task Abbr. | Description

Context Memory CM \ Recall early dialogue details to address the user’s current question.

Anaphora Resolution AR | Identify pronoun referents throughout a multi-turn dialogue.
Separate Input SI The first turn outlines the task requirements and the following turns specify the task input.

\
\
Topic Shift ‘ TS

Recognize and focus on the new topic when users unpredictably switch topics.

Content Confusion cC Avoid interference from similar-looking queries with distinct meanings in the dialogue’s history.
Content Rephrasing CR | Rephrase the content of the last response according to the user’s newest requirement.

Format Rephrasing FR Rephrase the format of the last response according to the user’s newest requirement.
Self-correction SC Recorrect the last response according to the user feedback.

Self-affirmation SA Preserve the last response against inaccurate user feedback.

Mathematical Reasoning

MR ‘ Collaboratively solve complex mathematical problems with users across dialogue turns.

General Reasoning GR | Collaboratively solve complex general reasoning problems with users across dialogue turns.
Instruction Clarification 1C Seek clarification by asking further questions on ambiguous user queries.
Proactive Interaction PI Propose questions in reaction to user statements to spark their interest to continue the dialogue.
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Next, we provide the comparison between the proposed MPO and IPO 2024), which also
uses the squared loss and bypasses the BT model assumption. We run both IPO and MPO for one
iteration. The results in Tab. f] show that MPO achieves a higher average score than IPO.

Table 4: Comparison between MPO and IPO in MT-BENCH 101 dataset.

Perceptivity Adaptability Interactivity
Model Memory | Understanding | Interference | Rephrasing | Reflection Reasoning | Questioning
Avg. CM SI AR TS CC | CR FR | SC SA | MR GR | IC P1

Base (Mistral-7B-InstruCt)‘6.223‘ 7.202 \7.141 7.477 ‘7.839 8.294‘6,526 6.480‘4.123 4.836‘4.455 5061‘5.818 5.641

PO 6498 | 7.518 [7480 7759 |7.952 8652|6892 6768|4390 5.185]4.313 5378 |6.146 6.044

MPO 16630 7.624 |7.846 8085 |8398 8947|7105 7.286|4.208 4.993[4377 5264|6179 5873

We now present an ablation study to evaluate the benefits of incorporating terminal rewards. Using
MPO, we compare two approaches for optimizing aj,: one computes the preference signal based on
the terminal state sz, while the other uses the immediate next state s;,. The results within one
iteration for the MT-Bench 101 dataset are shown in Tab.E[, and those for the GSM/Math experiments
are provided in Tab. [f] Our findings reveal that using the terminal state sz performs worse
than using the immediate state s, in MT-Bench 101. In contrast, the difference in performance
is negligible in the GSM/Math tasks. The underlying reason is that in multi-turn conversational
datasets, especially when adjacent questions are not closely related, relying on preferences derived
from the terminal state can introduce noise. However, in math and reasoning tasks, the terminal
state often captures the final answer, making it more critical. Moreover, using sy for preference
signals is significantly more computationally expensive than using sy, due to the extended sequence
length. Consequently, we conclude that adapting the choice of terminal preference or intermediate
preference on the task’s characteristics is crucial for balancing performance and efficiency.

F.2 TABULAR EXPERIMENT

1.0

— MPO
—— OMPO

Exploitability

o
N

0.0

T T T T T
10° 10! 10? 103 104

# Updates

Figure 2: Results in the tabular experiments. Curves are averages across 10 different randomly
generated environments. The error bars report one standard deviation.

The setting of our large-scale experiments does not match the assumptions under which Thm. [3]
is proven. In particular, in the large scale experiments the state action value functions can not be
computed exactly. In this section, we consider a synthetic experiment in which the state action
functions can be computed exactly for both OMPO and MPO. We generate 10 random gridworlds
with a number of states and actions sample uniformly from the intervals [1, 100] and [2, 10]. We plot
the exploitability computed as

<1/1,maXV”’7r -vrT >
s

which is a standard metric to evaluate the distance from a Nash equilibrium. In particular, when
(7%, 7%) is a Nash equilibrium, the exploitability is 0. We can see that OMPO achieves very low

exploitability after 100 updates while 2000 updates are needed by MPO. In this case, where the
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Table 5: Ablation on terminal reward in MT-BENCH 101 dataset.

