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Abstract

Semi-supervised learning by self-training heavily
relies on pseudo-label selection (PLS). The selec-
tion often depends on the initial model fit on la-
beled data. Early overfitting might thus be prop-
agated to the final model by selecting instances
with overconfident but erroneous predictions, of-
ten referred to as confirmation bias. This paper
introduces BPLS, a Bayesian framework for PLS
that aims to mitigate this issue. At its core lies a
criterion for selecting instances to label: an ana-
lytical approximation of the posterior predictive
of pseudo-samples. We derive this selection cri-
terion by proving Bayes optimality of the pos-
terior predictive of pseudo-samples. We further
overcome computational hurdles by approximat-
ing the criterion analytically. Its relation to the
marginal likelihood allows us to come up with an
approximation based on Laplace’s method and the
Gaussian integral. We empirically assess BPLS for
parametric generalized linear and non-parametric
generalized additive models on simulated and real-
world data. When faced with high-dimensional
data prone to overfitting, BPLS outperforms tradi-
tional PLS methods.a

aOpen Science: Implementation and code to repro-
duce results are available at https://github.com/
rodemann/Bayesian-pls

1 INTRODUCTION

Labeled data are scarce in many learning settings. This can
be due to a variety of reasons such as restrictions on time,
knowledge, or financial resources. Unlabeled data, however,
are often much more accessible. This has given rise to the
paradigm of semi-supervised learning (SSL), where infor-
mation from unlabeled data is integrated into model train-

ing to improve predictions in a supervised learning frame-
work. Within SSL, an intuitive and widely used approach
is referred to as self-training or pseudo-labeling [Shi et al.,
2018, Lee et al., 2013, McClosky et al., 2006]. The idea is
to fit an initial model to labeled data and iteratively assign
pseudo-labels to unlabeled data according to the model’s
predictions. The latter requires a criterion (sometimes called
confidence measure) for pseudo-label selection (PLS), that
is, the selection of instances to be pseudo-labeled and added
to the training data.

By design, self-training strongly relies on the initial model
fit and the way instances are selected to be pseudo-labeled.
Everything hinges upon the interplay between the selection
criterion and the initial model’s generalization performance.
If the initial model generalizes poorly, initial misconcep-
tions can propagate throughout the process, only making
things worse. High-dimensional data prone to overfitting are
particularly sensitive to such confirmation bias [Arazo et al.,
2020]. Usually, self-training’s sweet spot lies somewhere
else: When the labeled data allow the model to learn suffi-
ciently well while still leaving some room for improvement.
Generally, the poorer the initial generalization, the harder it
is to select sensible pseudo-labels to improve generalization,
i.e., the more crucial the role of the selection criterion. Note
that SSL is applied to data with high shares (typically over
80% [Sohn et al., 2020, Arazo et al., 2020]) of unlabeled
data, where initial overfitting is likely for high-dimensional
models, while final overfitting is not.

1.1 MOTIVATION

Accordingly, we strive for a selection criterion that is ro-
bust with respect to the initial model fit, i.e., its learned
parameters. At the same time, it should still exploit the
information in the labeled data. Such a measure calls for
disentangling the uncertainty contributions of the data and
the model’s parameters. This is in line with recent work
in uncertainty quantification (UQ) that suggests decompos-
ing epistemic uncertainty into approximation uncertainty
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driven by (a lack of) data and modeling uncertainty driven
by (primarily parametric) assumptions [Hüllermeier and
Waegeman, 2021]. Bayesian inference offers a sound and
consistent framework for this distinction. Its rationale of
technically modeling not only data but also parameters as
random variables has proven to offer much insight into UQ
for machine learning [Hüllermeier and Waegeman, 2021]
and deep learning [Abdar et al., 2021, Malinin and Gales,
2018].

