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Abstract

Diffusion models have shown promise in text001
generation, but often struggle with generat-002
ing long, coherent, and contextually accurate003
text. Token-level diffusion doesn’t model word-004
order dependencies explicitly and operates on005
short, fixed output windows, while passage-006
level diffusion struggles with learning robust007
representations for long-form text. To address008
these challenges, we propose Segment-Level009
Diffusion (SLD), a framework that enhances010
diffusion-based text generation through text011
segmentation, robust representation training012
with adversarial and contrastive learning, and013
improved latent-space guidance. By segment-014
ing long-form outputs into multiple latent rep-015
resentations and decoding them with an au-016
toregressive decoder, SLD simplifies diffusion017
predictions and improves scalability. Experi-018
ments on four datasets demonstrate that, when019
compared to other diffusion and autoregressive020
baselines SLD achieves competitive or superior021
fluency, coherence, and contextual compatibil-022
ity in automatic and human evaluations.023

1 Introduction024

Transformer-based autoregressive (AR) language025

models have become the prevailing standard in nat-026

ural language generation (Vaswani et al., 2017;027

Zhao et al., 2023). However, the nature of next-028

token prediction inherently makes them prone to er-029

ror propagation and incorrect handling of long-term030

dependencies, while also complicating controllable031

generation (He et al., 2021; Wu et al., 2018).032

Diffusion models, which are non-autoregressive033

(NAR) generative models widely successful in im-034

age and video generation, have also shown promise035

in text generation (Ho et al., 2020; Radford et al.,036

2021; Singer et al., 2023). Li et al. (2022) pio-037

neered the application of diffusion models to dis-038

crete text generation by predicting continuous word039

embeddings. Building on this work, Lin et al.040

(2023) introduced GENIE, a pre-trained diffusion041
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Figure 1: Comparison of AR models (top), latent diffu-
sion (middle), and our segment-level diffusion (bottom).
Unlike latent diffusion, which de-noises a single latent
representation, our method splits outputs and represen-
tation into segments as the cross-attention target for
conditional generation with parallel autoregressive de-
coding, improving text quality and controllability.

language model that enhances semantic understand- 042

ing through continuous paragraph-level de-noising. 043

These approaches fall under token-level diffusion, 044

as they directly generate word embeddings. In 045

contrast, Lovelace et al. (2023) proposed latent dif- 046

fusion for text generation (LD4LG), encoding text 047

into latent representations, applying diffusion to 048

high-level semantic structures, and decoding them 049

into text using an AR decoder. Chen and Yang 050

(2023) leveraged diffusion models for controllable 051

dialogue generation, operating on high-level dis- 052

course representations to enable precise control 053

over the semantics of the dialogues generated. 054

However, existing diffusion language models 055

face challenges in generating longer texts. In such 056

cases token-level diffusion becomes computation- 057

ally expensive, as it either requires pre-training 058

with larger output windows, or relies on iterative 059
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diffusion sampling (Tang et al., 2023; Yi et al.,060

2024). The fixed output window is also wasteful061

when the generated sequence is shorter. Addition-062

ally, unlike AR methods, they do not model word-063

order dependencies explicitly, often resulting in064

ungrammatical or incoherent output. Generating065

latent representations for passages with multiple066

sentences is harder, since they are highly sensitive067

to noise which can lead to abrupt changes of mean-068

ing in the decoded text, and learning a smooth la-069

tent distribution is challenging (Vahdat et al., 2021;070

Zhang et al., 2023).071

To address these limitations, we propose a072

novel approach for diffusion-based text generation,073

Segment-Level Diffusion (SLD), illustrated in Fig-074

ure 1. Inspired by the concept of image patches075

(Ding et al., 2023), we use a diffusion model to076

perform high-level semantics and structural plan-077

ning, generating a latent representation for each078

segment (e.g., sentences in paragraphs, utterances079

in dialogues), instead of handling long texts with080

a single latent representation. Then, an AR de-081

coder decodes predicted representations to texts.082

To improve text generation, we integrate adversar-083

ial training (Miyato et al., 2017) and contrastive084

learning (Gao et al., 2021) to smoothen the latent085

representation distribution and optimize the AR086

decoder with respect to the diffusion process. Ad-087

ditionally, we incorporate extra loss signals from088

both decoding and latent space reconstruction to089

further strengthen control, improving coherence090

and fidelity in text generation.091

We compare our SLD model against three diffu-092

sion models, GENIE (Lin et al., 2023), LD4LG093

(Lovelace et al., 2023), Diffuse-CG (Chen and094

Yang, 2023), and an autoregressive baseline, Flan-095

T5 (Chung et al., 2024). The evaluation includes096

summarization (XSum, Narayan et al. 2018), title-097

to-story generation (ROCStories, Mostafazadeh098

et al. 2016), summary-to-dialogue generation099

(DialogSum, Chen et al. 2021), and multiparty100

decision-making dialogue generation (DeliData,101

Karadzhov et al. 2023). Evaluation by both auto-102

matic and human metrics shows that SLD generates103

text that is more coherent and fluent, better aligned104

with the provided input, and matches ground-truth105

references more closely.106

2 Related Work107

Token-Level Diffusion Li et al. (2022) adapted dif-108

fusion model for discrete text generation by oper-109

ating in the continuous space of word embeddings 110

jointly learned by the model. The architecture it- 111

eratively de-noises sampled Gaussian noise into a 112

sequence of word vectors. A rounding method is 113

then applied to project the embeddings predicted 114

into the nearest embeddings. Extending this work, 115

Gong et al. (2023a) applied token-level diffusion 116

to sequence-to-sequence generation tasks. Lin et al. 117

(2023) advanced this approach by incorporating 118

pre-training, which enhanced semantic and syntac- 119

tic coherence by training diffusion decoders to re- 120

construct clean paragraphs from corrupted embed- 121

dings. These models achieve sequence-to-sequence 122

generation using encoded text as classifier-free 123

guidance (Ho and Salimans, 2022). Zhou et al. 124

(2023) unifies discrete text generation and continu- 125

ous representations by using BART (Lewis, 2019) 126

with self-prompting to recover masked tokens. 127

However, token-level diffusion has notable limi- 128

tations. Unlike AR decoding methods that always 129

condition on previously decoded tokens, NAR gen- 130

eration does not model word-order dependencies 131

explicitly, often resulting in text that lacks gram- 132

matical correctness and fluency. Furthermore, the 133

fixed output window restricts the length of the gen- 134

erated text. It is computationally expensive to re- 135

train the entire token-level diffusion model with 136

larger output windows, even more so for architec- 137

tures without a pre-trained language model back- 138

bone (Gulrajani and Hashimoto, 2024; Lou et al., 139

2023; Austin et al., 2021). Even though existing 140

literature has accelerated diffusion sampling (Gong 141

et al., 2023b; Tang et al., 2023), token-level diffu- 142

sion remains inefficient if the generated sequence is 143

shorter than the output window, as NAR decoding 144

always generates the full output. 145

Passage-Level Diffusion Lovelace et al. (2023) 146

built on the concept of latent space diffusion (Rom- 147

bach et al., 2022) by compressing and predict- 148

ing texts using high-level semantic representations, 149

rather than directly predicting fine-grained token 150

representations. Such compression is beneficial 151

for both performance and efficiency, as it provides 152

a length-independent representation and removes 153

information not needed for diffusion prediction, 154

in contrast to representations from traditional lan- 155

guage encoders. A separate AR decoder is em- 156

ployed to ensure the fluency of the generated text. 157

However, this approach primarily focuses on 158

short text generation, as learning robust latent rep- 159

resentations for long passages remains challeng- 160
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ing, and it is crucial to ensure the smoothness of161