Perceptivity Adaptability Interactivity
Model Memory | Understanding | Interference | Rephrasing | Reflection | Reasoning | Questioning
Avg. CM SI AR TS CC | CR FR | SC SA | MR GR | IC P1

Base (Mistral-7B-Instruct) | 6223 | 7202 [ 7.141 7477 |7.839 8294 6.526 6.480 |4.123 4836|4455 5061|5818 5.641

MO (intermediate reward) | 6.630 | 7.624 | 7.846 8085|8398 8.947]7.105 7.286 |4.208 4993|4377 5264|6179 5873

MPO (terminal reward) ‘6.459‘ 7536 ‘7.328 7.643 ‘8.084 8.518‘6.847 6.883‘4.357 4.863‘4.403 5.542‘6.034 5.924

Table 6: Ablation on terminal reward in MATH and GSMS8K dataset.
Method | GSMBK | Math

Base (Qwen2-7B-Instruct) | 0.8559 [0.5538
MPO (intermediate reward) | 0.8734 |0.5720
MPO (terminal reward) 0.8734 |0.5734

@ functions can be computed exactly, we can appreciate the faster convergence rate of OMPO as
described by Thm. [5}

F.3 EXPERIMENT ON MATH REASONING TASKS

As discussed in Appx.[B] our framework can also cover the alignment of chain-of-thought reasoning.
In this section, we validate the proposed methods on math reasoning tasks. We select two widely

used datasets: MATH [Hendrycks et al.| (2021) and GSMS8K [Cobbe et al.| (2021). We use Qwen2-
7B-Instruct as the base model and follow the same evaluation procedure as in (2024).

We adopt the dataset for alignment from |Lai et al.| (2024), which contains 10795 samples of aug-
mented mathematical problems from MetaMath (Yu et al., 2024) and MMIQC
For step-DPO, we use the checkpoint provided in |Lai et al.| (2024). For both MPO and OMPO, we
perform full-parameter finetuning for 1 epoch with learning rate 5e~" and /3 tuned in the range of
{0.1,0.01,0.001}. For both MPO and OMPO, we select the Llama-3-based model as the preference
oracleﬂ and set the log z are set as 0.5. The final state with the answer is important in this task so we
only use the terminal reward (see Tab. [f] for comparison). We use AdamW optimizer
and cosine learning rate schedule (Loshchilov & Hutter, 2017) with a warmup ra-
tio of 0.1. The experiment is conducted on 4 A100-SXM4-80GB GPUs. The result is provided in
Tab.[7] showing that the proposed methods achieve performance comparable to step-DPO
[2024). Notably, MPO and OMPO do not require the ground truth label of the dataset during fine-
tuning while requires it. Additionally, MPO and OMPO need only a Llama3-based
pair-preference-model to compare two answers. Step-DPO requires GPT-4 to identify the incorrect
reasoning step in an answer, which is a considerably more difficult task than comparison.

®https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
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Table 7: Performance of math reasoning on MATH and GSMS8K dataset across various models.
MPO and OMPO achieve comparable performance comparable to step-DPO without requiring the
ground truth label of the dataset during fine-tuning while requires. Additionally,
MPO and OMPO only need access to an oracle Llama-3 to compare two answers whereas step-DPO
(2024) requires GPT-4 to locate the identify the incorrect reasoning step in an answer,
which is a considerably more difficult task than comparison.

Method | GSM8K | Math
Base (Qwen2-7B-Instruct) | 0.8559 |0.5538

Step—DP02024 0.8680 | 0.5836
iter=

MPO 0.8734 |0.5734
MPO (iter=2) 0.8734 |0.5786
OMPO (iter=2) 0.8779 |0.5786

G MOTIVATION OF CONSIDERING INTERMEDIATE REWARD

In this section, we elaborate on the motivation for considering intermediate rewards at each turn
instead of only terminal rewards.

In multi-turn conversation tasks, such as MT-bench 101 2024), the user asks questions
1, Ta, T3, and receives answers a1, as, az. When xo is not closely related to x1, aligning the first
step using feedback among different a; is much more helpful than using the sequence [a1, 22, as],
where x5, as can be considered as noise.

In mathematical reasoning tasks, as mentioned in (2024), some cases yield correct fi-
nal answers but contain errors in intermediate reasoning steps. Consequently, (2024)
filter out such samples using GPT-4. For example, consider a case where the reasoning steps
yield a correct final answer but include an error: [a$°™ a5y "¢, a§™!], where as ¢ is incorrect
while all of the other steps and the final answer a$”™*" is correct. When there is another response,
[aserreet, aSPrreet a§oreet] with all correct steps, using only terminal signal for aligning step 2 might not
guarantee that a§™" = ay""® because both of final answers are correct, especially when there is
only an incorrect step among long reasoning steps. In contrast, an intermediate signal would clearly
indicate a$"™ - ay "¢, accurately reflecting the quality of the intermediate steps. In practice, if the
final signal is important, e.g., in math reasoning task, then we can use only the terminal reward or
the average of terminal reward and intermediate reward, otherwise one can just use the intermediate

reward, which is cheaper to collect as compared to assigning reward until the terminal state.
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