We exploit the Bayesian framework for pinpointing uncer-
tainty with regard to data and parameters in PLS. Our ap-
proach of Bayesian pseudo-label selection (BPLS) enables
us to choose pseudo-labels that are likely given the observed
labeled data but not necessarily likely given the estimated
parameters of the fitted model. What is more, BPLS al-
lows to include prior information not only for predicting but
also for selecting pseudo-labels. Notably, BPLS is flexible
enough to be applied to any kind of predictive model whose
likelihood and Fisher-information are accessible, includ-
ing non-Bayesian models. BPLS entails a Bayes optimal
selection criterion, the pseudo posterior predictive (PPP).
Its intuition is straightforward yet effective: By averaging
over all parameter values, PPP is more robust towards the
initial fit compared to the predictive distribution based on a
single optimal parameter vector. Our approximate version
of the PPP is simple and computationally cheap to evaluate:
ℓ(θ̂)− 1

2 log|I(θ̂)| with ℓ(θ̂) being the likelihood and I(θ̂)
the Fisher-information matrix at the fitted parameter vector
θ̂. As an approximation of the joint PPP, it does not require
an i.i.d. assumption, rendering it applicable to a wide range
of applied learning setups.

1.2 MAIN CONTRIBUTIONS

(1) We derive PPP by formalizing PLS as a decision problem
and show1 that PPP corresponds to the Bayes criterion, ren-
dering selecting instances with regard to it Bayes optimal,
see sections 2.1 and 2.2.

(2) Since our selection criterion includes a possibly in-
tractable integral, we provide analytical approximations,
exploiting Laplace’s method and the Gaussian integral, both
for uninformative and informative priors. Using varying
levels of accuracy, we balance the trade-off between compu-
tational feasibility and precision, see Section 3.

(3) We provide empirical evidence2 for BPLS’ superiority
over traditionally predominant PLS methods in case of semi-
supervised generalized additive models (GAMs) and gener-
alized linear models (GLMs) faced with high-dimensional

1Proofs of all theorems in this paper can be found in the sup-
plementary material.

2Implementations of the proposed methods as well as repro-
ducible scripts for the experiments are provided in the anonymous
repository named Bayesian-pls (“Bayesian, please!”), see abstract.

data prone to overfitting, see Section 4.

2 BAYESIAN PLS

Most semi-supervised methods deal with classification or
clustering tasks [Van Engelen and Hoos, 2020, Chapelle
et al., 2006]. Loosely leaning on [Triguero et al., 2015], we
formalize SSL as follows. Consider labeled data

D = {(xi, yi)}ni=1 ∈ (X × Y)
n (1)

and unlabeled data

U = {(xi,Y)}mi=n+1 ∈
(
X × 2Y

)m−n
(2)

from the same data generation process, where X is the
feature space and Y is the categorical target space. The
aim of SSL is to learn a predictive classification function
f such that f(x) = ŷ ∈ Y utilizing both D and U . As
is customary in self-training, we start by fitting a model
with unknown parameter vector θ ∈ Θ, Θ compact with
dim(Θ) = q, on labeled data D = {(xi, yi)}ni=1. Our goal
is – as usual – to learn the conditional distribution of p(y | x)
through θ from observing features x = (x1, . . . , xn) ∈ Xn,
and responses y = (y1, . . . , yn) ∈ Yn in D. Adopting the
Bayesian perspective, we can state a prior function over θ
as π(θ). The prior can represent information on θ but may
also be uninformative.

Within existing frameworks for self-training (see Section 5)
in SSL, one could deploy such a Bayesian setting for pre-
dicting unknown labels of U = {(xi,Y)}mi=1 as well as for
the final predictions on unseen test data. However, we aim
at a Bayesian framework for selecting pseudo-labels. This
is beneficial for two reasons. First and foremost, consider-
ing the Bayesian posterior predictive distribution in PLS
will turn out to be more robust towards the initial fit on D
than classical selection criteria. Second, the Bayesian en-
gine brings along the usual benefit of allowing to explicitly
account for prior knowledge when selecting instances to be
labeled. Notably, our framework of Bayesian pseudo-label
selection is unrelated to how pseudo-labels are predicted.

2.1 THE CASE FOR THE POSTERIOR
PREDICTIVE IN PLS

For any model with parameters θ ∈ Θ, the likelihood func-
tion for observed features x and labels y is commonly
defined as Ly|x(θ) = fθ(y | x), where fθ(·) is from a
parameterized family of probability density functions. In
the Bayesian universe, parameters θ are more than just
functional arguments [Murphy, 2012]. They are random
quantities themselves, allowing us to condition on them:
Ly|x(θ) = p(y | x, θ). Recall that we have specified a prior
π(θ) on the parameters beforehand. After observing data,
it can be updated to a posterior following Bayes’ Theorem



p(θ | y, x) = p(y | x, θ)π(θ)/p(y | x), where the denomi-
nator is the marginal likelihood

p(y | x) =
∫
Θ

p(y | x, θ)π(θ) dθ, (3)

or, more colloquially, “Bayesian evidence” [Lotfi et al.,
2022, Barber, 2012]. For previously unseen data (ỹ, x̃), the
posterior predictive distribution is defined as

p(ỹ | x̃, y, x) =
∫
Θ

p(ỹ | x̃, θ) p(θ | y, x) dθ. (4)