the learned distribution for high-quality generation162

(Vahdat et al., 2021). Without proper regulariza-163

tion, the learned distribution may be susceptible to164

abrupt semantic changes due to small perturbations,165

increasing the difficulty of the task for the diffusion166

model. Although Zhang et al. (2023) proposed167

techniques to improve the distributional smooth-168

ness of latent representations, the correspondence169

between latent representations and specific compo-170

nents of the generated text remains unclear. This171

ambiguity complicates fine-grained guidance and172

limits control over the generation process.173

These limitations result in existing token- and174

passage-level diffusion models struggling to gen-175

erate long and coherent text. Despite their ability176

to generate outputs up to 64 tokens in length, they177

were primarily evaluated on tasks involving short178

text generation (e.g., QQP paraphrasing, XSum179

summarization) with outputs typically around 30180

tokens or less (Gong et al., 2023a; Sharma et al.,181

2019; Yi et al., 2024; Li et al., 2023).182

3 Segment-Level Diffusion183

To address the challenges faced by diffusion lan-184

guage models in controllable long-form generation,185

we propose Segment-Level Diffusion (SLD). In186

this section, we first provide an overview of the lan-187

guage generation process using diffusion models188

in latent space, as illustrated in Figure 1. We then189

introduce our improvements, offering an overview190

of the three training stages of SLD, as illustrated191

in Figure 2: output segmentation, representation192

learning, and training diffusion processing for se-193

mantic planning. Detailed training algorithm of the194

our model is outlined in Appendix as Algorithm 1.195

3.1 Formulation196

Given an input text sequence i = {i1, i2, . . . , in}197

consisting of n tokens and an output sequence198

o = {o1, o2, . . . , om} consisting of m tokens, we199

model the conditional probability p(o|i) using a200

learnable diffusion model R(; θR). We follow201

Lovelace et al. (2024) by introducing additional en-202

coding and decoding components to convert texts203

into continuous latent representations z ∈ Rk×hrep .204

The diffusion model operates on continuous la-205

tent variables z across T time steps, modelled as206

a Markov chain (Sohl-Dickstein et al., 2015; Ho207

et al., 2020; Song and Ermon, 2020), and consists208

of two processes: a backward process for inference209

and a forward process for training. 210

Inference The backward process generates the la- 211

tent representation of the predicted output text ô 212

by iteratively removing noise from an initial noisy 213

sample. Starting with a variable ẑT ∼ N (ẑT ;0, I), 214

the diffusion model with parameters θR predicts 215

the de-noised variable ẑt−1 at each time step t as 216

follows: 217

p(ẑt−1|ẑt; θR) = N
(
ẑt−1;µ

t−1
θR

,σt−1
θR

2
)

(1) 218

where µθR and σθR are the predicted mean and 219

variance at each time step. The diffusion model, 220

R(; θR), estimates ẑt−1. It conditions on the input 221

sequence i, using the encoder outputs from a pre- 222

trained text encoder Encctx(; θctx) as below.: 223

ẑt−1 = R(ẑt, t, Encctx(i; θctx); θR) (2) 224

The model keeps refining the noisy sample ẑT with 225

respect to the input sequence i to recover ẑ0 which 226

will be converted to text. The predicted latent rep- 227

resentation ẑ0 is passed to a function parameterised 228

by θg, which reconstructs it to match the input di- 229

mensions of an AR decoder with parameters θdec 230

for decoding: 231

g(ẑ0; θg) ∈ Rk×hlm , ô = Dec(g(ẑ0; θg); θdec).
(3) 232

Training The diffusion model R(; θR) is trained 233

by minimizing a regression loss to predict the noise 234

added during the forward process. In the forward 235

process, an original representation z0 of encoded 236

o from a training instance (i,o) ∼ D is gradually 237

corrupted into Gaussian noise over T time steps. 238

The encoding process consists of an encoder with 239

parameters θenc that encodes the output texts: 240

Enc(o; θenc) ∈ Rm×hlm (4) 241

and a compression function with parameters θf that 242

projects encoder outputs into a length-independent 243

latent space using: 244

z = f(Enc(o; θenc); θf ) ∈ Rk×hrep (5) 245

Here, we reduce the dimension of encoder outputs 246

to a fixed-length representation with k ≤ m and 247

hrep ≪ hlm. The corruption is modelled as: 248

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI) (6) 249

where βt controls the variance of the added noise at 250

each step. The objective is to minimize the distance 251

3



Morgan and her family lived in Florida.

They heard a hurricane was coming.

They felt lucky they had evacuated when they did.
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Gold Output:
Morgan and her family lived in Florida. They heard a 
hurricane was coming. They decided to evacuate to a 
relative's house. They arrived and learned from the news that 
it was a terrible storm. They felt lucky they had evacuated 
when they did.
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Stage 3: Training Diffusion as 
Inherent Semantic Planner

Encoder Outputs

Figure 2: Overview of the training pipeline of SLD. In the first stage, gold output is divided into segments. In
the second stage, we use contrastive and adversarial learning to ensure latent representations are robust to drastic
semantic changes. Finally, we train a diffusion model as an inherent semantic planner conditioned on given inputs.

between the predicted representation ẑt and the true252

posterior zt which is computed in closed form by253

sampling from the forward process.254

L(θR) =
T∑
t=1

E
q(zt|z0)

∥ẑt − zt∥22 (7)255

The loss above trains the model to iteratively re-256

verse the corruption applied during the forward257

process, enabling high-quality data generation in258

the backward process.259

3.2 Segmented Text Generation260

Inspired by the concept of image patches (Ding261

et al., 2023), in the first stage, we segment long262

outputs into smaller segments, such as sentences263

or dialogue utterances, rather than projecting the264

entire output into a single latent space representa-265

tion. This segmentation effectively reduces the size266

and complexity of each latent representation, sim-267

plifying diffusion predictions and enabling greater268

flexibility for scaling, allowing the model to han-269

dle long-form text more efficiently. Formally, we270

construct P = {p1, . . . ,pj}, where each pj corre-271

sponds to a non-overlapping contiguous segment272

of tokens in o. This process yields a set of latent273

representations Z = {z1, . . . , zj}, after encoding,274

establishing a one-to-one correspondence between275

each segment and its respective latent representa-276

tion. As shown in Figure 2, a story is divided into n277

segments (sentences in this case), and the diffusion 278

model will predict the same number of representa- 279

tions and decode them into n segments in parallel. 280

3.3 Learning Latent Representations for 281

Robust Decoding 282

As mentioned earlier, performing diffusion in 283

latent space for text generation requires train- 284

ing the language autoencoder Enc(; θenc), la- 285

tent compression f(; θf ), reconstruction g(; θg), 286

and decoder Dec(; θdec). A straightforward ap- 287

proach is to use the loss incurred during de- 288

coding p̂ = Dec(g(z; θg); θdec), where z = 289

f(Enc(p; θenc); θf ), for a patch of text p = 290

{o1, . . . , op}. We denote the parameters collec- 291

tively as θin = {θenc, θf} for the encoding and 292

compression, θout = {θg, θdec} for reconstruction 293

and decoding, and θrep = θin ∪ θout for latent rep- 294

resentation parameters. The parameters are trained 295

using the standard cross-entropy loss as below. 296

Lcnv(θrep) = −
p∑

l=1

log p(ol|o<l,p; θrep) (8) 297

However, learning a robust latent representation 298

is non-trivial. Zhang et al. (2023) highlighted that a 299

good latent representation should ensure low latent- 300

to-text conversion error and smoothness in the la- 301

tent distribution. Small perturbations to the latent 302

representation should not significantly affect de- 303
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coding, while textual segments with similar mean-304

ings should be appear relatively close together in305

the latent space. To achieve this, we augment the306

cross-entropy loss with contrastive learning and307

adversarial training as regularization techniques.308

Contrastive Representation Learning In our309

framework, we operate in latent spaces for seg-310

ments of text p, which are relatively short com-311

pared to the paragraphs in Zhang et al. (2023). This312

allows us to easily obtain meaningful positive ex-313

amples (e.g., paraphrases) p+ and negative exam-314

ples (e.g., out-of-domain text) p− for contrastive315

learning (Gao et al., 2021). During training, we de-316

rive online representations z, z+, and z− for these317

segments and employ the following loss, where τ is318

the temperature parameter and sim() is a similarity319

function (e.g., cosine similarity):320

Lcst(θin) = − log
e(sim(z,z+)/τ)

e(sim(z,z+)/τ) + e(sim(z,z−)/τ)

(9)321

Noise for Decoding Robustness To make the de-322

coding process less sensitive to noise in latent rep-323

resentations, and optimise the decoder with respect324

to the outputs of the diffusion model instead of the325

encoding process, we introduce noise into both the326

input text and latent representations during train-327

ing. Specifically, we apply the following two noise328

injection strategies with small probabilities.329

First, inspired by Zhang et al. (2023), we sub-330

stitute a small portion of the original input text331

p̃ = sub(p) with uniformly randomly sampled to-332

kens from the model’s vocabulary, requiring the333

model to exhibit a certain level of error tolerance.334

Second, we add adversarial noise to the latent335

representations z. Extending Miyato et al. (2017)’s336

adversarial noise approach, we define ϵadv as the337

noise norm. The adversarial noise radv is computed338

as the normalized negative gradient of the loss:339

radv = −ϵadvg

||g||2
, where (10)340

341

g = ∇p

p∑
l=1

log p(ol|o<l; θ̂out) (11)342

and p(; θ̂out) is modelled with θ̂out as a frozen copy343

of the parameters. This approach simulates the344

“worst-case” noise scenario, training the model’s345

reconstruction and decoding network to recover346

sequences under adversarial conditions with the347

following loss: 348

Ladv(θout) = −
p∑

l=1

log p(ol|o<l, z+ radv; θout).

