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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
performs fine-grained sentiment analysis in
a unified way through extracting sentiment
triplets comprised of aspect terms, opinion
spans, and their sentiment relations in sen-
tences. The previous works show the adoption
of BERT, which simply leverages its last layer
output as the word representation, is beneficial
for recognizing triplet elements. However, their
methods limit the potential of pretrained knowl-
edge in BERT, since the different layers can
capture multi-level linguistic information exist-
ing in sentences, which are useful for ASTE as
well. In this work, we explore to access the rich
pretrained knowledge by fully leveraging its at-
tention maps of different layers. To this end,
we propose to Segment the Attention Maps of
BERT (SAMBERT) by taking the merits of
semantic segmentation, which can effectively
discriminate the desired objects from others in
an image. In this procedure, we can further
reason over the knowledge of different levels
in these attention maps to distinguish aspect
terms, opinion spans and their sentiment rela-
tions from other parts, which results in a same-
shape tagging matrix of word pairs for deriving
sentiment triplets. Through the extensive ex-
periments on four benchmarks, we demonstrate
our method can achieve a new state of the art.

1 Introduction

Sentiment analysis (Liu, 2012; Feldman, 2013) is
an important Natural Language Understanding task
(NLU) to identify the sentiment from review sen-
tences, which has been widely studied in many
fields, e.g., E-commerce (Shivaprasad and Shetty,
2017) and social media (Agarwal et al., 2011). Re-
cently, Aspect-based Sentiment Analysis (Pontiki
etal., 2014; Ma et al., 2017) tries to perform senti-
ment analysis at the fine-grained level. It comprises
several subtasks, such as Aspect Term Extraction
(Li et al., 2018; Xue et al., 2017), Aspect Opinion
Extraction (Fan et al., 2019; Pereg et al., 2020),

and Aspect Sentiment Classification (Wang et al.,
2016; Ruder et al., 2016). In order to provide a
unified solution for these subtasks, Aspect Sen-
timent Triplet Extraction (ASTE) is proposed by
(Peng et al., 2020) to extract sentiment triplets from
review sentences, which contain all of the aspect
terms, corresponding opinion spans, and sentiment
polarities. For instance, given a review “The barbe-
cued salmon is elegantly spiced and not dry at all .”,
the triplets of [barbecued salmon, elegantly spiced,
positive] and [barbecued salmon, not dry at all,
positive] should be extracted from this sentence.

To recognize the aspect term, opinion span and
their sentiment relation, many efforts are devoted.
(Peng et al., 2020; Xu et al., 2021) conduct ASTE
in multiple stages, which firstly extract aspect terms
and opinion spans, and then combine the valid pairs
of them to decide their sentiment polarities. (Xu
et al., 2020; Wu et al., 2020) jointly extract the
triplet elements with their proposed unified tagging
schemes in an end-to-end manner. Furthermore,
they demonstrate that the adoption of BERT is ben-
eficial for improving the performance of ASTE, by
leveraging the contextual output of the last layer
in BERT (Devlin et al., 2019) as their word em-
beddings, which follows the same strategy recom-
mended by (Sun et al., 2019).

However, the way they use BERT may be not
optimal since they ignore the rich pretrained knowl-
edge existing in BERT. As the existing works
(Jawahar et al., 2019; Clark et al., 2019) analyze,
the different layers of BERT, which are comprised
of multiple attention heads, can capture multi-level
and multi-view knowledge existing in sentences.
For example, (Jawahar et al., 2019) shows that the
bottom layers of BERT focus more on phrase-level
information (e.g., the opinion span “not dry at all”
in Fig. 1), and the top layers mainly capture seman-
tic features (e.g., the sentiment relation between
“barbecued salmon” and “elegantly spiced”). There-
fore, we argue that the multi-level information can
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Figure 1: A review sentence of ASTE with its word
pair form, which has the same shape of the attention
maps. (1) The colored blocks in the diagonal correspond
to the intra-associaitions of and

. (2) The colored blocks in the non-diagonal are
the sentiment relations ( ) between them. (3) The
gray ones are undesired parts.

contain task-specific features, where making full
and explicit use of them can be beneficial for rec-
ognizing triplet elements.

