
Dynamic MFC for Exo-NMDPs

Dynamic Mean-Field Control for Network MDPs with
Exogenous Demand

Anonymous authors
Paper under double-blind review

Abstract

This paper studies the network control problems with exogenous demand, where net-1
work controller must dynamically allocate resources to satisfy exogenous demands with2
unknown distributions. We formalize the problem using Networked Markov Decision3
Processes with Exogenous Demands (Exo-NMDPs), where the system states are de-4
coupled into endogenous states and stochastic exogenous demands. However, Exo-5
NMDPs pose three main challenges: scalability in large-scale networks; stochasticity6
from fluctuating exogenous demands; and delayed feedback of scheduling actions. To7
address these issues, we propose the Dynamic Mean-Field Control (DMFC) algorithm,8
a scalable and computationally efficient approach for matching exogenous demands.9
Specifically, DMFC transforms the high-dimensional actual states of the Exo-NMDP10
into low-dimensional mean-field states, and dynamically optimizes the policy by solv-11
ing a mean-field control problem at each time step. This enables DMFC to capture12
spatiotemporal correlations between demand and system state, while remaining robust13
against demand fluctuations and action execution delay. We validate DMFC on two14
representative scenarios: supply-chain inventory management and vehicle routing. Our15
experimental results show that DMFC adapts well to various demand patterns and out-16
performs state-of-the-art baselines in both scenarios.17

1 Introduction18

Network control problems with exogenous demand has a broad application in real-world scenarios,19
including: supply chain management Bellamy & Basole (2013); Zhang et al. (2014); Aminzade-20
gan et al. (2019), scheduling in robotic systems Rus; (2012); Pavone; (2016), and vehicle routing21
in mobility-on-demand systems Bullo et al. (2011); Holler et al. (2019); Gammelli et al. (2021).22
The control policies are the operational backbone of these systems, enhancing service reliability23
and driving cost reduction through dynamic and adaptive agent scheduling. However, designing24
such policies is challenging due to: 1) scalability in large-scale networks, 2) stochasticity from fluc-25
tuating exogenous demand, and 3) delayed feedback of control actions. These challenges lead to26
spatiotemporal mismatches between agents and demand, requiring a control policy π that adapts to27
evolving demand while incorporating past decisions for effective coordination.28

We formulate network control problems with exogenous demand as a Networked Markov Decision29
Processes with Exogenous Demands (Exo-NMDPs), extending Exo-MDPs Sinclair et al. (2023) into30
networking settings. To address Exo-NMDPs, we introduce a mean-field Exo-NMDP formulation31
to transform the high-dimensional actual state into low-dimensional mean-field state, capturing both32
the endogenous system dynamics and the exogenous demand signals. Based on this formulation,33
we develop the Dynamic Mean-Field Control (DMFC) framework, which operates in two stages at34
each time step t: First, DMFC constructs an ideal mean-field state by incorporating predicted future35
demand into the current endogenous system state. Second, it solves a linear program that yields the36
control policy πt by optimizing the system objective subject to mean-field dynamics and constraints.37
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The major contributions of our paper are listed below.38

• Problem Formulation. We model the network control problems with exogenous demand as a39
networked Markov decision process with exogenous demands (Exo-NMDP), where the system40
states are decoupled into endogenous states and stochastic exogenous demands. The decomposi-41
tion enables a more efficient and concise representation for policy design.42

• Algorithm Design. We propose Dynamic Mean-Field Control (DMFC) algorithm for Exo-43
NMDP. DMFC leverages historical information to infer ideal mean-field states and then synthe-44
sizes a control policy to align system states towards the target states. This addresses “the curse of45
networked agents” and intricate spatio-temporal correlations.46

• Experimental Evaluation. We evaluate DMFC in two real-world scenarios: supply chain in-47
ventory management and vehicle routing in mobility-on-demand systems. Experimental results48
show that our algorithm outperforms the state-of-the-art baseline in both applications. Our code49
is available at https://anonymous.4open.science/r/DMFC-1247-F3E4T38D/.50

2 Related Work51

Network control problems with exogenous demand have been studied from three main perspectives:52
RL-based (Reinforcement Learning), MPC-based (Model Predictive Control), and queueing-based53
methods. Here, we provide an overview of each approach. As mobility-on-demand systems are the54
representative example, we include them in the discussion.55

