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Abstract
This paper studies the network control problems with exogenous demand, where net-
work controller must dynamically allocate resources to satisfy exogenous demands with
unknown distributions. We formalize the problem using Networked Markov Decision
Processes with Exogenous Demands (Exo-NMDPs), where the system states are de-
coupled into endogenous states and stochastic exogenous demands. However, Exo-
NMDPs pose three main challenges: scalability in large-scale networks; stochasticity
from fluctuating exogenous demands; and delayed feedback of scheduling actions. To
address these issues, we propose the Dynamic Mean-Field Control (DMFC) algorithm,
a scalable and computationally efficient approach for matching exogenous demands.
Specifically, DMFC transforms the high-dimensional actual states of the Exo-NMDP
into low-dimensional mean-field states, and dynamically optimizes the policy by solv-
ing a mean-field control problem at each time step. This enables DMFC to capture
spatiotemporal correlations between demand and system state, while remaining robust
against demand fluctuations and action execution delay. We validate DMFC on two
representative scenarios: supply-chain inventory management and vehicle routing. Our
experimental results show that DMFC adapts well to various demand patterns and out-
performs state-of-the-art baselines in both scenarios.

1 Introduction

Network control problems with exogenous demand has a broad application in real-world scenarios,
including: supply chain management Bellamy & Basole (2013); Zhang et al. (2014); Aminzade-
gan et al. (2019), scheduling in robotic systems Rus; (2012); Pavone; (2016), and vehicle routing
in mobility-on-demand systems Bullo et al. (2011); Holler et al. (2019); Gammelli et al. (2021).
The control policies are the operational backbone of these systems, enhancing service reliability
and driving cost reduction through dynamic and adaptive agent scheduling. However, designing
such policies is challenging due to: 1) scalability in large-scale networks, 2) stochasticity from fluc-
tuating exogenous demand, and 3) delayed feedback of control actions. These challenges lead to
spatiotemporal mismatches between agents and demand, requiring a control policy π that adapts to
evolving demand while incorporating past decisions for effective coordination.

We formulate network control problems with exogenous demand as a Networked Markov Decision
Processes with Exogenous Demands (Exo-NMDPs), extending Exo-MDPs in Sinclair et al. (2023)
into networking settings. To address Exo-NMDPs, we introduce a mean-field Exo-NMDP formula-
tion to transform the high-dimensional actual state into low-dimensional mean-field state, capturing
both the endogenous system dynamics and the exogenous demand signals. Based on this formu-
lation, we develop the Dynamic Mean-Field Control (DMFC) framework, which operates in two
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stages at each time step t: First, DMFC constructs an ideal mean-field state by incorporating pre-
dicted future demand into the current endogenous system state. Second, it solves a linear program
that yields the control policy πt by optimizing the system objective subject to mean-field dynamics
and constraints.

The major contributions of our paper are listed below.

• Problem Formulation. We model the network control problems with exogenous demand as a
networked Markov decision process with exogenous demands (Exo-NMDP), where the system
states are decoupled into endogenous states and stochastic exogenous demands. The decomposi-
tion enables a more efficient and concise representation for policy design.

• Algorithm Design. We propose Dynamic Mean-Field Control (DMFC) algorithm for Exo-
NMDP. DMFC leverages historical information to infer ideal mean-field states and then synthe-
sizes a control policy to align system states towards the target states. This addresses “the curse of
networked agents” and intricate spatio-temporal correlations.

• Experimental Evaluation. We evaluate DMFC in two real-world scenarios: supply chain in-
ventory management and vehicle routing in mobility-on-demand systems. Experimental results
show that our algorithm outperforms the state-of-the-art baseline in both applications. Our code
is available at https://github.com/BEATING-HEART/DMFC.

2 Related Work

Network control problems with exogenous demand have been studied from three main perspectives:
RL-based (Reinforcement Learning), MPC-based (Model Predictive Control), and queueing-based
methods. Here, we provide an overview of each approach. As mobility-on-demand systems are the
representative example, we include them in the discussion.