To achieve this, instead of only utilizing the fi-
nal generated word representation of BERT (Sun
et al., 2019), we explore to fully leverage its pre-
trained knowledge by explicitly accessing the at-
tention maps of different layers. By doing so, we
can benefit from three sides: (1) For a single word
pair, the attention scores between them can capture
its hierarchical and diverse relations via different
layers as well as different attention heads (Jawa-
har et al., 2019; Clark et al., 2019), which can be
treated as our input feature to represent the con-
nections at a word pair level. (2) For all the word
pairs, their attention scores comprise a 2-D feature
map (cf. the example in Fig. 1). In this feature
map, the desired word pairs of the aspect terms and
opinion spans form several blocks (i.e., the colored
ones) scattered in other word pairs (i.e., the gray
ones). (3) By using these word pair representations
storing the hierarchical knowledge, we wish these
desired word pairs can be distinguished from other
parts for decoding the sentiment triplets, which is
inspired by the semantic segmentation task (Gir-
shick et al., 2014) via a multi-scale context-aware
pyramid structure (Zhao et al., 2017) to distinguish
the object and background in an image.

To this end, we propose SAMBERT, which

Segments the Attention Maps of BERT in differ-
ent layers as a word pair level tagging matrix'. In
this procedure, we can further reason over these
attention maps and learn to distinguish the multi-
level task-specific patterns of the aspect terms and
opinion spans, as well as the sentiment relations
between them from other parts (cf. Fig 1). Specif-
ically, we first stack all the attention maps of the
k layers in the bottom and top of BERT as our
input feature maps, where k is a hyper-parameter
used to control the number of layers we selected.”
Then, a Convolutional Encoder-Decoder is lever-
aged to conduct the segmentation stage to model
the task-specific patterns, and further strengthen
these associations between the triplet elements in a
sentence. Finally, a 2- D tagging matrix is predicted
to decode sentiment triplets.

We conduct extensive experiments on four
benchmarks (Peng et al., 2020; Xu et al., 2020),
where our method can achieve a new state of the
art. Also, further analysis verifies that with the seg-
mentation paradigm, the task-specific features can
be effectively distilled out from the attention maps
of different layers for ASTE.

To summarize, our contributions are as follows:

* We are the first to explicitly leverage the atten-
tion maps of different layers in BERT to fully
access the pretrained knowledge for ASTE.

* We formulate ASTE into a semantic segmen-
tation paradigm, to further learn the task-
specific patterns in these attention maps.

* The experimental results on four public bench-
marks show that our method can achieve a new
state of the art.

2 Related Works

Sentiment Analysis (Liu, 2012; Feldman, 2013)
aims to automatically classify the sentiment po-
larity of a sentence (Maas et al., 2011; Yang and
Cardie, 2014; Dai et al., 2020; Pontiki et al., 2014;
Maetal., 2017). While the sentence level sentiment
analysis has been well studied, current literature of
Sentiment Analysis tends to analyze the sentiment
at a fine-grained level, i.e., analyzing the sentiment

"Thanks to the Grid Tagging Scheme (Wu et al., 2020;
Chen et al., 2021b), a word pair level tagging matrix (cf. the
right of Fig. 2), we can directly equip our method with it since
they are naturally compatible due to the same shape of the
attention maps of BERT and tagging matrix.