The posterior predictive closely resembles the marginal like-
lihood in case we include (ỹ, x̃) in the data – a fact that
we will exploit for our approximations in Section 3. Both
marginalize the likelihood over θ. The difference is the
weight: The marginal likelihood integrates out θ with regard
to the prior, while the posterior predictive integrates out θ
with regard to the posterior. Accordingly, both can be con-
sidered PLS criteria that are robust towards the initial fit:
They average over all possible θ-values instead of relying
on one estimated θ̂ from the trained model. 3 Computational
issues aside, the posterior predictive of pseudo-labeled data
thus encapsulates a perfectly natural selection criterion for
self-training: It selects pseudo-labels that are most likely
conditioned on the true observed D, the assumed model
and all plausible parameters from the prior or posterior,
respectively.

Both the data and the estimated parameters (as functions of
the data) will change throughout the process of self-training.
We argue that conditioning the choice of unlabeled instances
solely on the estimated parameters in early iterations over-
emphasizes the influence of the initial model. This optimistic
reliance can be harmful in case of small n and high q, where
overfitting is likely. Selecting instances by the posterior
predictive mitigates this.

2.2 BAYES OPTIMALITY OF PSEUDO
POSTERIOR PREDICTIVE

In the following, we show that selecting pseudo-labels with
regard to their posterior predictive is Bayes optimal. We
further show the same holds for selection with regard to
the marginal likelihood in case of a non-updated prior. To
this end, we formalize the selection of data points to be
pseudo-labeled as a canonical decision problem, where an
action corresponds to the selection of an instance from the
set of unlabeled data U .

3The probabilistic interpretation of the marginal likelihood –
in the words of [Lotfi et al., 2022] – is: “The probability that we
would generate a dataset with a model if we randomly sample from
a prior over its parameters”. The posterior predictive, analogously,
is the probability that we would generate data with a model if we
randomly sample from a posterior over its parameters.

Definition 1 (PLS as Decision Problem) Consider the
decision-theoretic triple (U ,Θ, u(·)) with an action space
of unlabeled data4 to be selected, i.e., instances (xi,Y) as
actions, a space of unknown states of nature (parameters)
Θ and a utility function u : U ×Θ → R.

Loosely inspired by [Cattaneo, 2007], we now define the util-
ity of a selected data point (xi,Y) as the plausibility of being
generated jointly with D by a model with parameters θ ∈ Θ
if we include it with pseudo-label ŷi ∈ Y (obtained through
any predictive model) in D ∪ (xi, ŷi). This is incorporated
by the likelihood of D ∪ (xi, ŷi), which shall be called
pseudo-label likelihood and written as p(D ∪ (xi, ŷi) | θ).
We thus condition the selection problem on a model class
as well as on already predicted pseudo-labels. The former
conditioning is not required (see the extension in Section 6)
for the well-definedness of the pseudo-likelihood while the
latter is.

Definition 2 (Pseudo-Label Likelihood as Utility)
Let (xi,Y) be any decision (selection) from U . We assign
utility to each (xi,Y) given D and pseudo-labels ŷ ∈ Y by
the following measurable utility function

u : U ×Θ → R
((xi,Y), θ) 7→ u((xi,Y), θ) = p(D ∪ (xi, ŷi) | θ),

which is said to be the pseudo-label likelihood.

This utility function is a natural probabilistic choice to as-
sign utilities to selected pseudo-labels given the predicted
pseudo-labels. With a prior π(θ), we get the following re-
sult.

Theorem 1 In the decision problem (U ,Θ, u(·)) (Defini-
tion 1) with the pseudo-label likelihood as utility function
(Definition 2) and a prior π(θ) on Θ, the standard Bayes
criterion

Φ(·, π) : U → R
a 7→ Φ(a, π) = Eπ(u(a, θ))

corresponds to the pseudo marginal likelihood
p(D ∪ (xi, ŷi)).