(12) 349

Combining all three losses, the loss function for 350

representation learning is defined as: 351

Lrep(θrep) =
1

N

∑
p

(Lcnv(θrep) 352

+ λ1Lcst(θin) + λ2Ladv(θout)) (13) 353

where N is the size of the mini-batch, and λ1, λ2 354

are hyperparameters controlling the contribution of 355

contrastive and adversarial losses. 356

3.4 Diffusion for Semantic Planning 357

After the aforementioned components are trained to 358

convergence, we describe the final stage of training 359

diffusion model as a segment-level semantic plan- 360

ner. The diffusion model leverages learned segment 361

representations to plan and generate meaningful 362

passages consisting of a sequence of segments. 363

Given a context i and collated output texts seg- 364

ments P, we derive the corrupted latent representa- 365

tion of patches Zt ∈ Rn×k×hrep at time t. Absolute 366

positional embedding is applied to the flattened rep- 367

resentation with respect to n × k (Vaswani et al., 368

2017). A transformer-based model, which is typ- 369

ically a diffusion transformer (DiT) (Peebles and 370

Xie, 2023), is used for de-noising, defined as: 371

Ẑt−1 = R(Zt, t, Encctx(i; θctx); θR), (14) 372

where Encctx(; θctx) is a pre-trained language en- 373

coder with frozen parameters. The encoded outputs 374

serves as the cross-attention target for the diffusion 375

transformer enabling conditional generation. We 376

define the diffusion de-noising loss as: 377

Lnoise(θR) = E
P,i,t

∥∥∥Ẑt−1 − Zt−1

∥∥∥2
2
. (15) 378

To strengthen the guidance and ensure the flu- 379

ency of the decoded text, we add a post-diffusion 380

training loss, which incorporates loss signals from 381

the reconstruction and decoding processes. This 382

strategy effectively teaches the diffusion model 383

how to use g(; θg) and Dec(; θdec), further enhanc- 384

ing the quality of the generated text. Similar to 385

Zhang et al. (2024)’s pixel level guidance, we 386

freeze the reconstruction and decoding parameters 387
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and define the additional objectives for θR as fol-388

lows :389

Lrec(θR) = E
P,i,t

∥∥∥g(Ẑt; θg)− g(Zt; θg)
∥∥∥2
2
, (16)390

391

Ldec(θR) = E
P,i,t

[
−

p∑
l=1

log p(ol|o<l, Ẑ; θdec)

]
.

(17)392

Combining these three losses above with hyper-393

parameters λ3 and λ4 as weighting factors, we de-394

fine the diffusion loss function as below.395

Ldiff(θR) = Lnoise(θR)+λ3Lrec(θR)+λ4Ldec(θR)
(18)396

4 Evaluation397

4.1 Datasets and Baselines398

We evaluate our implementation on datasets with399

an increasing number of utterances to assess its400

performance across various tasks. We start with the401

XSum dataset (Narayan et al., 2018), consisting402

of BBC news articles paired with concise, one-403

sentence summaries, to compare our model against404

baseline short-form diffusion models. We then405

scale up to longer outputs using the ROCStories406

dataset (Mostafazadeh et al., 2016) for title-to-story407

generation, and the DialogSum dataset (Chen et al.,408

2021) for summary-to-dialogue generation. These409

datasets allow us to evaluate the model’s capabil-410

ity for long-form generation. Additionally, we test411

our model on dialogue generation with DeliData412

(Karadzhov et al., 2023). This dataset consists413

of multi-party problem-solving dialogues during414

which participants propose solutions that are scored415

for their correctness. By comparing the predicted416

user score trajectories against the ground truth and417

identifying hallucinations, we analyse the effective-418

ness of applying control to the model’s generation.419

We compare our model against a range of base-420

lines. Specifically, we use LD4LG (Lovelace et al.,421

2023) as the diffusion baseline and Flan-T5 Large422

(Chung et al., 2024) as the autoregressive baseline.423

For the XSum dataset, we also compare against424

the token-level diffusion model GENIE (Lin et al.,425

2023). For the DialogSum dataset, we include com-426

parisons with the dialogue-level diffusion model427

Diffuse-CG (Chen and Yang, 2023).428

4.2 Evaluation Metrics429

We use ROUGE as the primary evaluation metric430

to assess the quality and similarity of generated431

text with respect to the gold output. While ROUGE 432

provides a baseline for lexical overlap, we acknowl- 433

edge its limitations in capturing semantic fidelity, 434

coherence, and conversational nuances, particularly 435

in controlled long-form generation. To address this, 436

we extend human evaluation guidelines from Clark 437

et al. (2023), assessing repetition, fluency, coher- 438

ence, compatibility (ROCStories/DialogSum), and 439

hallucination (DeliData): 440

• Repetition: Check for repetitive tokens or 441

utterances that affect meaning. 442

• Fluency/Grammar: Assess grammatical cor- 443

rectness and fluency. 444

• Coherence: Evaluate logical flow and natu- 445

ralness of interactions. 446

• Compatibility: Ensure alignment with the 447

story title/dialogue summary. 448

• Hallucination: Detect impossible choices or 449

non-existent participants. 450

Human scores range from 0 to 3, with higher 451

scores indicating better performance. Details and 452

examples are in Appendix C. Following the eval- 453

uation metrics in the literature, we also evaluate 454

the perplexity of generated text using GPT-2 Large 455

(Radford et al., 2019) as teacher model, and record 456

the average length of generated texts. 457

4.3 Implementation Details 458

We build upon the design of Latent Diffusion 459

for Language Generation (LD4LG) proposed by 460

Lovelace et al. (2023), using Flan-T5 Base (Chung 461

et al., 2024) as the backbone to initialize our en- 462

coder and decoder. We incorporate the Perceiver 463

Resampler (Alayrac et al., 2022) as the compres- 464

sion and reconstruction unit and employ a pre- 465

LayerNorm transformer as the de-noising model 466

(Vaswani et al., 2017). For contrastive learning 467

targets, we use Llama-3-8B-Instruct (Llama Team, 468

2024) to generate paraphrases for each text seg- 469

ment. For XSum, we sampled out-of-domain 470

(OOD) texts from Movie-Dic (Banchs, 2012) 471

dataset as hard negative targets. For other datasets, 472

we sample from CNN/Daily Mail (See et al., 2017). 473

5 Results 474

We present the results of our model against the 475

baselines on XSum, ROCStories, DialogSum and 476

DeliData in Table 1. For short-form generation 477

task, XSum (∼ 30 tokens), our model demonstrates 478

on-par performance compared with other baselines. 479

For long-form generation (≥ 50 tokens) with nat- 480
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XSum

Models ROUGE-1 ROUGE-2 ROUGE-L Length PPL Fluency∗

Gold N/A N/A N/A 21.25 22.93 2.98

Flan-T5 44.31 20.44 35.76 19.25 18.02 2.85
GENIE 36.14 12.63 28.37 20.39 145.37 1.78
LD4LG 32.96 11.70 26.74 20.43 44.33 2.83
Ours 34.24 12.38 27.77 21.27 46.09 2.78

ROCStories

Models ROUGE-L Length PPL Repetition
(mean, var)

Fluency
(mean, var)

Coherence
(mean, var)

Compatibility
(mean, var)

Gold N/A 42.53 20.99 2.93, 0.08 2.87, 0.16 2.86, 0.17 2.74, 0.34

Flan-T5 16.46 32.40 9.14 2.41, 0.82 2.62, 0.59 2.33, 0.78 2.07, 0.83
LD4LG 16.57 36.56 65.32 2.14, 1.26 1.78, 1.02 1.54, 0.92 1.79, 1.17
Ours 16.13 40.70 43.67 2.45, 0.89 2.41, 0.83 2.10, 0.88 2.42, 0.88

DialogSum

Models ROUGE-L Length PPL Repetition
(mean, var)

Fluency
(mean, var)

Coherence
(mean, var)

Compatibility
(mean, var)