“We prefer not to use the intermediate layers of BERT
since we find it is less helpful for ASTE according to our
pre-experiment.



polarities of aspect terms with the specific opinion
spans. In particular, Aspect-based Sentiment Anal-
ysis (ABSA) is divided into several subtasks like
Aspect Term Extraction (Li et al., 2018; Xue et al.,
2017), Aspect Opinion Extraction (Fan et al., 2019;
Pereg et al., 2020), Aspect Sentiment Classification
(Wang et al., 2016; Ruder et al., 2016) and Opinion
Pair Extraction (Wang et al., 2017; Dai and Song,
2019; Wu et al., 2020). However, these subtasks
only derive one or two elements of the aspect term,
opinion span and sentiment polarity. To extract
them all, Aspect Sentiment Triplet Extraction is
proposed by (Peng et al., 2020) to generate triplets
of all the elements.

The existing works of ASTE can be roughly di-
vided into two categories, i.e., the multi-stage and
one-stage methods. For the multi-stage method,
(Peng et al., 2020) proposes to extract the elements
at first, which will be combined into sentiment
triplets later. (Chen et al., 2021a; Mao et al., 2021)
transform ASTE task into a Machine Reading Com-
prehension (MRC) task to capture the connections
among the subtasks of ASTE. (Huang et al., 2021)
proposes a two-stage method to enhance the corre-
lations between aspects and opinions. (Jian et al.,
2021) proposes to regard the aspect and opinion
terms as arguments of the expressed sentiment in
a hierarchical reinforcement learning framework.
(Xu et al., 2021) uses a span-level approach to ex-
plicitly consider the interactions between the whole
spans of aspects and opinions when predicting their
sentiment relations. However, these multi-stage
methods can lead to error propagation.

To address this problem, the one-stage method
is proposed: (Xu et al., 2020; Wu et al., 2020;
Chen et al., 2021b) extract sentiment triplets in one
stage by their proposed unified tagging schemes.
(Xu et al., 2020) uses a word-level tagging scheme,
but it is derived from the assumption that one as-
pect term corresponds to only one opinion span,
which can not be always held in all possible sce-
narios. (Wu et al., 2020; Chen et al., 2021b) avoid
this problem by a word pair level tagging scheme,
which results in a 2-D tagging matrix. Besides,
(Zhang et al., 2021b; Yan et al., 2021) both propose
to extract the sentiment triplets via a generative
way, where the sequence-to-sequence paradigm is
used. Nevertheless, the exposure bias of the gener-
ative framework (Ranzato et al., 2016) can lead to
a gap between training and inference.

Besides, (Liu et al., 2020; Zhang et al., 2021a)

also formulate Incomplete Utterance Rewriting and
Document-level Relation Extraction tasks as a se-
mantic segmentation task. Nevertheless, the dif-
ference between our work and them (as well as
all the aforementioned works) is that they only
leverage the contextual representation of the last
layer of Pretrained Models (Devlin et al., 2019; Lan
et al., 2020; Liu et al., 2019) to further enhance
the performance but ignore the rich hierarchical
knowledge hidden in its different layers (Jawahar
et al., 2019; Clark et al., 2019). In contrast, we can
fully leverage the knowledge by explicitly unitizing
the attention maps of different layers in Pretrained
Models storing diverse associations between word
pairs, which is analogous to the multi-scale context-
aware pyramid structure (Zhao et al., 2017) used in
Computer Vision.

3 Methodology

In this Section, we first describe the overall work-
flow of our method (Sec. 3.1). Then, we elaborate
on each component, i.e., Review Encoder (Sec.
3.2), Segmentation Layer (Sec. 3.3), and Triplet
Decoding procedure (Sec. 3.4).

3.1 Overall Workflow

As shown in Fig. 2, in the review encoding stage,
we encode the review sentence with BERT (Devlin
et al., 2019) to derive the attention maps of its bot-
tom and top layers. Then, these attention features
are stacked as an 2-D feature map, which is used to
conduct the segmentation stage to reason over the
task-specific patterns. Finally, a tagging matrix is
predicted to decode the sentiment triplets. By this
formulation, we can better reason over and refine
the linguistic knowledge of different levels stored
in the attention maps of BERT for ASTE.