Corollary 1 For any prior π(θ) on Θ, the action a∗m =
argmaxi p(D ∪ (xi, ŷi)) is Bayes optimal.

Taking the observed labeled data D into account by updating
the prior π(θ) to a posterior p(θ | D), we end up with an
analogous result for the pseudo posterior predictive. The

4We assume absence of tied observations for simplicity such
that we can understand U as set.



Theorem requires only the Proposition by [Berger, 1985,
section 4.4.1] stating that posterior loss equals prior risk.
That is, conditional Bayes optimality equals unconditional
Bayes optimality.

Theorem 2 In the decision problem (U ,Θ, u(·)) and the
pseudo-label likelihood as utility function as in Theorem 1
but with the prior updated by the posterior π(θ) = p(θ | D)
on Θ, the standard Bayes criterion Φ(·, π) : U → R; a 7→
Φ(a, π) = Eπ(u(a, θ)) corresponds to the pseudo posterior
predictive p(D ∪ (xi, ŷi) | D).

Corollary 2 Action a∗p = argmaxi p(D ∪ (xi, ŷi) | D) is
Bayes optimal for any updated prior π(θ) = p(θ | D).

Further note that directly maximizing the likelihood with
regard to a corresponds to the optimistic max-max-criterion,
see Theorem 3.

Theorem 3 In the decision problem (U ,Θ, u(·)) with the
pseudo-label likelihood as utility function as in Theorem 1,
the max-max criterion

Φ(·) : U → R;
a 7→ Φ(a) = max

θ
(u(a, θ))

corresponds to the (full) likelihood.

The max-max-criterion advocates deciding for an action
(here: selection of pseudo-labeled data) with the highest
utility (here: likelihood) according to the most favorable
state of nature θ, e.g. see [Rapoport, 1998]. It can hardly
be seen as a rational criterion, as it reflects “wishful think-
ing” [Rapoport, 1998, page 57]. We thus abstain from it
in what follows. Our roughest approximation of the PPP
in Section 3, however, will correspond to this case as well
as the more general concept of optimistic superset learning
(OSL) [Hüllermeier, 2014, Rodemann et al., 2022].

3 APPROXIMATE BAYES OPTIMAL PLS

Since the pseudo posterior predictive (PPP) p(D∪ (xi, ŷi) |
D) = p(ŷ | x, y, x) (Theorem 2) is computationally costly
to evaluate via Markov Chain Monte Carlo (MCMC), we
aim at approximating it analytically. In light of the general
computational complexity of BPLS involving model refit-
ting, see Section 4, this appears particularly crucial. We will
approximate the joint PPP directly.5 Our method hence does

5For i.i.d. data we could focus on the single PPP contributions
p(yi | xi,D) instead of the joint. Still, we would have to deal
with a possibly intractable integral and end up with similar com-
putational hustle. We thus opt for approximating the joint directly.
Moreover, considering the joint quantities instead of the distribu-
tions implies no loss of generality, with possible extensions for
dependent data in mind.

not need an i.i.d. assumption, which makes it very versatile.

Due to the aforementioned similarity of the PPP and the
marginal likelihood, we are in the fortunate position of bor-
rowing from some classical marginal likelihood approxi-
mations, see [Llorente et al., 2023]. Especially popular are
approximations based on Laplace’s method as in [Schwarz,
1978]. Our main motivation, however, is to obtain a Gaus-
sian integral [Gauß, 1877], which we can then compute
explicitly.

3.1 APPROXIMATION OF THE PPP

We will start by transferring Laplace’s method to the PPP.
Recall that the predictive posterior of a pseudo-sample
(xi, ŷi) (the PPP) given data D is defined as

p(D ∪ (xi, ŷi)|D) =

∫
Θ

p(D ∪ (xi, ŷi) | θ)p(θ | D)dθ,

where Bayes’ theorem gives

p(θ | D) = p(D | θ)π(θ)/p(D).

Denoting ℓD(θ) = log p(D | θ) and ℓ̃(θ) = ℓD∪(xi,ŷi)(θ) +
ℓD(θ), we can write the integrand as

p(D ∪ (xi, ŷi) | θ)p(θ | D) = exp[ℓ̃(θ)
)
]π(θ)/p(D).