RL-based methods: (Deep) reinforcement learning methods Sutton & Barto (2018); Mnih et al.
(2013); Ladosz et al. (2022) offer promising solutions for network control under exogenous de-
mand, including mobility-on-demand systems Qin et al. (2022); Wen et al. (2024). Recent hybrid
approaches integrate RL with optimization, such as combining mean-field formulations with TD
learning Wei et al. (2024) or using Graph RL under bi-level optimization Gammelli et al. (2023),
but face challenges with data dependence, scalability, and generality. Multi-Agent RL (MARL) pro-
vides an alternative approach to address network control problems but also suffers from the curse of
dimensionality. To improve scalability, Feng et al. (2021) decomposes joint actions into sequential
atomic actions, Lin et al. (2019) treats vehicles within the same region as homogeneous agents and
shares policies among them based on contextual information; a similar idea is also adopted in Liu
et al. (2022). Wang et al. (2024) further enhances scalability via dynamic role modeling and param-
eter sharing. While these methods partially address coordination and communication, mean-field
control (MFC) Gast et al. (2012); Bäuerle (2023) and mean-field reinforcement learning (MFRL)
Carmona et al. (2023); Pásztor et al. (2023); Jusup et al. (2024) address these challenges by simpli-
fying multi-agent interactions through representative agent–environment dynamics and population
distributions. A practical demonstration comes from Jusup et al. (2025), who apply MFC and MFRL
to vehicle rebalancing via fleet dynamics modeling to avoid direct vehicle-to-vehicle coordination.
However, their framework assumes instantaneous task completion, which limits its applicability un-
der real-world operational delays.

MPC-based methods: Model Predictive Control (MPC) Kouvaritakis & Cannon (2016); Borrelli
et al. (2017) is widely used for network control with exogenous demand, particularly in vehicle
repositioning Iglesias et al. (2018); Tsao et al. (2019); Aalipour & Khani (2024). However, MPC
requires accurate models, and developing these models is both time and data intensive. Moreover,
its computation also grows quickly with longer horizons, making it challenging to scale in large
networks.

https://github.com/BEATING-HEART/DMFC
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Queueing-based methods: Queueing theory Shortle et al. (2018) also provides a framework for
network resource allocation under exogenous demand constraints. Prior works Iglesias et al. (2016);
Banerjee et al. (2022) address this using queueing networks, deriving routing policies from the sta-
tionary distribution of Markov chains. A closely related line of work Braverman et al. (2017; 2019)
formulates the problem as a BCMP queueing network Baskett et al. (1975) and applies mean-field
optimization to compute control policies. However, these studies focus on steady-state solutions in
static settings and lack adaptability to time-varying demands.

We propose a mean-field Exo-NMDP framework for network control under exogenous demand and
introduce Dynamic Mean-Field Control (DMFC), a scalable and robust algorithm that explicitly
handles operational delays. Experiments show that DMFC adapts well to dynamic demand and
outperforms state-of-the-art in supply chain and mobility-on-demand systems.

3 Problem Formulation

In this paper, we study large-scale network control problems with exogenous demand over a network
G = (V, E), where V and E are the sets of nodes and edges. At each time step, the system dispatches
agents from node u to node v to serve demand while optimizing overall performance. We formulate
the problem as a Networked Markov Decision Process with Exogenous Demand.

3.1 Networked MDPs with Exogenous Demands (Exo-NMDPs)

We propose Networked Markov Decision Processes with Exogenous Demand (Exo-NMDPs),
which extend Exo-MDPs in Sinclair et al. (2023) to multi-agent systems where agents are dy-
namically scheduled in response to exogenous demand. An Exo-NMDP is defined by the tuple
(N ,G,S,Ξ,A,PS ,PΞ,R, γ). Here, N = {1, 2, · · · , n} is the set of agents operating on network
topology G. The endogenous state space is S :=

∏
k∈N Sk, where each agent k has a local state

sk,t ∈ Sk. The exogenous demand process is modeled as a stochastic sequence Ξ := {ξt}t≥0, where
each ξt = {ξv,t}v∈V ⊂ N|V|

+ represents node-specific, time-varying demands. In our setting, ξt is
revealed at the start of time t, as opposed to Sinclair et al. (2023), where it becomes known only after
actions are taken. Given ξt, the system selects joint actions at = (a1,t, · · · , an,t) ∈ A :=

∏
k∈N Ak

via a policy πt : S × Ξt → ∆(A), which maps current state st and demand history ξ1:t to a dis-
tribution over actions. The system endogenous state evolves according to st+1 ∼ PS(·|st, at, ξt),
while the exogenous demand follows a stochastic process ξt+1 ∼ PΞ(·|ξ1:t). The reward function
R : S×Ξ×A → R evaluates system performance at each time step, for example, based on revenue
from satisfied demand. Future rewards are discounted by a factor γ ∈ [0, 1). We assume that both
PS and R are known, and that uncertainty arises only from PΞ. The objective is to learn a policy
that maximizes the expected long-term cumulative reward.