The final segmentation classes (i.e., the tagging
scheme) are inherited from (Wu et al., 2020; Chen
et al., 2021b), i.e., {N, A, O, Pos, Neu, Neg},
where N means no association exists between a
word pair; A means a word pair belongs to the
same aspect term; O means a word pair belongs
to the same opinion span; { Pos, Neu, Neg} mean
positive, neutral, and negative sentiment relations
are expressed between a word pair. In addition,
since the 2-D tagging matrix is symmetric, only
the tags of the upper triangle part in the matrix
are used for training and inference. Please refer to
the tagging matrix in the right of Fig. 2 for better
understanding.
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Figure 2: Overview of SAMBERT. The attention maps of the k£ bottom and top layers of BERT are stacked as a 2-D
feature map. Then, a Convolutional Encoder-Decoder is leveraged to segment this feature and derive the Tagging
Matrix (Wu et al., 2020) for decoding the final sentiment triplets, where the colored blocks represent the aspect
terms, opinion spans and their sentiment relations. Besides, only the upper triangle part in the tagging matrix are

used due to the symmetry of word pairs.

3.2 Review Encoder

As (Clark et al., 2019; Jawahar et al., 2019) dis-
cuss, the Self Attention mechanism (Vaswani et al.,
2017) in different layers of Pretrained Models (De-
vlin et al., 2019; Lan et al., 2020; Liu et al., 2019)
focus on different levels of the linguistic knowl-
edge. Therefore, our Review Encoder aims to fully
access and explicitly leverage these rich linguistic
features when the review sentence is encoded.

To this end, this work explores to directly utilize
the attention maps in different layers of Pretrained
Models. Here we choose BERT as the represen-
tative of them, in order to align with the previous
works. Specifically, given one review sentence
S = [wy,wy, ..., wy,], we first obtain its input em-
bedding sequence. That is, Hy = [e1, €2, ..., €]
(e; = w; + p;), where w; and p; are the word em-
bedding and position embedding of the ¢-th word.
Then, the input embedding sequence is feed into
BERT to obtain its attention maps:

H;,A; = BERT _Layer;(H;_1),i € [1, N],
A=[A1;..; A AN AN,

where A; € R %" ig the derived h head attention
maps of i-th layers. Here we stack both bottom and
top k layers as our feature map A € R(Z*k+h)xnxn,
Please note that here we prefer not to use the in-
termediate layers of BERT, since we find it less
helpful according to our pre-experiment. A rea-
sonable explanation is that the information in the
bottom and top layers is enough for ASTE. Hence,

we use a hyper-parameter k to select the BERT
layers we used, which is a simple way to avoid
irrelevant information and we leave other advanced
selection methods (e.g., the attention mechanism)
for future work.

Note that A has a shape of n x n. Each A;;
represents the attention scores of different layers
that contains diverse associations between the i-th
and j-th words. Therefore, the word pair represen-
tations within/between aspect terms and opinion
spans (v.s. the objects in an image) can provide
task-specific features and be distinguished from
other parts of the feature map (v.s. the background
in an image) in the downstream segmentation stage.

We argue that this is a more effective way to
leverage the pretrained knowledge in BERT, since
the attention maps of different layers originally
store the multi-level and multi-view knowledge via
the pretraining paradigm (Jawahar et al., 2019;
Clark et al., 2019). In contrast, all the existing
works only use the word representations of last
layer, which can result in losing task-specific fea-
tures for ASTE.

3.3 Segmentation Layer

After obtaining the 2-D feature map A, it needs
to be mapped into a same-shape tagging ma-
trix M € R™" (cf. the right of Fig. 2),
where each A;; is mapped to a predefined tag
€ {N,A,O, Pos, Neu, Neg}.

