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Abstract. SPARQL property path queries provide a succinct way to
write complex navigational queries over RDF knowledge graphs. How-
ever, the evaluation of these queries over online knowledge graphs such
as DBPedia or Wikidata is often interrupted by quotas, returning no re-
sults or partial results. To ensure complete results, property path queries
are evaluated client-side. Smart clients decompose property path queries
into subqueries for which complete results are ensured. The granularity
of the decomposition depends on the expressivity of the server. Whatever
the decomposition, it could generate a high number of subqueries, a large
data transfer, and finally delivers poor performance. In this paper, we
extend a preemptable SPARQL server with a partial transitive closure
operator (PTC) based on a depth limited search algorithm. We show
that a smart client using the PTC operator is able to process SPARQL
property path online and deliver complete results. Experimental results
demonstrate that our approach outperforms existing smart client solu-
tions in terms of HTTP calls, data transfer and query execution time.

1 Introduction

Context and motivation: Property paths were introduced in SPARQL 1.1 [14]
to add extensive navigational capabilities to the SPARQL query language. They
allow to write sophisticated navigational queries over Knowledge Graphs (KGs).
SPARQL queries with property paths are widely used. For instance, they rep-
resent a total of 38% of the entire log of wikidata [5]. However, executing these
complex queries against online public SPARQL services is challenging, mainly
due to quotas enforcement that prevent queries to deliver complete results [11,
9, 10]. In this paper, we focus on how to execute SPARQL property path queries
online and get complete results?

Related Works: The problem of executing property path queries online and
get complete results have been already studied in the context of Triple Pattern
Fragment (TPF) [17,8] and Web Preemption [1]. Current approaches decom-
pose property path queries into many triple pattern or BGP queries that are
guaranteed to terminate. However, such an approach generates a large number
of queries which significantly degrades performance.

Approach and Contributions: In this paper, we extend a preemptable SPARQL
server with a preemtable Partial Transitive Closure (PTC) operator based on



@prefix owl: <http://www.w3.o0rg/2002/07/owl#>

PREFIX wd: <http://www.wikidata.org/entity/> ! o ’ ; ¢
PREFIX wdt: <http://www.wikidata.org/prop/direct/> @prefix foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?creativeWork ?fictionalWork WHERE { select ?x 7o where {

?creativeWork wdt:P144 ?fictionalWork . ?x foaf:name 7n .

?creativeWork wdt:P31/wdt:P279% wd: Q17537576 . 7% owl:sameAss 7o .

?fictionalWork wdt:P136 wd:Q8253} }

(a) Q1: Creative works and the list (b) @Q2: List of similar entities on DB-

of fiction works that inspired them on Pedia

Wikidata

Fig. 1: Property path queries on online knowledge graphs

a depth limited search algorithm. We show that a smart client using the PTC
operator is able to compute SPARQL 1.1 property path queries online and get
complete results without decomposing queries. In this paper: (i) We show how to
build a PTC preemptable operator. (i) We show how to build a smart-client that
computes transitive closures from partial transitive closures. (iii) We compare
the performances of our PTC approach with existing smart client approaches
and SPARQL 1.1 servers. Experimental results demonstrate that our approach
outperforms smart client approaches in terms of query execution time, number
of HTTP calls and data transfer.

This paper is organized as follows. Section 2 reviews related works. Section 3
introduces web preemption and property paths. Sections 4 presents the PTC
approches and algorithms. Section 5 presents our experimental results. Finally,
the conclusion is outlined in Section 6.

2 Related Works

Property paths closely correspond to regular expressions and are crucial to per-
form non-trivial navigation in knowledge graphs. Regular expressions involve op-
erators such as ’ *’ (transitive closure operator, zero or more occurrences-kleene
star), > | > (OR operator), ’ / ’ (sequence operator), > A’ (inverse operator), ’ !
’ (NOT operator) that allow to describe complex paths of arbitrary length. For
instance, the query SELECT 7x 7y WHERE { 7x foaf:knows* 7y } requires to
compute the transitive closure of the relation foaf:knows over all pairs (z,y)
present in a knowledge graph.