Exo-NMDPs as Multi-agent Semi-Markov Decision Processes. In Exo-NMDPs, agent actions
may involve delays, such as travel time between network nodes. To model these temporal exten-
sions, we adopt the option framework Sutton et al. (1999), where each option represents a tem-
porally extended action that may span multiple time steps. For each individual agent, the option
framework transforms its local MDP into a semi-Markov decision process (SMDP) Ross (1992),
as the original action set A is replaced by a fixed set of options O (without loss of generality, in
the subsequent discussion, we will abuse the term “actions” to also refer to “options”). While each
agent operates under its own SMDP, the overall Exo-NMDP cannot be reduced to a single SMDP
due to the asynchronous nature of agent decisions and variable option durations. Instead, we model
the system as a Multiagent SMDP (MSMDP) Ghavamzadeh & Mahadevan (2004), where decision
epochs are aligned with fixed-length time intervals (e.g., every 5 minutes). At each decision epoch
t, only the subset of agents whose previous actions have just completed make new decisions, while
the remaining agents continue executing their current actions. The MSMDP formulation of Exo-
NMDPs enables tractable analysis across agents; however, the challenges of multi-agent scalability
and communication remain unresolved.
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Mean-Field Representation. To address the scalability and communication limitations inherent in
Exo-NMDPs, we employ a mean-field formulation that aggregates individual agent behaviors into
node-level dynamics, treating network nodes as the primary decision units. Let ℓk,t ∈ L denote the
location of agent k at time t, which is embedded in its full state sk,t := (ℓk,t, · · · ). The mean-field
state is defined as: µt = {µv

t (i)}i∈V ∪{µe
t (u, v)}(u,v)∈E , where µv

t (i) :=
1
n

∑n
k=1 I(ℓk,t = vi) de-

notes the fraction of agents currently idle at node i, and µe
t (u, v) :=

1
n

∑n
k=1 I(ℓk,t = euv) captures

the fraction of agents in transit along edge euv ∈ E . The former corresponds to agents available
for new decisions at time t, while the latter represents those with ongoing actions. The exogenous
demand is similarly normalized as ξt := {λv,t,Φvv′,t}, where λv,t := 1

nξv,t reflects the demand
intensity at node v, and Φvv′,t ∈ ∆(V) is the empirical conditional distribution over destinations v′

given an origin v, estimated from observed demands. When destination information is unavailable
or unnecessary—such as in inventory systems where demand does not induce agent relocation and
only local stock levels of nodes matter—Φt can be omitted. Based on this representation, joint ac-
tions at are sampled from a mean-field policy πt(at | µt, ξ1:t), which maps the current mean-field
state and demand history to control decisions for each node. This abstraction transforms the system
high-dimensional actual state into low-dimensional mean-field state, which greatly simplifies the
system as the number of agent grows.

3.2 Networked Control Problems with Exogenous Demand

We formulate the networked control problems with exogenous demand as a mean-field Exo-NMDP
and further adopt a fluid modeling perspective (similar to the approach in Braverman et al. (2019))
to characterize the system macroscopic evolution through flow dynamics. Here, µv

t (i) denotes the
idle agent density (or stock) at node i, µe

t (u, v) captures the in-transit flow of agents along edge
(u, v), while actions at represent newly initiated outflows. This fluid abstraction yields a tractable,
low-dimensional system that supports scalable and robust control policy design.

Flow-Based Mean-Field Evolution. Two types of flows drive system evolution: demand flow and
reposition flow. The demand flow from node i is defined as fD

i,t =
∑

j f
D
ij,t =

∑
j αi,tλi,tΦij,t,

where αi,t ∈ [0, 1] is the fulfillment rate, λi,t is the normalized demand intensity, and Φij,t is the
conditional probability distribution of demand from i being routed to j. Both λi,t and Φij,t are
components of ξt. Depending on the system, fulfilled demand may either trigger agent relocation
(e.g., in ride-sharing or delivery tasks), or remove agents from the system entirely (e.g., in inventory
consumption). The reposition flow describes proactive agent movement based on a routing policy
to balance supply and demand. It is defined as fR

i,t =
∑

j f
R
ij,t =

∑
j qij,t · µv

t (i), where µv
t (i) is

the current density of idle agents at node i, and qij,t ∈ ∆(V) is the routing policy that specifies the
probability of routing an idle agent from node i to j.