Gold N/A 117.32 9.68 2.95, 0.07 2.86, 0.14 2.91, 0.11 2.92, 0.11

Flan-T5 26.34 131.92 3.78 1.83, 0.82 2.60, 0.55 2.07, 0.64 2.27, 0.60
LD4LG 20.90 81.28 43.82 1.93, 1.32 1.43, 0.84 1.39, 0.90 1.61, 1.16
Ours 27.97 113.92 16.39 2.80, 0.23 2.83, 0.17 2.40, 0.45 2.57, 0.37
Diffuse-CG∗∗ 27.57 84.23 68.45 N/A N/A N/A N/A

DeliData

Models ROUGE-L Length PPL Repetition
(mean, var)

Fluency
(mean, var)

Coherence
(mean, var)

Hallucination
(mean, var)

Gold N/A 53.04 13.42 2.60, 0.46 2.66, 0.42 2.55, 0.47 2.85, 0.29

Flan-T5 25.83 234.35 9.79 2.27, 0.50 2.59, 0.39 2.30, 0.43 2.48, 0.52
LD4LG 21.14 68.08 51.10 2.52, 0.89 2.06, 0.80 1.78, 0.71 1.63, 0.87
Ours 30.51 71.61 13.41 2.50, 0.54 2.60, 0.34 2.30, 0.47 2.48, 0.55

Table 1: Comparison of results on the XSum, ROCStories, DialogSum, and DeliData datasets. Fluency∗ for XSum
is calculated using the oracle model; details are provided in Appendix C. Results for Diffusion-CG∗∗ are directly
taken from Chen and Yang (2023).

urally occurring segmentation (sentences in ROC-481

Stories, utterances in DialogSum and DeliData),482

our model shows better overall performance, espe-483

cially in repetition, fluency and compatibility.484

Short-form Although Flan-T5 achieves the high-485

est ROUGE scores on XSum, SLD achieves on-par486

performance compared to other diffusion methods487

while maintaining a length closer to the reference.488

Importantly, the results indicate the importance of489

an AR decoder. For Flan-T5, LD4LG and SLD that490

models p(ol|o<l, i), they have substantially higher491

fluency scores than GENIE which uses diffusion492

models to decode token level embeddings directly,493

modelling p(o|i). In addition, autoregressive mod-494

els can terminate generation early, while GENIE495

always has to predict up to its 64 token with unnec-496

essary paddings due to its NAR nature.497

Long-form Our method consistently achieves the498

highest ROUGE-L scores for summary-to-dialogue499

and multi-party dialogue generation tasks, outper- 500

forming all baselines in datasets such as Dialog- 501

Sum and DeliData. In terms of human evaluation 502

metrics, SLD shows clear advantages in reducing 503

repetition and enhancing compatibility, producing 504

logically consistent and contextually accurate out- 505

puts across tasks like ROCStories and DialogSum. 506

This demonstrates diffusion guidance for controlled 507

generation makes our outputs adhere to the given 508

topic better. Furthermore, SLD maintains compet- 509

itive fluency and coherence, matching autoregres- 510

sive models like Flan-T5, while LD4LG’s perfor- 511

mance drops as output sequence gets longer. SLD 512

also demonstrates robustness in handling complex 513

dialogue structures, aligning well with user score 514

trajectory distributions in multi-party settings, as 515

detailed in Appendix D. Additionally, SLD’s out- 516

puts closely match the desired length and struc- 517

ture of gold references, showcasing its adaptability 518

across diverse text generation tasks. 519
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Overall, SLD improves across datasets and met-520

rics, particularly in long-form, contextually accu-521

rate text generation. While Flan-T5 excels in met-522

rics like perplexity, it suffers from catastrophic rep-523

etition after fine-tuning. LD4LG struggles with co-524

herence and fluency in longer texts due to abrupt se-525

mantic shifts in latent representations, as reflected526

by high variance in human evaluations. In contrast,527

SLD achieves better human scores, particularly in528

fluency, coherence, and compatibility.529

6 Analysis530

Representation to Text To assess representation531

learning, we tested various autoencoder-decoder532

configurations using BLEU (Papineni et al., 2002)533

to compare input text with recovered text after en-534

coding. Using DialogSum utterances as segments,535

we evaluated LD4LG, ML-Planner, and SLD with536

and without contrastive learning. For consistency,537

segments were limited to 64 tokens, represented538

in a latent space of 32× 64. An LD4LG baseline539

with longer dialogues (up to 512 tokens) and latent540

dimensions of 256× 64 was also included.541

Figure 3 shows that ML-Planner failed to con-542

verge within five epochs, while LD4LG achieved543

a BLEU score of 1.00, indicating perfect recovery.544

However, LD4LG’s performance degraded when545

scaled to longer texts, highlighting limitations in546

generalization. Without contrastive learning, our547

model occasionally corrupted words, altering mean-548

ing. Incorporating contrastive learning enabled549

meaningful paraphrases instead of semantic corrup-550

tion, as demonstrated in Table 2, emphasizing its551

role in enhancing representation quality.552

Decoding after De-noising We further investi-553

gated how latent representations behave under per-554

turbations to evaluate their robustness during the555

de-noising process. We randomly selected 100556

sentences from the ROC dataset, along with their557

paraphrases and OOD sentences sampled from the558

CNN/Daily Mail dataset. We visualized a 2D PCA559

projection of learned representations, detailed in560

Appendix B. Without contrastive learning, the rep-561

resentations of original sentences and OOD sen-562

tences showed significant overlap, increasing the563

risk of abrupt semantic changes during decoding.564

In contrast, representations learned with contrastive565

training were better clustered and distinct, provid-566

ing improved robustness for diffusion predictions.567

To investigate further, we sampled the de-noising568

trajectory of a test sentence and analysed the de-569

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epochs

0.2

0.4

0.6

0.8

1.0

BL
EU

 S
co

re

BLEU Scores over Epochs

ML-Planner
LDG4LG
LDG4LG 512 Tokens
Ours CSE+Adv
Ours Adv

Figure 3: BLEU score of different auto-encoder/decoder
models for text conversion on DialogSum dataset of a
single utterance.

Model Generated Text

Gold #Person1#: What made you decide on this
type of occupation?

Planner #Person1#: I’m afraid I can’t.

LD4LG #Person1#: What made you decide on this
type of occupation?

Adv #Person1#: What’s your decide on this type
of occupation?

Adv+CSE #Person1#: What made you decide on this
type of job?

Table 2: Text quality comparison of different models
for text generation. Red indicates wrong conversion,
orange indicates corrupted token and green indicates
admissible paraphrase.

coded text along the trajectory. Representations 570

trained with both contrastive learning and adversar- 571

ial training produced text that was more robust to 572

noise and less prone to abrupt semantic shifts. This 573

robustness facilitates smoother and more reliable 574

predictions during the diffusion process. 575

7 Conclusion 576

We propose Segment-Level Diffusion (SLD) for 577

controllable long-form text generation using latent 578

space diffusion. Key innovations include text seg- 579

mentation, robust representation learning via adver- 580

sarial and contrastive training, and improved latent- 581

space guidance. SLD addresses challenges in gen- 582

erating fluent, coherent, and contextually accurate 583

long-form text, bridging the gap between latent 584

diffusion models and practical long-form genera- 585

tion. It offers a scalable framework for applications 586

like story and dialogue generation. Our results 587

highlight SLD’s potential as a new paradigm for 588

controllable text generation and provide insights 589

for future diffusion-based language models. 590
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Limitations591

This work focuses exclusively on text generation592

in English, leaving the model’s potential for multi-593

lingual tasks unexplored. Furthermore, our exper-594

iments and evaluations did not involve real-world595

use cases, limiting insights into practical applica-596

bility. Future research could extend our approach597

to multilingual and application-oriented scenarios598

such as outline-controlled generation (Li et al.,599

2024; Lee et al., 2024). Additionally, we did not600

explicitly examine the relationship between the re-601

duced dimensionality of the length-independent602

latent representations and the original dimension-603

ality of encoded text segments of varying lengths.604

Due to limited computational capacity, we did not605

run hyperparameter search on loss ratios but chosen606

them empirically based on model’s performance607

on the development set. These hyperparameters608

were chosen empirically, without a systematic ex-609

ploration of their impact. Future work could lever-610

age principles from information theory (Tishby611

and Zaslavsky, 2015) to quantify the information612

capacity of these representations and to balance613

compression and utility more effectively. Devel-614

oping a generalized framework to streamline hy-615

perparameter selection across diverse datasets and616

pre-training tasks would also enhance the scalabil-617

ity of our method. Finally, our modular training618

approach, where individual components are opti-619

mized separately, may introduce suboptimal perfor-620

mance during inference due to error propagation621

and misalignment between training and inference622

objectives. Future work could explore end-to-end623

training strategies to jointly optimize all compo-624

nents, reducing such discrepancies and improving625

overall performance. Due to inconsistent sampling626

strategies and output windows of token-level diffu-627

sion and other baseline models, we did not perform628

inference speed comparison.629

Ethics Statement630

No personally identifiable information (PII) was631

collected or processed during the human evalua-632

tion, and all data handling adhered to the General633

Data Protection Regulation (GDPR) and the Uni-634

versity’s research guidelines1. Participants were635

recruited from within the University on a volun-636

tary basis and were assigned anonymized random637

IDs to ensure their privacy during the evaluation638

1https://www.research-integrity.admin.cam.ac.
uk/academic-research-involving-personal-data

process. Additionally, all data points presented to 639

annotators were manually reviewed to ensure fair- 640

ness and accuracy in assessing our methods and 641

to minimize potential bias or harm to participants. 642

This approach reflects our commitment to ethical 643

research practices and to safeguarding the well- 644

being and integrity of participants throughout the 645

evaluation process. 646
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Appendix 958