SPARQL Endpoints. Many techniques [12, 4] allow to evaluate property paths.
There is currently two main approaches: graph traversal based approaches and
recursive queries. Whatever the approach we consider, path queries with tran-
sitive closures are challenging to evaluate for online Knowledge Graphs such as
DBPedia or Wikidata. To ensure a fair usage policy of resources, public SPARQL
endpoints enforce quotas [6] in time and resources for executing queries. As
queries are stopped by quotas, many queries return no results or partial results.
For instance, the query @1 in Figure 1 returns no result on Wikidata because
it has been stopped after running more than 60s. The query Q2! on DBPedia

1 Q1 and Q2 are respectively executed at the public SPARQL endpoints of Wikidata
and DBPedia, at August 5 2020.



returns partial results because it has been killed after delivering the first 10000
results.

Decomposition and restricted interfaces approaches. The problem of ex-
ecuting property path queries online and get complete results have been already
studied with SPARQL restricted interfaces represented by Triple Pattern Frag-
ment (TPF) [17,8] and Web Preemption [1]. As a TPF server [8, 17] ensures the
termination of any triple pattern query, a TPF smart client [15] decomposes the
evaluation of a property path into multiple triple pattern queries that are sent
to the server. This requires to compute several joins on the client, especially to
compute transitive closure expressions. This generates many calls and a huge
data transfer, resulting in poor performances as pointed out in [1]. As preempt-
able SPARQL server [10] ensures the termination of any BGP query, the SaGe
smart client [1] decomposes the query into BGP queries that are sent to the
server. As BGP are supported, performances are better than TPF. However, the
preemptable server does not support transitive closures. Consequently, to pro-
cess the query Q1 of Figure 1a the smart client breaks the Basic Graph Pattern
(BGP) of Q1 into 3 triple patterns. The triple patterns are then processed using
nested loop joins where joins are performed on the client. The transitive closure
is processed using a simple Breadth First Search (BFS) algorithm implemented
on client-side. This process remains clearly data-transfer intensive and gener-
ates a very high number of calls to the server. As each call has to pay for the
network latency, the execution time of the query is dominated by the network
costs.

3 Web Preemption and Property Paths

Web preemption [10] is the capacity of a web server to suspend a running
SPARQL query after a fixed quantum of time and resume the next waiting
query. When suspending a query (), a preemptable server saves the internal
state of all operators of ) in a saved plan Qs and sends Qs to the client. The
client can continue the execution of @ by sending Qs back to the server. When
reading @, the server restarts the query @ from where it has been stopped. As
a preemptable server can restart queries from where they have been stopped and
makes a progress at each quantum, it eventually delivers complete results after
a bounded number of quanta.

However, web preemption comes with overheads. The time taken by the suspend
and resume operations represents the overhead in time of a preemptable server.
The size of @, represents the overhead in space of a preemptable server and may
be transferred over the network each time a query is suspended by the server.
To be tractable, a preemptable server has to minimize these overheads.

As shown in [10], suspending a simple triple pattern query is in constant time,
i.e., just store the last triple scanned in Q5. Assuming that a dataset D is in-
dexed with traditional B-Trees on SPO, POS and OSP, resuming a triple pattern



query given the last triple scanned is in O(log(]D|) where |D] is the size of the
dataset D. Many operators such as join, union, projection, bind and most filters
can be saved and resumed in constant time as they just need to manage one-
mapping-at-a-time. These operators are processed by the preemptable SPARQL
server.

However, some operators need to materialize intermediate results and cannot
be saved in contant time. For example, the "ORDER BY" operator needs to
materialize the results before sorting them. Such operators are classified as full-
mappings and are processed by the smart client. For example, to process an
"ORDER BY", all results are first transferred to the smart client that finally
sort them. If delegating some operators to the client-side allows effectively to
process any SPARQL queries, it has a cost in term of data transfer, number of
calls to the server to terminate the query, and execution time. Unfortunately,
to compute property path expressions with transitive closures we need a server-
side operator that belongs to the full-mappings operators. DFS Graph-traversal
based approaches require to store at least the current path in the graph that
can be in the worst case, of the size of the graph. Recursive-queries approaches
require to store a temporary relation that is incrementally saturated, and that
also cannot be saved in constant time. Currently, a BGP containing a path
expression with a closure is fully processed by the smart-client following the
decomposition approach described in the related works (cf section 2).

The only way to reduce the number of calls is to extend a preemptable server
with a transitive closure operator such that BGP containing path patterns can
be processed on server-side. However, algorithms that implement transitive clo-
sure such as DFS and BFS are not preemptable, i.e., cannot be suspended and
resumed in constant time.

