Dexonomy: Synthesizing All Dexterous
Grasp Types in a Grasp Taxonomy
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Fig. 1: For any grasp type in GRASP taxonomy [1], any object, and any articulated hand, our pipeline efficiently
synthesizes contact-rich, penetration-free, and physically plausible dexterous grasps, starting from only one human-annotated
grasp template to specify an initial hand pose and contact information per hand and grasp type.

Abstract— Generalizable dexterous grasping with suitable I. INTRODUCTION
grasp types is a fundamental skill for intelligent robots. Devel-
oping such skills requires a large-scale and high-quality dataset Dexterous grasping is a fundamental skill for intelligent

that covers numerous grasp types (i.e., at least those categorized robots, enabling flexible interaction with the environment
by the GRASP taxonomy), but collecting such data is extremely ’ . )
challenging. Existing automatic grasp synthesis methods are of-  HOWever, most prior work focuses on whether a dexterous
ten limited to specific grasp types or object categories, hindering  hand can successfully grasp an object, rather than con-
scalability. This work proposes an efficient pipeline capable sidering how to grasp it. As a result, the dexterous hand
of synthesizing contact-rich, penetration-free, and physically [oceq its dexterity and becomes functionally similar to a
plausible grasps for any grasp type, object, and articulated oo ) calie] oripper. True dexterous grasping is not merely

hand. Starting from a single human-annotated template for . . . o « .
each hand and grasp type, our pipeline tackles the complicated ~ aPOUt “grasping with dexterous hands”, but about “grasping

synthesis problem with two stages: optimize the object to fit  dexterously with appropriate grasp types based on the task
the hand template first, and then locally refine the hand to  requirement". For example, when a robot needs to securely
fit t!le object in simulation. To validate the synthesized grasps, grasp an apple or hold a knife to cut, it should use a power
we introduce a contact-aware control strategy that allows the grasp to envelop the object. Conversely, when grasping a

hand to apply the appropriate force at each contact point to the , ) . .
object. Those validated grasps can also be used as new grasp lightweight or flat object from the table, a precision grasp

templates to facilitate future synthesis. Experiments show that  using the fingertips would be more suitable.
our method significantly outperforms previous type-unaware To develop such intelligent skills, there are two key
grasp synthesis baselines in simulation. Using our algorithm, we challenges: (1) selecting the appropriate grasp type based on

construct a dataset containing 10.7k objects and 9.5M grasps, . . . .
covering 31 grasp types in the GRASP taxonomy. Finally, the task and (2) generating high-quality grasps for specified

we train a type-conditional generative model that successfully  types and objects. The first challenge is a high-level decision-
performs the desired grasp type from single-view object point  making problem and can take advantage of recent advances

clouds, achieving an 82.3% success rate in real-world experi- ip large vision-language models, e.g., GPT-40 [2], as a
ments. Project page: https://pku-epic.github.io/Dexonomy. temporary solution. However, the second challenge is less
1Peking University. 2Galbot. 3Beijing Academy of Artificial Intelligence. studied and represents a significant bottleneck, which is the
*Equal contribution. fCorresponding author: hewang @pku.edu.cn. main focus of this paper. To address the problem of type-
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aware grasp synthesis with data-driven methods, the first step
is to build a large-scale grasp dataset that at least includes
most of the grasp types in the GRASP taxonomy [1]. How-
ever, collecting grasp data, particularly for multi-fingered
hands in contact-rich scenarios, remains a big challenge.

Several approaches have been explored for automatically
synthesizing a large-scale dexterous grasp dataset, but most
of them suffer from various limitations. Analytical grasp
synthesis methods [3], [4], [5], [6], [7] are often applicable
to any object, but most of them are type-unaware and
the synthesized grasps only belong to limited types. This
is because specifying flexible grasp types solely through
analytical metrics is challenging. Moreover, these methods
often produce unnatural hand poses, as they prioritize force
closure, which does not always align with human habits.
Another line of research [8], [9], [10] focuses on transferring
functional dexterous grasps by mapping object contact re-
gions. While these methods generate more human-like grasps
and support a wider range of grasp types, they are limited
to objects that are geometrically similar or axis-aligned with
the initial demonstration, making them less scalable.