In this procedure, it should not only consider the
information in the word pair representation itself



Dataset Resl4 Lapl4 Resl5 Resl6
#Sent. #Pos. #Neu. #Neg. | #Sent. #Pos. #Neu. #Neg. | #Sent. #Pos. #Neu. #Neg. | #Sent. #Pos. #Neu. #Neg.
Train | 1266 1692 166 480 | 906 817 126 517 605 783 25 205 857 1015 50 329
Dev 310 404 54 119 219 169 36 141 148 185 11 53 210 252 11 76
Test 492 773 66 155 328 364 63 116 322 317 25 143 326 407 29 78

Table 1: The detailed statistics of ASTE-Data-V?2, where #Sent. denotes the number of sentences, and #Pos., #Neu.,
and #Neg. denote the numbers of the positive, neutral, and negative triplets in each dataset.

(i.e., the attention scores between this word pair),
where the information contained in its adjacent
word pairs is also useful for prediction, since the
word pairs belonging to the same triplet element
are consistent to share the similar information of
the same tags (cf. the right of Fig. 2). An inductive
example of that is, only using the information of
one pixel in an image is hard to tell what the object
is, while looking at a larger region is much easier.

Inspired by the semantic segmentation task (Gir-
shick et al., 2014) in Computer Vision, which aims
to distinguish desired objects from others in images,
we also formulate this stage as a segmentation task,
which refines the attention maps as a 2-D tagging
matrix M to discriminate the desired triplet ele-
ments.

__________________________
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Figure 3: The backbone we used for the segmentation
of stacked attention maps in BERT.

Specifically, we use a Convolutional Encoder-
Decoder framework (Ronneberger et al., 2015) to
perform this stage. As shown in Fig. 3, in the
encoding stage, the attention maps are encoded
by two convolutional layers with the kernel size
of 3 x 3, while the channels of input are doubled
and its size is halved by the max-pooling operation.
Then, in the decoding stage, twice up-sampling
operations are leveraged to cooperate with two con-
volutional layers (3 x 3 kernels) to make the size of
output consistent with the feature map, where the
channels of input are halved. Besides, the residual
connection between the encoding layer and decod-
ing layer is also used for better training. Further-

more, the final probability matrix of the tagging
classes is obtained by a fully-connected layer.

3.4 Triplet Decoding

After the segmentation stage, the derived tagging
matrix is used to decode sentiment triplets. We
use the same decoding strategy as (Wu et al., 2020;
Chen et al., 2021b) did: (1) we first search the ele-
ments of word pairs on the main diagonal of the tag-
ging matrix, where the continuous tags of {A, O}
are recognized as an aspect term or opinion span.
(2) Then, we count the tags { Pos, Neu, Neg} of
the corresponding word pairs between the recog-
nized aspect terms and opinion spans, the most
predicted tag is assigned as the sentiment polar-
ity to this triplet. If these tags do not belong to
{Pos, Neu, Neg}, then this triplet is dropped.

4 Experimental Setup

4.1 Datasets

There are two versions of datasets for ASTE: one
(named ASTE-Data-V1) is released by (Peng et al.,
2020) and another (named ASTE-Data-V?2) is re-
leased by (Xu et al., 2020). ASTE-Data-V1 does
not contain cases where one opinion span is as-
sociated with multiple targets, but these cases are
very common in the real world. ASTE-Data-V2 re-
fines the V1 version with these additional missing
triplets. Therefore, we mainly use ASTE-Data-V2
for our experiments, which is more general. Note
that some works (Mao et al., 2021; Chen et al.,
2021a) use ASTE-Data-V1 for the experiments.
We also report the results of our method on ASTE-
Data-V1 to fairly compare with them. The detailed
statistics of ASTE-Data-V2 are listed in Tab. 1.