Our framework naturally extends to settings where agents have multiple types or internal states,
indexed by a finite set K. In this case, the mean-field state at each node i is now a vector µv

t (i) ∈ RK

where each element tracks the density of agents of that type at node i. To capture internal transitions
between types (e.g., status changes), we define a conversion flow fC

i,t = Ci,t · µv
t (i), where Ci,t is

the type transition matrix at node i.

In practice, flows fD, fR, and fC often incur delays. In other words, both agent type transitions
and repositioning require some time, which we denote by a delay parameter τ . We incorporate this
into a flow conservation model as follows:

max E

[
T∑

t=1

R(µt, ξt, at)

]
(1)

s.t. fout
i,t = fD

i,t + fR
i,t + fC

i,t (2)

f in
i,t =

∑
k

(fD
ki,t−τ + fR

ki,t−τ ) + Ci,t−τf
C
i,t−τ (3)

µi,t+1 = µi,t + f in
i,t − fout

i,t (4)
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At each step t, we assume that demand-driven flows fD take place first, then agent repositioning
fR, and finally local conversion fC . Equation (2) represents the total outflow and Equation (3) cap-
tures the delayed inflow. The system’s mean-field state evolves according to the flow conservation
dynamics in Equation (4). The objective (1) tries to maximize system long-term revenue.

4 Method

The stochastic nature of exogenous demand renders direct solutions to (1)–(4) intractable. To ad-
dress this, we propose the Dynamic Mean-Field Control (DMFC) framework for stepwise policy
optimization. At each time t, DMFC first predicts a ideal mean-field state µ∗

t with historical in-
formation, and then solves for the policy πt from a mean-field control problem (6) - (7) via linear
programming. The overall closed-loop interaction of DMFC with the environment is presented in
Algorithm 1.

Algorithm 1 Dynamic Mean-Field Control Loop with Environment Interaction

Require: network G, time horizon T
1: for t = 1, · · · , T do
2: Receive inflows f in

t from external sources or previous steps (environment update)
3: Observe endogenous system state st and exogenous demand ξt
4: Scale to the mean-field level: compute µt and demand ξt = (λt,Φt)
5: Match supply (µt) with demand (ξt) for demand flow fD

t

6: Forecast future demand ξ̂t+1 based on historical observations ξ1:t
7: Predict future supply µ̂t+1 by aggregating current state and delayed inflows
8: Construct the ideal mean-field state µ̂∗

t+1 by demand-proportional allocation
9: Solve the mean-field control problem (6)–(7) with ideal mean-field state µ̂∗

t+1 to obtain πt

10: Execute policy πt in the environment to generate flows fR
t and fC

t

11: end for

4.1 The Ideal Mean-Field State

The ideal mean-field state µ̂∗
t+1 serves as a data-driven intermediate state that guides the stepwise

policy optimization, which is constructed through the following steps. First, DMFC forecasts next-
step demand ξ̂t+1 using a weighted history: ξ̂t+1 = w1:t · ξ1:t, where w1:t serves as learnable
weight parameters controlling the influence of past observations ξ1:t on the prediction ξ̂t+1. Here,
we use a exponential moving average of historical demand for forecasting, which can be replaced by
advanced models (e.g., RNNs, transformers) if needed. Despite its simplicity, the moving average
captures demand trends well, keeping DMFC data-adaptive and efficient.