In this work, we propose a novel pipeline to address
these challenges. As shown in Figure 1, our algorithm can
efficiently synthesize high-quality dexterous grasps for any
grasp type, object, and articulated hand, requiring only one
human-annotated grasp template per hand and grasp type.
Our synthesized grasps achieve rich hand-object contact
(e.g., > 10 hand links within 2 mm of the object for power
grasps), guarantee penetration-free poses via collision mesh
verification, and satisfy force closure under six-axis testing
in MuJoCo [11] — all with shared hyperparameters across
grasp types, objects, and hands.

Our key insight is that grasping can be framed as a
geometric matching problem, where the hand and object
should align through contact points. We begin by introducing
a human-annotated grasp template that specifies the initial
hand pose and contact information (i.e., points and normals).
Unlike previous methods that directly adjust the hand pose to
fit the object, we first sample and optimize the object pose
to match the hand contacts defined in the grasp template.
This stage supports hundreds of thousands of initial samples
processed in parallel on a single GPU and leaves only a small
number of promising results for the next stage.

After aligning the object pose, the hand only needs a slight
refinement to get a good grasp. This dual-stage design not
only eases the hand refinement, but also ensures that the final
grasp remains similar to the initial grasp template and thus
remains natural. In contrast to most prior work [12], [3], [6],
[7] that develops custom objective functions and optimizers
to refine the hand pose, we propose a novel method based on
the transposed Jacobian control in MuJoCo. This approach is
key to achieving rich contacts while ensuring no penetration,
with minimal coding effort and parameter tuning.

Next, we evaluate the synthesized grasps in MuJoCo to
assess their ability to withstand external forces applied to the
object. Unlike previous work [3], [13] that designs heuristics
to squeeze the hand for applying force on the object, which

is not suitable for all grasp types, we design a contact-
aware control strategy that computes the desired forces for
each contact point and controls the hand to apply them
approximately, also based on the transposed Jacobian control.
Finally, high-quality grasps that pass the simulation tests can
be used to construct new grasp templates, reducing the need
for human annotations and broadening the range of objects
that can be grasped.

Experiments show that our method greatly outperforms
previous type-unaware grasp synthesis baselines in simula-
tion. Using our proposed pipeline, we also build a large-scale
dataset covering different grasp types. This dataset further
enables training a type-conditional generative model that
generates desired grasp types for novel objects from single-
view point clouds, achieving a success rate of 82.3% on the
Shadow hand in real-world experiments. Finally, we show
that our algorithm can be used to develop an annotation Ul
for collecting semantic grasps on the specified object regions
with only a few mouse clicks.

In summary, our main contributions are:

« An efficient pipeline to synthesize high-quality grasps
for any grasp type, object, and hand, starting from one
human-annotated template per hand and grasp type.

o A large-scale dataset with 9.5M grasps and 10.7k ob-
jects, covering 31 grasp types in the GRASP taxonomy.

e A type-conditional generative model that can use the
specified grasp types to grasp novel objects in the real
world, with only a single-view point cloud as input.

¢ An annotation UI for collecting semantic grasps with
only a few mouse clicks.

II. METHOD
A. Grasp Template Definition

A grasp template consists of several components: the hand
joint configuration g € R, hand contact points p? € R3,
corresponding normals n? € R?, and the link name for each
contact point (¢ = 1,2,...,m). Our algorithm requires a
single human-annotated grasp template for each hand and
grasp type as initialization.

B. Lightweight Global Alignment of Object Pose

In this stage, we simultaneously sample and optimize
the object pose to align with the selected template’s hand
contacts while keeping the hand pose fixed. The optimization
variable is the object’s transformation, parameterized by its
scale s, € R, rotation R, € S, and translation t, € R3.