4.2 TImplementation Details

The hyper-parameters in our experiment are tuned
over the development set by grid search. We use
bert-base-uncased as our Review Encoder to be
consistent with the previous works of ASTE. The
learning rate of BERT is set to 5e — 5 with gradient
clip selected from 1 to 5. The learning rate of the



Models Res14 Lapl4 Resl5 Resl6
P. R. F1 P. R. F1 P. R. F1 P. R. F1
ASTE-Data-V2 + Static Word Embeddings (GloVe)
Peng-two-stage | 43.24 63.66 51.46 | 37.38 50.38 42.87 | 48.07 57.51 5232|4696 64.24 5421
OTE-MTL 62.70 57.10 59.71 | 49.62 41.07 44.78 | 55.63 42.51 47.94 | 60.95 5335 56.82
JET® 61.50 55.13 58.14 | 53.03 33.89 4135 | 64.37 4433 5250 | 70.94 57.00 63.21
GTS 66.13 5791 61.73 | 53.35 40.99 4631 | 60.10 46.89 52.66 | 63.28 58.56 60.79
Span-ASTE 72.52 6243 67.08 | 59.85 45.67 51.80 | 64.29 52.12 57.56 | 67.25 61.75 64.37
ASTE-Data-V2 + Pretrained Model (BERT)

JET? 70.56 5594 6240 | 5539 4733 51.04 | 6445 5196 57.53 | 7042 58.37 63.83
GTS 67.76 6729 67.50 | 57.82 5132 5436 | 62.59 5794 60.15 | 66.08 6991 67.93
Span-ASTE 72.89 70.89 71.85 | 63.44 5584 5938 | 62.18 64.45 63.27 | 69.45 71.17 70.26
SAMBERT 70.29 7492 7253 | 6226 59.15 60.66 | 65.12 63.51 64.30 | 68.01 75.44 71.53

Table 2: The overall evaluation results on ASTE-Data-V2. P. and R. are Precision and Recall respectively. The best
results are in bold font and the second-best ones are underlined. The results of OTE-MTL and GTS are adopted

from (Xu et al., 2021).

Convolutional Encoder-Decoder is selected from
the range of [Se-4, le-4, 5e-5]. The Adam opti-
mizer (Kingma and Ba, 2015) is used for model
optimization. Besides, since the information of
some layers in BERT can be irrelevant to ASTE,
we only leverage the first k bottom layers and last
k top layers as input, where we set k to 4 in all
the experiments. Our implementation is based on
PyTorch (Paszke et al., 2019) and HuggingFace’s
transformers library (Wolf et al., 2020).

4.3 Evaluation Metrics

Following the existing works (Peng et al., 2020; Xu
et al., 2020; Wu et al., 2020; Chen et al., 2021a),
we use precision, recall, and F1 score as the metrics
to evaluate the performance of ASTE. A correct
triplet requires an exact match between the pre-
diction of the aspect term, opinion span, and the
sentiment polarity with the ground truth. Note that
the F1 score takes into account both precision and
recall, which can be regarded as a harmonic aver-
age of them. Therefore, we focus on the F1 score
in following experiments.

4.4 Baselines
Our method is compare to the following methods.

* Peng-two-stage: (Peng et al., 2020) extracts
the sentiment triplets in two stages, which first
extract the elements and then combine them
into sentiment triplets.

e OTE-MTL: (Zhang et al., 2020) proposes a
multi-task learning framework to jointly ex-
tract aspect terms and opinion spans with pars-
ing the sentiment polarities between them si-

multaneously.

* JET: (Xu et al., 2020) proposes to extract the
sentiment triplets by a word-level position-
aware tagging scheme.

* GTS: (Wu et al., 2020) uses a grid tagging
scheme and an inference strategy for extract-
ing the sentiment triplets.

* Span-ASTE: (Xu et al., 2021) proposes a span-
level approach to explicitly consider the inter-
action between the whole span of the aspect
and opinion when predicting their sentiment.

* Dual-MRC: (Mao et al., 2021) proposes a
dual-MRC framework to handle ASTE task,
by jointly training two BERT-MRC models
with parameter sharing.

* BMRC: (Chen et al., 2021a) proposes a bidi-
rectional MRC framework to capture and uti-
lize the associations among ASTE subtasks.