Let I(θ) = −ℓ̃′′(θ)/n denote the observed Fisher infor-
mation matrix. Further denote by θ̃ = argmaxθ ℓ̃(θ) the
maximizer of ℓ̃(θ). It holds ℓ̃′(θ) = 0 by definition of θ̃. A
Taylor expansion around θ̃ thus gives

ℓ̃(θ) ≈ ℓ̃(θ̃)− n

2
(θ − θ̃)′I(θ̃)(θ − θ̃).

The integrand decays exponentially in n∥θ − θ̃∥, so we can
approximate it locally around θ̃ by also taking π(θ) ≈ π(θ̃)
inside the integral with an analogous Taylor series. We refer
to [Miller, 2006, Section 3.7] and [Łapiński, 2019, Theo-
rem 2] for a rigorous treatment of the remainder terms and
regularity conditions.

We can eventually approximate p(D ∪ (xi, ŷi)|D) by

exp[ℓ̃(θ̃)]π(θ̃)

p(D)

∫
Θ

exp

[
−n

2
(θ − θ̃)′I(θ̃)(θ − θ̃)

]
dθ,

The integral on the right is a Gaussian integral. Defining
Σ = [nI(θ̃)]−1 and ϕΣ as the density of the N (0,Σ) distri-
bution, it equals

(2π)q/2|Σ|1/2
∫
Θ

ϕΣ(θ)dθ =

(
2π

n

)q/2

|I(θ̃)|−1/2.

Altogether, we have shown that

p(D ∪ (xi, ŷi)|D) ≈
(
2π

n

)q/2
exp[ℓ̃(θ̃)]π(θ̃)

|I(θ̃)|1/2p(D)
. (5)



3.2 APPROXIMATE SELECTION CRITERIA

To find the pseudo-sample (xi, ŷi) maximizing the PPP, we
can equivalently maximize its logarithm, i.e. maximize

q

2
log

(
2π

n

)
+ ℓ̃(θ̃) + log π(θ̃)− 1

2
log |I(θ̃)| − log p(D).

Dropping all terms that do not depend on (xi, ŷi) leads to
the selection criterion

ℓ̃(θ̃)− 1

2
log |I(θ̃)|+ log π(θ̃). (6)

The term
ℓ̃(θ) = ℓD∪(xi,ŷi)(θ) + ℓD(θ),

quantifies how well the pseudo-sample (xi, ŷi) conforms
with the data set D given a parameter θ, e.g. the optimal
(argmax) parameter θ̃ in Equation (6). It is curious that
samples in D contribute twice to ℓ̃, but (xi, ŷi) only once.
However, this is irrelevant when comparing two pseudo-
samples (xi, ŷi) and (xj , ŷj). To see this, we expand ℓD
around its maximizer θ̂, so that ℓD(θ̃) = ℓD(θ̂) + O(∥θ̂ −
θ̃∥2). Since D ∪ (xi, ŷi) and D differ in only one sample,
the difference θ̂ − θ̃ is of order O(n−1). Thus,

ℓ̃(θ) = ℓD∪(xi,ŷi)(θ) + ℓD(θ̂) +O(n−2).

The remainder is negligible compared to the other terms
in (6) and ℓD(θ̂) does not depend on the pseudo-sample
(xi, ŷi). This suggests the simplified informative BPLS cri-
terion

iBPLS = ℓD∪(xi,ŷi)(θ̃)−
1

2
log |I(θ̃)|+ log π(θ̃). (7)

Equivalence of (6) and (7) is verified numerically for small
n by experiments on real-world and simulated data in Sup-
plement F.

The ability to incorporate prior information into the selection
is generally a strength of our criterion. By default, however,
we cannot assume that such information is available. We
can instead choose an uninformative prior where π(θ) is
constant with respect to θ. Recall that we assume Θ to
be compact, which allows us to specify a uniform prior as
uninformative prior. Then (7) simplifies to the uninformative
BPLS criterion

uBPLS = ℓD∪(xi,ŷi)(θ̃)−
1

2
log |I(θ̃)|. (8)

Our novel PLS criteria provide great intuition.