Before optimization, we begin with dense sampling. First,
a random grasp template is selected from the Grasp Template
Library, and a random hand contact from the template is
chosen. Then, a random object is selected, and a random
surface point on the object is chosen. The object is initialized
by aligning the sampled hand and object contacts, where
contact points are matched and the contact normal directions
are set opposite. The object’s scale and in-plane rotation
perpendicular to the normal direction are sampled randomly.
Our pipeline supports parallelizing massive samples of differ-
ent contacts, objects, and grasp templates on a single GPU.
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Fig. 2: The pipeline of Dexonomy. (1) Grasp Template Library initially requires one human-annotated template. (2)
Lightweight Global Alignment stage samples and optimizes the object poses in parallel on a GPU, to match the contact
points and normals of the selected grasp templates. (3) Simulation-based Local Refinement stage adjusts the hand pose to
improve hand-object contacts. (4) Simulation Validation tests force-closure grasps using our proposed contact-aware control
strategy. (5) New templates are constructed from successful grasps and added to the Grasp Template Library, used in the

following iterations.

During each optimization iteration, each hand contact
point pf calculates the nearest point p$ on the object’s sur-
face using the differentiable library Warp [14]. To penalize
the mismatch between hand and object contacts, we optimize
the object pose by minimizing the following energy function:

m m

L=kyy Ipf =pfI* + koY nf —nfl* (D)
i=1 =1

where k, and k,, are hyperparameters. There is no other
energy used for optimization except Eq. 1.

After optimization, results are filtered using four criteria.
First, the final energy function must be below a threshold to
ensure a good match between hand-object contacts. Second,
severe penetration between the hand and object should be
avoided, which we efficiently detect using our proposed hand
collision skeletons parameterized by line segments (details
in SUPP). Third, the object contact quality, as measured by
the QP-based grasp energy from BODex [7], must exceed
a threshold. Finally, we apply a process similar to farthest
point sampling to filter out duplicate object transformations.

Our design, using only one energy during optimization
and leaving other checks for post-filtering, provides several
advantages. First, it reduces computational costs, enabling
maximized parallelization to benefit from dense sampling to
avoid local optimum traps. Second, it reduces sensitivity to
hyperparameters, as filtering criteria are applied sequentially,
while optimization energies need to be applied together.

C. Simulation-based Local Refinement of Hand Pose

In this stage, the object is fixed, and the hand pose
is locally refined to improve the hand-object contact. A
virtual force f; is needed at each hand point p/ toward the
corresponding nearest object point p?. To apply these virtual
forces in MuJoCo, they are transferred to the hand’s joint
torque via simplified transposed Jacobian control:

f; = ke(p} —pf), T=Y_ Jif 2)
=1

where kj is a hyperparameter and Ji, € R9*% is the
transpose of the hand contact Jacobian that maps force
vectors from the world to joint coordinates.

While Eq. 2 is a simplified control strategy with many
assumptions (e.g., no dynamics or gravity; joint torques
mapped from each contact force are independent and addi-
tive), it serves our need for synthesizing contact-rich grasps
in simulation. This is easy to implement and works for other
physics simulators. Eq. 2 is iteratively applied for 200 steps,
with p? remaining static in the hand link frame and p?
remaining static in the world frame to avoid drift.

After optimization, we filter the results based on three
criteria. First, there should be no hand-object penetration,
measured using collision meshes. Second, all fingers that
have at least one annotated contact should touch the object,
meaning the minimal distance between hand links and object
meshes should be within 2 mm. Finally, the grasp quality
must exceed a threshold, as in the previous stage.

D. Simulation Validation with Contact-Aware Control

To validate the synthesized grasps in MuJoCo, the hand
should squeeze to hold the object stably, controlled by a
control signal of joint torques. Our contact-aware control
strategy first calculates the desired forces on each contact
using the quadratic programming (QP) [7], and then converts
these forces into joint torques using the same transposed
Jacobian control as in Eq. 2. A grasp is considered to succeed
only if the object remains stable under all six orthogonal
external forces for 2 seconds in simulation.

