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Abstract

It is widely believed that natural image data exhibits low-dimensional structure1

despite being embedded in a high-dimensional pixel space. This idea underlies a2

common intuition for the success of deep learning and has been exploited for en-3

hanced regularization and adversarial robustness. In this work, we apply dimension4

estimation tools to popular datasets and investigate the role of low dimensional5

structure in neural network learning. We find that common natural image datasets6

indeed have very low intrinsic dimension relative to the high number of pixels in7

the images. Additionally, we find that low dimensional datasets are easier for neural8

networks to learn. We validate our findings by carefully-designed experiments to9

vary the intrinsic dimension of both synthetic and real data and evaluate its impact10

on sample complexity.11

1 Introduction12

The idea that real-world data distributions can be described by very few variables underpins machine13

learning research from manifold learning to dimension reduction (Besold & Spokoiny, 2019; Fodor,14

2002). The number of variables needed to describe a data distribution is known as its intrinsic15

dimension (ID). In applications, such as crystallography, computer graphics, and ecology, practitioners16

depend on data having low intrinsic dimension (Valle & Oganov, 2010; Desbrun et al., 2002;17

Laughlin, 2014). A variety of deep learning techniques including autoencoders and regularization18

methods (Gonzalez & Balajewicz, 2018; Zhu et al., 2018) are also motivated by the low-dimensional19

assumption of data.20
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Figure 1: Estimates of the dimensionality of pop-
ular datasets obtained using the MLE method with
k = 5, 10, 20 nearest neighbors (left to right).

It is known that dimensionality plays a strong21

role in learning function approximations and22

non-linear class boundaries. The exponential23

cost of learning in high dimensions is easily24

captured by the trivial case of sampling a func-25

tion on a cube; in n dimensions, sampling only26

the cube vertices would require 2n measure-27

ments. Similar behaviors emerge in learning28

theory. It is known that learning a manifold29

requires a number of samples that grows expo-30

nentially with the manifold’s intrinsic dimen-31

sion (Narayanan & Mitter, 2010). Similarly,32

the number of samples needed to learn a well-33

conditioned decision boundary between two34

classes is an exponential function of the intrinsic35
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dimension of the manifold on which the classes lie (Narayanan & Niyogi, 2009). Furthermore, these36

learning bounds have no dependence on the ambient dimension in which manifold-structured datasets37

live.38

In light of the exponentially large sample complexity of learning high-dimensional functions, the39

seemingly low number of samples needed for neural networks to learn image manifolds strongly40

suggests that image datasets have extremely low-dimensional structure.. Networks learn complex41

decision boundaries from small amounts of image data, e.g., ImageNet has no more than 1300 images42

for each of the 1000 classes. At the same time, Generative adversarial networks are able to learn43

image “manifolds” from merely a few thousand samples.44

Despite the established role of low dimensionality in deep learning, little is known about the intrinsic45

dimension of popular datasets and the impact of dimensionality on the performance of neural networks.46

We adopt tools from the dimension estimation literature to shed light on dimensionality in settings of47

interest to the deep learning community. Our contributions are summarized as follows:48

• We verify the reliability of intrinsic dimension estimation on high-dimensional data using49

generative adversarial networks (GANs), a setting where we can upper-bound the intrinsic50

dimension of generated data a priori by the dimension of the latent noise vector.51

• We measure the dimensionality of popular datasets such as MNIST, CIFAR-10, and Im-52

ageNet. In our experiments, we find that natural image datasets whose images contain53

thousands of pixels can, in fact, be described by orders of magnitude fewer variables. For54

example, we estimate that ImageNet, despite containing 150K pixels per image, only has an55

intrinsic dimension between 38 and 43; see Figure 1.56

• We train classifiers on synthetic and real data of various intrinsic dimension and find that this57

variable correlates closely with the sample complexity for learning. On the other hand, we58

find that the dimension of the ambient space of the data has little impact on generalization.59