• The first term is the joint likelihood of the pseudo-
sample (xi, ŷi) and D under the optimal parameter
θ̃. It measures how well the pseudo-sample complies

with the previous model and previously seen data D. It
tells the value of this joint likelihood at its maximum.
Loosely speaking, this maximum height of the likeli-
hood can be seen as a very rough approximation of the
area under it, i.e., the integral with uniform weights.6

• The second term penalizes high curvature of the
pseudo-label likelihood function ℓD∪(xi,ŷi)(θ) around
its peak, since the Fisher-information is its second
derivative. Due to the negative sign, the criterion
prefers pseudo-samples that lead to flatter maxima of
the likelihood. In line with recent insights into sharp
and flat minima of loss surfaces [Dinh et al., 2017, Li
et al., 2018, Andriushchenko and Flammarion, 2022],
such a penalty can be expected to improve general-
ization. The lower the curvature, the more probabil-
ity mass (area under the likelihood) is expected on
Θ \Bϵ(θ̃) with Bϵ = {θ ∈ Θ | ∥θ− θ̃∥ < ϵ} an ϵ-ball
for fixed ϵ > 0 around θ̃ in the uninformative case.
Intuitively, this corrects the very rough approximation
of the area under the likelihood by the likelihood’s
maximal height, see above.

• The third term in the informative BPLS criterion ad-
justs the selection for our prior beliefs π about θ. Here,
the effect of (xi, ŷi) is only implicit, because it affects
the maximizer θ̃. The more likely the updated parame-
ter θ̃ is under π, the higher the PPP.

In summary, our approximation of the PPP grows in the
absolute value of the likelihood’s peak, decreases in its
curvature at this point, and increases in the prior likelihood
of the updated parameter.

When n → ∞, the criteria iBPLS and uBPLS are dominated
by the likelihood, thus

log p(D ∪ (xi, ŷi)|D)
n→∞∝ ℓD∪(xi,ŷi)(θ̃).

This approximation is computationally cheaper to evaluate,
as it does not involve the Fisher-information. However, this
comes at the cost of poor accuracy in case of small n. Se-
lection with regard to this rough approximation of the PPP
corresponds to selection with regard to the likelihood. As
pointed out in Section 2.2, this corresponds to the overly
optimistic max-max-criterion.

4 EXPERIMENTS

Algorithmic Procedure: For all predicted pseudo-labels,
we refit the model on D ∪ (xi, ŷi) and evaluate its PPP by
means of the derived approximations iBPLS and uBPLS to
select one instance to be added to the training data. Detailed
pseudo code for BPLS can be found in Supplement A. The
computational complexity depends on the evaluation of the

6Technically, we also need that λ(Θ) = 1 with λ a Lebesgue-
measure for this interpretation.



Figure 1: Results from 8 classification tasks based on real-world data [Dua and Graff, 2017] in descending difficulty
(measured by supervised test accuracy), where p denotes the number of features here and the share of unlabeled data is 0.8.
Accuracy averaged over 100 repetitions.

PPP. With |U| = m unlabeled data points and no stopping
criterion, m+ (m− 1)+ · · ·+1 = m2+m

2 PPPs have to be
evaluated (that is, approximated). Hence, BPLS’ complex-
ity depends on the model’s complexity and the amount of
unlabeled data.

Hypothesis 1 (a) PPP with uninformative prior outper-
forms traditional PLS on data prone to initial overfitting
(i.e., with high ratio of features to data q

n and poor initial
generalization). (b) For low q

n and high initial generaliza-
tion, BPLS is outperformed by traditional PLS.

Hypothesis 2 (a) Among all PLS methods, the pseudo-label
likelihood (max-max-action) reinforces the initial model fit
the most and (b) hardly improves generalization.

Hypothesis 3 PPP with informative prior outperforms tra-
ditional PLS methods universally.

Experimental Setup: We formulate three hypotheses be-
forehand. Hypothesis 1 corresponds to the main motiva-
tion behind BPLS; its second part is a logical consequence
thereof: If we are sceptical towards the initial model in case
it generalizes well, we expect to select pseudo-labels in a
worse way than when trusting the initial model. Hypothe-
sis 2 is based on the decision-theoretic insights regarding