5 Results

5.1 Opverall Evaluation

As reported in Tab. 2 and Tab. 3, our method out-
performs all of the existing state-of-the-art methods.
Specifically, for ASTE-Data-V2 (cf. Tab. 2), our
method surpasses all of the non-Bert-based and
Bert-based methods. Compared to the multi-stage
method Span-ASTE (Xu et al., 2021), we can aver-
agely outperform it by 1.07% on the four datasets.
Besides, compared to the one-stage method GT'S
(Wu et al., 2020), our method can also boost the
performance by 4.77 points on average.

In addition, to keep consistency and fairly com-
pare with (Mao et al., 2021; Chen et al., 2021a),



Models Res14 Lapl4 Res15 Res16
P. R. F1 P. R. F1 P. R. F1 P. R. F1
ASTE-Data-V1 + Pretrained Model (BERT)
Dual-MRC 71.55 69.14 70.32 | 57.39 53.88 5558 | 63.78 51.87 57.21 | 68.60 6624 67.40
BMRC 7132 70.09 70.69 | 65.12 54.41 59.27 | 63.71 58.63 61.05 | 67.74 68.56 68.13
SAMBERT 75.15 7297 74.04 | 63.03 57.14 59.96 | 61.97 60.88 61.42 | 68.12 7398 70.93
Table 3: The overall evaluation results on ASTE-Data-V1.
Res14 Lapl4 Resl5 Res16
Model p R FL| P R F| P R Fl| P R FI
SAMBERT 70.29 7492 72,53 | 62.26 59.15 60.66 | 65.12 63.51 64.30 | 68.01 7544 71.53
only top layers 68.48 73.00 70.66 | 59.57 51.76 55.39 | 57.93 61.03 59.44 | 64.78 7349 68.86
only bottom layers 69.53 59.09 63.89 | 46.17 4233 44.17 | 58.82 47.42 5251 | 60.81 58.67 59.72
MHSA over word rep | 65.07 7147 68.12 | 56.23 56.75 56.49 | 56.66 58.76 57.69 | 61.73 72.32 66.61
word rep concat 69.80 71.57 70.68 | 5849 5730 57.89 | 63.31 60.83 62.04 | 56.08 69.40 67.17
w/o segmentation 56.75 46.50 51.11 | 49.51 28.10 35.85 | 42.27 40.00 41.10 | 56.08 46.78 51.01

Table 4: The ablation study of our method. These experiments are based on ASTE-Data-V2.

we also report the results of our method on ASTE-
Data-V1, which are shown in Tab. 3. It’s observed
that, although these two methods use BERT (Devlin
et al., 2019) in a MRC way to leverage its capa-
bility of deep language understanding, our method
can also improve the performance by 1.85% on
average.

The results on the two versions of datasets
demonstrate that our method, which makes full and
explicit use of the pretrained knowledge in BERT
and further equip it with a segmentation paradigm,
is more effective to tackle ASTE and can achieve a
new state of the art.

5.2 Effects of Different Components

In this Subsection, we discuss the effects of the
two crucial components of our method. For the
attentions maps of BERT, we replace them with
two variants:

* only top layers: the attention maps of bottom
layers are removed to prove the information it
contains can help with the improvement.

e only bottom layers: only the attention maps of
the bottom BERT layers are leveraged to show
the information in top layers is necessary.

Also, other two operations are used to calculate the
feature maps by the word representations of last
layer in BERT, which aim to verify the superior-
ity of leveraging the attention features originally
derived by BERT:

* MHSA over word rep: we replace the atten-
tion maps derived within BERT with the post-

calculated attention maps over its word repre-
sentations.

* word rep concat: we concatenate the pairs
between the word representations (Wu et al.,
2020) to substitute our attention maps of dif-
ferent layers.

Besides, the Segmentation Layer is replaced with
a vanilla fully-connected classifier to verify the ef-
fectiveness of the semantic segmentation, dubbed
as w/o segmentation. The experiments in this Sub-
section are all based on ASTE-Data-V2.