RL-based methods: (Deep) reinforcement learning methods Sutton & Barto (2018); Mnih et al.56
(2013); Ladosz et al. (2022) offers promising solutions for network control problems with exoge-57
nous demand, particularly in mobility-on-demand systems Qin et al. (2022); Wen et al. (2024).58
Recent hybrid approaches integrate RL with optimization: Wei et al. (2024) combine the mean-field59
optimization formulation in Braverman et al. (2019) with temporal difference (TD) learning, but60
relies heavily on historical demand trajectories; Gammelli et al. (2023) develop a Graph RL frame-61
work under bi-level optimization that first predicts reward-driven desired next states then solves for62
policy from linear programs, yet struggles with scalability and generality in complex networks. Be-63
yond single-agent paradigms, multi-agent RL (MARL) approaches encounter inherent dimensional-64
ity challenges. For instance, Lin et al. (2019) models vehicles as discrete-action agents, where com-65
plexity grow exponentially with agent counts. To address scalability limitations, Liu et al. (2022)66
employs regional agents while Wang et al. (2024) implements dynamic parameter sharing. How-67
ever, communication and coordination between agents remain unsolved. These challenges motivate68
mean-field control (MFC) Gast et al. (2012); Bäuerle (2023) and mean-field RL (MFRL) Carmona69
et al. (2023); Pásztor et al. (2023); Jusup et al. (2024), which simplify multi-agent interactions70
through representative agents operating within aggregated distributions. A practical demonstration71
comes from Jusup et al. (2025), who apply MFC and MFRL to vehicle rebalancing via fleet dynam-72
ics modeling to avoid direct vehicle-to-vehicle coordination. However, their framework assumes73
instantaneous task completion, which is a critical limitation given operational delays observed in74
physical systems.75

MPC-based methods: Model Predictive Control (MPC) Kouvaritakis & Cannon (2016); Borrelli76
et al. (2017) has become predominant in network control problems with exogenous demand, partic-77
ularly in vehicle repositioning scenarios Iglesias et al. (2018); Tsao et al. (2019); Aalipour & Khani78
(2024). However, MPC performance critically depends on model accuracy, and developing a high-79
fidelity model is both time and data-intensive. Furthermore, as the look-ahead steps increase, the80
computational complexity of MPC also increases, especially for a large-scale network with substan-81
tial agents.82

Queueing-based methods: Queueing theory Shortle et al. (2018) provides a framework for net-83
work resource allocation under exogenous demand constraints. Prior works Iglesias et al. (2016);84
Banerjee et al. (2022) investigate the problem within a queueing network, deriving routing poli-85
cies by analyzing the stationary distribution of a Markov chain. One of the most closely related86
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studies in this area is Braverman et al. (2019), which formulates the problem as a BCMP queueing87
network Baskett et al. (1975) and employs a mean-field optimization approach to determine the op-88
timal mean-field control policy. However, these studies primarily focus on the steady-state solutions89
under static environments, lacking adaptability to non-stationary or time-varying demands, where90
system states state evolves over time.91

We proposes the mean-field Exo-NMDP framework to model network control problems with ex-92
ogenous demand, and introduce DMFC, a scalable and robust algorithm that coordinates agents via93
mean-field control while explicitly accounting for operational delays. Experiments show that DMFC94
offers superior adaptability to dynamic demand variations and outperforms the state-of-the-art meth-95
ods in supply chain inventory management and vehicle routing in mobility-on-demand systems.96

3 Problem Formulation97

In this paper, we study a large-scale network control problem with exogenous demand over a net-98
work G = (V, E), where V and E are the sets of nodes and edges. At each time step, the system99
makes decisions to dispatch agents from node u to node v for optimizing exogenous demand sat-100
isfaction. We formulate the problem as a Networked Markov Decision Process with Exogenous101
Demand.102

3.1 Networked MDPs with Exogenous Demands (Exo-NMDPs)103

We propose Networked Markov Decision Processes with Exogenous Demand (Exo-NMDPs),104
which extend Exo-MDPs Sinclair et al. (2023) to multi-agent systems where agents are dynam-105
ically scheduled in response to exogenous demand. An Exo-NMDP is defined by the tuple106
(N ,G,S,Ξ,A,PS ,PΞ,R, γ). Here, N = {1, 2, · · · , n} is the set of agents operating on network107
topology G. The endogenous state space is S :=