To account for agent latency, we estimate the projected future agent availability as: µ̂i,t+1 =

µi,t +
∑t+∆t

τ=t+1 f
in
i,τ . The ideal mean-field state µ̂∗

t+1 is then constructed via demand-proportional
allocation:

µ̂∗
i,t+1 =

ξ̂i,t+1∑
k ξ̂k,t+1

∑
k

µ̂k,t+1, ∀i ∈ V (5)

The ideal mean-field state µ∗
i,t improves both short and long-term performance by balancing supply

with demand. In the short term, the proportional allocation scheme ensures high demand fulfillment
and immediate reward maximization. In the long term, despite flow delays, proportional allocation
allows the system to gradually concentrate supply where demand is high, enhancing robustness and
sustaining long-term efficiency.
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4.2 Dynamic Mean-Field Control

With the ideal mean-field state µ̂∗
t+1 defined, we seek a control policy πt that moves the system

from the its current state µt toward this target by solving:

max
at

E [R(µt, ξt, at)− d(µt+1, µ̂
∗
t+1)] (6)

s.t. µt+1 = µt + f in
t − fout

t (7)

Here, the reward R(µt, ξt, at) evaluates immediate performance through demand fulfillment, while
the discrepancy term d(m′

t,µ
∗
t ) penalizes deviations from the forecasted ideal state. The constraint

in (7) models the system dynamics via flow conservation. In our setting, prediction and control
are coupled in a closed-loop: decisions are updated based on realized states, allowing the system
to stabilize around the ideal state trajectory µ̂∗

t+1 despite prediction errors. While prediction accu-
racy influences performance, the algorithm remains stable under moderate forecast noises and does
not require highly accurate forecasts. Moreover, the closed-loop structure also mitigates stochastic
disturbances by continuously correcting deviations, ensuring robust performance under uncertainty.

5 Experimental evaluation

In this section, we implemented DMFC and conducted experiments in two representative scenarios:
(1) supply chain inventory management, following the experimental setup of the GraphRL frame-
work Gammelli et al. (2023); and (2) vehicle routing in mobility-on-demand systems, where we
adopt the original GraphRL configuration and further introduce augmented datasets with increased
demand variability. We only include GraphRL as the state-of-the-art baseline.

5.1 Supply Chain Inventory Management (SCIM)

We consider the Supply Chain Inventory Management (SCIM) problem as a mean-field Exo-NMDP,
enabling scalable optimization of commodity production, transportation, and inventory control un-
der uncertainty. In this framework, the supply chain network is modeled as a directed graph
G = (V, E), compromising factories (VF ) and stores (VS), where each node acts as a control agent
managing aggregate flows.

States, Demands, Actions, and Rewards. The system mean-field state µt captures the normalized
inventory levels at nodes and in-transit flow on edges. At each time t, exogenous demand ξt arrives
at store nodes v ∈ VS . If local inventory is available, demand is fulfilled with revenue p. Otherwise
it remains pending and accumulates a delay penalty ϵ per time step. Each node select actions over
feasible flow decisions. Factories control commodity production (conversion flow fC

t ) ant outbound
shipments (reposition flow fR

t ), incurring production cost mP , transportation cost mT , and delays
tP , tij . Stores passively fulfill demand (demand flow fD

t ) and accept incoming shipments. All
nodes face storage constraints ci, incur storage cost mS , and are penalized by ϵ for overstocking.
The policy πt(at|µt, ξ1:t) maps currently observed inventory level µt and demand history ξ1:t to
node-level flow actions. The reward function of the SCIM system is the total profit of the system,
calculated as total revenue minus operational costs and penalties.

Supply Chain Inventory Control. We apply the DMFC policy to the SCIM problem and compare it
against the GraphRL baseline. All results are averaged over 30 runs, with detailed settings provided
in Appendix A.1.1. Tables 1a and 1b show that DMFC consistently outperforms GraphRL across
all benchmark scenarios (1F2S, 1F3S, and 1F10S; F = factory, S = store). Specifically, DMFC
improves total rewards and reduces storage costs by 31–55% without increasing penalties or harming
fulfillment. One might notice that DMFC has a relative high variance across runs compared with
GraphRL baseline. We believe that the possible reason is that our DMFC framework is training-free
and relies solely on the past and current demand information, while GraphRL benefits from access
to future demand during training and evaluation. Figure 1c further illustrates DMFC’s advantage in
production planning. On the 1F3S dataset, DMFC achieves better alignment between production and
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DMFC GraphRL

1F2S 432 ± 193 247 ± 110
1F3S 1671 ± 223 875 ± 102
1F10S 4310 ± 358 1244 ± 312

(a) Reward improvement of DMFC over GraphRL.