Problem Statement: Define an « operator able to compute the transitive
closure such that the complexity in time and space of suspending and resuming
« is in constant time.

4 The Partial Transitive Closure Approach

To compute SPARQL 1.1 property paths online and deliver complete results,
our approach relies on two key ideas:

— First, thanks to the ability of the web preemption to save and load iterators,
it is possible to implement a Partial Transitive Closure (PTC) operator that can
be saved and resumed in O(k). A PTC operator computes the transitive closure
of a relation but cuts the exploration of the graph at a depth k. Nodes that
are visited at depth k are called frontier nodes. However, such an operator is
not able to compute property path expressions as defined in SPARQL 1.1, i.e.,
transitive closures may be incomplete and return duplicates.

— Second, by sending frontier nodes to the smart client, it is possible to restart
the evaluation of a property path query from the frontier nodes. Consequently,



select 7x 7y 7z
where {
?7x isa T1 .#tpl
7x sa+ Ty .#tp2
7y isa ?yl .#tp8
7yl sc+ Tz .#tp4

o @
Sa
\/\ isa

\/ Se }
(a) Graph D (b) Query Q3
Fig.2: Graph D and query Q3
a smart client using the PTC operator can fully compute SPARQL 1.1 property

paths. Such a strategy to compute property paths outperforms smart client ap-
proaches as queries are evaluated on the server without any joins on client-side.

3‘?’@

In this paper, we focus on the evaluation of transitive path expressions without
nested stars. For example, property paths like (ab*)* are not considered and will
be the subject of future work. We assume that non-transitive expressions such
as alternatives or sequences are decomposed and evaluated following [14].

4.1 The PTC operator

A Partial Transitive Closure PT'C(v,p,k) is defined for a starting node v, a
non-transitive path expression p and a depth k. PT'C(v,p, k) returns all pairs
(u,d) with u a node, such that it exists a path from v to u that conforms to the
expression (p)? where d < k and d is minimal.

The frontier nodes for a PTC(v,p, k) are the nodes reached at depth k, i.e.,
{u] (u,d) € PTC(v,p, k) Nd = k}.

To illustrate, consider the PT'C/(A, Sa,2) that returns all nodes reachable from A
through a path that conforms to the expression (Sa)? with d < 2. On the graph
D of Figure 2a, PTC(A, Sa,2) = { (B,1), (C,1), (D,2), (E,2) } where both
D and FE are frontier nodes. If PTC(n,p, k) returns no frontier nodes then the
transitive closure is complete, i.e., k was large enough to capture the transitive
closure for parameters v and p. Otherwise, frontier nodes are used by the smart
client to continue the evaluation of the transitive closure until no new frontier
nodes are discovered.

In our context, the depth limit k (maxDepth) is fixed by the preemptable
SPARQL endpoint administrator and can be seen as a global variable of the
preemptable server.

To implement a PTC operator, we rely on a depth-limited search (DLS) algo-
rithm [13] 2. DLS is fundamentally a depth-first search where the search space is

2 Tterative Deepening Depth-First Search (IDDFS) can also be used, but IDDFS re-
traverse same nodes many times.



Algorithm 1: ALP auxiliary function

1 Let eval(v,p) be the function that 8 Function ALP(v, p, R, V):
returns all terms reachable from the 9 | S+ [(v,0)] // stack of terms
RDF term v, by going through a path 10 | while S # () do
that matches the non-transitive path 11 (u,d) < S.pop()
expression p. 12 R.add(u)

2 Let MaxDepth be the depth limit 13 V.add((u, d))

3 Function ALP(v:term, p:path): 14 if d > MaxDepth then continue

4 | R« 0 // set of terms 15 X <+ eval(u,p)

5 | V<« 0 // set of pairs (Term, Integer) 16 forall z € X do

6 | ALP(v,p,R,V) 17 if #(z,d’) €V, d < d then

7 | return R 18 L LS.add((az, d+1))

limited to a maximum depth. Algorithm 1 redefines the ALP auxiliary function
of the SPARQL 1.1 specification to follow our definition of PTC.