∏
k∈N Sk, where each agent k has a local state108

sk,t ∈ Sk. The exogenous demand process is modeled as a stochastic sequence Ξ := {ξt}t≥0, where109

each ξt = {ξv,t}v∈V ⊂ N|V|
+ represents node-specific, time-varying demands. In our setting, ξt is110

revealed at the start of time t, as opposed to Sinclair et al. (2023), where it becomes known only after111
actions are taken. Given ξt, the system selects joint actions at = (a1,t, · · · , an,t) ∈ A :=

∏
k∈N Ak112

via a policy πt : S × Ξt → ∆(A), which maps current state st and demand history ξ1:t to a dis-113
tribution over actions. The system endogenous state evolves according to st+1 ∼ PS(·|st, at, ξt),114
while the exogenous demand follows a stochastic process ξt+1 ∼ PΞ(·|ξ1:t). The reward function115
R : S×Ξ×A → R evaluates system performance at each time step, for example, based on revenue116
from satisfied demand. Future rewards are discounted by a factor γ ∈ [0, 1). We assume that both117
PS and R are known, and that uncertainty arises only from PΞ. The objective is to learn a policy118
that maximizes the expected long-term cumulative reward.119

Exo-NMDPs as Multi-agent Semi-Markov Decision Processes. In Exo-NMDPs, agent actions120
may involve delays, such as travel time between network nodes. To model these temporal exten-121
sions, we adopt the option framework Sutton et al. (1999), where each option represents a tem-122
porally extended action that may span multiple time steps. For each individual agent, the option123
framework transforms its local MDP into a semi-Markov decision process (SMDP) Ross (1992),124
as the original action set A is replaced by a fixed set of options O (without loss of generality, in125
the subsequent discussion, we will abuse the term “actions” to also refer to “options”). While each126
agent operates under its own SMDP, the overall Exo-NMDP cannot be reduced to a single SMDP127
due to the asynchronous nature of agent decisions and variable option durations. Instead, we model128
the system as a Multiagent SMDP (MSMDP) Ghavamzadeh & Mahadevan (2004), where decision129
epochs are aligned with fixed-length time intervals (e.g., every 5 minutes). At each decision epoch130
t, only the subset of agents whose previous actions have just completed make new decisions, while131
the remaining agents continue executing their current actions. The MSMDP formulation of Exo-132
NMDPs enables tractable analysis across agents; however, the challenges of multi-agent scalability133
and communication remain unresolved.134
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Mean-Field Representation. To address the scalability and communication limitations inherent in135
Exo-NMDPs, we employ a mean-field formulation that aggregates individual agent behaviors into136
node-level dynamics, treating network nodes as the primary decision units. Let ℓk,t ∈ L denote the137
location of agent k at time t, which is embedded in its full state sk,t := (ℓk,t, · · · ). The system mean-138
field state is defined as: µt = {µv

t (i)}i∈V ∪ {µe
t (u, v)}(u,v)∈E , where µv

t (i) :=
1
n

∑n
k=1 I(ℓk,t =139

vi) denotes the fraction of agents currently idle at node i, and µe
t (u, v) := 1

n

∑n
k=1 I(ℓk,t = euv)140

captures the fraction of agents in transit along edge euv ∈ E . The former corresponds to agents141
available for new decisions at time t, while the latter represents those with ongoing actions. The142
exogenous demand is similarly normalized as ξt := {λv,t,Φvv′,t}, where λv,t := 1

nξv,t reflects143
the demand intensity at node v, and Φvv′,t} ∈ ∆(V) is the empirical conditional distribution over144
destinations v′ given an origin v, estimated from observed demands. When destination information145
is unavailable or unnecessary—such as in inventory systems where demand does not induce agent146
relocation and only local stock levels of nodes matter—Φt can be omitted. Based on this repre-147
sentation, joint actions at are sampled from a mean-field policy πt(at | µt, ξ1:t), which maps the148
current mean-field state and demand history to control decisions for each node. This abstraction149
transforms the system high-dimensional actual state into low-dimensional mean-field state, which150
greatly simplifies the system as the number of agent grows.151

3.2 Networked Control Problems with Exogenous Demand152

We formulate the networked control problems with exogenous demand as a mean-field Exo-NMDP153
and further adopt a fluid modeling perspective (similar to the approach in Braverman et al. (2019))154
to characterize the system macroscopic evolution through flow dynamics. Here, µv

t (i) denotes the155
idle agent density (or stock) at node i, µe

t (u, v) captures the in-transit flow of agents along edge156
(u, v), while actions at represent newly initiated outflows. This fluid abstraction yields a tractable,157
low-dimensional system that supports scalable and robust control policy design.158