DMFC GraphRL Reduction

1F2S 766 1113 -31.2%
1F3S 676 1227 -44.9%
1F10S 2278 5080 -55.2%

(b) Storage cost reduction of DMFC over GraphRL.
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(c) Production-demand comparison on 1F3S
dataset: DMFC vs. GraphRL.

Figure 1: Performance comparison between DMFC algorithm and GraphRL baseline

demand trends, resulting in smoother inventory turnover and lower storage costs. Results confirm
that the mean-field modeling and lookahead scheduling enable more efficient resource utilization
and improved responsiveness to exogenous demand fluctuations.

5.2 Vehicle Routing in Mobility-on-Demand Systems

Vehicle routing problems in mobility-on-demand systems can also be formualted as mean-field Exo-
NMDPs, where the goal is to optimize the repositioning of idle vehicles in a transportation network
G = (V, E) to maximize passenger demand fulfillment. Here, network nodes denote geographic
regions and edges capture feasible inter-region routes. Each region is considered a central controller
agent that governs the allocation and repositioning of idle vehicles within its area.

States, Demands, Actions, and Rewards. The mean-field state µt = (µv
t (i),µ

e
t (i, j)) describes

the normalized distribution of idle vehicles at each region i ∈ V and in-transit vehicles along each
edge (i, j) ∈ E . Exogenous demand is given by ξt := (λt(v),Φt(v, v

′)), where λt(v) is the
normalized arrival rate of passenger requests at region v, and Φt(v, v

′) represents the empirical
distribution over destinations. When passengers arrive in region v, they are instantly matched to
idle vehicles in the same region, generating a demand flow fD. If supply falls short in that region,
unmatched passengers leave the system. To reduce future imbalances, regions execute reposition
actions, giving rise to the reposition flow fR. Both fD and fR are subject to delays tij due to travel
time. Upon arrival, vehicles automatically transition back to idle state, generating the conversion
flow fC . The reward is defined as total fare revenue minus fuel costs, and the objective is to optimize
repositioning to maximize long-term returns.

Vehicle Routing. We evaluate DMFC on four benchmarks (New York, Shenzhen, DiDi-9, and
DiDi-20) and compare it against the GraphRL baseline. All results are averaged over 30 runs, with
each episode consisting of 200 steps. The evaluation metric is the Order Response Rate (ORR)
Lin et al. (2019), defined as the ratio of served requests to total requests. Detailed experimental
settings can be found in Appendix A.2.1. Figure 2 illustrates the demand patterns for each dataset.
To ensure consistent evaluation, all datasets have been adjusted to span 200 time slots. The red
line represents the average passenger demand across regions, while the shaded area indicates the
regional demand heterogeneity. Clear periodic trends are observed in the (extended) New York and
Shenzhen datasets, whereas distinct diurnal patterns are evident in the DiDi-9 and DiDi-20 datasets.
See Appendix A.2.2 for more information on the datasets.

Figure 3a shows the ORR (Order Response Rate) performance on our (extended) New York and
Shenzhen datasets with periodic demand. The GraphRL policy (GRL-Pretrain), which uses pre-
trained weights directly from the original codebase without retraining, exhibits a clear performance
degradation and limited adaptability across both cities. In contrast, DMFC maintains high and sta-
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Figure 2: Demand pattern for each dataset in ECR environment
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Figure 3: Order response rate (ORR) comparison across datasets and pricing schemes

ble performance, effectively adapting to dynamic demand patterns in non-stationary environments.
Figures 3b report the ORR under two pricing schemes: (i) fixed pricing (unit price, no fuel cost),
and (ii) realistic pricing with or without fuel cost. DMFC consistently outperforms GraphRL across
all settings. Under fixed pricing, DMFC demonstrates a clear advantage on the DiDi-20 dataset and
moderate improvements on DiDi-9. This is because DiDi-9 exhibits a more severe mismatch be-
tween supply and demand, where even marginal enhancements in routing yield noticeable benefits.
The performance gap further widens under realistic pricing. While GraphRL tends to pursue short-
term gains, often neglecting long-term system efficiency, DMFC emphasizes demand satisfaction,
leading to more effective resource allocation and more stable performance under dynamic pricing
and cost structures.