As reported in Tab. 4, when only leveraging the
attention maps of top layers or bottom layers, the F1
score drops by 3.67% or 12.18% on average. That
means the top layers contain most of the required
information for ASTE, but the bottom layers can
also provide some task-specific features. In other
words, only using the information stored in top
layers can maintain a high-level performance of
ASTE, but the knowledge in bottom layers can
also supplement the effective information to further
boost the performance.

When replacing the derived attention maps of
BERT with post-calculated attention maps® over
the output of word representations of BERT, the per-
formance averagely declines by 5.03 points. That
indicates the knowledge originally stored in differ-
ent layers via the pretraining paradigm can not be
easily obtained by its last layer output. In contrast,
directly and explicitly leveraging these attention

3Here we use a 12-head Self Attention to calculate the
attention maps.
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Figure 4: The t-SNE visualization of the word pair representations consisting of only bottom layers (left), only
top layers (middle), and both bottom and top layers (right). We only visualize these representations whose classes
belong to { A, O, Pos, Neu, Neg} and the label None is omitted since its number is enormous and can interfere

with observation.

maps derived by BERT is a better way to access
the hierarchical features. In addition, we follow
(Wu et al., 2020) to concatenate the pairs of con-
textualized representations of BERT as the input to
Segmentation Layer, where the performance also
drops by 2.81 points. The conclusion is the same
as the one we draw above.

Finally, we verify the effectiveness of the Seg-
mentation Layer. When the variant uses a vanilla
classifier instead of the Segmentation Layer, the
performance of the F1 score dramatically degrades
by 22.49 points on average. That indicates the se-
mantic segmentation paradigm is important to per-
ceive and utilize the information existing in other
adjacent word pairs and further boost the perfor-
mance of ASTE.

The ablation studies from different perspectives
imply that both components are useful to improve
the performance of ASTE, and the combination of
them can further reach their full potential.

5.3 Visualization

Besides, to demonstrate the knowledge stored in
the attention maps of different layers is beneficial
to obtain informative and discriminative represen-
tations for ASTE, we also apply t-SNE (van der
Maaten and Hinton, 2008) to these word pair level
representations comprised of attention scores, and
plot their 2-dimensional vectors.*

Specifically, we visualize three types of atten-
tion features, i.e., only bottom layers, only top lay-
ers, and both bottom and top layers. As shown in
Fig. 4, it is obvious that (1) Only using the bot-
tom layers can easily tell the difference between
intra-associations (i.e., { A, O}) and inter-relations

“Due to the space limitation, we only illustrate Lap14
dataset, where other datasets have the same performance.

(i.e., {Pos, Neu, Neg}) of the aspect terms and
opinion spans with a large margin. That indicates
the bottom layers do capture some task-specific
information existing in sentiment triplets. (2) Al-
though only using the top layers can better recog-
nize both intra- and inter-associations of the triplet
elements, the clusters are less compact than only
using the bottom layers. (3) When both the bot-
tom and top layers are used, the representations of
word pairs can result in more compact clusters and
clearer boundaries between different classes than
only using the bottom or top layers. That suggests
the features in bottom and top layers are comple-
mentary to each other, which are helpful to decide
the classes the word pairs belong to. Without any
part of them can result in the situation of losing
task-specific information.

6 Conclusion

In this work, we propose a novel framework, i.e.,
SAMBERT, to Segment the Attention Maps of
BERT, which aims to fully and explicitly leverage
the rich pretrained knowledge stored in its differ-
ent layers. By formulating ASTE as a semantic
segmentation task, we can further reason over the
knowledge of different levels and views in these
attention maps, so as to distinguish aspect terms,
opinion spans and their sentiment relations from
other parts. That results in a same-shape tagging
matrix of word pairs, which is used to derive the
sentiment triplets of review sentences. Through the
experiments on four public benchmarks, we demon-
strate that our method can achieve a new state of
the art. The further analyses in both quantitative
and qualitative perspectives verify the effectiveness
of the proposed components of our method.
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