Flow-Based Mean-Field Evolution. Two types of flows drive system evolution: demand flow and159
reposition flow. The demand flow from node i is defined as fD

i,t =
∑

j f
D
ij,t =

∑
j αi,tλi,tΦij,t,160

where αi,t ∈ [0, 1] is the fulfillment rate, λi,t is the normalized demand intensity, and Φij,t is the161
conditional probability distribution of demand from i being routed to j. Both λi,t and Φij,t are162
components of ξt. Depending on the system, fulfilled demand may either trigger agent relocation163
(e.g., in ride-sharing or delivery tasks), or remove agents from the system entirely (e.g., in inventory164
consumption). The reposition flow describes proactive agent movement based on a routing policy165
to balance supply and demand. It is defined as fR

i,t =
∑

j f
R
ij,t =

∑
j qij,t · µv

t (i), where µv
t (i) is166

the current density of idle agents at node i, and qij,t ∈ ∆(V) is the routing policy that specifies the167
probability of routing an idle agent from node i to j.168

Our framework naturally extends to settings where agents have multiple types or internal states,169
indexed by a finite set K. In this case, the mean-field state at each node i is now a vector µv

t (i) ∈ RK170
where each element tracks the density of agents of that type at node i. To capture internal transitions171
between types (e.g., status changes), we define a conversion flow fC

i,t = Ci,t · µv
t (i), where Ci,t is172

the type transition matrix at node i.173

In practice, flows fD, fR, and fC often incur delays. In other words, both agent type transitions174
and repositioning require some time, which we denote by a delay parameter τ . We incorporate this175
into a flow conservation model as follows:176

max E

[
T∑

t=1

R(µt, ξt, at)

]
(1)

s.t. fout
i,t = fD

i,t + fR
i,t + fC

i,t (2)

f in
i,t =

∑
k

(fD
ki,t−τ + fR

ki,t−τ ) + Ci,t−τf
C
i,t−τ (3)

µi,t+1 = µi,t + f in
i,t − fout

i,t (4)
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At each step t, we assume that demand-driven flows fD take place first, then agent repositioning177
fR, and finally local conversion fC . Equation (2) represents the total outflow and Equation (3) cap-178
tures the delayed inflow. The system’s mean-field state evolves according to the flow conservation179
dynamics in Equation (4). The objective (1) tries to maximize system long-term revenue.180

4 Method181

The stochastic nature of exogenous demand renders direct solutions to (1)–(4) intractable. To ad-182
dress this, we propose the Dynamic Mean-Field Control (DMFC) framework for stepwise policy183
optimization. At each time t, DMFC first predicts a ideal mean-field state µ∗

t with historical in-184
formation, and then solves for the policy πt from a mean-field control problem (6) - (7) via linear185
programming. The overall closed-loop interaction of DMFC with the environment is presented in186
Algorithm 1.187

Algorithm 1 Dynamic Mean-Field Control Loop with Environment Interaction

Require: network G, time horizon T
1: for t = 1, · · · , T do
2: Receive inflows f in

t from external sources or previous steps (environment update)
3: Observe endogenous system state st and exogenous demand ξt
4: Scale to the mean-field level: compute µt and demand ξt = (λt,Φt)
5: Match supply (µt) with demand (ξt) for demand flow fD

t

6: Forecast future demand ξ̂t+1 based on historical observations ξ1:t
7: Predict future supply µ̂t+1 by aggregating current state and delayed inflows
8: Construct the ideal mean-field state µ̂∗

t+1 by demand-proportional allocation
9: Solve the mean-field control problem (6)–(7) with ideal mean-field state µ̂∗

t+1 to obtain πt

10: Execute policy πt in the environment to generate flows fR
t and fC

t

11: end for

4.1 The Ideal Mean-Field State188

The ideal mean-field state µ̂∗
t+1 serves as a data-driven intermediate state that guides the stepwise189

policy optimization, which is constructed through the following steps. First, DMFC forecasts next-190
step demand ξ̂t+1 using a weighted history: ξ̂t+1 = w1:t·ξ1:t, where w1:t serves as learnable weight191
parameters controlling the influence of past observations ξ1:t on the prediction ξ̂t+1. To account for192

agent latency, projected future agent availability is estimated as µ̂i,t+1 = µi,t +
∑t+∆t

τ=t+1 f
in
i,τ . The193

ideal mean-field state µ̂∗
t+1 is then constructed by demand-proportional allocation:194