A Training 959

All experiments were conducted on a single 960

NVIDIA A100-SXM-80GB GPU. Training for la- 961

tent representation learning took approximately 962

8–10 hours per dataset, while diffusion training 963

required 36–60 hours per dataset. Including infer- 964

ence and other experiments, the total GPU usage 965

amounted to around 500 hours. The detailed train- 966

ing algorithm is presented in Algorithm 1. 967

Loss Ratio In representation learning phase, con- 968

trastive loss with hyperparameter λ1 in Equation 13 969

helps distinguish between nuanced representations, 970

which is crucial in domains with subtle differences 971

in meaning between text segments. For domains 972

like DeliData, where dialogue actions are highly 973

structured and limited (e.g., proposing choices, 974

picking cards, discussing, revising, and submit- 975

ting), contrastive loss can be reduced or even set 976

to zero (e.g., λ1 = 0.1 or 0). Adversarial loss in 977

this same equation controls the model’s tolerance to 978

noise, ensuring robust latent representations even in 979

challenging cases. A large λ2 can hinder the learn- 980

ing of meaningful representations, but our experi- 981

ments suggest that moderate values (e.g., λ2 ≈ 0.2) 982

are crucial for domains with longer text segments, 983

such as DialogSum, where segments (e.g., multi- 984

sentence utterances) require higher noise tolerance 985

to maintain generation quality. Tasks with shorter 986

segments or clearer structure might allow for lower 987

λ2 values. In Equation 18 for diffusion training, 988

λ3 controls the loss ratio of reconstruction back 989

to the language model’s hidden state dimensions 990

and λ4 corresponds to the reconstruction back to 991

the original text. We provide the hyperparameters 992

we’ve chosen for each dataset in the table below. 993

Dataset λ1 λ2 λ3 λ4

XSum 0.5 0.2 0.5 0.5
ROCStories 0.2 0.2 0.5 0.5
DialogSum 0.5 0.2 0.5 0.5
Delibot 0 0.2 0.5 0.5

Table 3: Hyperparameter choices of loss ratio.

Inference Sampling We use the sampling algo- 994

rithm as Lovelace et al. (2023), a DDPM pytorch 995

implementation2. For training we use 2000 steps 996

in forward process as target. For inference, we use 997

spaced diffusion with only 250 steps. 998

2https://github.com/lucidrains/
denoising-diffusion-pytorch
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B Ablation Study: Latent Representation999

We conducted an ablation study to evaluate how1000

different representation learning methods affect the1001

noised latent representations during the diffusion1002

process. The "Vanilla" configuration corresponds1003

to the original LD4LG implementation. As shown1004

in Figure 6 and Table 7, our method achieves a1005

smoother latent distribution and more robust repre-1006

sentations, resulting in improved diffusion predic-1007

tions and decoding.1008

C Human Evaluation1009

For ROCStories, DialogSum, and DeliData, we1010

recruited 5 participants to evaluate 25 dialogues1011

generated by LD4LG, Flan-T5, and SLD for each1012

dataset. Annotators also rated the gold dialogue1013

output as a reference. In total, we collected1014

3× 25× 4× 5 = 1, 500 data points across 4 eval-1015

uation criteria. Before presenting the dialogues,1016

annotators were provided with instructions (exam-1017

ple shown in Table 5).1018

The evaluation process begins by assessing read-1019

ability. If a dialogue is deemed unreadable, all1020

criteria are automatically scored as 0. Otherwise,1021

the dialogue is rated with a minimum score of 1.1022

An example of the web interface is provided in1023

Figure 5.1024

Additionally, we employed Gemini-1.5 (Team1025

et al., 2024) as an LLM-based evaluator. Using1026

a carefully designed prompt (Table 6), Gemini-1027

1.5 provided fluency ratings for predictions from1028

the XSum dataset, achieving high alignment with1029

human annotators.1030

D Case Study: DeliData1031

Original Ours Flan-T5 LD4LG
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Figure 4: Violin plot of performance gain distribution of
the DeliData dialogue continuations. Our model demon-
strate a closer distribution with respect to the gold dis-
tribution, demonstrating the output is better controlled.

To evaluate the controlled generation capabilities 1032

of our model, we performed a fine-grained score 1033

trajectory analysis on DeliData. This involved com- 1034

paring the distribution of performance gains at the 1035

end of group discussion dialogues, based on users’ 1036

choices before and after revisions. Following the 1037

guidelines of Karadzhov et al. (2023), we observed 1038

that dialogue continuations generated by our model 1039

produced a performance gain distribution closer to 1040

the ground truth, as shown in Figure 4. 1041

E Case Study: ECQA 1042

We additionally evaluate how diffusion training 1043

affects the knowledge and reasoning abilities of 1044

the language model backbone. We test our model 1045

against baselines on Flan-T5’s pre-training task, 1046

ECQA (Aggarwal et al., 2021), a knowledge QA 1047

dataset with Chain-of-Thought (CoT) reasoning. 1048

We measure model performance by prediction ac- 1049

curacy and ensure fair comparisons by using the 1050

same one-shot CoT exemplar setup for Flan-T5 1051

Base and Large (Chung et al., 2024). We train 1052

LD4LG and our SLD model with the same hyper- 1053

parameters as ROCStories, as shown in Table 3. 1054

Model Acc MAUVE ROUGE-L

Flan-T5 Base 0.75 0.13 33.88
Flan-T5 Large 0.88 0.21 35.86
LD4LG 0.63 0.74 38.66
Ours 0.723 0.75 40.14

Table 4: Performance comparison across models on
ECQA.

The results indicate that SLD preserves the 1055

knowledge in its Flan-T5 Base backbone effec- 1056

tively. The diffusion model learns to predict latent 1057

representations of unseen concepts within the back- 1058

bone’s original knowledge almost perfectly. How- 1059

ever, due to the backbone’s limitations, all models 1060

fail to answer questions about novel concepts, as 1061

shown in Table 11. LD4LG frequently struggles to 1062

select the correct answer from the provided choices, 1063

as illustrated in Table 12, highlighting the impor- 1064

tance of our text segmentation. While both LD4LG 1065

and SLD achieve high MAUVE and ROUGE-L 1066

scores due to direct training on the dataset, SLD 1067

outperforms LD4LG, demonstrating the advantage 1068

of our post-diffusion control. 1069

F Sampled Generations 1070

We provide sample output comparisons in Tables 1071

8, 9, and 10. 1072
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Example of Human Evaluation Instructions

5. Compatibility
- Evaluate whether the dialogue accurately reflects the facts provided in the summary. Rate from 1 to 3:
- 1: The dialogue significantly deviates from the summary, either by altering key facts or diverging from the main topic.
- 3: The dialogue faithfully reflects the summary, covering all key ideas accurately.

Examples:
- Summary: Anna asks Bob about his vacation, and Bob talks about visiting a tropical island.
- Rating 1:
- #Anna#: "How was your weekend?"
- #Bob#: "I stayed home and watched TV."
- Rating: 1 (Completely unrelated to the summary).

- Rating 2:
- #Anna#: "How was your vacation?"
- #Bob#: "It was great. I visited some nice places."
- Rating: 2 (Partially reflects the summary but lacks details about the tropical island).

- Rating 3:
- #Anna#: "How was your vacation?"
- #Bob#: "It was amazing! I visited a beautiful tropical island and spent my days snorkeling and relaxing on the beach."
- Rating: 3 (Accurately reflects the summary and includes key details).

Table 5: An example of human evaluation instructions for evaluating compatibility for DialogSum.