Our results put experimental weight behind the hypothesis that the unintuitively low dimensionality60

of natural images is being exploited by deep networks, and suggest that a characterization of this61

structure is an essential building block for a successful theory of deep learning. A brief review of62

related work can be found in Appendix A.63

2 Scalable Estimation of Intrinsic Dimension64

Given a set of sample points P ⊂ RN , it is common to assume that P lies on or near a low-65

dimensional manifoldM ⊆ RN of intrinsic dimension dim(M) = D � N . We implemented a66

scalable version of the popular Maximum Likelihood Estimator (MLE) of Levina & Bickel (2004);67

for further information on dimension estimation, see (Kim et al., 2019) and references therein.68

2.1 Validation on Synthetic Data69

Towards a principled application of ID estimates on images, we begin by validating that MLE methods70

can generate accurate dimensionality estimates for complex image manifolds. We generate image71

datasets using generative models for which the intrinsic dimensionality is bounded. We believe such72

validations are essential to put recent findings in perspective (Gong et al., 2019; Ansuini et al., 2019).73

We use the BigGAN variant with 128 latent entries and outputs of size 128× 128× 3 trained on the74

ImageNet dataset (Deng et al., 2009) to generate datasets with various number of images, where we75

fix most entries of the latent vectors to zero leaving only n free entries to be chosen at random. As we76

increase the number of free entries, we expect the intrinsic dimension to increase but not to exceed n;77

see Appendix C.1 for further discussions.78

In particular, we create several synthetic datasets of varying intrinsic dimensionality using the79

ImageNet class, basenji, and check if the estimates match our expectation. As seen in Figure 5, we80

observe increasing diversity with increasing intrinsic dimension. In Figure 6, we show convergence81

of the MLE estimate on basenji data with dimension bounded above by 10. We also observe that82

the estimates can be sensitive to the choice of k as discussed in prior works; see Appendix C.2 for83

additional GAN classes. In addition, we evaluate the accuracy of averaging a subset of local MLE84

estimates for large-scale datasets like ImageNet; see Appendix C.3 for details.85
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Dataset MNIST CIFAR-10 CIFAR-100 ImageNet MS-COCO CelebA
MLE (k=5) 11 21 18 38 33 17
MLE (k=10) 12 25 22 43 37 24
MLE (k=20) 13 26 23 43 36 26
SOTA Accuracy 99.84 99.37 93.51 88.5 - -

Table 1: The MLE estimates for practical image datasets, and the state-of-the-art test-set image
classification accuracy (for classification problems only) for these datasets.

2.2 The Intrinsic Dimension of Popular Datasets86

In this section, we measure the intrinsic dimensions of a number of popular datasets including87

MNIST (Deng, 2012), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Deng et al.,88

2009), MS-COCO (Lin et al., 2014), and CelebA (Liu et al., 2015). Using three different parameter89

settings for MLE, we find that the ID is indeed much smaller than the number of pixels; see Table 2.2.90

Notice that the rank order of datasets by dimension does not depend on the choice of k. A comparison91

of state-of-the-art classification accuracy on each respective dataset1 with the dimension estimates92

suggests a negative correlation between the intrinsic dimension and test accuracy. In the next section,93

we take a closer look at this phenomenon through a series of dedicated experiments.94

3 Intrinsic Dimension and Generalization95

Narayanan & Mitter (2010) have establish that learning a manifold requires a number of samples that96

grows exponentially with the manifold’s intrinsic dimension, but the required number of samples is97

independent of the extrinsic dimension. We leverage dimension estimation tools to empirically verify98

these theoretical findings by a family of binary classification problems defined on both synthetic and99

real datasets of varying ID. We then train classifiers on these datasets and measure test accuracy. In100

these experiments, we find that classification problems on data of lower intrinsic-dimensionality are101

easier to solve.102

3.1 Synthetic data: Sample complexity depends on intrinsic (not extrinsic) dimensionality103

The synthetic GAN data generation technique described in Section B provides a unique opportunity104

to test the relationship between generalization and intrinsic/extrinsic dimensionality on images. By105

creating datasets with controlled intrinsic dimensionality, we may compare their sample complexity,106

that is the number of samples required to obtain a given level of test error. Specifically we test the107

following two hypotheses (1) data of lower intrinsic dimensionality has lower sample complexity108

than that of higher intrinsic dimensionality and (2) extrinsic dimensionality is irrelevant for sample109

complexity.110

To investigate hypothesis (1), we create four synthetic datasets of varying intrinsic dimensionality:111

