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Abstract

Understanding how Large Language Models (LLMs) encode linguistic structures
remains a fundamental challenge in interpretability research. While diagnostic
classifiers (or "probes") are the standard tool for this task, they face significant
methodological criticism: training auxiliary classifiers introduces capacity con-
founds and calibration issues, often making it difficult to distinguish the model’s
intrinsic representations from the probe’s ability to learn the task. To address
these limitations, we introduce a probe-free framework for localizing linguistic
selectivity at the individual neuron level. Leveraging the controlled contrasts of
linguistic minimal pairs, we propose Minimal-Pair Neuron Separability (MPNS), a
metric that directly quantifies how reliably single neurons differentiate grammatical
from ungrammatical constructions without parameter updates. By applying this
framework to the Qwen3 model, we uncover a distinct functional hierarchy: syntac-
tic and morphological processing is concentrated in early-to-mid layers, whereas
semantic-syntactic interfaces and conceptual reasoning emerge in deeper layers .
Furthermore, hierarchical clustering of sensitive neurons reveals a modular internal
organization, identifying both domain-specific "specialists" and domain-general
"integrators". Our approach yields fine-grained, interpretable maps of linguistic
competence, offering a rigorous alternative to probing for mechanistic analysis.

1 Introduction

Where in a language model are specific syntactic distinctions represented, and can we organize the
responsible neurons into coherent functional groups? Prior work has evaluated syntactic competence
via targeted test suites and minimal pairs [15, 24, 4, 6, 7], and has analyzed the evolution of linguistic
information across layers [11, 22]. However, standard probing techniques require training auxiliary
classifiers, introducing capacity and calibration confounds [10, 20].

We propose a simple, probe-free neuron-level approach that leverages the controlled contrasts in
BLiMP [24] and COMPS [18] to directly score each neuron’s selectivity to a given linguistic
phenomenon. For each minimal pair we extract last-token activations per neuron, assemble positive
and negative activation vectors, and compute a correlation-derived separability index. A higher value
of this index indicates that the neuron more clearly separates the positive from the negative members,
suggesting that it encodes the syntactic phenomenon distinguished by the minimal pair. Conversely,
a low index implies that the neuron’s activations do not reflect this contrast, and thus the neuron is
irrelevant or insensitive to the corresponding phenomenon.
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Figure 1: Illustration of the minimal-pair neuron separability pipeline. Minimal pairs from
BLiMP/COMPS are fed into a transformer language model (here, Qwen3-0.6B). For each neu-
ron, we extract last-token activations for the grammatical (positive) and ungrammatical (negative)
members, assemble paired activation vectors, and compute a correlation-based separability score.
High separability indicates that the neuron reliably differentiates acceptable from unacceptable sen-
tences, providing a fine-grained map of linguistic selectivity at the neuron level.

Aggregating per layer yields a concise layer-wise selectivity curve; neurons at the peak layers
are further organized via hierarchical clustering [23, 19, 17] to expose structure among linguistic
phenomena. The result is an interpretable map of where and which neurons carry specific syntactic
distinctions, consistent with emerging mechanistic accounts of transformer internals [3, 5, 16]. Our
contributions are: 1) Minimal-pair neuron separability (MPNS): a correlation-based, probe-free
measure of neuron-level discrimination for grammatical vs. ungrammatical contrasts. 2) Layer-
wise selectivity and neuron-level category profiling: curve and heatmap summarizing where
syntactic distinctions concentrate in the stack across paradigms. 3) Neuron clustering of syntactic
phenomena: hierarchical clustering of peak-layer neurons reveals groups aligned with both “domain-
specific” constraints for concept, semantics, syntax and “domain-general” functions.

2 Methods

Model and dataset details can be found in the appendix.

2.1 Setup and notation

Let Dp = {(x+
i , x

−
i )}

Mp

i=1 denote the minimal pairs for a BLiMP/COMPS paradigm p (e.g., subject–
verb agreement). For a transformer with L layers and hidden width dℓ at layer ℓ, let hℓ(x) ∈ Rdℓ

be the last-token hidden state (for causal LMs). For neuron j ∈ {1, . . . , dℓ} define scalar activation
aℓj(x) = hℓ(x)j .

We z-score activations neuron-wise within each paradigm to remove scale:

ãℓj(x) =
aℓj(x)− µℓj

σℓj
, µℓj , σℓj are computed over {x+

i , x
−
i }

Mp

i=1.