To avoid counting beyond a Yottabyte [2], each node is annotated with the depth
at which it has been reached (Line 13). A node is revisited only if it is reached
with a shortest path (Line 17). Compared to an existential semantics [2] where
nodes can be visited only once, the time complexity is degraded because nodes
can be revisited at most k times. However, using an existential semantics does
not allow to ensure the PT'C semantics, as pointed out in [16]. To illustrate,
consider PTC(A, Sa,2) evaluated previously. Under an existential semantics,
starting at node A, node B is first visited at depth 1, then C' at depth 2 and
both B and C' are marked as visited. As C cannot be revisited at depth 1,
PTC(A, Sa,2) returns pairs {(B,1),(C,2)}. In spite of there is a path from A
to D and E that match (Sa)?, nodes D and E are not returned. Moreover, C
appears as a frontier node and will be explored by the smart client whereas it is
not a frontier node.

4.2 pPTC: a preemptable PTC iterator

The most important element of an iterative DLS is the stack of nodes to explore.
To build a preemptable iterator based on the DLS, its stack must be saved and
resumed in constant time. To achieve this goal, we do not pushed nodes on the
stack, but iterators that are used to expand nodes and explore the graph.

Algorithm 2 presents our preemptable Partial Transitive Closure iterator, called
pPTC. To illustrate how a property path query is evaluated using pPTC, sup-
pose the server is processing query @3 with the physical query plan of Figure 3.
When the third index loop join iterator is first activated, it pulls the bag of map-
pings p = { 2z — A, 7y — C, 7yl — T4 } from its left child. Then, it applies u
to tp4 to generate the bounded pattern b = T4 Sc+ 7z, creates a pPTC iterator
to evaluate b and calls the GetNext() operation of the pPTC iterator, i.e., its
right child.



Algorithm 2: A Preemptable PTC Iterator, evaluating a kleene star
expression without nested stars

Require: 15 Function GetNext():
p: path expression without stars 16 | while S # ( do
v: RDF term 17 if pe = nil then
w: set of mappings 18 while p. = nil and S # () do
tpiq: path pattern identifier 19 iter < S.pop().load()
Data: 20 LLC + iter.getNext()
Maz Depth: depth limit 21 if u. = nil then return nil
S: empty stack of preemptable iterators - .
V: set of pairs (RDF term, Integer) 22 non interruptible
CT': empty set of control tuples 23 if dter # r%il then
1 Function Open(): 24 L'S.push(lt‘er.save())
2 | iter < createlter(v, p, 70) 25 iter < nil
3 | S.push(iter.save()) 26 n < pe(?0]
4 | pie < nil 27 if 3(n,d) € V, d <|S| then
5 | iter — nil 28 Lcontinue
6 Function Save(): 29 V.add((n,|S]))
7 | if iter # nil then 30 if |S| < MaxDepth then
8 LS.push(iter.save()) 31 Lchild + createlter(n, p, ?0)
o | return S, path, tpia, fic 32 S.push(child.save())
10 Function Load(S’, path’, tpia’, p.): 33 CT.add((tpia, p, (n,|51)))
11 S g 34 solution < p U e ; pte < nil
12 | path « path’ 35 | return solution
13| tpia ,tpid’ 36 | return nil
14| pe -

To expand a node v, pPT'C creates an iterator iter = createlter(v,p,?0). Each
time iter.Get Next() is called, it returns a solution mapping u. where pi.[?0] is the
next node reachable from v through a path that conforms to p. In Figure 3 the
first time the GetNext() operation of the pPTC iterator is called, it expands
the node T4. Expanding T4 with p = Sc is equivalent to evaluate the triple
pattern T4 Sc ?z. Consequently, pPT'C calls the function createlter(T4, Sc, 7z)
to create a Scanlterator on the top of the stack S and calls its GetNext()
operation to retrieve the first child of T4, i.e., T2. When pPTC want to expand
T2, the iterator used to expand T4 is saved and a new iterator is created at the
top of the stack. As depicted in Figure 3, compared to a traditional DLS like
Algorithm 1 (Lines 16-18) the siblings of T2 are not stored on the stack before
expanding T2. Because a preemptable iterator is used to explore T4, it can be
resumed later to continue the exploration of T'2 siblings, i.e., only iterators need
to be saved, one for each node on the current path. As the space complexity of
a saved preemptable iterator is bounded by the size of the query plan and not
the size of the data [10], by limiting the exploration depth at k, we ensure that
the size of S is bounded by k. Consequently, the pPTC iterator can be saved
and resumed in O(k).