16, 32, 64, 128, fixed extrinsic dimensionality: 3×128×128, and two classes: basenji and beagle.112

For each dataset we fix a test set of size N = 1700. For all experiments, we use the ResNet-18113

(width=64) architecture (He et al., 2016). We then train models until they fit their entire training114

set with increasing amounts of training samples and measure the test error. We show these results115

in Figure 2. Observing the varying rates of growth, we see that data of higher intrinsic dimension116

requires more samples to achieve a given test error.117

For hypothesis (2), we carry out the same experiment with the roles of intrinsic and extrinsic dimension118

switched. We create four synthetic datasets of varying extrinsic dimensionality by resizing the images119

with nearest-neighbor interpolation. Specifically we create 6 datasets of square, 3-channel images120

of sizes 16, 32, 64, 128, 256, fixed intrinsic dimensionality of size 128, and all other experimental121

details the same. We show these results in Figure 3. Observing the lack of variable growth rates, we122

see that extrinsic dimension has little to no effect on sample complexity.123

We conclude by noting that, to the best of our knowledge, this is the first such experimental result124

to demonstrate that intrinsic but not extrinsic dimensionality matters for the generalization of deep125

networks.126

1Values from https://paperswithcode.com/task/image-classification.
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Figure 2: Sample complexity of synthetic datasets of varying intrinsic dimensionality.
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Figure 3: Sample complexity of synthetic datasets of varying extrinsic dimensionality.

3.2 Real data: Adding noise changes dimensionality and affects generalization127
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Figure 4: Sample complexity of noisy datasets.

For real data, we evaluate the impact of ID on generalization by: (1) increasing the ID of a dataset by128

varying amount of additive noise to each image and comparing the test accuracy; (2) comparing the129

test accuracy of different datasets with different IDs. We defer (2) to Appendix D.130

By adding noise to the images of a real dataset, we are leveraging the fact that uniformly sampled131

noise in [0, 1]d has dimension d. We thus add independent noise, drawn uniformly from a fixed132

randomly oriented d-dimensional unit hypercube embedded in pixel space, to each sample in a dataset.133

This procedure ensures that the dataset has dimension at least d. Since we have shown these datasets134

have low IDs, this procedure specifically increases ID in most cases. We note that estimation error135

may occur when there is an insufficient number of samples required to achieve a proper dimension136

estimate. Since the variation in images in a dataset may still be dominated by non-noise directions,137

we expect to underestimate the new increased dimensions of these noised datasets.138

Starting with CIFAR-10 data, we add noise of varying dimensions, where we replace pix-139

els at random in the image. We only add noise to an image once to keep the aug-140

mented dataset the same size as the original. We use the following noise dimensionalities:141

256, 512, 1024, 2048, 2560. The new noised data respectively obtains the following MLE dimension-142

ality estimates: 19.7, 30.9, 57.1, 77.8, 110.0, 136.1. We see that intrinsic dimension increases with143

increasing noise dimensionality, but dimensionality does not saturate to the maximum true dimension,144

likely due to a poverty of samples. We show results on these noisy CIFAR-10 datasets in Figure 4.145

We observe sample complexity largely in the same order as intrinsic dimension.146
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A Related Work207

Early work on efficient image representations emphasized the importance of natural image statistics (Ruderman,208

1994). It is widely believed that the combination of natural scenes and sensor properties yields very sparse and209

concentrated image distributions, as has been supported by several empirical studies on image patches (Lee et al.,210

