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ABSTRACT

Fine-tuning significantly improves the performance of Large Language Models
(LLMs), yet its underlying mechanisms remain poorly understood. This paper
aims to provide an in-depth interpretation of the fine-tuning process through circuit
analysis, a popular tool in Mechanistic Interpretability (MI). Unlike previous
studies (Prakash et al., 2024; Chhabra et al., 2024) that focus on tasks where
pre-trained models already perform well, we develop a set of mathematical tasks
where fine-tuning yields substantial performance gains, which are closer to the
practical setting. In our experiments, we identify circuits at various checkpoints
during fine-tuning and examine the interplay between circuit analysis, fine-tuning
methods, and task complexities. First, we find that while circuits maintain high
node similarity before and after fine-tuning, their edges undergo significant changes,
which is in contrast to the previous work (Prakash et al., 2024; Chhabra et al., 2024)
that show circuits only add some additional components after fine-tuning. Based
on these observations, we develop a circuit-aware Low-Rank Adaptation (LoRA)
method, which assigns ranks to layers based on edge changes in the circuits.
Experimental results demonstrate that our circuit-based LoRA algorithm achieves
an average performance improvement of 2.46% over standard LoRA with similar
parameter sizes. Furthermore, we explore how combining circuits from subtasks
can enhance fine-tuning in compositional tasks, providing new insights into the
design of such tasks and deepening the understanding of circuit dynamics and
fine-tuning mechanisms.

1 INTRODUCTION

Mechanistic Interpretability (MI) has become a powerful approach for exploring the inner workings of
machine learning models, particularly Large Language Models (LLMs) Rai et al. (2024). It provides
valuable insights into how information flows and transforms across different layers Ferrando et al.
(2024). One of the most critical aspects of deploying LLMs in real-world scenarios is fine-tuning
Chung et al. (2024). However, the interpretability of how pre-trained models improve during fine-
tuning remains limited, and the underlying mechanisms enabling their success across tasks require
further investigation.

Many studies in MI regard models as computational graphs Geiger et al. (2021), where circuits are
specific subgraphs that perform identifiable functions Wang et al. (2022). Notably, this framework
has been successfully applied to various LLMs, revealing emergent behaviors within attention heads
and Multi-Layer Perceptrons (MLPs) Heimersheim & Janiak (2023); Burns et al. (2023); Hanna
et al. (2023); Gould et al. (2023). Moreover, circuits have recently been leveraged to investigate the
fine-tuning process of language models, seeking to understand the mechanisms behind fine-tuning
Prakash et al. (2024); Chhabra et al. (2024); Jain et al. (2024). However, these studies often focus
on tasks where pre-trained models already perform well (e.g., GPT-2 Radford et al. (2019) achieves
around 98% accuracy on the IOI task), or they use general data for fine-tuning rather than domain-
specific datasets Prakash et al. (2024). Under such conditions, fine-tuning mainly enhances existing
mechanisms (e.g., by adding some attention heads). Consequently, their arguments may not be
applicable in more practical fine-tuning scenarios where models initially perform poorly and require
fine-tuning on domain data.

To better understand fine-tuning mechanisms in practical settings, it is crucial to focus on tasks where
fine-tuning leads to performance improvements. In this work, we design a class of mathematical
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tasks on which pre-trained large language models initially perform poorly with low accuracy, yet
demonstrates a performance boost after fine-tuned. We employ the Edge Attribution Patching
with Integrated Gradients (EAP-IG) Hanna et al. (2024) method to identify circuits within both
pre-trained and fine-tuned models. Surprisingly, we observe that this approach consistently finds
circuits with high faithfulness, even though the two models differ markedly in performance (see
§2). To further validate the stability of the discovered circuits, we introduce another circuit metric,
robustness, which measures the stability of identified circuits by assessing their edge similarity under
different perturbation ratios of the dataset. We show that when compared with a randomly initialized
transformer model, the pre-trained model, despite exhibiting very low prediction accuracy, can still
achieve substantially higher robustness. This finding further supports the validity of the circuits
discovered during the fine-tuning process, irrespective of their prediction performance.

Our Main Findings. Based on the circuits analysis techniques and tasks introduced in §2, we provide
a comprehensive interpretation of the key factors in the fine-tuning process. Specifically, we focus on
three central research questions and summarize our main observations as follows:

1. (§3) How do circuits evolve during the fine-tuning process? We use pythia-1.4B-deduped Bi-
derman et al. (2023), gpt-neo-2.7B Black et al. (2021), opt-6.7B Zhang et al. (2022) to fine-tune
on five math tasks. By extracting the circuits at each stage of the model during fine-tuning
and analyzing these circuits, the circuits identified by EAP-IG demonstrate high fidelity in both
pre-trained and fine-tuned models, despite significant performance differences. We observe that
during fine-tuning, circuits gradually converge as modifications to nodes and edges decrease.
Meanwhile, new circuits emerge after fine-tuning, with edge changes playing a more significant
role in this process.

2. (§4) Can circuit insights enhance the fine-tuning process? We develop a circuit-aware Low-
Rank Adaptation (LoRA) method, which assigns higher ranks to layers that have more edge
changes in the circuits. We demonstrate across five different mathematical tasks that using circuit
insights to optimize the fine-tuning algorithm is effective, significantly improving LoRA’s accuracy
and parameter efficiency. Our experiments highlight how Mechanistic Interpretability enhances
fine-tuning efficiency, improving performance with fewer parameters using circuit change insights.

3. (§5) How capable is the Union Circuit in performing compositional tasks? To validate our
hypothesis, we design a two-step compositional task, such as ”(61 - 45) * 45 =”. This compositional
task was decomposed into an addition/subtraction task and a multiplication/division task and we
use the union of the circuits from subtasks to approximate the circuit for the compositional task.
Our results indicate the circuit for the combination task can be approximated by the union of
subtask circuits, enhancing the model’s performance on the combination task during fine-tuning.