LLM-as-a-judge Prompt

• Rate the grammatical quality of the summary on a scale of 1 to 3:

– 1: Excessive grammatical and clerical errors, making the summary unnatural.
– 3: Completely fluent with no grammatical errors.

Examples
Rating 1:

• Summary: Blaenau hub to is set up to tech of finger printer securety.

• Rating: 1 (Frequent grammatical errors make the summary unnatural).

Rating 2:

• Summary: A hub for fingerprints tech secure property will be setted in Blaenau Gwent.

• Rating: 2 (Some grammatical errors, but it’s understandable).

Rating 3:

• Summary: A hub for developing fingerprint security technology is being set up in Blaenau Gwent.

• Rating: 3 (Completely fluent and grammatically correct).

Instructions:
You are a skilled text quality evaluator specializing in assessing fluency.
Your task is to evaluate the fluency of the following text on a scale from 1 to 3 with respect to the examples above:

{text}

• 1: Poor fluency (e.g., disjointed, unclear, or grammatically incorrect).

• 2: Moderate fluency (e.g., some grammatical errors or awkward phrasing but mostly understandable).

• 3: High fluency (e.g., clear, smooth, and grammatically correct).

Only return the numerical score, enclosed by dollar signs ($$), without any additional commentary or explanation.

Table 6: Prompt for Gemini-1.5 Pro to evaluate XSum fluency.
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Dialogue Evaluation Instructions
In this evaluation, youʼll be provided with a dialogue summary and multiple dialogues generated by different models based on that summary. Please assess each dialogue using the following criteria:

1. Comprehensible
Determine if the dialogue is readable and understandable, even if it contains minor grammatical errors.

If the answer is No, skip the remaining questions for that dialogue.

Examples:
Positive Example:

#Person2#: "Yes. How are you, Anna?"

#Person1#: "I am fine. What have you been doing?"

#Person2#: "Working."

Answer: Yes (The dialogue is clear and easy to understand).

Borderline Example:

#Person2#: "I need to leave for my vacation and I travel overseas money money best… if I go with my boyfriend."

Answer: Yes (Despite errors, the overall meaning is understandable).

Negative Example:

Dialogue:

"The dog yesterday blue running while maybe sandwiches sky think."

Answer: No (The sentence is incoherent and impossible to understand).

2. Repetition
Rate the dialogue on a scale of 1 to 3:

1: Excessive repetition that impacts the overall meaning.

3: Minimal to no unnecessary repetition.

Examples:
Rating 1:

#Person1#: "Did you like the trip?"

#Person2#: "Yes, I liked the trip. The trip was great. I enjoyed the trip."

#Person1#: "Did you like the trip?"

#Person2#: "Yes, I liked the trip. The trip was great. I enjoyed the trip."

Rating: 1 (Excessive repetition of "the trip").

Rating 2:

#Person1#: "Did you like the trip?"

#Person2#: "Yes, I liked it. I had a good time exploring the city."

#Person1#: "Did you like the trip?"

#Person2#: "Yes, there are many interesting attractions in the city."

Rating: 2 (Moderate repetition, but it doesn't disrupt the dialogue).

Rating 3:

#Person1#: "Did you like the trip?"

#Person2#: "Absolutely! The sights were amazing, and the food was incredible."

Rating: 3 (No unnecessary repetition).

2. Fluency/Grammar
Rate the grammatical quality of sentences in the dialogue on a scale of 1 to 3:

1: Excessive grammatical and spelling errors, making the dialogue unnatural.

3: Completely fluent with no grammatical errors.

Examples:
Rating 1:

#Person1#: "What doing you?"

#Person2#: "Be to park and run."

Rating: 1 (Frequent grammatical errors).

Rating 2:

#Person1#: "What you doing tomorrow?"

#Person2#: "I be go to park and run."

Rating: 2 (Some grammatical errors, but understandable).

Rating 3:

#Person1#: "What are you doing tomorrow?"

#Person2#: "Iʼm going to the park for a run."

Rating: 3 (Completely fluent with no errors).

4. Coherency
Assess the logical flow and natural interaction of the dialogue on a scale of 1 to 3:

1: The dialogue lacks logical flow, and the interaction feels unnatural.

3: The dialogue flows logically and resembles a natural conversation.

Examples:
Rating 1:

#Person1#: "What time is it?"

#Person2#: "I had pizza for lunch. The weather is nice."

Rating: 1 (No logical connection between responses).

Rating 2:

#Person1#: "What time is it?"

#Person2#: "Itʼs almost noon. By the way, did you eat lunch yet?"

#Person1#: "I have a meeting at 12:20, so I need to get ready."

Rating: 2 (Partially logical but slightly disjointed).

Rating 3:

#Person1#: "What time is it?"

#Person2#: "Itʼs almost noon. Why do you ask?"

#Person1#: "I have a meeting at 12:20, so I need to get ready."

Rating: 3 (Fully coherent and natural flow).

5. Compatibility
Evaluate whether the dialogue accurately reflects the facts provided in the summary. Rate from 1 to 3:

1: The dialogue significantly deviates from the summary, either by altering key facts or diverging from the main topic.

3: The dialogue faithfully reflects the summary, covering all key ideas accurately.

Examples:
Summary: Anna asks Bob about his vacation, and Bob talks about visiting a tropical island.

Rating 1:

#Anna#: "How was your weekend?"

#Bob#: "I stayed home and watched TV."

Rating: 1 (Completely unrelated to the summary).

Rating 2:

#Anna#: "How was your vacation?"

#Bob#: "It was great. I visited some nice places."

Rating: 2 (Partially reflects the summary but lacks details about the tropical island).

Rating 3:

#Anna#: "How was your vacation?"

#Bob#: "It was amazing! I visited a beautiful tropical island and spent my days snorkeling and relaxing on the beach."

Rating: 3 (Accurately reflects the summary and includes key details).

Please read through the generated texts below and rate them, a�er you finish, please click on the "Submit Evaluation" button and hit "Jump to Dialogue" to proceed to the next datapoint.

Dialogue Summary
Dialogue Summary: #Person1# didn't go to school today. #Person2# wants to skip class tomorrow to go to the movies.

Previous Next

Dialogue 1 of 4

Model 1

#Person1#: Did you go to school today? 
#Person2#: I didn't feel like it. 
#Person1#: Why didn't you? 
#Person2#: I wanted to go to the movies. 
#Person1#: So what are you going to do tomorrow? 
#Person2#: I don't know. 
#Person1#: What are you going to do? 
#Person2#: I don't know. 
#Person1#: Did you go to school today? 
#Person2#: No, I didn't go. 
#Person1#: Did you go to school today? 
#P 2# I did 'tIs this dialogue comprehensible?

Yes
No

Repetition (1: Excessive, 3: Minimal)

1 3

1

Fluency/Grammar (1: Poor, 3: Excellent)

1 3

1

Coherency (1: Illogical, 3: Natural)

1 3

1

Compatibility (1: Unrelated, 3: Faithful)

1 3

1

Model 2

#Person1#: Hi, how are you doing today? 
#Person2#: I'm doing well, thanks. 
#Person1#: So, did you go to school today? 
#Person2#: No, I didn't go to school today. 
#Person1#: Why not? 
#Person2#: I was thinking of skipping class tomorrow to go to the movies. 
#Person1#: That sounds like a good idea. I was thinking of doing the same. 
#Person1#: Do you think we could talk about it for a moment? 
#Person2#: Of course, come on in. It doesn't matter.

Is this dialogue comprehensible?

Yes
No

Repetition (1: Excessive, 3: Minimal)

1 3

1

Fluency/Grammar (1: Poor, 3: Excellent)

1 3

1

Coherency (1: Illogical, 3: Natural)

1 3

1

Compatibility (1: Unrelated, 3: Faithful)

1 3

1

Model 3
y g y

#PEerson2#: I didn't. Didn't you? #1#: Today, so I was going to be so busy today. #2#: 
10:00 today, So I was supposed to be doing it. 
#PEPerson3#:I was thinking of why I was having it done. 
#PePerson4#: That wasn't naughty.##: You didn''t plan on having any classes for 
tomorrow.
#Person2 #3: You were going to skip class tomorrow? 
#Pen3#? I won't miss class tomorrow. [ 
#Pend4#] I don't have any idea of mind. 
#PPPerson6#: Do you want to just go to go to the movies? 
#PPerson3] I'd like to miss my class today. 
#PBPerson8#: Just I want to skip school today.

Is this dialogue comprehensible?