µ̂∗
i,t+1 =

ξ̂i,t+1∑
k ξ̂k,t+1

∑
k

µ̂k,t+1, ∀i ∈ V (5)

The ideal mean-field state µ∗
i,t improves both short and long-term performance by balancing supply195

with demand. In the short term, the proportional allocation scheme ensures high demand fulfillment196
and immediate reward maximization. In the long term, despite flow delays, proportional allocation197
allows the system to gradually concentrate supply where demand is high, enhancing robustness and198
sustaining long-term efficiency.199

4.2 Dynamic Mean-Field Control200

With the ideal mean-field state µ̂∗
t+1 defined, we seek a control policy πt that moves the system201

from the its current state µt toward this target by solving:202

max
at

E [R(µt, ξt, at)− d(µt+1, µ̂
∗
t+1)] (6)

s.t. µt+1 = µt + f in
t − fout

t (7)
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Here, the reward function R(µt, ξt, at) evaluates immediate performance through demand fulfill-203
ment, while the discrepancy term d(m′

t,µ
∗
t ) penalizes deviations from the forecasted ideal state.204

The constraint in (7) models the system dynamics via flow conservation. In practice, however, due205
to stochastic disturbances, delayed flows, and model approximation errors, the policy πt may not206
perfectly align the evolved system state µt+1 with the ideal state µ̂∗

t+1. Instead, the system tends to207
stabilize around the ideal trajectory, maintaining a dynamic equilibrium that supports robust perfor-208
mance across varying conditions.209

5 Experimental evaluation210

In this section, we implemented DMFC and conducted experiments in two representative scenarios:211
(1) supply chain inventory management, following the experimental setup of the GRL framework212
Gammelli et al. (2023); and (2) vehicle routing in mobility-on-demand systems, where we adopt213
the original GRL configuration and further introduce augmented datasets with increased demand214
variability.215

5.1 Supply Chain Inventory Management (SCIM)216

We consider the Supply Chain Inventory Management (SCIM) problem as a mean-field Exo-NMDP,217
enabling scalable optimization of commodity production, transportation, and inventory control un-218
der uncertainty. In this framework, the supply chain network is modeled as a directed graph219
G = (V, E), compromising factories (VF ) and stores (VS), where each node acts as a control agent220
managing aggregate flows.221

States, Demands, Actions, and Rewards. The system mean-field state µt captures the normalized222
inventory levels at nodes and in-transit flow on edges. At each time t, exogenous demand ξt arrives223
at store nodes v ∈ VS . If local inventory is available, demand is fulfilled with revenue p. Otherwise224
it remains pending and accumulates a delay penalty ϵ per time step. Each node select actions over225
feasible flow decisions. Factories control commodity production (conversion flow fC

t ) ant outbound226
shipments (reposition flow fR

t ), incurring production cost mP , transportation cost mT , and delays227
tP , tij . Stores passively fulfill demand (demand flow fD

t ) and accept incoming shipments. All228
nodes face storage constraints ci, incur storage cost mS , and are penalized by ϵ for overstocking.229
The policy πt(at|µt, ξ1:t) maps currently observed inventory level µt and demand history ξ1:t to230
node-level flow actions. The reward function of the SCIM system is the total profit of the system,231
calculated as total revenue minus operational costs and penalties.232

DMFC GRL Improvement

1F2S 432 ± 193* 247 ± 110 +75%
1F3S 1671 ± 223* 875 ± 102 +91%
1F10S 4310 ± 358* 1244 ± 312 +246%

(a) Reward improvement of DMFC over GraphRL.

DMFC GRL Reduction

1F2S 766* 1113 -31.2%
1F3S 676* 1227 -44.9%
1F10S 2278* 5080 -55.2%

(b) Storage cost reduction of DMFC over GraphRL.
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(c) Production-demand comparison on 1F3S
dataset: DMFC vs. GraphRL.