6 Conclusion

This paper proposes the Dynamic Mean-Field Control (DMFC) framework for optimizing resource
allocation in network control problems with exogenous demands. Evaluations on supply chain in-
ventory management and vehicle routing tasks demonstrate DMFC’s superiority over the GraphRL
baseline, with enhanced adaptability to demand fluctuations and network complexity. Further, the
framework achieves generalizability across diverse demand patterns (periodic, diurnal, sparse), ro-
bustness against supply-demand imbalances, and scalability to large networks via linear computa-
tional complexity.
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A Additional Experiment Details

This section provides further details about the experimental configuration and hyperparameters. All
RL modules are taken from Gammelli et al. (2023) and implemented using Pytorch Paszke et al.
(2019). The Gurobi Optimizer Gurobi Optimization, LLC (2024) is used for optimization prob-
lems. The code environment has been rewritten to facilitate more detailed and adaptable customiza-
tion options. To ensure consistent behavior across environments in edge cases, some IBM CPLEX
components from the original codebase of Gammelli et al. (2023) have been retained within our
framework.

A.1 Supply Chain Inventory Management

A.1.1 Environment Details and Datasets

We follow the basic setting of Gammelli et al. (2023) and define the exogenous demand pattern λt

as a co-sinusoidal function with a stochastic component:

λi,t =

⌊
λmax
i

2

(
1 + cos

(
4π(2i+ t)

T

)
+ U(0, λvar

i )

)⌋
(8)

where ⌊·⌋ is the floor function, λmax
i is the maximum demand value U(0, λvar

i ) is a uniform distribu-
tion on the interval [0, λvar

i ], and T is the episode length. Hyperparameters in simulation experiments
are borrowed from Gammelli et al. (2023) and listed below (with minor modifications):

A.1.2 Mean-Field Control

In a supply chain inventory management problem, commodities are modeled as agents whose distri-
butions evolve over time. At each time step t, the system state st comprises current inventory levels
at factories and stores, along with pending demands at each store node that have accumulated due
to prior stockouts. Given the system state and exogenous demand ξt, we define the mean-field state
µt and the demand vector ξt, both normalized by the total number of commodities in the network.

The total commodity volume is not static, as items are continuously consumed (sold at stores) and
replenished (produced by factories). To ensure a consistent mean-field representation, we incor-
porate demand-driven production into the scaling process. Specifically, we forecast the next-step
demand, account for current inventories and backlog levels, and infer the appropriate production
quantity to maintain system balance. This enables us to construct a normalized and dynamically
adjusted mean-field state that reflects both supply and anticipated demand over time.

The mean-field control formulation of a SCIM problem is defined as follows:

max
fR,fC ,ϵV ,ϵs

min
i∈VS

αi −M
∑
i∈V

|ϵVi | −
∑
i∈V

|ϵsi | (9)

s.t. µi,t+1 = µi,t − fD
i,t +

∑
k∈VF

fR
ki,t, ∀i ∈ VS (10)

µi,t+1 = µi,t −
∑
j∈VS

fR
ij,t + fC

i,t, ∀i ∈ VF (11)

µ̂∗
i,t+1 = µi,t+1 + ϵsi , ∀i ∈ V (12)

µi,t+1 ≤ Vi + ϵVi , ∀i ∈ V (13)

The objective (9) adopts a minimax structure, where mini∈VS αi denotes the worst-case demand
fulfillment rate across all store nodes, analogous to the reward function R(µt, ξt, at) in (6). The
penalty terms

∑
i |ϵsi| and M

∑
i|ϵV i| serve two purposes: the former captures the deviation be-

tween the evolved mean-field state µt+ 1 and the target state µ̂∗
t+1 (as defined in (12)), while the

latter penalizes inventory overflow beyond node capacity Vi, as constrained in (13).
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Parameter Explanation Value

λmax Maximum demand [2, 16]
λvar Demand variance [2, 2]
T Episode length 30
tP Production time 1
tij Travel time [1, 1]
c Storage capacity [20, 9, 12]
mP Production cost 5
mS Storage cost [3, 2, 1]
mT Transportation cost [0.3, 0.6]
p Price 15
ϵ Penalty 21

(a) Parameters for the 1F2S environment

Parameter Explanation Value

λmax Maximum demand [1, 5, 24]
λvar Demand variance [2, 2, 2]
T Episode length 30
tP Production time 1
tij Travel time [1, 1, 1]
c Storage capacity [30, 15, 15, 15]
mP Production cost 5
mS Storage cost [2, 1, 1, 1]
mT Transportation cost [0.3, 0.3, 0.3]
p Price 15
ϵ Penalty 21