(3) IndexLoopJoin
pw=A{x— Ay — C, 7yl — T4}
~ ~_

(2) IndexLoopJoin pPTCr—2(tp4)

={?7z— A7y~ C
K {/ y\ } IndexScan[T2 Sc ?z]p
(1) IndexLoopJoin  IndexScan[tp3]p last = T2 ScT1
w={r— A} last = C isa T4 IndexScan[T4 Sc ?z]p
- ~~ last = T4 Sc T2
IndeXScan‘[[tpl]]D PPTChs(tp2) ~
last = A isa T1 > |
IndexScan[A Sa ?y[p - Stack of iterators
last = A Sa C

Fig. 3: Physical execution plan of query @3 with the internal state of iterators
for k =2

Quanta and complexities During one quantum, the pPTC operator main-
tains a structure to keep track of visited nodes with their corresponding depth.
To be preemptable, this structure has to be flushed at the end of the quantum,
keeping only the stack of iterators between two quanta. In the worst case, we
can consider visited nodes as always empty. In this case, the pPT'C iterator enu-
merates all simple paths leading to a #P complexity as described in [2]. In the
best case, the pPT'C iterator has the same time complexity as PTC.

Controls for the PTC-client To allow a smart client to resume a property
path query and continue the evaluation beyond the frontier nodes, visited nodes
are contextualized and sent to the client. For each visited node, a pPT'C iterator
generates a control tuple ct = (tp;q, i, (n, d)) (Line 33) where tp;4 is the identifier
of the path pattern that produced ct, p is the current mappings when ct has
been produced and (n,d) is a pair representing a visited node with its depth.
For example, suppose that the server is processing query (3 using the physical
query plan of Figure 3. When the first index loop join is activated, it pulls the
bag of mappings { 7o — A } from its left child, and next calls the GetNext()
operation of the pPTC' iterator, i.e., its right child. In this context, the pPTC
iterator explores node A at depth 1 by evaluating A Sa 7y, returns the bag of
mappings { 7z +— A, 7y — C } and generates the control tuple (T'P2;q4, {?z —
A}, (A1).

All control tuples generated during a quantum are stored in a shared memory
which is specific to the query during a quantum. At the end of the quantum,
control tuples and solution mappings are sent to the client. The data transfer
of the control tuples represents the overhead of our PT'C approach. To reduce
the data transfer, control tuples cty, ..., ct, that share the same tp;; and u are
grouped together into a tuple (tp;q, i, [(n1,d1), ..y (N, di)])-



Algorithm 3: PTC-Client

Data:

MaxDepth: depth limit

FIFO: empty queue of tuples (query Q, ptc;q, frontier node n)
V': maps each ptc;q to a set of pairs (node, depth)

R: empty multi-set of solution mappings

1 Function EvalClient(query):
2 | FIFO.enqueue((query, nil, nil))
3 | while FIFO # () do
4 (Q, pteia, n) « FIFO.dequeue()
5 if 3(n’,d’) € Viptcia], n’ =n Ad < MaxDepth then continue
6 (w, ct) < ServerEval(Q)
7 R+~ RUw
8 for (tpia, u,ve) € ct do
9 ptchy <+ hash(pu, tpia)
10 for (node, depth) € vc do
11 if 3(n',d") € Vptciy], n' = node then
12 | Viptc}4].add(node, min(d', depth))
13 else
14 Vlptciq].add(node, depth)
15 if depth = MaxDepth then
16 Q. <+ ExpandQuery(Q, tp;d, u, node)
17 LFIFO.enqueue(Qe , ptciq, node)
18 | return R

4.3 The PTC-Client

The general idea of the PTC-Client is to use the control tuples returned by the
server-side pPT'C' iterators to expand frontier nodes until no more frontier nodes
can be discovered, i.e., transitive closures are complete.

Algorithm 3 describes the behavior of the PTC-client. It is fundamentally an
iterative Breadth-First Search (BFS) algorithm that traverses frontier nodes.
The FIFO queue stores the frontier nodes to traverse with their context. R is
the multi-set of results. The V variable represents the visited nodes. As a path
expression may be instantiated many times, we store a set of visited per instance
of path expression, i.e., ptc;q.