Figure 1: Performance comparison between DMFC algorithm and GraphRL baseline

Supply Chain Inventory Control. We apply the DMFC policy to the SCIM problem and compare it233
against the GraphRL baseline. All results are averaged over 30 runs, with detailed settings provided234
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in Appendix A.1.1. Tables 1a and 1b show that DMFC consistently outperforms GraphRL across235
all benchmark scenarios (1F2S, 1F3S, and 1F10S; F = factory, S = store). Specifically, DMFC236
improves total reward by 75–246% while reducing storage costs by 31–55%, without increasing237
penalties or degrading fulfillment performance. Figure 1c further illustrates DMFC’s advantage in238
production planning. On the 1F3S dataset, DMFC achieves better alignment between production and239
demand trends, resulting in smoother inventory turnover and lower storage costs. Results confirm240
that the mean-field modeling and lookahead scheduling enable more efficient resource utilization241
and improved responsiveness to exogenous demand fluctuations.242

5.2 Vehicle Routing in Mobility-on-Demand Systems243

Vehicle routing problems in mobility-on-demand systems (ECR) can also be formualted as mean-244
field Exo-NMDPs, where the goal is to optimize the repositioning of idle vehicles in a transportation245
network G = (V, E) to maximize passenger demand fulfillment. Here, network nodes denote geo-246
graphic regions and edges capture feasible inter-region routes. Each region is considered a central247
controller agent that governs the allocation and repositioning of idle vehicles within its area.248

States, Demands, Actions, and Rewards. The mean-field state µt = (µv
t (i),µ

e
t (i, j)) describes249

the normalized distribution of idle vehicles at each region i ∈ V and in-transit vehicles along each250
edge (i, j) ∈ E . Exogenous demand is given by ξt := (λt(v),Φt(v, v

′)), where λt(v) is the251
normalized arrival rate of passenger requests at region v, and Φt(v, v

′) represents the empirical252
distribution over destinations. When passengers arrive in region v, they are instantly matched to253
idle vehicles in the same region, generating a demand flow fD. If supply falls short in that region,254
unmatched passengers leave the system. To reduce future imbalances, regions execute reposition255
actions, giving rise to the reposition flow fR. Both fD and fR are subject to delays tij due to travel256
time. Upon arrival, vehicles automatically transition back to idle state, generating the conversion257
flow fC . The reward is defined as total fare revenue minus fuel costs, and the objective is to optimize258
repositioning to maximize long-term returns.259

Empty Car Coordination. We evaluate DMFC on four benchmarks (New York, Shenzhen, DiDi-9,260
and DiDi-20) and compare it against the GraphRL baseline. All results are averaged over 30 runs,261
with each episode consisting of 200 steps. The evaluation metric is the Order Response Rate (ORR)262
Lin et al. (2019), defined as the ratio of served requests to total requests. Detailed experimental263
settings can be found in Appendix A.2.1. Figure 2 illustrates the demand patterns for each dataset.264
To ensure consistent evaluation, all datasets have been adjusted to span 200 time slots. The red265
line represents the average passenger demand across regions, while the shaded area indicates the266
regional demand heterogeneity. Clear periodic trends are observed in the (extended) New York and267
Shenzhen datasets, whereas distinct diurnal patterns are evident in the DiDi-9 and DiDi-20 datasets.268
See Appendix A.2.2 for more information on the datasets.269
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Figure 2: Demand pattern for each dataset in ECR environment

Figure 3a shows the ORR (Order Response Rate) performance on our (extended) New York and270
Shenzhen datasets with periodic demand. The GraphRL policy (GRL-Pretrain), which uses pre-271
trained weights directly from the original codebase without retraining, exhibits a clear performance272
degradation and limited adaptability across both cities. In contrast, DMFC maintains high and sta-273
ble performance, effectively adapting to dynamic demand patterns in non-stationary environments.274
Figures 3b report the ORR under two pricing schemes: (i) fixed pricing (unit price, no fuel cost),275
and (ii) realistic pricing with or without fuel cost. DMFC consistently outperforms GraphRL across276
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(a) Performance on extended New York and Shenzhen datasets with periodic demand.
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(b) Performance on DiDi-9 and DiDi-20 datasets under fixed and realistic pricing.

Figure 3: Order response rate (ORR) comparison across datasets and pricing schemes

all settings. Under fixed pricing, DMFC demonstrates a clear advantage on the DiDi-20 dataset and277
moderate improvements on DiDi-9. This is because DiDi-9 exhibits a more severe mismatch be-278
tween supply and demand, where even marginal enhancements in routing yield noticeable benefits.279
The performance gap further widens under realistic pricing. While GraphRL tends to pursue short-280
term gains, often neglecting long-term system efficiency, DMFC emphasizes demand satisfaction,281
leading to more effective resource allocation and more stable performance under dynamic pricing282
and cost structures.283