2.2 Minimal-pair neuron separability

For neuron (ℓ, j) in paradigm p, form paired activation vectors
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Define the Minimal-Pair Neuron Separability score

Sℓj(p) = 1−
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ℓj,p, v

−
ℓj,p

)
− (−1)

2
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)
2

, (1)

Intuitively, if a neuron responds differently to grammatical versus ungrammatical members across
items, the correlation between their activations is low, yielding a separability score Sℓj(p) close
to 1; conversely, if the activations are similar, the correlation is high and Sℓj(p) approaches 0. This
paired sensitive index is scale-invariant (post z-scoring) and uses only controlled contrasts, avoiding
classifier capacity issues.
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2.3 Layer-wise selectivity

For paradigm p, the layer-wise selectivity is LMSℓ(p) = 1
dℓ

∑dℓ

j=1 Sℓj(p). We average across
paradigms within each BLiMP supercategory (e.g., Agreement, Anaphor Agreement, Island Effects)
to obtain smoother curves. Because different syntactic and semantic phenomena can naturally induce
distinct activation scales in the hidden states, a direct comparison across paradigms may otherwise be
dominated by raw magnitude differences rather than genuine selectivity patterns. We therefore apply
neuron-wise z-scoring within each paradigm, which removes scale disparities and ensures that the
resulting curves reflect relative separability strength on a comparable basis across linguistic features.

2.4 Clustering neurons into linguistic groups

To compare neurons across paradigms within a common representational stage, we fix a single
analysis layer ℓ̄ for all paradigms. Concretely, we set ℓ̄ = 15, which is the mode of the peak
layers obtained from the layer-wise mean separability curves; i.e., most paradigms exhibit maximal
selectivity around layer 15. Fixing the layer allows us to analyze the same set of neurons across
paradigms rather than mixing layers.

For each paradigm p, let Sℓ̄j(p) denote the separability score of neuron j at layer ℓ̄. We select the
top-K sensitive neurons by separability at this fixed layer,

N top
p =

{
(ℓ̄, j) : Sℓ̄j(p) ranks among the top K at layer ℓ̄

}
,

with K=5 in our main analyses. We form the union of selected neurons across paradigms, U =⋃
p N top

p , which yields a set of unique neurons at layer ℓ̄. Given an ordered list of paradigms P , we
construct a phenomenon-by-neuron matrix X ∈ R|P|×|U| with entries

Xp,(ℓ̄,j) = Sℓ̄j(p).

We then cluster neurons (columns of X) while keeping the paradigm order fixed on rows. Specifically,
we compute pairwise correlation distance

D
(
(ℓ̄, j), (ℓ̄, j′)

)
= 1− corr

(
X:,(ℓ̄,j), X:,(ℓ̄,j′)

)
,

and perform agglomerative hierarchical clustering with average linkage (UPGMA[21]). The den-
drogram determines the column order. The reordered heatmap of X reveals coherent neuron groups
at layer ℓ̄ with similar cross-paradigm selectivity profiles, aligning neurons with specific linguistic
phenomena.

3 Results and Discussion

Layer-wise selectivity. Figure 2-(a) shows the layer-wise mean separability (LMS) curves across
linguistic forms. A clear peak emerges around layer15, where many grammatical categories, in-
cluding morphology and core syntax, exhibit their strongest selectivity, consistent with the role of
middle layers in encoding local grammaticality. Interestingly, we observe an additional peak around
layer19, which is driven primarily by Concept contrasts. This suggests a functional separation: mid
layers concentrate on structural well-formedness, while deeper layers shift toward conceptual and
semantic–syntactic interface phenomena.

Neuron Category Analysis Across layers, Figure 2-(b) distinct domains of linguistic selectivity
emerge. Morphological and syntactic phenomena are most prominent in the lower and middle
layers, consistent with their role in early structure-building and local grammatical constraints. In
contrast, semantics-syntax interface phenomena (e.g., control/raising, quantifier scope, NPI licensing)
and conceptual distinctions appear predominantly in later layers, reflecting higher-level interpretive
operations. This developmental trajectory aligns with prior studies of representational progression in
LMs [22, 11, 3].

Interestingly, neurons sensitive to semantics-syntax interfaces are concentrated in the later two-thirds
of the model, but they do not saturate the entire layer. Instead, such neurons occupy localized subsets,
suggesting that high-level interpretive phenomena are implemented by specialized subspaces rather
than being distributed across all units. One plausible explanation is that interface distinctions require
coordinated patterns across a subset of neurons, leaving other neurons available for orthogonal
functions such as discourse modeling or world knowledge integration. This specialization might
highlight an emergent modularity within deep layers of the model.
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Figure 2: Colors indicate linguistic domains: Concept, Semantics–Syntax Interface, Morphology, and
Syntax. (a) Layer-wise average separability (LMS) curves across linguistic forms. Each curve shows
the mean separability of neurons within a form-specific paradigm, averaged across paradigms in the
same BLiMP supercategory. Scores are z-scored within each paradigm to remove scale differences
across phenomena, enabling direct comparison of relative selectivity patterns. (b) Neuron category
assignment across layers. Each neuron is assigned to the linguistic paradigm with the highest z-scored
separability (argmax), or labeled none if no form exceeds the threshold (z>0).

Figure 3: Hierarchical clustering of neurons at the fixed analysis layer (ℓ=15). For each paradigm,
the top-5 neurons by separability were selected and assembled into a phenomenon-by-neuron matrix.
Columns (neurons) were clustered using correlation distance and average linkage, while rows
(phenomena) were kept fixed and grouped by domain. The heatmap shows separability profiles with
the dendrogram on top, revealing four major neuron clusters.