Figure 4 illustrates the first iteration of Algorithm 3 using query Q3 of Fig-
ure 2b. First, the query @3 is evaluated on the server by calling ServerEval
(Line 6). ServerFEval accepts any SPARQL property path query and returns
a set w of solution mappings and a set ct of control tuples. The sets w and ct
for query @3 are depicted in Figure 4 by the two tables. As we can, all visited
nodes are discovered with a depth = 1, as MaxDeph = 1, they are all frontier
nodes. Consequently, the Algorithm 3 will expand @3 with all these frontiers
nodes.



Q3:select ?x ?y 7z
where {
7x isa T1 .#tpl
?7x sa+ 7y .#tp2
7y isa 7yl .#tp3
7yl sc+ 7z .#tpd}
T
w, ct = Server Eval(Q3)
v

w ct=control tuples
x| y|?z tp;q|partial mapping visited nodes
A B |TI tp2 |77 — A (B, 1),(C, 1)}
A|C|T2 tpd |7z — A, 7y — B, 7yl — T2|{(T1,1)}
A |C|T3 tpd |7z — A, 7y — C, %1 — T4|{(T2,1),(T3,1)}

i N
/ B 1Query(Q3,tpg,  ExpandQuery(Q3,tp ExpandQuery (Q3,tpy,
ExpandQuery (Q3, ExpandQuery (Q3,
{7x—+ A, 7y—+B,7y L5 T2}, {7x5A,7y—B,7y1—T4} {7x—+A, 7y B, 7y 1 T4},

tpo.{7x>A},B) tpo.{7x>A},C)
T1) T2) T3)
P v \ ~
Q31:Select ?x ?y ?z|[Q32:Select ?x ?y ?z||Q33:Select ?x ?y 7z ||Q34:Select ?x ?y ?z||Q35:Select ?x ?y 7z
Where { Where { Where { Where { Where {
bind (A as ?x) bind (A as ?x) bind (A as ?x) bind (A as ?x) bind (A as ?x)
B sa+t ?y. #tp2 C sa+ ?y. #tp2 bind (B as ?y) bind (B as ?y) bind (B as ?y)
7y isa 7yl. #tp3 7y isa 7yl. #tp3 bind (T2 as ?y1) bind (T4 as 7yl) bind (T4 as ?y1)
7yl sc+ 7z #tpd} 7yl sct+ 7z #tpd} T1 sct 7z #tpd} T2 sct+ 7z #tpd} T3 sct 7z #tpd}
T T T T T
Server Eval(Q31) Server Eval(Q32) Server Eval(Q33) Server Eval(Q34) Server Eval(Q35)
¥ ¥ ¥ ¥ ¥

Fig.4: First iteration of ClientEval(@Q3) as defined in Algorithm 3 with graph D
and MaxDepth =1

FExpandQuery takes a query @ , a set of partial mappings and a frontier node n as
input (Line 16) and produces a new query as output. ExpandQuery processes in
three steps. (1) The subject of the path pattern identified by tp;4 in @ is replaced
by n. (2) Triple patterns tp in @ such as p(tp) is fully bounded are removed.
(3) To preserve the mappings p from @ to Q., a BIND clause is created for each
variable in dom(u).

Figure 4 illustrates the query returned by ExpandQuery for each frontier node
returned by Server Eval(Q3). Queries Q31, @32, @33, @34 and Q35 are finally
pushed in the FIFO queue (Line 17) to be evaluated at the next iteration. It
could happen that the evaluation of an expanded query reached an enqueued
frontier node with a shortest path (Line 12). In this case, the expanded query is
not evaluated (Line 5).

5 Experimental Study

In this experimental study, we want to empirically answer the following ques-
tions: What is the impact of the maz Depth and the time quantum parameters on
the evaluation of SPARQL property path queries, both in terms of data transfer,
number of HTTP calls and query execution time? How does the PTC approach
perform compared to smart client approaches and SPARQL endpoints?

In our experiments Jena-Fuseki and Virtuoso are used as the baselines to com-
pare our approach with SPARQL endpoints, while the multi-predicate automa-
ton approach [1] is used as the baseline for the smart client approaches. We
implemented the PTC operator in Python as an extension of the SAGE server,
while the PTC client is implemented in JavaScript. The resulting system, i.e.,
the SAGE server with our PTC operator and the JavaScript client, is called
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Fig. 5: Impact of the different parameters on performance for the gMark queries

SaGe-PTC. The code and the experimental setup are available on the compan-
ion website 3

5.1 Experimental setup

Dataset and Queries: The dataset and queries are generated by gMark [3], a
framework designed to generate synthetic graph instances coupled with complex
property path query workloads. We use the "Shop" use-case configuration file*
to generate a graph instance of 7,533,145 triples and a workload of 30 queries. All
our queries contain from 1 to 4 transitive closure expressions, for which numerical
occurrences indicators have been replaced by Kleene plus "+ " operators.