2003; Donoho & Grimes, 2005; Carlsson et al., 2008). This observation motivated lots of work on efficient211

coding (Olshausen & Field, 1996) and served as a prior in computer vision (Peyré, 2009). Other work has212

focused on algorithms for verifying the manifold hypothesis (Fefferman et al., 2016).213

The generalization literature seeks to understand why some models generalize better from training data to test214

data than others. One line of work suggests that the loss landscape geometry explains why neural networks215

generalize well (Huang et al., 2019). Other generalization work predicts that data with low dimension, along216

with other properties which do not include extrinsic dimension, characterize the generalization difficulty of217

classification problems (Narayanan & Niyogi, 2009). In the context of deep learning, Gong et al. (2019) found218

that neural network features are low-dimensional. Ansuini et al. (2019) further found that the intrinsic dimension219

of features decreases in late layers of neural networks and observed interesting trends in the dimension of220

features in early layers. Zhu et al. (2018) recently proposed a regularizer derived from the intrinsic dimension of221

images augmented with their corresponding feature vectors.222

B Validating Dimension Estimation with Synthetic Data223

Dimensionality estimates are often applied on “simple” manifolds or toy datasets where the dimensionality is224

known, and so the accuracy of the methods can be validated. Image manifolds, by contrast, are highly complex,225

may contain many symmetries and modes, and are of unknown dimension. In principle, there is no reason why226

MLE-based dimensionality estimates cannot be applied to image datasets. However, because we lack knowledge227

of the exact dimensionality of image datasets, we cannot directly verify that MLE-based dimensionality estimates228

scale up to the complexity of image structures.229

There is an inherent uncertainty in estimating the ID of a given dataset. First, we cannot be sure if the dataset230

actually resembles a sampling of points on or near a manifold. Second, there are typically no guarantees that the231

sampling satisfies the conditions assumed by the ID estimators we are using.232

Towards a principled application of ID estimates to the learning context, we begin by validating that MLE233

methods can generate accurate dimensionality estimates for complex image structures. We do this by generating234

image datasets using generative models for which the intrinsic dimensionality is known. We believe such235

validations are essential to put recent findings in perspective (Gong et al., 2019; Ansuini et al., 2019).236

GAN Images. We use the BigGAN variant with 128 latent entries and outputs of size 128× 128× 3 trained237

on the ImageNet dataset (Deng et al., 2009). Using this GAN, we generate datasets with a varying number of238

images, where we fix most entries of the latent vectors to zero leaving only n free entries to be chosen at random.239

As we increase the number of free entries, we expect the intrinsic dimension to increase, and the output can only240

be at most n-dimensional; see Section C.1 for further discussion.241

In particular, we create several synthetic datasets of varying intrinsic dimensionality using the ImageNet class,242

basenji, and check if the estimates match our expectation. As seen in Figure 5, we observe increasing diversity243

with increasing intrinsic dimension. In Figure 6, we show convergence of the MLE estimate on basenji data244

with dimension bounded above by 10. We observe that the estimates can be sensitive to the choice of k as245

discussed in prior work; see Appendix C.2 for additional GAN classes.246

Scaling to large datasets. We develop a practical approach for estimating the ID of large datasets such as247

ImageNet. In this approach, we randomly select a fraction α of the dataset as anchors. Then, we evaluate the248

MLE estimate using only the anchor points, where nearest-neighbors are computed over the entire dataset. Note249

that, when anchors are chosen randomly, this acceleration has no impact on the expected value of the result. See250

Appendix C.3 for an evaluation of this approach.251

As with simpler manifolds, we find that there is some variation in the estimate with the choice of k, with k = 10252

consistently yielding good estimates on this dataset. Despite this variation, it appears that MLE is capable of253

estimating the dimensionality of this image-structured data within a reasonable margin of error.254

C Validation of ID Estimates255

In this section, we present additional discussion results and discussion relevant to the ID estimation and related256

validation experiments in Section B.257
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Figure 5: Visualization of basenji GAN samples of varying intrinsic dimension.
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Figure 6: Validation of MLE estimate on synthetic basenji data with n = 10 free entries. We
observe the estimates to converge around the expected dimensionality of 10.