2 CIRCUIT DISCOVERY AND TASK DESIGN

2.1 CIRCUIT DISCOVERY: EAP-IG

Attribution patching is a technique for identifying circuits using two forward passes and one backward
pass Syed et al. (2023). In our experiments, we use Edge Attribution Patching with Integrated
Gradients (EAP-IG) Hanna et al. (2024), which addresses computational inefficiency in large models
and resolves zero-gradient issues with KL divergence. EAP-IG computes importance scores by
integrating gradients along the path between clean and corrupted activations, making it our method of
choice. The formula for scoring each edge is:

∆L(E) ≈
∣∣∣∣(ecorr − eclean)

⊤ 1

m

m∑
k=1

∇ek
L(x)

∣∣∣∣,
where eclean and ecorr denote the activations in the circuit under the clean and corrupted inputs. m
is the total number of interpolation steps, and k represents the index of a specific step. ∇ek

L(x)
denotes the gradient of the loss function L(x) with respect to the interpolated activations ek.

In this study, we choose m = 5 based on Hanna et al.’s (2024) recommendations Hanna et al. (2024).
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2.2 CIRCUIT EVALUTAION: FAITHFULNESS AND ROBUSTNESS

Faithfulness. Faithfulness serves as a key metric to evaluate the reliability of circuits discovered
in MI and it quantifies how closely a circuit replicates the behavior of the original model Wang
et al. (2022); Chhabra et al. (2024); Prakash et al. (2024). We adopt Kullback-Leibler divergence
(KL-divergence) as the metric, following Conmy et al. Conmy et al. (2023). Let M denote the model
and C the discovered circuit. Faithfulness is defined as the percentage of the model’s performance
captured by the circuit. The formula for faithfulness is:

Faithfulness =
(
1− |F (M)− F (C)|

F (M)

)
× 100%,

where F (M) represents the performance of the full model M and F (C) represents the performance
of the circuit C.

Robustness. To evaluate the stability of the identified circuit, we propose a robustness score based
on its robustness under dataset perturbations. Taking addition and subtraction tasks as an example,
perturbations include numeric noise (e.g., changing 7 + 12 to 7 + 15), and operator noise (e.g.,
replacing 12 + 7 with 12− 7). And we conduct robustness calculations on these perturbed datasets,
applying noise at varying levels to create noisy datasets.

The robustness score is computed using the Jaccard Similarity Jaccard (1912) between the initial
circuit G0 and perturbed circuits Gp. The formula is:

Robustness(p) = JE(G0, Gp),

where JE(G0, Gp) represents the Jaccard Similarity for edges between the initial circuit G0 and the
perturbed circuit Gp, and p denotes the perturbation level.

This modification focuses on edge similarity, as it better reflects structural integrity. A high robustness
score indicates that the perturbed circuits maintain a similar edge structure to the original, with a
score closer to 1 reflecting a robust circuit structure.

2.3 TASKS DESIGN

To examine the effect of fine-tuning on circuit dynamics, we construct a suite of challenging mathe-
matical tasks in which pre-trained models initially perform poorly. As shown in Figure 1, these tasks
help reveal the underlying fine-tuning mechanisms that drive significant performance gains during
the process.

Addition and Subtraction (Add/Sub). This task evaluates the model’s ability to perform basic
addition and subtraction operations. Corrupted data involves altering the arithmetic operation. The
task includes five subtasks categorized by the range of numbers involved within 100, 200, 300, 400,
and 500. Each subtask contains 5,000 instances.

Multiplication and Division (Mul/Div). This task assesses the model’s capability to handle multipli-
cation and division accurately. Corrupted data involves changing the operation between multiplication
and division. A total of 2,000 instances are included in this task.

Arithmetic and Geometric Sequence (Sequence). This task measures the model’s ability to
recognize and extend arithmetic or geometric sequences. Corrupted data involves altering one term
in the sequence. The dataset for this task contains 5,000 instances.

Least Common Multiple (LCM). This task tests the model’s ability to calculate the Least Common
Multiple (LCM) of two integers. Corrupted data involves changing the input numbers or the conditions
of the LCM calculation. The task includes 2,500 instances.

Function Evaluation (Function). This task focuses on the model’s ability to compute values for
linear functions, typically of the form y = mx+ b. Corrupted data involves altering the constant term
in the function. The dataset contains 5,000 instances. For each task, we ensure a strict separation
between the dataset used for fine-tuning and the dataset used for circuit analysis. Specifically, 80%
of the dataset is allocated for fine-tuning, and the remaining 20% is reserved for identifying circuits
and evaluating the model’s and circuit’s accuracies. This separation guarantees that performance
evaluation is conducted on data unseen during fine-tuning.
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Model

Add/Sub: 95 - 60 =

Sequence: 9, 18, 27, 36,

LCM: LCM(13, 66) =

Function: y=5x+74. Given x=1,2,3,4, y=79,84,89,

Mul/Div: 26 * 15 =
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Figure 1: The workflow of understanding fine-tuning mechanisms using circuits. The initial
pre-trained model shows low accuracy on tasks. The corresponding circuits were found in both
the pre-trained model and the fine-tuned model, and the fine-tuning mechanism was understood by
comparing the changes in the circuits before and after.

3 HOW DO CIRCUITS EVOLVE DURING THE FINE-TUNING PROCESS?

3.1 MODEL ACCURACY, CIRCUIT FAITHFULNESS, AND ROBUSTNESS ANALYSIS

To analyze circuit evolution, we first evaluate model accuracy across fine-tuning checkpoints. We use
LoRA Hu et al. (2021) to fine-tune the Pythia-1.4B model Biderman et al. (2023) on five different
mathematical tasks. The experimental settings for fine-tuning are shown in Appendix B. The left
panel of Figure 2 depicts the accuracy dynamics of the model on five mathematical tasks during
fine-tuning. We track the model’s accuracy at various training stages across different tasks, revealing
consistent improvements in performance throughout the fine-tuning process.

Next, we explore the faithfulness of the circuits found at each stage of fine-tuning. Prior work Hanna
et al. (2024) achieved over 85% faithfulness by selecting 1–2% of edges. Given our more complex
tasks and larger model, we select 5% of edges to ensure reliable circuits (faithfulness >70%). As
shown in the middle panel of Figure 2, circuit faithfulness consistently exceeds 80% across most
tasks, both before fine-tuning (Checkpoint 0) and throughout fine-tuning (Checkpoints 1–10). The
only exception is Add/Sub task, where faithfulness is 77.52% before fine-tuning. These results
confirm high circuit faithfulness in both pre-trained and fine-tuned models across all tasks.