PLS by the likelihood, see section 2.2: It embodies an op-
timistic reliance on the initial model and is thus expected
to pick data that fits best into that model. We further ex-
pect (Hypothesis 3) BPLS to unambiguously outperform
non-Bayesian selection methods in case the prior provides
actual information about the data generating process – the
latter is simply not available for non-Bayesian PLS. We
benchmark semi-supervised (parametric) generalized lin-
ear models (GLMs) and (non-parametric) generalized addi-
tive models (GAMs) [Hastie and Tibshirani, 1987, Hastie,
2017] with PPP and pseudo-label likelihood against two
common selection criteria (probability score and predictive
variance) [Triguero et al., 2015] as well as a supervised base-
line. For the latter, we abstain from self-training and only use
the labeled data for training. Experiments are run on simu-
lated binomially distributed data as well as on eight data sets
for binary classification from the UCI repository [Dua and
Graff, 2017]. The binomially distributed data was simulated
through a linear predictor consisting of normally distributed
features. Details on the simulations as well as on the data
sets can be found in Supplement C and Supplement H. The
share of unlabeled data was set to 0.8 and 0.9. PLS methods
were compared w.r.t. to (“inductive”) accuracy of prediction
on unseen test. All data sets were found to be fairly balanced
except for the EEG data (minority share: 0.29).

Results: Figures 1 and 2 as well as Table 1 summarize
the results in the uninformative case (grey figures) for real-



Figure 2: Results from simulated data. Accuracy averaged
over 100 repetitions. Legend: see Figure 1.

world and simulated data, respectively. “Oracle stopping”
in Table 1 refers to comparing PLS methods with regard
to their overall best accuracy as opposed to “final” compar-
isons after the whole data set was labeled. Figure 2 sheds
further light on results for simulated data, while Figure 3
displays results from benchmarking BPLS to classical PLS
methods in the informative case (black figures). Detailed
figures displaying results from all experiments can be found
in the supplementary material.

Interpretation: At first sight, comparing the accuracy gains
in Figure 1 on different data sets (in order of ascending
baseline performance) clearly supports Hypothesis 1: For
harder tasks like EEG or sonar with relatively high ratio of
features to data q

n , Bayesian PPP outperforms traditional
PLS, whilst being dominated by the probability score in case
of easier tasks like banknote or breast cancer. For data sets
with intermediate difficulty (mushrooms and ionosphere),
PPP and other PLS methods compete head-to-head. The
results on abalone data underpin a general fact in SSL (see
section 1): Successful self-training requires at least some
baseline supervised performance. Results on simulated data
(Table 1) further support the role of q

n in Hypothesis 1. Their
visualization (Figure 2) nicely illustrates the inner working
of selection by PPP: By not trusting the initial model, PPP
affects the model’s test accuracy the most. While n = 400
leaves some room for improvement through mitigating the
overfitting by pseudo-labeled data, PPP leads to a noisy
performance in case of n = 100 close to p. Here, even the
final model still overfits. These promising results should not
hide an inconsistency: The fact that PPP is superior on the
cars task but not on the ionosphere task contradicts Hypoth-
esis 1, since cars is harder than ionosphere, while having
almost identical q

n . We find Hypothesis 2 to be partially sup-
ported by the results. While 2 (a) holds for both the majority
of simulated (see supplementary material) and real-world
data (likelihood generally the closest to supervised perfor-
mance), 2 (b) is challenged by considerable generalization
performance gain on ionosphere and breast cancer data.

Figure 3 clearly supports Hypothesis 3: When using infor-
mative priors based on the true data-generating process,

Table 1: Best performing PLS method (uninformative) on
simulated data

n q ORACLE STOPPING FINAL
60 60 PPP PPP

100 60 PPP Supervised Learning
400 60 PPP PPP

1000 60 Probability Score Probability Score

BPLS clearly outperforms traditional PLS methods. Results
in Supplement D.3 further back this finding. This comes at
no big surprise, since non-Bayesian PLS simply lack ways
to incorporate such prior knowledge. From this perspective,
the uninformative case (Hypothesis 1) corresponds to rais-
ing the bar and clearly is the theoretically more interesting
benchmarking setup. However, many practical applications
of SSL entail a myriad of pre-existing knowledgeFor practi-
cal purposes, thus, the informative situation might even be
more relevant.