(b) Parameters for the 1F3S environment

Parameter Explanation Value

λmax Maximum demand [2, 2, 2, 2, 10, 10, 10, 18, 18, 18]
λvar Demand variance [2]i∈V
T Episode length 30
tP Production time 1
tij Travel time [1]i∈V
c Storage capacity [100, 15 ∀i ∈ V \ 0]
mP Production cost 5
mS Storage cost [1, 2 ∀i ∈ V \ 0]
mT Transportation cost [0.3]i∈V
p Price 15
ϵ Penalty 21

(c) Parameters for the 1F10S environment

Figure 4: Parameter settings for different SCIM environments
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Constraints (10) and (11) refine the general flow conservation dynamics in (4) for the supply chain
inventory management (SCIM) setting. Specifically, fD

i,t represents the quantity of demand fulfilled
at store node i, fR

ij,t indicates the fraction of commodities transferred from factory i to store j, and
fC
i,t denotes the amount of production at factory node i.

A.2 Vehicle Routing in Mobility-on-Demand Systems

A.2.1 Environment Details

We follow the experimental setup of Gammelli et al. (2023) and construct our environments ac-
cordingly. To ensure consistent and comprehensive evaluation, all experiments are conducted on
episodes consisting of 200 time steps. We model vehicles within mobility-on-demand systems as
agents. Exogenous demand is then modeled as a Poisson arrival process, with intensity specified for
each time step. Agent repositioning and scheduling delays are determined by the datasets and may
be either constant or time-varying. Note that the geographical regions in the environment are not
necessarily fully connected.

A.2.2 Datasets

We conduct experiments on four benchmarks: the New York and Shenzhen datasets from Gammelli
et al. (2023) (3-hour demand windows), the DiDi-9 dataset from DRI (2016) used by Braverman
et al. (2019) (21-day order records), and the DiDi-20 dataset from KDDCup (2020) used by Wei
et al. (2024) (a full-day order data). Table 1 gives an overview of each datasets. For preprocessing,
we extended the New York and Shenzhen datasets to 200 timesteps. For the DiDi-9 and DiDi-20
datasets, we extracted contiguous 200-timestep segments spanning 1 PM to 10 PM across consec-
utive days. Figure 2 illustrates the preprocessed demand patterns, showing periodic trends in the
New York/Shenzhen data and diurnal cycles in the DiDi-9/DiDi-20 datasets. The red line denotes
average demand, with shading indicating regional variations.

NYC SZ DiDi-9 DiDi-20

# of regions 14 17 9 20
# of cars 1200 1200 1500 500
minutes per step 4 3 10 10

Table 1: Configurations of ECR simulation experiments over all datasets

Each dataset contains comprehensive records of travel times, origin–destination pairs, pricing, and
other relevant information. From these records, we extract key time-slot-specific parameters to
model the dynamics of the traffic network, including the demand pattern ξt, inter-regional travel
time tij , and the fuel cost coefficient β.

A.2.3 Mean-Field Control

When considering vehicle routing problems in a mobility-on-demand system, we consider the real-
world as inter-connected geographical regions, and model each vehicle as an agent. At each time
step t, the system mean-field state µt represents the density of agents across each region. The ideal
mean-field state of the system is defined in proportional to anticipated next-step demand of each
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region. We define the corresponding mean-field control problem as follows:

min
fR

∑
(i,j)∈E

tij · fR
ij +M · ϵi (14)

s.t. µi,t +
∑
k ̸=i

fR
ki −

∑
j ̸=i

fR
ij + ϵi ≥ µ̂∗

i,t+1, ∀i ∈ V (15)

∑
j ̸=i

fR
ij ≤ µi,t ∀i ∈ V (16)

The objective in (14) seeks to minimize repositioning time, thereby reducing the fuel cost associated
with vehicle routing. This objective is alternative to our overarching goal of maximizing long-term
system revenue as defined in (1). The auxiliary variable ϵ captures deviations between the actual
system mean-field state µt+1 and the target mean-field state µ̂∗

t+1, with M denoting a large penalty
coefficient. Constraint (15) ensures that the system evolves toward the desired target state, while
constraint (16) enforces that the repositioning outflow from region i does not exceed the number of
available empty vehicles.