Finally, we conduct robustness analysis on the circuits identified by EAP-IG. We evaluate the
robustness of circuits in the pre-trained model, the fine-tuned model, and a randomly initialized
model. In this section, we present the robustness analysis for the Add/Sub (100), with analysis for
other tasks provided in Appendix D. As discussed in Section 2.2, we perturb the original dataset
by 10% to 90% and identify the circuit of three models in perturbed datasets with varying noise
levels. Then, we compute the robustness score of Fine-tuned, Pre-trained, and Random models
under different perturbation levels. Results in the right part of Figure 2 reveal that circuits identified
by EAP-IG demonstrate high fidelity in both pre-trained and fine-tuned models, despite significant
performance differences.

Key Observation 1: Circuits can be identified in both pre-trained and fine-tuned models with
high faithfulness and robustness, regardless of their significant performance differences.
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Figure 2: Circuit Accuracy, Faithfulness, and Robustness during Fine-tuning. Left: Training
progress of the model accuracy across different mathematical tasks, showing continuous improve-
ment over checkpoints. Middle: Evolution of faithfulness metrics during training, demonstrating
consistently high faithfulness across five mathematical tasks. Right: Robustness analysis for the
Add/Sub task. Robustness evaluation under different perturbation levels, comparing Fine-tuned,
Pre-trained, and Random models.

3.2 CIRCUIT IS CONVERGING DURING FINE-TUNING

We conjecture that as the model’s accuracy on the task continues to improve, the model’s internal
circuits should continue to stabilize. To verify our hypothesis, we analyze the change of nodes and
edges across consecutive checkpoints.

First, we analyze node and edge changes across checkpoints. The top right of Figure 3 shows three
mathematical tasks with increasing model accuracy during fine-tuning. As the model accuracy
improves, the number of node and edge changes consistently decreases, indicating circuit stabilization
and convergence over time. Additional details for other tasks are provided in Appendix E.

Subsequently, we propose a new metric to measure the degree of change of nodes and edges during
fine-tuning. To quantify the changes in edges and nodes during fine-tuning across n checkpoints, we
define a unified change rate:

∆S =
1

n

n−1∑
t=0

∆st→t+1

S0
× 100%,

where ∆st→t+1 denotes the number of nodes or edges that change from checkpoint t to checkpoint
t+ 1, and S0 denotes the total number of nodes or edges in the initial circuit.

As shown in Figure 3, fine-tuning induces structural changes, with ∆S (Edge) consistently exceeding
∆S (Node) by a factor of 2–3 across three tasks. This underscores the pivotal role of edges as the
primary drivers of structural adaptation during fine-tuning. For the other tasks, the change rates of
nodes and edges in the circuit are also shown in Appendix E.

Key Observation 2: Fine-tuning performs more significant edge modifications than node
modifications.

3.3 REORGANIZING CIRCUIT EDGES TO FORM A NEW CIRCUIT

As discussed in Section 2.1, each edge’s score is computed as the dot product of the averaged loss
gradients and activation difference, quantifying its influence on model predictions. To examine
structural changes in circuits during fine-tuning, we use the 95th percentile of edge scores as a
dynamic threshold. Edges in the initial and final circuits exceeding this threshold are retained,
yielding sparser circuits that capture the model’s core information flow. Experimental results for all
other tasks are provided in Appendix F.

The distribution of added and deleted nodes and edges follows a distinct pattern. As illustrated in
the left part of Figure 3, added nodes are predominantly located in the middle and later layers of the
circuit, whereas added and deleted edges are concentrated in the middle layers. The shallow layers
exhibit minimal changes, providing a stable foundation for task-specific adaptations.
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Figure 3: The structural differences of Add/Sub(100) circuit (24 layers) and evolution of circuits
across checkpoints in terms of node and edge changes. Left: Differences of Add/Sub(100)
circuit before and after fine-tuning. The layout organizes nodes hierarchically from input to
output. Nodes and edges are color-based on their status: added (blue), removed (red), or unchanged
(grey/white). Darker grey nodes indicate higher degrees. Top Right: Node and edge changes
between checkpoints during fine-tuning in three tasks. The left chart depicts the number of node
changes per transition, while the right chart focuses on edge changes. Bottom Right: Change rate
of Add/Sub, Sequence, LCM tasks. Bars with diagonal lines represent the change rate of edges.

In order to prove our conclusions, we conduct investigations into how the circuit evolves under
different fine-tuning regimes. Specifically, Appendix G examines the circuit modifications resulting
from various PEFT strategies, while Appendix H focuses on the changes induced by full-parameter
fine-tuning and LoRA. Finally, Appendix I provides a comparison of circuit changes observed under
different LLMs. In these experiments, we also obtain the above key observation.

4 CAN CIRCUIT INSIGHTS ENHANCE THE FINE-TUNING PROCESS?

In the previous section, we observe that while the nodes in the model’s circuit exhibit minimal
changes during fine-tuning, the edges undergo significant modifications. This observation raises an
intriguing question: Can LoRA be improved by fine-tuning the edges that change the most? We would
like to improve the fine-tuning algorithm from the perspective of Mechanistic Interpretability.

4.1 APPLYING CIRCUIT EDGE CHANGES INTO LORA FINE-TUNING

Based on the score of edges and the result of section 2.1, we assume that the most “active” edges
play a key role in the fine-tuning process. Also, considering that LoRA is fine-tuned in layers of the
model, we want to focus on the layers where the most “active” edges are located.

We propose CircuitLoRA, a circuit-aware Low-Rank Adaptation (LoRA) method that incorporates
circuit-level analysis to enhance fine-tuning efficiency and performance. CircuitLoRA operates
in two phases: first, the edges with the largest score changes are analyzed to identify Critical
Layers; second, higher-rank LoRA modules are assigned to layers with more edge changes, while
standard-rank modules are applied to other layers. The complete procedure is detailed in Algorithm 1.

Our hypothesis is that this improved fine-tuning algorithm, which leverages circuit-based analysis,
can make better use of the fine-tuning mechanism. In the subsequent section, we investigate this
hypothesis, designing experiments across different mathmatical tasks to compare our strategy against
full parameter fine-tuning and LoRA baseline.
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Algorithm 1 CircuitLoRA: Improve LoRA Using Circuit-Based Critical Layers Identification
Input: Pre-trained model M , Pre-finetuning circuit Cbefore, Post-finetuning circuit Cafter, LoRA
ranks ro, rc, Scaling factors α, αcritical

Phase 1: Critical Layers Identification
Compute edge differences ∆e between Cbefore and Cafter

Aggregate ∆e to layer scores ∆l and select critical layers Lcritical

Phase 2: Module Replacement
for each layer l ∈ M do

if l ∈ Lcritical then
Replace l with EnhancedLoRALinear using rc and αcritical

else
Replace l with LoRALinear using ro and α

end if
end for
Return: Updated model M∗

Table 1: Performance metrics (accuracy in percentage) for Add/Sub (300) and four other math
tasks across different configurations. The control groups of CircuitLoRA (ro = 8, rc = 32) are
LoRA (ro = 16) and RandomLoRA (ro = 8, rc = 32), and the control groups of CircuitLoRA
(ro = 32, rc = 64) are LoRA (ro = 32) and RandomLoRA (ro = 32, rc = 64). Here, rc is the rank
for critical layer modules, and ro is the rank for non-critical layer modules.