Yes

No

Repetition (1: Excessive, 3: Minimal)

1 3

1

Fluency/Grammar (1: Poor, 3: Excellent)

1 3

1

Coherency (1: Illogical, 3: Natural)

1 3

1

Compatibility (1: Unrelated, 3: Faithful)

1 3

1

Model 4

#Person1#: Did you go to school today? 
#Person2#: Of course. Did you? 
#Person1#: I didn't want to, so I didn't. 
#Person2#: That's sad, but have you gone to the movies recently? 
#Person1#: That's a switch. 
#Person2#: I'm serious, have you? 
#Person1#: No, I haven't. Why? 
#Person2#: I really want to go to the movies this weekend. 
#Person1#: So go then. 
#Person2#: I really don't want to go by myself. 
#Person1#: Well anyway, do you plan on going to school tomorrow? 

hi k ' i h iIs this dialogue comprehensible?

Yes

No

Repetition (1: Excessive, 3: Minimal)

1 3

1

Fluency/Grammar (1: Poor, 3: Excellent)

1 3

1

Coherency (1: Illogical, 3: Natural)

1 3

1

Compatibility (1: Unrelated, 3: Faithful)

1 3

1

Additional Comments (optional)

Submit Evaluation

Jump to Dialogue ↑

Figure 5: An example of human evaluation interface of DialogSum. Each session starts with a comprehensive
instructions with examples, followed by model outputs and questions.
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Algorithm 1: Training Algorithm for Segment-Level Diffusion (SLD)
Input: Input-output text pairs (i,o), frozen context encoder with parameter θctx,
model parameters θin = {θenc, θf} for the encoding and compression,
θout = {θg, θdec} for reconstruction and decoding, where θenc, θdec are initialised from pre-trained language encoder
decoder, and θrep = θin ∪ θout,
hyperparameters λ1, λ2, λ3, λ4, temperature τ , batch size N , maximum diffusion steps T .
Output: Trained latent space diffusion model.

1 Training: Latent Representation Learning
2 for each mini-batch of text pairs (i,o) do
3 1. Output Utterance Segmentation: Segment o into patches P = {p1, . . . ,pj}.
4 2. Latent Representation Encoding: Encode patches into latent space Z = {z1, . . . , zj}.
5 3. Compute Conversion Loss:

Lcnv(θrep) = −
p∑

l=1

log p(ol|o<l,p; θrep)

4. Contrastive Representation Learning: Sample positive and negative examples (p+,p−) and compute:

Lcst(θin) = − log
e(sim(z,z+)/τ)

e(sim(z,z+)/τ) + e(sim(z,z−)/τ)

5. Noise Robustness Training: Add random noise to patches and latent space z:

Ladv(θout) = −
p∑

l=1

log p(ol|o<l, z+ radv; θout),

where radv is adversarial noise computed using a frozen offline copy of θout.
6 6. Update Parameters: Combine losses and update θrep:

Lrep(θrep) =
1

N

∑
p

(Lcnv(θrep) + λ1Lcst(θin) + λ2Ladv(θout)).

7 end
8 Training: Diffusion for Utterance Planning
9 Freeze θrep and train θR using latent representations.

10 for each mini-batch of context i and segmented patches P do
11 1. Generate Corrupted Latent Representations:
12 Sample Zt from q(Zt|Z).
13 2. Compute De-noising Loss:

Lnoise(θR) = E
P,i,t

∥R(Zt, t, Encctx(i; θctx))− Zt−1∥22 .

3. Strengthen Guidance with Post-training: Freeze θg and θdec and compute:

Ẑt = R(Zt+1, t+ 1, Encctx(i; θctx))

Lrec(θR) = E
P,i,t

∥∥∥g(Ẑt; θg)− g(Zt; θg)
∥∥∥2

2
,

Ldec(θR) = E
P,i,t

[
−

p∑
l=1

log p(ol|o<l, Ẑt; θdec)

]
.

4. Update Parameters: Combine losses and update θR:

Ldiff(θR) = Ls2s(θR) + λ3Lrec(θR) + λ4Ldec(θR)

14 end
15 Return: Trained model parameters θrep and θR.
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Figure 6: Comparison of PCA 2D projections of latent representations for sampled segmented sentences from
ROCStories (Blue), their paraphrases (Green), and out-of-domain (OOD) sentences sampled from CNN/Daily Mail
(Orange) under three training paradigms: Vanilla training, Noise Robust training, and Noise Robust + Contrastive
learning. The red trajectory illustrates the denoising path of the sentence ’David noticed he had put on a lot of
weight recently.’ The trajectory is annotated with noise ratios, where 1.0 (Lighter Red) represents pure Gaussian
noise and 0.0 (Darker Red) indicates no noise.

Noise Ratio LD4LG Adversarial CSE + Adversarial
Original: David noticed he had put on a lot of weight recently.

0.00 David noticed he had put on a
lot of weight recently.

David noticed he had put on a
lot of weight recently.

David noticed he had put on a
lot of weight recently.

0.11 David noticed he had put on a
lot of weight recently.

David noticed he had put on a
lot of weight recently.

David noticed he had put on a
lot of weight recently.

0.22 Amanda noticed he had put on a
lot of weight recently.

David noticed he had put on a
lot of weight recently.

David noticed he had put on a
lot of weight recently.

0.33 David he had to give up a thou-
sand of cigarettes.

David noticed he had put on a
lot of weight.

David noticed he had put on a
lot of weight recently.

0.44 he had put did on a lot of weight
recently.

David a had put on a lot of
weight.

David noticed he had put on a
lot of weight recently.

0.56 he noticed he had put on a lot of
weight lately.

David – he had to put on a lot of
weight.

David realized he had put on a
lot of weight recently.

0.67 He expected he gotten ban on a
lot of weight recently.

I had to give a dose of weight. In mentioned he had put on, a
lot of weight recently.

0.78 It would smile a pa heard she
had a sign for a little on

you have ad on a lot of food? lization marche, 15 had jumped
on to a lot of weight of a

0.89 Some weeks contacted he’s got,
ration.

You are the threw in a defo. The fat, hearing the of rounded.

1.00 The sitter of Edward that she de-
fended, and said.

, he, and the... I thought, 10thed he would con-
stantly ress, sanctwing of

Table 7: Comparison of decoded text segment for varying noise ratios across three models: Vanilla, Noise Only, and
CSE + Noise. The original sentence is listed separately for reference.

Title Lilo’s Walk

Model Generated Text

Gold Sarah has a dog named Lilo. Sarah took Lilo for a walk. Lilo rolled around in dirt during
his walk. Sarah had to take Lilo to the groomer. When Lilo came home from the groomer,
he looked beautiful and clean.

LD4LG Lilo was about to take a walk to school. She saw no people on the grass. Lilio was walking
by the grass, she ran every grass. Llo knew she was bored and walked to class.

Flan-T5 Lilo wanted to go for a walk. Lilo’s mom took her to the park. Lilo and her mom walked
to the park. Lilo had a great time walking to the park. Lilo and her mom walked home
together.

Ours Lilo was walking down the sidewalk for her dog. Lilo has not liked to walk across the
woods. Lilo took him to walk in the park. Lilo’s mom would walk with her every day.
Lilo continued to walk again.

Table 8: Text quality comparison of generated outputs for the story "Lilo’s Walk" in ROCStories. The table compares
the outputs of LD4LG, Flan-T5, and our model against the gold standard.All model generates admissible story,
however, LD4LG has minor word corruptions (Orange).
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Title Dialogue Summary: #Person1# invites Jimmy to go workout and persuades him into
working out on arms and stomach.

Model Generated Text

Gold #Person1#: Hey Jimmy. Let’s go workout later today.
#Person2#: Sure. What time do you want to go?
#Person1#: How about at 3:30?
#Person2#: That sounds good. Today we work on Legs and forearm.
#Person1#: Hey. I just played basketball earlier, so my legs are a little sore. Let’s work
out on arms and stomach today.
#Person2#: I’m on a weekly schedule. You’re messing everything up.
#Person1#: C’mon. We’re only switching two days. You can do legs on Friday.
#Person2#: Aright. I’ll meet you at the gym at 3:30 then.