Compared Approaches: We compare the following approaches:

— SaGe-PTC is our implementation of the PTC approach. The dataset gen-
erated by gMark is stored using the SAGE HDT backend. The SAGE server
is configured with a page size limit of 10000 solution mappings and 10000
control tuples. Different configurations of SaGe-PTC are used. (i) SaGe-
PTC-2, SaGe-PTC-3, SaGe-PTC-5, SaGe-PTC-10 and SaGe-PTC-20 are
configured with a time quantum of 60 seconds and a maxDepth of 2, 3, 5,
10 and 20, respectively. (ii) SaGe-PTC-500ms, SaGe-PTC-1sec and SaGe-
PTC-60sec are configured with a maxDepth of 20 and a time quantum of
500ms, 1sec and 60sec, respectively.

— SaGe-Multi is our baseline for the smart client approaches. Property path
queries are evaluated on a SAGE smart client using the decomposition ap-
proach defined in [1]. For a fair evaluation, SaGe-Multi runs against the
SaGe-PTC server with a time quantum of 60 seconds. We did not include
Comunica [15] in the setup as it has already been compared with SaGe-Multi
in [1] and SaGe-Multi dominates Comunica for all evaluation metrics.

— Virtuoso is the Virtuoso SPARQL endpoint (v7.2.5) as of December 2020.
Virtuoso is configured without quotas in order to deliver complete results.

3 https://github.com/JulienDavat/property-paths-experiments
4 https://github.com/gbagan /gmark /blob /master /use-cases /shop.xml
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Fig.6: Execution time per query for SPARQL endpoint and smart client ap-
proaches compared to our PTC approach

We also configured Virtuoso with a single thread to fairly compare with
other engines.

— Jena-Fuseki is the Apache Jena Fuseki endpoint (v3.17.0) with the same
configuration as Virtuoso, i.e., without quotas and a single thread.

Evaluation Metrics: Presented results correspond to the average obtained of
three successive executions of the queries workload. Each query is evaluated with
a time-out of 30 minutes. (1) Execution time is the total time between starting
the query execution and the production of the final results by the client. (2) Data
transfer is the total number of bytes transferred to the client during the query
execution. (3) Number of HTTP calls is the total number of HTTP calls issued
by the client during the query execution

Hardware Setup: We run our experimentations on a google cloud virtual ma-
chine (VM) instance. The VM is a c2-standard-4 machine with 4 virtual CPU,
16GB of RAM and a 256GB SSD. Both clients and servers run on the same
machine. Each client is instrumented to count the number of HTTP requests
sent to the server and the size of the data transferred to the client.

5.2 Experimental results

What is the impact of the quantum on performance ¢ To measure the impact of
the quantum on performance, we run our workload with different quanta; 500ms,
1sec and 60sec. The max Depth is set to 20 for each quantum, such as all queries
terminate without frontier nodes. Figure 5a presents SaGe-PTC performance
for SaGe-PTC-500ms, SaGe-PTC-1sec and SaGe-PTC-60sec.
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Fig. 7: Number of HTTP calls per query for SPARQL endpoint and smart client
approaches compared to our PTC approach

As expected, increasing the quantum improves performance. With large quan-
tum, a query needs less calls to complete, which in turn improves the execution
time. Concerning the data transfer, the visited nodes of pPTC iterators are
flushed at the end of each quantum, which leads to revisit already visited nodes.
Consequently, the less a query needs quanta to complete, the less it transfers
duplicates.

What is the impact of mazxDepth on performance ¢ To measure the impact
of maxDepth on performance, we run our 30 queries with different values of
maxDepth; 2, 3, 5 and 10. To reduce the impact of the quantum, we choose
a large quantum of 60 seconds. Figure 5b presents SaGe-PTC performance for
SaGe-PTC-2, SaGe-PTC-3, SaGe-PTC-5 and SaGe-PTC-10.