Method Parameter Ratio Add/Sub(300) Mul/Div Sequence LCM Function
Pre-trained 0% 18.30 39.75 15.70 18.80 32.00
Full FT 100% 79.20 95.75 91.50 91.40 100.00
LoRA (ro = 2) 0.1111% 72.60 90.00 67.10 86.40 84.10
LoRA (ro = 8) 0.4428% 78.30 94.25 79.60 91.20 96.80
LoRA (ro = 16) 0.8816% 78.40 95.50 83.40 91.20 97.30
LoRA (ro = 32) 1.7479% 80.50 96.25 92.70 92.80 98.60

CircuitLoRA (ro = 8, rc = 32) 0.7175% 82.70 96.00 92.20 92.60 99.40
RandomLoRA (ro = 8, rc = 32) 0.7175% 77.50 95.50 81.70 90.40 97.70
CircuitLoRA (ro = 32, rc = 64) 1.4248% 83.10 97.00 94.60 93.00 99.50
RandomLoRA (ro = 32, rc = 64) 1.4248% 79.10 95.75 92.10 92.00 98.50

4.2 IMPROVING FINE-TUNING EFFICIENCY AND ACCURACY BY CIRCUIT INSIGHTS

To verify our hypothesis, we perform experiments on a range of arithmetic and mathematical reasoning
tasks. The experimental results of CircuitLoRA are summarized in two tables. In our experiments,
5 Critical Layers are selected. We compare CircuitLoRA against control groups including LoRA
and RandomLoRA (5 Critical Layers are randomly selected). For each method in the experiment, we
report the final accuracy as the mean of five runs with different random seeds.

As shown in Table 1, CircuitLoRA consistently outperforms baseline methods, including LoRA
and RandomLoRA, across all five tasks. For instance, in the ”within 300” task, CircuitLoRA
(ro = 8, rc = 32) achieves an accuracy of 82.70%, with fewer training parameters, surpassing
RadomLoRA and LoRA. When configured as CircuitLoRA (ro = 32, rc = 64) reaches 83.10%,
outperforming RandomLoRA and LoRA. CircuitLoRA experiments on other tasks refer to the
Appendix J.

By focusing on the edges with the highest score during fine-tuning, CircuitLoRA demonstrates
significant improvements in both accuracy and parameter efficiency across various mathematical
tasks. The experimental results presented in this study provide a compelling answer to the question
posed in Section 4. This approach leverages insights from Mechanistic Interpretability, identifying
and prioritizing Critical Layers where critical changes occur.

Key Observation 3: Circuits can in turn improve fine-tuning with higher accuracy and
parameter efficiency across various mathematical tasks.
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Table 2: Overlap for Different Values of k in Circuit Comparisons. The table presents Overlapk
between the Union Circuit and the Combination Circuit. Additionally, circuits from the Add/Sub task
are compared with those from the Mul/Div and Sequence tasks as control groups.

Circuit Comparison Overlapk
(
C1, C2

)
k = 100 k = 500 k = 1000

Union vs Compositional 69 259 470
Add/Sub vs Mul Div 51 187 357
Add/Sub vs Sequence 42 156 286

5 HOW CAPABLE IS THE UNION CIRCUIT IN PERFORMING COMPOSITIONAL
TASKS?

In this section, we further explore the behavior of circuits in compositional tasks, aiming to investigate
whether these tasks can be interpreted through the combination of circuits.

5.1 COMPOSITIONAL TASKS, COMPOSITIONAL CIRCUITS AND UNION CIRCUITS

In the beginning, we first introduce a series of definitions regarding the composition of tasks and
circuits.

Compositional Tasks. A compositional task is composed of multiple interrelated subtasks, each
contributing to the overall objective. Compositional Circuits. A Compositional Circuit captures the
structural and functional dependencies within a compositional task. Union Circuits. A Union Circuit
is constructed by merging the circuits of all subtasks.

To design the compositional tasks, we consider the two-step operation, which involves the calcula-
tion of two different types of mathematical problem, such as addition/subtraction and multiplica-
tion/division. For instance, the compositional task ‘(61− 45)× 45 =” involves two mathematical
operations: (1) (Addition/Subtraction): 61− 45 =”; and (2) (Multiplication/Division): 16× 45 =”.
More examples of compositional tasks can be found in Appendix K.

Our intuition is that if the circuits can represent the minimum calculation block for one tasks, then
it is conjectured that the Union Circuits of the two subtasks can exhibit the power to represent the
circuits for the compositional task. In the following, we will investigate the conjecture through two
approaches: (1) we compare the similarities between the Union Circuits and the Compositional
Circuits; (2) we use the Union Circuits to develop the CircuitLoRA algorithm and evaluate
whether the performance of the compositional task can also be improved.

5.2 EFFICIENT SINGLE-PHASE FINE-TUNING ON COMPOSITIONAL TASK WITH UNION
CIRCUIT

We conduct overlap analysis and fine-tuning experiments on the two-step operation combination task.
For a circuit C, we define a Topk(C) metric to quantify how many of the top-k edges, ranked by their
scores, are shared between two circuits. Then we define the Overlap metric as follows:

Overlapk
(
C1, C2

)
=

∣∣Topk(C1) ∩ Topk(C2)
∣∣.

First, we calculate the Union Circuit and Combination Circuit under the two-step operation combina-
tion task.