Flan-T5 #Person1#: Hey, Jimmy, why don’t you come work out with me?
#Person2#: What are you talking about?
#Person1#: I’m talking about working out on your arms and your stomach.
#Person2#: What are you talking about?
#Person1#: I mean, you lift weights on your arms and you lift weights on your stomach.
#Person2#: That’s not working.
#Person1#: But you lift weights on your arms and you lift weights on your stomach.
#Person2#: That’s not working.
#Person1#: But you lift weights on your arms and you lift weights on your stomach.
#Person2#: That’s not working.
#Person1#: But you lift weights on your arms and you lift weights on your stomach.
#Person2#: That’s not working. (repeated 7 times more)

LD4LG #Person1#: Hi, Jimmy. We’re going to do some exercises and arm exercises on this
weekend. Would you like to join us?
#PEerson2#: Yeah, that sounds good for us.
#PEPerson3#: Yeah, working on arms with arms, but I’ve thought I’m going to start on
my stomach.
#EPerson4#: Working??.. I don’t think I just have to hold up my weight.
#EPerson3#: Why not go on your arms and arms and then put arms on your stomach.
Then you can work for for any time.

Ours #Person1#: Hey Jimmy, how’s it going?
#Person2#: I’m still not sure, physically.
#Person1#: So, what’s going on?
#Person2#: I’m just not feeling up to it.
#Person1#: Come on, let’s get moving.
#Person2#: What do you mean?
#Person1#: Well, we could work on your arms and stomach.
#Person2#: Oh, no thank you. I don’t know it as well.
#Person1#: It’s not that hard, I’ll show you.
#Person2#: Okay, I’ll try.
#Person1#: That’s the spirit!

Table 9: Text quality comparison of generated dialogues for the summary: "#Person1# invites Jimmy to go workout
and persuades him into working out on arms and stomach" in DialogSum. The table compares the outputs of
LD4LG, Flan-T5, and our model against the gold standard. Flan-T5 generates repetitive text (Brown), while LD4LG
sometimes corrupts usernames (Orange).
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Meta-Info Users: [USER_SYS] [USER_0] [USER_1] Cards: 4 9 V U

Previous Turns [USER_0]HI! I went with flipping the card with the letter U

Model Generated Text

Gold [USER_1]I selected U and 9 [USER_1]You need to select 9 also, the other side might be
a vowel [USER_0]I completely overlooked that you could select 2 cards. I agree both
should be selected [USER_0] [PICK] U 9 [USER_1]the other two cards are irrelevant
[USER_0]yes i agree [USER_1]Are you ready to submit the HIT? [USER_0]yes, i sub-
mitted my final answer [USER_1] [PICK] U 9 [USER_SYS][FINISHED]

LD4LG [USER_0] Hello [USER_0] I picked the letter "U" and the number "9". I chose u and 9
because I think those are the ones you need to check to see if the rule is correct? I didn’t
think about it that way. I was thinking that it should be 2 cards with a vowel and a number
on the other side. I also did not see any reason why I chose the same card. [USER_1] I
picked U, 9 and [PICK] 4 U. Why did you pick the letter 8 and u? I thought it was 2
cards that would verify the rule. So I picked 2 cards and ur correct answer

Flan-T5 [USER_0] Hi, it was nothing like this. [PICK] U 9 [USER_0] I have chosen the cards to
flip over that one. it does say an even number would have to have a vowel and a consonant.
[USER_0] You think that would work well to prove either of the 2 cards? [USER_0] I did
what you said [USER_1] you should flip them to see if there’s a vowel or consonant on
the side (apart from the number) [USER_0] hmmmmm i could imagine choosing them
all because the rule needs to be followed. [USER_1] maybe we should keep to u and 9
then? [USER_1] alright I’m gonna submit those two I guess [USER_1] I don’t think we
need to do all four as its not a vowel so I don’t think we need to see it because the rule
doesn’t state that consonants can’t have an even number or vowel [USER_0] Oh really?
lol [USER_1] so u and 9? [USER_1] yea it is a vowel and a consonant [USER_1] we’re
testing the rule so turning them all would test the rule [USER_0] well guess we’ll see what
happens when we’re done [USER_1] it says to ONLY flip the cards that have letters. i
think to check the rule that cards with vowels have an even number so that’s the only one
you need to flip [USER_0] [PICK] U [USER_0] how do we know that the rule doesn’t
actually apply to all evens [USER_1] we’re testing the rule to see if there is a vowel on
the other side [USER_1] but it doesn’t specify if there’s a non vowel on the other side
[USER_0] the task asks if there is a number in each of the 3 cards [USER_0] oh yeah so
just the card with the vowel would test it [USER_0] yeah :) [USER_0] but then we have to
test the other two cards [USER_0][USER_1] hmmm lmao! should we flip them all then?
[USER_0] well yeah, mine seems reasonable. [USER_0] tiger sorry im confused lol lol
[USER_0] u and 9 maybe too [USER_2] ok so maybe not all 3? [USER_0] yeah u and 9?
[USER_0] thats what im going with emuerk? [USER_0] yea I see where you are coming
from lol [USER_1] we’re trying to test the rule, but its not necessarily involving vowels
or consonants [USER_1] so just u and 9? [USER_1] yea tiger, we have to participate
anyways [USER_0] yeah yea [USER_0] so u and 9? [USER_0] yea [USER_2] if u is a
vowel, it explains the rule about vowels. if v is an odd number it doesn’t mean the rule
is wrong [USER_0] u and 9? [USER_2] yea u and 9? [USER_0] yeah both would show
the rule [USER_2] [PICK] U 9 [USER_2] yeah u and 9 is my thinking too. [USER_0]
same [USER_1] so what do we do now [USER_0] submit u and 9? [USER_1] [PICK]
U 9 [USER_1] now im thinking u and 9? [USER_2] [PICK] U 9 [USER_2] [PICK] U 9
[USER_SYS] [FINISHED]

Ours [USER_1] I have the same opinion. [USER_0] What do you think? [USER_0] And I
would also need to flip the 9 to make sure there’s not a vowel on the back [USER_0] I
have the same number [USER_0] why 4? [USER_0] I think we need to flip the 4 as well
to see if there is a vowel [USER_0] Oh, that makes sense [USER_0] and flip the U, to see
if there is an even number [USER_0] I kind of like this good idea [USER_1] [PICK] U 4
[USER_0] [PICK] U 4 [USER_SYS][FINISHED]

Table 10: Text quality comparison of generated continuations for a DeliData example. The table compares the
outputs of LD4LG, Flan-T5, and our model against the gold standard. LD4LG hallucinated a card choice (Red).
Flan-T5 generates unnatural repetitive outputs (Brown) and hallucinate an extra user (Red).
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Input Answer the following question by reasoning step by step: antarctic ocean is named
after a continent. What’s another ocean that’s named after a landmass? Choices:
antarctic, atlantic, pacific, indian ocean, pacific.

Model Generated Text

Gold India is a name of a country which is a land mass. So Indian ocean is named after a
landmass. Antarctic is always given in the question and the other options are not names of
land masses. The answer is indian ocean.

Flan-T5 Base atlantic ocean is named after a continent. atlantic ocean is named after a landmass.
Therefore, the final answer is atlantic.

LD4LG The atlantic ocean is named for antarcam. So atlantic is named an antarcha ocean. All the
other options are not named another ocean named for landmass. The answer is atlantic.

Ours The antarcic ocean is named to pacific because it is named another an landmass. So the
antico is named by atlantic ocean. All the other options are not named by which ant ocean
is called another after landmasses. The answer is atlantic.

Flan-T5 Large Pacific Ocean is named after pacific. Pacific Ocean is named after pacific. Therefore, the
final answer is pacific.

Table 11: Models’ Predictions on ECQA: All diffusion models gives a wrong answer that is consistent with the
knowledge of their Flan-T5 Base backbone.

Input Answer the following question by reasoning step by step: If someone brings candy to
a group of children what will happen? Choices: listen to music, spring into action,
wave goodbye, play chess, experience fear.

Model Generated Text

Gold Springing into action means to become active unlike playing chess and experiencing fear.
Candies make children spring into action and not listen to music or wave goodbye. The
answer is spring into action.

Flan-T5 Base Spring into action is the act of bringing something to a group of children. If someone
brings candy to a group of children, spring into action will happen. Therefore, the final
answer is spring into action.

LD4LG Springing into action leads to spring into action and not play chess or wave fear. Springing
onto action which leads to Spring into music unlike listening to music and experiencing
fear. The answer is spring into fear.

Ours Spring into action is an activity unlike listening to music, play chess. Candy makes a
group of children springing into action. The answer is spring into action.

Flan-T5 Large Spring into action is to get excited. Candy is a good thing. Children get excited when
someone brings candy to them. Therefore, the final answer is spring into action.

Table 12: Models’ Predictions on ECQA: LD4LG initially mentions the correct answer, but predicts a non-existent
answer by blending choices “spring into action” and “experience fear” together.
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