5 RELATED WORK

Robust PLS: Robustness of PLS is a widely discussed is-
sue in the self-training literature. [Aminian et al., 2022]
propose information-theoretic PLS robust towards covariate
shift. [Lienen and Hüllermeier, 2021] label instances in the
form of sets of probability distributions (credal sets), weak-
ening the reliance on a single distribution. [Vandewalle et al.,
2013] aim at robustness to modeling assumptions by allow-
ing model selection through the deviance information crite-
rion during semi-supervised learning. [Rizve et al., 2020]
propose uncertainty-aware pseudo-label selection which
proves to compete with state-of-the-art SSL based on con-
sistency regulation. The idea is to select pseudo-labeled
instances whose probability score and predictive uncertainty
are above (tunable) thresholds. The latter is operationalized
by the prediction’s variance, and thus, unlike BPLS, fails
to decompose approximation and modeling uncertainty, see
Section 1. Both predictive variance and probability score
serve as benchmarks in Section 4.

Bayesian Self-Training: There is a broad body of research
on deploying Bayesian predictions in SSL and particularly
in self-training [Gordon and Hernández-Lobato, 2020, Ng
et al., 2018, Cai et al., 2011, Adams and Ghahramani, 2009].
The same holds for explicit likelihood-based inference, such
as weighted likelihood [Sokolovska et al., 2008], conditional
likelihood [Grandvalet and Bengio, 2004], and joint mixture
likelihood [Amini and Gallinari, 2002]. Most of them use
Bayesian models for predicting pseudo-labels. In contrast,
we prove that the argmax of the PPP is the Bayes optimal se-
lection of pseudo-labels given any predictive model. Regard-
ing Bayesian or likelihood-based selection of pseudo-labels,



Figure 3: Results of PPP with informative priors and non-parametric GAMs on simulated data with different shares of
unlabeled data. Accuracy averaged over 100 repetitions.

there exists only little (Bayesian) or hardly any (likelihood-
based) work. [Li et al., 2020] quantify the uncertainties of
pseudo-labels by mixtures of predictive distributions of a
neural net, applying MC dropout. This could be seen as
an expensive MC-based approximation of the PPP. Very
recently, [Patel et al., 2023] proposed PLS with regard to
(a sampling-based approximation of) the entropy of the
pseudo-labels’ posterior predictive distribution. The entropy
is considered a measure of total uncertainty (aleatoric and
epistemic) and often considered as regularization for PLS,
see [Saporta et al., 2020, Liu et al., 2021] for instance. Ab-
staining from the entropy – as we do – effectively means
not considering the aleatoric uncertainty. While including
aleatoric uncertainty (e.g. measurement noise) generally
makes sense, we consider it of minor importance in the
concrete problem of initial overfitting, where we aim at dis-
entangling epistemic uncertainty with regard to data and
parameters: We want to choose pseudo-labels that are likely
given the observed labeled data but not necessarily likely
given the estimated parameters of the (over-)fitted model.

6 DISCUSSION

Extensions: We briefly discuss two venues for future work.
The first extension loosens the restriction on one particu-
lar model class by performing model selection and PLS
simultaneously. The idea would be to select these instances
that can be best explained by the simplest learner (i.e., the
one with least parameters), see [Rodemann et al., 2023] for
preliminary results. Further recall that both the framework

of BPLS and our approximation of the PPP do not require
data to be i.i.d distributed. Applying BPLS on dependent
observations, such as in auto-correlated data like time series,
is thus another promising line of further research.

Limitations: BPLS’ strength of being applicable to any
learner can imply high computational costs in case of
expensive-to-train models such as neural nets, because PPP
approximations require refitting the model. Additionally, it
might be difficult for practitioners to assess the risk of over-
fitting to the initial data set beforehand and opt for BPLS
in response. Given the fact that BPLS is outperformed by
traditional PLS in cases with no overfitting, this might be
considered a drawback for practical application. However,
Section 4 demonstrated that q

n and the baseline supervised
performance (both easily accessible) provide sound prox-
ies for initial overfitting scenarios that can induce a con-
firmation bias in PLS. These proxies can (alongside cross-
validation) help practitioners to identify such scenarios.

Conclusion: BPLS renders self-training more robust with
respect to the initial model. This improves final performance
if the latter overfits and harms it if not. Identifying overfitting
scenarios is thus crucial for BPLS’ usage. What is more,
BPLS allows incorporating prior knowledge, with the help
of which substantial performance gains can be achieved.
Besides, our insights from formalizing PLS as a decision
problem clear the way for promising future work exploiting
rich literature on Bayesian decision theory. Ultimately, we
conclude that a Bayesian view can add great value not only
to predicting but also to selecting data for self-training.
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