Through overlap analysis, we prove the efficiency of Union Circuit to a certain extent. Table 2 analyzes
the overlap for different values of k to evaluate the efficiency of the Union Circuit. The results show
that, regardless of the value of k, the overlap between the Union Circuit and the Compositional
Circuit is consistently the highest. Comparisons are made between the addition/subtraction circuit
and circuits from control tasks, such as multiplication/division and arithmetic/geometric sequences.
The overlaps in these cases are notably lower. These findings demonstrate that the Union Circuit
provides an approximate representation of the Compositional Circuit.
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Table 3: Performance metrics for Two-Step Operations Task. CircuitLoRAC represents using
Compositional Circuit for Critical Layer Identification and CircuitLoRAU represents using Union
Circuit. Model Accuracy (M.Acc.) all expressed as percentages.

Method Parameter Ratio M.Acc.
Pre-trained / 0.90
LoRA (ro = 2) 0.1111% 59.60
LoRA (ro = 8) 0.4428% 60.50
LoRA (ro = 16) 0.8816% 61.10
LoRA (ro = 32) 1.7479% 64.70

CircuitLoRAC (ro = 8, rc = 32) 0.7175% 67.20
CircuitLoRAU (ro = 8, rc = 32) 0.7175% 65.50
RandomLoRA (ro = 8, rc = 32) 0.7175% 62.30

Then, we use Union Circuit and Compositional Circuit to identify the Critical Layers to further
explore the ‘approximation ability” of Union Circuit. Table 3 summarizes the performance of
CircuitLoRA and LoRA on the two-step operations task. Specifically, CircuitLoRA with
Compositional Circuit achieves the highest accuracy of 67.20%. Surprisingly, when using the
Union Circuit for Critical Layer identification, CircuitLoRA achieves 65.50%, still exceeding the
performance of LoRA except the Compositional Circuit configuration.

This demonstrates we can use Union Circuit for single-phase fine-tune. This means that for fine-tuning
of the combination task, if we want to use CircuitLoRA, we do not need to find its combinational
circuit first, but can replace it with the union of the circuits of the subtasks that have been discovered
to some extent.

Key Observation 4: The composition of the circuits can effectively represent the circuits of
the compositional task.

6 CONCLUSION AND FUTURE WORK

In this paper, we build on circuit analysis to deepen our understanding of fine-tuning and better
leverage learned mechanisms. Our findings show that fine-tuning primarily modifying edges rather
than merely introducing new components to form new circuits. Building on this insight, we develop
a circuit-aware LoRA method. Across multiple tasks, our results demonstrate that incorporating
this MI perspective enhances fine-tuning efficiency. Additionally, we show that the composition of
subtask circuits effectively represents the circuit of compositional task.

Moving forward, we will explore the following directions. Although our work focused on math tasks,
applying circuit-based methods to more tasks would further validate the generality of our insights.
Additionally, while our compositional experiments only explore two-step arithmetic, extending
this analysis to multi-step or more compositional tasks could provide deeper insights into circuit
interactions, enhancing interpretability and fine-tuning efficiency.

IMPACT STATEMENT

Our work provides concrete insights for advancing Mechanistic Interpretability. This deeper under-
standing of the internal processes guiding model updates paves the way for more efficient, accurate,
and trustworthy AI systems. We hope these findings inspire new methods and applications that take
advantage of circuit-based analysis to unlock greater transparency, reliability, and performance in
LLMs development, and to make better use of the learned mechanisms in these models.

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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A RELATED WORK

A.1 MECHANISTIC INTERPRETABILITY

Mechanistic Interpretability investigates how components in large language models process and
represent information Wang et al. (2024). At present, many MI studies have been applied in various
fields of AI Safety. For instance, oversimplified probes risk Friedman et al. (2024), unlearning
fabricated knowledge Sun et al. (2024), reducing toxicity via alignment Lee et al. (2024), mitigating
hallucinations by editing representations Zhang et al. (2024), and generating truthful outputs through
inference-time interventions Li et al. (2023). Other studies explore how local model edits propagate
across tasks Cohen et al. (2024); Meng et al. (2023), Multi-Head Attention in-context learning Chen
et al. (2024); Chen & Zou (2024) and enhance influence-function sampling Koh et al.. Specifically,
our study examines how circuits evolve during fine-tuning for mathematical tasks, focusing on node
and edge changes to reveal mechanisms behind performance improvements.

A.2 CIRCUIT ANALYSIS AND FINE-TUNING

One direction of Circuit Analysis focuses on building complete circuits. Early work localizes
factual associations in mid-layer modules Meng et al. (2022) and uses causal mediation to uncover
biases Vig et al. (2020); Hase et al. (2023). Automated methods like Automated Circuit Discovery
identify significant units Conmy et al. (2023), while techniques like attribution patching, and refine
circuit extraction by handling near-zero gradients Syed et al. (2023); Hanna et al. (2024). Edge
pruning Bhaskar et al. (2024) provide insights into building the edge of the circuit. Another line
of research investigates the functional roles of circuit components, such as Attention heads Wu
et al. (2024); McDougall et al. (2023); Olsson et al. (2022); Gould et al. (2023); Cabannes et al.
(2024) and Feed Forward Networks (FFNs) / MLPs Geva et al. (2021; 2022); Bhattacharya & Bojar
(2024). Additionally, circuits have been used to analyze specific tasks, such as factual knowledge
retrieval Geva et al. (2023), arithmetic computation Stolfo et al. (2023), Greater Than task Hanna
et al. (2023), and circuit recognition in Indirect Object Identification Wang et al. (2022). Unlike these
analyses, which focus on smaller-scale tasks and models, our work offers a new lens on how circuits
evolve specifically during fine-tuning on mathematical tasks, revealing crucial roles of edge changes.

As pre-trained language models scale, fine-tuning methods have emerged, optimizing only a small
subset of parameters Ding et al. (2023). Parameter-efficient fine-tuning (PEFT) methods, such as
LoRA Hu et al. (2021), reduce computational costs while preserving functionality Ding et al. (2023).
Advances in LoRA, including pruning Zhou et al. (2024) and adaptive budget allocation Zhang et al.
(2023); Liu et al. (2022); Lialin et al. (2024), further improve efficiency. In our study, we introduce a
circuit-aware LoRA approach that adaptively assigns higher ranks to layers with more edge changes,
boosting efficiency and accuracy in mathematical tasks, and further illustrates how combining circuits
from subtasks can enhance performance in compositional tasks during fine-tuning.

B EXPERIMENTAL SETUP OF FINE-TUNING

Fine-tuning experiments were conducted across various arithmetic tasks, with configurations tailored
to each. All tasks were trained with a batch size of 8, gradient accumulation steps of 4, and a warmup
of 50 steps, using a weight decay of 0.01.