As we can see, the maxDepth impacts significantly the performance in terms
of execution time, data transfer and number of calls. Increasing the maxDepth
drastically improves performance because it allows to capture larger transitive
closures. This means less control tuples are transferred to the client and less
expanded queries are executed on the server.

How does the PTC approach perform compared to the smart client approaches
and SPARQL endpoints ¢ The PTC approach computes SPARQL property path
queries without joins on the client. When max Depth is high enough, no expanded
queries are sent to the server. We just have to pay the web preemption overheads
and the duplicates transferred by the PTC approach. Consequently, we expect
our approach to be somewhere between SPARQL endpoints and smart clients in
terms of performance. Close to SPARQL endpoints when maxDepth is high and
better than smart clients in the general case. We compare SaGe-PTC with SaGe-
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Fig.8: Data transfer per query for SPARQL endpoint and smart client ap-
proaches compared to our PTC approach

Multi, Jena-Fuseki and Virtuoso. We run SaGe-PTC with both mazDepth =
5 (SaGe-PTC-5) and maxDepth = 20 (SaGe-PTC-20). Figures 6, 8 and 7
respectively present the execution time, the data transfer and the number of
HTTP calls for each approach.

As expected, SaGe-PTC outperforms SaGe-Multi regardless the query. Because
SaGe-PTC does not decompose BGPs, the number of calls is drastically reduced,
as shown in Figure 7. Concerning the data transfer, both SaGe-PTC and SaGe-
Multi transfer the visited nodes. However SaGe-PTC does not transfer any
intermediate results, saving a lot of data transfer.

Compared to Jena-Fuseki both approaches use a similar graph traversal algo-
rithm. However Jena-Fuseki has no overheads, i.e., is optimal in terms of data
transfer and number of calls. Only one call is sent per query and only the fi-
nal results are transferred to the client. Consequently, we expect Jena-Fuseki
to perform better than SaGe-PTC. Surprisingly Jena-Fuseki does not domi-
nate the PTC approach. SaGe-PTC-20 is very close to Jena-Fuseki for queries
where Jena-Fuseki does not time-out. As queries return no frontier nodes, over-
heads compared to Jena-Fuseki are small. The differences between the two ap-
proaches are mainly due to a join ordering issue. Compared to SaGe-PTC-20,
with SaGe-PTC-5 queries need to send expanded queries to terminate. As ex-
pected, SaGe-PTC-5 offers performance between that of SPARQL endpoints
and that of smart clients. For most queries, its performance are very close to
SaGe-PTC-20. We conjecture that most transitive closures for our queries can
be computed with small maxDepth. When there is a large number of frontier
nodes to explore, performance degrades but remains better than those of smart
client approaches.



We expect Virtuoso to be optimal as it implements the state of art query opti-
mization techniques. Surprisingly, Virtuoso does not dominate SaGe-PTC. Vir-
tuoso generates errors for 12 queries out of 30. It cannot execute the 12 queries
either because of the missing of a starting point or because it has not enough
space resources to materialize the transitive closure. Virtuoso issues are mainly
due to the simple path semantics when dealing with dense graphs. Of course, the
number of calls for Virtuoso is optimal. However, using a simple path seman-
tics leads to high data transfer when path queries are executed against dense
graphs.

6 Conclusion

In this paper, we proposed an original approach to process SPARQL property
path queries online and get complete results. Thanks to a preemptable Partial
Transitive Closure operator, a smart client is ensured to grab all mappings that
are reachable at a depth fixed by the server. Thanks to control information deliv-
ered during SPARQL property path queries processing, a smart client generates
queries to find missing mappings. Unlike current smart clients, the PTC smart
client does not break BGPs containing path patterns. Even in presence of path
patterns, all joins are performed on server-side without the need to transfer in-
termediate results to the client. As demonstrated in the experimentations, the
PTC approach outperforms existing smart clients and reduces significantly the
gap of performance with SPARQL endpoints. This approach raises several in-
teresting perspectives. First, there is a large room for optimisation: better join
ordering in presence of path patterns, pruning some calls when path patterns are
"reachability” oriented, and better evaluation of resuming queries according to
their shapes. Second, it may be interesting to explore if partial transitive closure
is compatible with partial aggregates [7]. If the aggregation functions are com-
puted on client-side, then there is no issue for computing aggregation in presence
of path patterns. However, partial aggregates computed with partial transitive
closures on server-side may return incorrect results.
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