E. Construction of New Grasp Templates

Once a grasp successfully passes the simulation validation,
a new grasp template is constructed and added to the template
library. The joint configuration of the new template is taken
from the successful grasp, while the contact information is
updated only if an actual contact is detected near the original
contact on the same hand link. This strategy prevents the
new template’s contact information from deviating too much



GSR (%) 1 | OSR (%) 1 | S(s~1) 1 | CLN 1 | CDC (mm) | | PD (mm) | | SPD (mm) ] | D (%) .
DexGraspNet [3] 12.10 57.01 325 322 7.58 435 1.20 29.03
FRoGGeR [5] 10.34 55.70 2.98 2.51 4.95 0.22 0.00 27.01
SpringGrasp [6] 7.83 35.44 5.47 2.79 23.59 16.58 1.06 70.18
BODex [7] 4923 96.56 403.9 3.85 3.03 0.63 0.02 32.50
Ours 60.50 96.53 3234 438 0.21 0.00 0.00 3417

TABLE I: Comparison with Type-Unaware Grasp Synthesis Baselines for Allegro Hand in Simulation. Most baselines,

except DexGraspNet, only synthesize fingertip grasps, so we also synthesize fingertip grasps for a fair comparison.
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Fig. 3: Real-World Gallery. Our trained type-conditional generative model synthesizes desired grasp types from single-view
object point clouds. All grasps succeed except the one in the red box, where the grasp type is unsuitable for the object.

from the original. Newly added templates can be randomly
selected in the global alignment stage of the following loops.

III. EXPERIMENT
A. Type-Unaware Grasp Synthesis in Simulation

Although our work focuses on type-aware dexterous grasp
synthesis, there is no suitable baseline available for direct
comparison. Therefore, we conduct experiments on type-
unaware grasp synthesis in simulation to demonstrate the
effectiveness of our pipeline.

Evaluation metrics. Eight metrics similar to BODex [7]
are used for a comprehensive evaluation: Grasp Success Rate
(GSR), Object Success Rate (OSR), Speed (S), Contact Link
Number (CLN), Contact Distance Consistency (CDC), Pene-
tration Depth (PD), Self-Penetration Depth (SPD), Diversity
(D). The detailed description of each metric is in SUPP.

Experiment setup. We use the Allegro hand and 5689
object assets from DexGraspNet, with six scales applied to
each normalized object: 0.05, 0.08, 0.11, 0.14, 0.17, and
0.20. Each method allows 20 attempts, where for our method
one attempt is defined as one valid result output by the
global alignment stage. Our reported speed does not include
simulation validation for a fair comparison with baselines,
and the detailed time analysis is in SUPP.

Result analysis. As shown in Table I, our method achieves
the highest grasp success rate and best performance on con-
tact and penetration. The penetration for our grasps is consis-
tently O because we set a Imm contact margin in MuJoCo,
and MuJoCo can resolve millimeter-level penetration. Our
speed is slightly lower than that of BODex, as their pipeline
mainly runs on GPUs, while our local refinement stage uses
MuJoCo’s CPU version. Our diversity is somewhat lower, as
we use only two similar templates and a smaller step number

for refining hand poses compared to the baselines. However,
the overall diversity of our synthesized grasps for all grasp
types is much better, as reported in SUPP. The success rates
of baselines are lower than those reported in BODex [7],
primarily because our objects have a higher mass (100g vs.
30g) and a larger scale range ([0.05,0.2] vs. [0.06,0.12]).

B. Learning Type-Aware Grasp Synthesis

Using our proposed method, we generate a large-scale
dataset for Shadow Hand covering 31 grasp types in the
GRASP taxonomy. We also propose a type-conditional gen-
erative model based on normalizing flow [15], [7]. The main
idea is just to add a conditional codebook, where each grasp
type corresponds to a code in it. Since the learning model is
just used as proof-of-concept and not the main contribution
of this paper, the details are left in SUPP.

To perform a grasp, a single-view object point cloud
segmented by SAM2 [16] and the specified grasp type are
taken as input to the trained type-conditional generative
model. The model generates 100 candidates and we use
the pre-grasp poses as the target for collision-free motion
planning with CuRobo [17], filtering out failed ones. The
remaining grasps are ordered by the output probability of
the normalizing flow, and the top 3 are executed. In this
way, we prevent the success rate of motion planning from
affecting the results, since it is not the focus of this paper.
After reaching the pre-grasp pose, the hand moves to the
grasp pose and then the squeeze pose to grasp the object
stably, and finally lift it. As shown in Fig. 3, our model
can correctly generate physically plausible grasps for the
specified types and achieves an overall success rate of 82.3%
on 13 test objects.
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