Addition and Subtraction (Add/Sub) task, which includes subtasks with ranges of 100, 200, 300,
400, and 500, each subtask consists of 5,000 samples. The 100-range subtask was trained for 2
epochs, while others were trained for 4 epochs. LoRA experiments were performed with ranks
r = 2, 8, 16, 32, using a learning rate of 3e-4, except for the 400-range (r = 32, lr=2e-4). Full
Parameter Fine-Tuning (FPFT) used learning rates of 8e-6 (100-range), 6e-6 (200-range), 5e-6
(400-range), and 4e-6 (500-range). CircuitLoRA applied higher learning rates (4e-4 or 5e-4) for
Critical Layers and 3e-4 for non-Critical Layers.

Multiplication and Division (Mul/Div) task contains 2,000 samples and was trained for 2 epochs.
LoRA used a learning rate of 3e-4, FPFT used 4e-6, and CircuitLoRA used 2e-4 for Critical
Layers and 3e-4 for non-Critical Layers.
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Arithmetic and Geometric Sequence (Sequence) task includes 5,000 samples, trained for 4 epochs.
LoRA experiments used a learning rate of 3e-4, FPFT used 8e-6, and CircuitLoRA applied 6e-4
(r = 32) and 5e-4 (r = 64) for Critical Layers, with 3e-4 for non-Critical Layers.

Least Common Multiple (LCM) task, which contains 2,500 samples and was trained for 2 epochs,
LoRA used learning rates of 3e-4 (r = 2, 8), 4e-4 (r = 16), and 2e-4 (r = 32). FPFT used 4e-6, and
CircuitLoRA used 4e-4 (r = 32) and 6e-5 (r = 64) for Critical Layers, with 3e-4 for non-Critical
Layers.

Function Evaluation (Function) task, with 5,000 samples trained for 2 epochs, used consistent
LoRA learning rates of 3e-4 (r = 2, 8, 16, 32), FPFT with 8e-6, and CircuitLoRA with 4e-4 for
Critical Layers and 3e-4 for non-Critical Layers.

C MODEL ACCURACY AND CIRCUIT FAITHFULNESS ON OTHER TASKS
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Figure 4: Performance analysis of Add/Sub tasks across different checkpoints. Left: Model
Accuracy (M.Acc.) shows the performance trends of four tasks—Add/Sub (200), Add/Sub (300),
Add/Sub (400), and Add/Sub (500) across checkpoints. Right: Faithfulness scores measure the
reliability of predictions for the same tasks across the same checkpoints.

The left part of Figure 4 presents the model’s accuracy for four task and the results indicate a
consistent improvement in accuracy across all tasks.

The right part of Figure 4 illustrates the faithfulness of circuits for the same tasks. Faithfulness scores
remain above 70% for all tasks. These results highlight both the accuracy improvements and the
reliability of circuits throughout the fine-tuning process.

D ROBUSTNESS ANALYSIS EXPERIMENTS ON OTHER TASKS

Building on the results reported in the main text, this appendix details our additional robustness
experiments conducted across multiple arithmetic tasks. Following the methodology presented in Sec-
tion 2.2, we systematically apply input perturbations to Multiplication/Division, Arithmetic/Geometric
Sequence, Least Common Multiple, and Function Evaluation tasks. Our findings further corroborate
the consistency and fidelity of circuits identified by EAP-IG, demonstrating their ability to adapt
under varying perturbation conditions while preserving core computational relationships.

Multiplication and Division Tasks Data perturbation in multiplication and division tasks involves
altering one of the operands within a specified range while maintaining the validity of the operation.
This introduces variability without disrupting the fundamental arithmetic relationship.

Example:

• Original: Calculate the result of the following arithmetic
expression and provide only the final answer: 26 * 15 =
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• Perturbed: Calculate the result of the following arithmetic
expression and provide only the final answer: 26 * 20 =

Arithmetic and Geometric Sequence Tasks For arithmetic sequences, perturbation is achieved by
uniformly shifting each term by a fixed integer. In geometric sequences, the first term is adjusted,
and subsequent terms are recalculated using the original common ratio to preserve the sequence’s
structure.

Example:

• Original: Derive the following sequence: 26, 66, 106, 146,

• Perturbed: Derive the following sequence: 21, 61, 101,
141,

Least Common Multiple (LCM) Tasks Data perturbation for LCM tasks involves regenerating
the last LCM expression using one of three strategies: generating multiples, coprimes, or pairs with
common factors that are not multiples. This ensures diversity and prevents redundancy in the dataset.

Example:

• Original: Calculate the least common multiple (LCM) of two
numbers. LCM(189, 84) = 756, LCM(200, 400) =

• Perturbed: Calculate the least common multiple (LCM) of two
numbers. LCM(189, 84) = 756, LCM(75, 120) =

Function Evaluation Tasks In function evaluation tasks, perturbation involves modifying the
constant term b in a linear function y = ax+b by a value within a specified range. The corresponding
y-values are recalculated to reflect the change, ensuring the functional relationship remains intact.

Example:

• Original: There is a function y=5x+201. Given x=1,2,3,4,
y=206,211,216,

• Perturbed: There is a function y=5x+151. Given x=1,2,3,4,
y=156,161,166,

In line with the observations for addition and subtraction, our experiments on LCM, Sequence,
Multiplication/Division, and Function Evaluation tasks demonstrate that circuits can be identified in
both pre-trained and fine-tuned models with high faithfulness and robustness. This finding holds true
despite the significant performance gap between the two model states, underscoring the reliability
and stability of the discovered circuits across diverse arithmetic tasks.

E NODE, EDGE, AND CHANGE RATE ANALYSIS ON OTHER TASKS

This section combines the analysis of node and edge changes with the change rates for various
tasks. By evaluating these metrics together, we provide a comprehensive view of the structural and
dynamic adjustments observed across different tasks. The node and edge changes reflect the structural
variations in the underlying data or models, while the change rate quantifies the intensity of these
changes, offering deeper insights into task-specific behaviors.