6 Conclusion284

This paper proposes the Dynamic Mean-Field Control (DMFC) framework for optimizing resource285
allocation in network control problems with exogenous demands. Evaluations on supply chain in-286
ventory management and vehicle routing tasks demonstrate DMFC’s superiority over the GraphRL287
baseline, with enhanced adaptability to demand fluctuations and network complexity. Further, the288
framework achieves generalizability across diverse demand patterns (periodic, diurnal, sparse), ro-289
bustness against supply-demand imbalances, and scalability to large networks via linear computa-290
tional complexity.291
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A Additional Experiment Details426

This section provides further details about the experimental configuration and hyperparameters. All427
RL modules are taken from Gammelli et al. (2023) and implemented using Pytorch Paszke et al.428
(2019). The Gurobi Optimizer Gurobi Optimization, LLC (2024) is used for optimization prob-429
lems. The code environment has been rewritten to facilitate more detailed and adaptable customiza-430
tion options. To ensure consistent behavior across environments in edge cases, some IBM CPLEX431
components from the original codebase of Gammelli et al. (2023) have been retained within our432
framework.433

A.1 Supply Chain Inventory Management434

A.1.1 Environment Details and Datasets435

We follow the basic setting of Gammelli et al. (2023) and define the exogenous demand pattern λt436
as a co-sinusoidal function with a stochastic component:437

λi,t =

⌊
λmax
i

2

(
1 + cos

(
4π(2i+ t)

T

)
+ U(0, λvar

i )

)⌋
(8)

where ⌊·⌋ is the floor function, λmax
i is the maximum demand value U(0, λvar

i ) is a uniform distribu-438
tion on the interval [0, λvar

i ], and T is the episode length. Hyperparameters in simulation experiments439
are borrowed from Gammelli et al. (2023) and listed below (with minor modifications):440

A.1.2 Mean-Field Control441

In a supply chain inventory management problem, commodities are modeled as agents whose distri-442
butions evolve over time. At each time step t, the system state st comprises current inventory levels443
at factories and stores, along with pending demands at each store node that have accumulated due444
to prior stockouts. Given the system state and exogenous demand ξt, we define the mean-field state445
µt and the demand vector ξt, both normalized by the total number of commodities in the network.446

The total commodity volume is not static, as items are continuously consumed (sold at stores) and447
replenished (produced by factories). To ensure a consistent mean-field representation, we incor-448
porate demand-driven production into the scaling process. Specifically, we forecast the next-step449
demand, account for current inventories and backlog levels, and infer the appropriate production450
quantity to maintain system balance. This enables us to construct a normalized and dynamically451
adjusted mean-field state that reflects both supply and anticipated demand over time.452

The mean-field control formulation of a SCIM problem is defined as follows:453

max
fR,fC ,ϵV ,ϵs

min
i∈VS

αi −M
∑
i∈V

|ϵVi | −
∑
i∈V

|ϵsi | (9)

s.t. µi,t+1 = µi,t − fD
i,t +

∑
k∈VF

fR
ki,t, ∀i ∈ VS (10)

µi,t+1 = µi,t −
∑
j∈VS

fR
ij,t + fC

i,t, ∀i ∈ VF (11)

µ̂∗
i,t+1 = µi,t+1 + ϵsi , ∀i ∈ V (12)

µi,t+1 ≤ Vi + ϵVi , ∀i ∈ V (13)

The objective (9) adopts a minimax structure, where mini∈VS αi denotes the worst-case demand454
fulfillment rate across all store nodes, analogous to the reward function R(µt, ξt, at) in (6). The455
penalty terms

∑
i |ϵsi| and M

∑
i|ϵV i| serve two purposes: the former captures the deviation be-456

tween the evolved mean-field state µt+ 1 and the target state µ̂∗
t+1 (as defined in (12)), while the457

latter penalizes inventory overflow beyond node capacity Vi, as constrained in (13).458
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Parameter Explanation Value

λmax Maximum demand [2, 16]
λvar Demand variance [2, 2]
T Episode length 30
tP Production time 1
tij Travel time [1, 1]
c Storage capacity [20, 9, 12]
mP Production cost 5
mS Storage cost [3, 2, 1]
mT Transportation cost [0.3, 0.6]
p Price 15
ϵ Penalty 21

(a) Parameters for the 1F2S environment

Parameter Explanation Value

λmax Maximum demand [1, 5, 24]
λvar Demand variance [2, 2, 2]
T Episode length 30
tP Production time 1
tij Travel time [1, 1, 1]
c Storage capacity [30, 15, 15, 15]
mP Production cost 5
mS Storage cost [2, 1, 1, 1]
mT Transportation cost [0.3, 0.3, 0.3]
p Price 15
ϵ Penalty 21