Neuron clustering. Hierarchical clustering exposes four major groups of neurons with distinct
selectivity patterns n Figure 3. Cluster 1 contains neurons that are strongly selective for Concept
contrasts while remaining less sensitive to grammar, indicating highly domain-specific conceptual
units. Cluster 2 consists of neurons responsive to both semantics and syntax, but with stronger weights
toward semantic/Conceptual contrasts, suggesting mixed-domain but semantically biased encoding.
Cluster 3 shows the opposite profile: these neurons are insensitive to semantics but highly responsive
to syntactic and some morphological distinctions, reflecting grammar-specialized selectivity. Finally,
Cluster 4 also integrates both domains but leans toward syntax, revealing generalist neurons with a
structural bias.

Taken together, the clustering reveals a mixture of domain-specific neurons (e.g., conceptual special-
ists in Cluster1 and grammatical specialists in Cluster3) and domain-general neurons (Clusters2 and
4). This organization suggests that LLMs might not localize linguistic phenomena into completely
disjoint sets of neurons; instead, they develop specialized subpopulations alongside integrative units.
One possible explanation is that compositional language processing requires both dedicated circuits
for sharp distinctions (e.g., anaphor agreement or conceptual categorization) and integrative circuits
that bridge syntax and semantics for higher-level interpretation.
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A Supplementary Content

A.1 Models

We conduct our analysis on the recent Qwen3-0.6B model [25], a 0.6-billion-parameter causal
transformer released by Alibaba Group. Qwen3 adopts a decoder-only architecture with rotary
position embeddings, multi-head self-attention, and feed-forward layers following the standard
transformer design. Despite its relatively modest size, Qwen3-0.6B achieves strong performance
across a wide range of language modeling and reasoning benchmarks, making it a suitable testbed for
fine-grained interpretability studies. Its compact scale allows us to efficiently extract and analyze
neuron-level activations across all layers, while still reflecting representational trends found in
larger-scale models.

A.2 Dataset

We leverage two complementary minimal-pair resources. First, the BLiMP benchmark [24] provides
67 paradigms targeting core syntactic and morphological phenomena (e.g., subject–verb agreement,
anaphor binding, island constraints). Each paradigm consists of automatically generated sentence
pairs, where one member is grammatically acceptable and the other violates a targeted linguistic con-
straint. BLiMP thus offers controlled contrasts to isolate specific syntactic distinctions. Second, the
COMPS dataset [18] extends the minimal-pair methodology to conceptual and semantic phenomena,
focusing on compositional reasoning beyond surface syntax. Together, BLiMP and COMPS provide
a broad coverage of linguistic contrasts, from morpho-syntactic agreement to semantic composition,
enabling a systematic investigation of neuron-level selectivity across linguistic domains.

B Related Work

Targeted syntactic evaluation and minimal pairs. Evaluating the grammatical competence of
language models has evolved from calculating overall perplexity to using targeted diagnostic datasets.
Early work introduced small-scale, hand-crafted test suites to verify specific syntactic generalizations
[12, 14]. This methodology was significantly scaled up with benchmarks like BLiMP [24] and
automated platforms such as SyntaxGym [4], which use minimal pairs to isolate grammatical
phenomena and reveal systematic gaps in LM performance. However, while these behavioral metrics
effectively diagnose what linguistic rules a model violates, they treat the model as a black box,
offering limited insight into where and how these distinctions are represented internally [6, 7].

Representational structure and probing. To understand internal representations, the community
turned to diagnostic classifiers, or “probes.” seminal layer-wise analyses demonstrated that classical
NLP pipeline steps, such as part-of-speech tagging and parsing, are naturally rediscovered in the
hierarchical geometry of transformer representations [22, 11, 13, 8, 9]. Despite these insights, the
probing paradigm faces significant methodological criticism. A core debate concerns whether a probe
reveals the model’s intrinsic knowledge or merely exploits the probe’s own capacity to learn the task
from the embeddings [10]. Theoretical work using information-theoretic criteria further suggests
that probing results can be confounded by the ease of extracting information rather than its explicit
presence [20]. These limitations motivate the need for probe-free diagnostics, like our proposed
framework, which directly measure selectivity without the interference of auxiliary training.

Mechanistic interpretability and neuron-level analyses. Moving beyond layer-wise trends, mech-
anistic interpretability aims to reverse-engineer model components into human-understandable
algorithms. Recent studies have identified specific attention heads and MLP layers that function
as key-value memories [5] or localized circuits for factual recall [16, 3]. At the finest granularity,
individual neuron analyses have attempted to classify units in translation and morphology tasks
[2, 1]. Our work bridges the gap between these neuron-level diagnostics and linguistic theory. Unlike
prior work that often focuses on editing factual knowledge or broad concepts, we apply a rigorous
linguistic lens (via minimal pairs) to organize neurons. We complement existing mechanistic accounts
by (i) utilizing paired, controlled contrasts to eliminate confounding variables, and (ii) discovering
functional groups of neurons that align with theoretical distinctions between syntax, semantics, and
their interface.
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