The Figure 6 presents an analysis of node and edge dynamics during fine-tuning across six tasks:
Within 200, Within 300, Within 400, Within 500, Multiplication/Division, and Function Evaluation.
It highlights how the interplay between node, edge, and change rate metrics contributes to the overall
task dynamics, ensuring a holistic understanding of the transformations involved in each scenario.
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Figure 5: Robustness analysis across four additional tasks: LCM, Sequence, Mul/Div, and
Function. Despite the varying perturbation levels, both the pre-trained and fine-tuned models exhibit
consistently high confidence scores compared to the randomly initialized model.
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Figure 6: Analysis of Node and Edge Changes Across Add/Sub Tasks, including Within 200,
Within 300, Within 400, Within 500, Multiplication/Division, and Function Evaluation. Left:
Node changes during fine-tuning. Middle: Edge changes during fine-tuning. Right: Change rates
for nodes and edges across tasks.

F CHANGES IN CIRCUITS BEFORE AND AFTER FINE-TUNING IN OTHER
TASKS

In this section, we compare the circuits before and after fine-tuning for tasks involving addition
and subtraction within the ranges of 200, 300, 400, and 500, as well as tasks on Multiplication and
Division, Arithmetic and Geometric Sequence, Least Common Multiple, and Function Evaluation.
Please refer to Figures 7, 8, 9, and 10 for the comparison results of all tasks before and after
fine-tuning.

Common Observations: The distribution of added and deleted nodes and edges follows a
distinct pattern. Our analysis reveals similarities with the findings from addition and subtraction
tasks within the range of 100. Same as Figure 3 in Section 3.3, added nodes predominantly appear in
the middle and later layers of the circuit. Similarly, added and deleted edges are concentrated in the
middle layers. In contrast, the shallow layers exhibit minimal changes, serving as a stable foundation
for task-specific adaptations.
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Graph Differences: Within 200 Graph Differences: Within 300

Added node Removed node Unchanged node Added edge Removed edge

Figure 7: Differences of Add/Sub(200) and Add/Sub(300) circuit (24 layers). Darker gray
indicates a higher node degree.

Graph Differences: Within 400 Graph Differences: Within 500

Added node Removed node Unchanged node Added edge Removed edge

Figure 8: Differences of Add/Sub(400) and Add/Sub(500) circuit (24 layers). Darker gray
indicates a higher node degree.

Trends with Increasing Number Ranges in Addition and Subtraction: We observe a distinct
trend in the circuits fine-tuned for addition and subtraction tasks as the number range increases. The
edges in the fine-tuned circuits become more concentrated, reflecting a refined structure to handle the
broader numeric range efficiently.

Comparative Observations Across Tasks: Tasks such as Multiplication and Division, Arithmetic
and Geometric Sequence, Least Common Multiple, and Function Evaluation exhibit different circuit
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Figure 9: Differences of Mul/Div and Sequence circuit (24 layers). Darker gray indicates a higher
node degree.

Graph Differences: LCM Graph Differences: Function

Added node Removed node Unchanged node Added edge Removed edge

Figure 10: Differences of LCM and Function circuit (24 layers). Darker gray indicates a higher
node degree.

adaptations compared to addition and subtraction tasks. As illustrated in Figures 9 and 10, these tasks
utilize circuits that focus more on the later layers. This difference indicates a shift in computational
emphasis, highlighting the tailored adaptations of the circuit for distinct task requirements.
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G CIRCUIT CHANGES DURING FINE-TUNING: A COMPARISON ACROSS
PEFT METHODS

In this appendix, we compare three different PEFT methods—LoRA, AdaLoRA, and IA3 across
various mathematical tasks (e.g., addition/subtraction with 200, multiplication/division, Sequence,
LCM, and Function). Figures 11 through 15 illustrate the model accuracy, faithfulness, and the
evolution of nodes and edges at each checkpoint, as well as the corresponding change rates. By
examining these metrics, we can observe how the internal circuits of each model evolve during
fine-tuning until they converge.

Add/Sub (200)

Comparison of 

Circuit Changes

(LoRA, AdaLoRA, IA3) 

Figure 11: Comparison of Add/Sub (200) circuits during fine-tuning with LoRA, AdaLoRA,
and IA3. Top: Model accuracy and faithfulness across checkpoints. Bottom Left: Node and
edge changes across checkpoint transitions. Bottom Right: Change rate of nodes and edges during
fine-tuning.

The three PEFT methods each create new circuits after fine-tuning on different mathematical tasks.
Additionally, we draw the following conclusions:

1. Across different PEFT methods (LoRA, AdaLoRA, IA3) and diverse math tasks, as
model accuracy improves, the circuits converge while edges undergo more significant
modifications than nodes, consistent with previous observations.

2. Moreover, IA3 has lower node and edge change rates compared to the other two PEFT
methods, which can be attributed to its smaller number of trainable parameters.

Hence, the choice among these three PEFT methods does not alter our primary conclusions that edges
exhibit greater changes than nodes, and that the circuits ultimately converge as accuracy increases.

H CIRCUIT CHANGES DURING FINE-TUNING: FULL PARAMETER
FINE-TUNING VS. LORA

This appendix compares the circuit changes during fine-tuning between Full Parameter Fine-Tuning
(Full-FT) and LoRA. Figure 16 presents the model accuracy and faithfulness at different checkpoints,
along with the node and edge modifications and their respective change rates. By examining these
metrics, we can observe the similarities and differences in circuit evolution under these two fine-tuning
approaches.

Full parameter fine-tuning and LoRA exhibit highly similar convergence trends in circuit
evolution. Therefore, both full parameter fine-tuning and parameter-efficient fine-tuning can create
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Figure 12: Comparison of Mul/Div circuits during fine-tuning with LoRA, AdaLoRA, and IA3.
Top: Model accuracy and faithfulness across checkpoints. Bottom Left: Node and edge changes
across checkpoint transitions. Bottom Right: Change rate of nodes and edges during fine-tuning.

Sequence

Comparison of 

Circuit Changes

(LoRA, AdaLoRA, IA3) 

Figure 13: Comparison of Sequence circuits during fine-tuning with LoRA, AdaLoRA, and IA3.
Top: Model accuracy and faithfulness across checkpoints. Bottom Left: Node and edge changes
across checkpoint transitions. Bottom Right: Change rate of nodes and edges during fine-tuning.

new circuit structures. In full parameter fine-tuning, the changes in edges are significantly greater
than those in nodes, which is consistent with the previous findings using LoRA.