(b) Parameters for the 1F3S environment

Parameter Explanation Value

λmax Maximum demand [2, 2, 2, 2, 10, 10, 10, 18, 18, 18]
λvar Demand variance [2]i∈V
T Episode length 30
tP Production time 1
tij Travel time [1]i∈V
c Storage capacity [100, 15 ∀i ∈ V \ 0]
mP Production cost 5
mS Storage cost [1, 2 ∀i ∈ V \ 0]
mT Transportation cost [0.3]i∈V
p Price 15
ϵ Penalty 21

(c) Parameters for the 1F10S environment

Figure 4: Parameter settings for different SCIM environments

13



Under review for RLC 2025, to be published in RLJ 2025

Constraints (10) and (11) refine the general flow conservation dynamics in (4) for the supply chain459
inventory management (SCIM) setting. Specifically, fD

i,t represents the quantity of demand fulfilled460
at store node i, fR

ij,t indicates the fraction of commodities transferred from factory i to store j, and461
fC
i,t denotes the amount of production at factory node i.462

A.2 Vehicle Routing in Mobility-on-Demand Systems463

A.2.1 Environment Details464

We follow the experimental setup of Gammelli et al. (2023) and construct our environments ac-465
cordingly. To ensure consistent and comprehensive evaluation, all experiments are conducted on466
episodes consisting of 200 time steps. We model vehicles within mobility-on-demand systems as467
agents. Exogenous demand is then modeled as a Poisson arrival process, with intensity specified for468
each time step. Agent repositioning and scheduling delays are determined by the datasets and may469
be either constant or time-varying. Note that the geographical regions in the environment are not470
necessarily fully connected.471

A.2.2 Datasets472

We conduct experiments on four benchmarks: the New York and Shenzhen datasets from Gammelli473
et al. (2023) (3-hour demand windows), the DiDi-9 dataset from DRI (2016) used by Braverman474
et al. (2019) (21-day order records), and the DiDi-20 dataset from KDDCup (2020) used by Wei475
et al. (2024) (a full-day order data). Table 1 gives an overview of each datasets. For preprocessing,476
we extended the New York and Shenzhen datasets to 200 timesteps. For the DiDi-9 and DiDi-20477
datasets, we extracted contiguous 200-timestep segments spanning 1 PM to 10 PM across consec-478
utive days. Figure 2 illustrates the preprocessed demand patterns, showing periodic trends in the479
New York/Shenzhen data and diurnal cycles in the DiDi-9/DiDi-20 datasets. The red line denotes480
average demand, with shading indicating regional variations.

NYC SZ DiDi-9 DiDi-20

# of regions 14 17 9 20
# of cars 1200 1200 1500 500
minutes per step 4 3 10 10

Table 1: Configurations of ECR simulation experiments over all datasets

481

Each dataset contains comprehensive records of travel times, origin–destination pairs, pricing, and482
other relevant information. From these records, we extract key time-slot-specific parameters to483
model the dynamics of the traffic network, including the demand pattern ξt, inter-regional travel484
time tij , and the fuel cost coefficient β.485

A.2.3 Mean-Field Control486

When considering vehicle routing problems in a mobility-on-demand system, we consider the real-487
world as inter-connected geographical regions, and model each vehicle as an agent. At each time488
step t, the system mean-field state µt represents the density of agents across each region. The ideal489
mean-field state of the system is defined in proportional to anticipated next-step demand of each490
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region. We define the corresponding mean-field control problem as follows:491

min
fR

∑
(i,j)∈E

tij · fR
ij +M · ϵi (14)

s.t. µi,t +
∑
k ̸=i

fR
ki −

∑
j ̸=i

fR
ij + ϵi ≥ µ̂∗

i,t+1, ∀i ∈ V (15)

∑
j ̸=i

fR
ij ≤ µi,t ∀i ∈ V (16)

The objective in (14) seeks to minimize repositioning time, thereby reducing the fuel cost associated492
with vehicle routing. This objective is alternative to our overarching goal of maximizing long-term493
system revenue as defined in (1). The auxiliary variable ϵ captures deviations between the actual494
system mean-field state µt+1 and the target mean-field state µ̂∗

t+1, with M denoting a large penalty495
coefficient. Constraint (15) ensures that the system evolves toward the desired target state, while496
constraint (16) enforces that the repositioning outflow from region i does not exceed the number of497
available empty vehicles.498
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