C.1 GAN properties258

We devise a method for validating ID measurements in a controlled setting using images generated by GANs. To259

justify this method, we first note that the image of Rd under a locally Lipschitz function can be a manifold with260

dimension at most d. Then, consider that the BigGAN generator, a convolutional neural network with ReLU261

activations, is a function with this property (Brock et al., 2018).262

Specifically, BigGAN can be written as a composition of linear functions, translations, and ReLU activation263

functions. Individually, these operations do not increase dimension, and by a composition property, their264

composition cannot increase dimensionality either. The more general fact that the image of Rd under a locally265

Lipschitz function can be a manifold with dimension at most d follows from Sard’s theorem.266
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C.2 Convergence for More GAN Classes267

We include additional results on the estimation of ID for synthetic GAN images from various ImageNet classes268

with n = 10 free entries. As observed earlier in Section B, the MLE estimates are sensitive to the choice of k,269

where we expect the ID to be close to 10 given the way we sample the latent vectors to use for the GAN. We270

note that for a number of classes, all choices of k we considered seem to underestimate the ID.271
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Figure 7: Validation of MLE estimates on synthetic daisy data with 10 free entries.
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Figure 8: Validation of MLE estimate on synthetic soap-bubbles data with 10 free entries.

C.3 Subsampling for Large Datasets272

In Figure 10 we validate the anchor approximation on basenji data of dimension 10 for varying anchor ratio α.273

Then, in Figure 11 we validate the anchor approximation on tree-frog data of dimension 32 for varying k274

while fixing the anchor ratio at α = 0.001.275

D Real Data: Intrinsic dimensionality matters for generalization276

We examine the sample complexity of binary classification tasks from four common image datasets: MNIST,277

SVHN, CIFAR-10, and ImageNet. This case differs from the synthetic case in that we have no control over each278

dataset’s intrinsic dimension. Instead, we estimate it via the MLE method discussed in Section 2. To account279

for variable difficulty of classes, we randomly sample 5 class pairs from each dataset and run the previously280

described sample complexity experiment. Note that these subsets differ from those used in Table 2.2, where the281

estimates are taken from the entire dataset and across all classes.282

On these sampled subsets, we find the following mean MLE estimates (k = 3): MNIST→ 7.5± 0.2, SVHN→283

8.5± 0.1, CIFAR-10→ 11.4± 0.2, ImageNet→ 15.4± 0.8. We note that these estimates are consistent with284

expectation, e.g. MNIST is qualitatively less complex then SVHN and CIFAR-10.285
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Figure 9: Validation of MLE estimate on synthetic coffee data with 10 free entries. Note that the
estimates do not converge around the upper bound of 10, which suggests that data generated from
this class is not of full dimension.
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Figure 10: Validation of anchor approximation on basenji with 10 free entries.

We conduct the same sample complexity experiment as the previous section on the datasets. Because these286

datasets are ordinarily of varying extrinsic dimensionality, we resize all to size 32× 32× 3 (before applying287

MLE). We report results in Figure 12, where we overall observe trends ordered by intrinsic dimensionality288

estimate. These results are consistent with expectation of the relative hardness of each dataset. However, there are289

some notable differences from the synthetic case. Several unexpected cross-over points exist in the low-sample290

regime, and the gap between SVHN and CIFAR-10 is smaller than one may expect based on their estimated291

intrinsic dimension.292

From these observations we conclude that intrinsic dimensionality is indeed relevant to generalization on real293

data, but it is not the only feature of data that influences sample complexity.294
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Figure 11: Validation of anchor approximation on tree-frog with n = 32 free entries.
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Figure 12: Sample complexity of real datasets.
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