I CIRCUIT CHANGES DURING FINE-TUNING: A COMPARISON ACROSS
DIFFERENT LARGE LANGUAGE MODELS

In this appendix, we compare circuit changes across different large language models (LLMs),
including pythia-1.4B-deduped, gpt-neo-2.7B, and opt-6.7B. Figure 17 illustrates their accuracy
and faithfulness during fine-tuning, as well as the modifications of nodes and edges through the
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Figure 14: Comparison of LCM circuits during fine-tuning with LoRA, AdaLoRA, and IA3.
Top: Model accuracy and faithfulness across checkpoints. Bottom Left: Node and edge changes
across checkpoint transitions. Bottom Right: Change rate of nodes and edges during fine-tuning.

Function

Comparison of 

Circuit Changes

(LoRA, AdaLoRA, IA3) 

Figure 15: Comparison of Function circuits during fine-tuning with LoRA, AdaLoRA, and IA3.
Top: Model accuracy and faithfulness across checkpoints. Bottom Left: Node and edge changes
across checkpoint transitions. Bottom Right: Change rate of nodes and edges during fine-tuning.

checkpoints and the corresponding change rates. By examining these metrics, we can gain insights
into how the internal circuits evolve under different model sizes and architectures.

Circuits in the addition/subtraction task converge across all models, with edge change rates
consistently exceeding node change rates. Fine-tuning in each model creates new circuits through
significant reconfiguration of connections among components.

Larger models exhibit higher node and edge change rates. As shown in Figure 17, the opt-6.7B
model demonstrates the largest change rates, while the faithfulness of its discovered circuit remains
stable throughout fine-tuning.
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Figure 16: Comparison of circuit changes during fine-tuning between Full Parameter Fine-
Tuning (Full-FT) and LoRA. Top: Model accuracy and faithfulness across checkpoints. Bottom
Left: Node and edge changes across checkpoint transitions. Bottom Right: Change rate of nodes
and edges during fine-tuning.

Add/Sub(100)

Comparison of 

Circuit Changes

· pythia-1.4B-deduped

· gpt-neo-2.7B

· opt-6.7B

Figure 17: Comparison of circuit fine-tuning changes between different LLMs (pythia-1.4B-
deduped, gpt-neo-2.7B, opt-6.7B). Top: Model accuracy and faithfulness across checkpoints.
Bottom Left: Node and edge changes across checkpoint transitions. Bottom Right: Change rate of
nodes and edges during fine-tuning.

Therefore, using different model architectures and sizes, we consistently observe the conclusions pre-
sented in Section 3.2 and Section 3.3: Circuit Convergence During Fine-Tuning and Reorganization
of Circuit Edges to Form a New Circuit.

J CIRCUITLORA PERFORMANCE ON OTHER TASKS

In this appendix, we extend our investigation of CircuitLoRA to additional tasks beyond those
discussed in the main text. These tasks include a variety of numerical operations, such as addition
and subtraction with varying ranges, to further examine the performance and robustness of our
circuit-aware fine-tuning approach. By testing CircuitLoRA on these additional benchmarks,
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we aim to provide a more comprehensive evaluation, highlighting how incorporating circuit-based
insights can yield consistent gains across a broader set of mathematical tasks.

Table 4: Performance metrics for addition and subtraction across various configurations in
different numerical ranges. The control groups of CircuitLoRA (ro = 8, rc = 32) are LoRA
(ro = 16) and RandomLoRA (ro = 8, rc = 32), and the control groups of CircuitLoRA (ro = 32,
rc = 64) are LoRA (ro = 32) and RandomLoRA (ro = 32, rc = 64). Here, ro and rc represent the
ranks used in CircuitLoRA, where rc is the rank for critical layer modules, and ro is the rank for
non-critical layer modules. Model Accuracy is expressed as percentages.

Method Parameter Ratio Add/Sub(100) Add/Sub(200) Add/Sub(400) Add/Sub(500)
Pre-trained 0% 46.90 24.90 12.20 9.90
Full FT 100% 96.80 90.50 75.30 63.60
LoRA (ro = 2) 0.1111% 94.40 82.90 68.90 55.60
LoRA (ro = 8) 0.4428% 95.40 86.40 73.10 64.30
LoRA (ro = 16) 0.8816% 96.70 87.80 77.90 68.30
LoRA (ro = 32) 1.7479% 97.40 90.30 78.20 69.70

CircuitLoRA (ro = 8, rc = 32) 0.7175% 96.90 90.40 77.90 70.60
RandomLoRA (ro = 8, rc = 32) 0.7175% 95.70 87.30 73.30 63.70
CircuitLoRA (ro = 32, rc = 64) 1.4248% 97.90 91.00 78.20 73.00
RandomLoRA (ro = 32, rc = 64) 1.4248% 97.00 89.60 77.70 64.20

In summary, the results presented in Table 4 demonstrate that CircuitLoRAmaintains its advantage
over both LoRA and RandomLoRA baselines across multiple configurations and numerical ranges.
Even when the parameter ratio is constrained, CircuitLoRA effectively identifies and prioritizes
Critical Layers, ensuring superior accuracy compared to methods that allocate ranks uniformly or
randomly. These findings further validate the effectiveness of circuit-based analysis in enhancing
fine-tuning efficiency and performance, reinforcing Key Observation 3: Circuits can improve fine-
tuning by achieving higher accuracy and parameter efficiency across various mathematical tasks.
In the addition and subtraction task, we can see that after using CircuitLoRA (ro = 8, rc = 32),
we can achieve almost the same accuracy or even higher with half the training parameters of LoRA
(ro = 32).

K EXAMPLES OF COMPOSITIONAL TASK

Our compositional task involve two-step arithmetic operations, requiring reasoning across different
mathematical operations. This task requires the model to perform addition and subtraction operations
first, and then multiplication and division operations. The following examples demonstrate a diverse
set of arithmetic problems designed for this purpose.

Example:

• Clean: Calculate the result of the following arithmetic
expression and provide only the final answer: (43 - 7) * 21
=

• Corrupted: Calculate the result of the following arithmetic
expression and provide only the final answer: (43 - 7) * 88
=

Example:

• Clean: Calculate the result of the following arithmetic
expression and provide only the final answer: (82 - 43) /
13 =

• Corrupted: Calculate the result of the following arithmetic
expression and provide only the final answer: (82 - 43) / 3
=

These tasks demonstrate each example in this task can be divided into two subtasks: addition and
subtraction tasks and multiplication and division tasks. The purpose of this task is to see whether the
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circuit in the combination task can be approximately replaced by the union of the circuits of the two
subtasks. This provides ideas and experimental basis for exploring more complex combination tasks.
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