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Abstract 1 

It is possible to achieve improved 2 

prediction performance with Transformers 3 

on unseen datasets by adding disparate new 4 

training tasks to an existing multitask 5 

training regime. We demonstrate that this 6 

can be attributed to a compositional 7 

mechanism rather than memorisation. 8 

Performance on DROP, DROP-CS and 9 

ROPES datasets can be improved by over 10 

26 percent without finetuning through 11 

application of numerical reasoning tasks, 12 

while performance on seven other question-13 

answering datasets that would not be 14 

expected to be improved remains 15 

essentially unchanged. By filtering our 16 

evaluation datasets to only those samples 17 

that have no answer overlap to similar 18 

training samples, and then further 19 

restricting to those samples which have the 20 

least semantic similarity with the training 21 

set, we show that improved performance 22 

after adding numerical reasoning tasks was 23 

not attributable to direct lookup. Our code 24 

and filtered datasets are available at 25 

https://github.com/anonymise26 

d. 27 

1 Introduction 28 

In this paper we present empirical findings on the 29 

ability of sequence-to-sequence Transformer 30 

models (a.k.a Transformers) to compositionally 31 

generalise in the domain of question answering, 32 

where both the input (question) and the label 33 

(answer) are expressed in natural language. We 34 

focus on the situation where the necessary 35 

composition is over disparate skills that must be 36 

learned over multiple training samples. To do so, 37 

we synthesise and extend several existing works, 38 

most notably the UnifiedQA multitask training 39 

environment and associated datasets (Khashabi et 40 

al., 2020), work on injecting numerical reasoning 41 

into Language Models (Geva et al., 2020) and 42 

research into evaluating similarity between training 43 

and test splits in the natural language domain 44 

(Lewis et al., 2021; Elangovan et al., 2021).  45 

Over a forward pass through a Transformer, the 46 

high-dimensional vector (embedding) associated 47 

with a particular input token comes to incorporate 48 

information from other tokens in the input 49 

sequence (Vaswani et al., 2017; Manning et al., 50 

2020; Russin et al., 2021). Resulting embeddings 51 

may encode the contextual meaning of words, 52 

syntactic grammatic structure (Manning et al., 53 

2020), and mathematical structural rules (Russin et 54 

al., 2021).  55 

Common practice in training Transformers, both 56 

in initial pretraining and subsequent training 57 

phases, is to allow weight updates to all layers of 58 

the model in the backward pass, including the 59 

initial embedding table from which subsequent 60 

training steps will retrieve updated embeddings 61 

(Devlin et al., 2019; Raffel et al., 2020). 62 

The above two observations combine to the 63 

following uncontroversial conclusion; over the 64 

course of training, the embedding for a particular 65 

token will come to encode information not only 66 

from other tokens it has directly appeared in an 67 

input sequence with, but also indirectly from any 68 

token that has appeared in an input sequence with 69 

those tokens and so forth. Thus, at each step 70 

Transformers can be said to perform partial 71 

information propagation over a matrix of all 72 

vocabulary tokens against each other; or more 73 

broadly we can observe a mechanical and rather 74 

intuitive view of how a Transformer can compose 75 

information learned across its training history. 76 

Compositional generalisation can be 77 

summarised as the ability to learn a set of atomic 78 

elements and to be able to generalise to an 79 
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exponential number of valid novel combinations of 80 

those elements1 (Fodor and Pylyshyn, 1988; Lake 81 

et al., 2017; Russin et al., 2020). This is significant 82 

in that it may provide a means for a model to 83 

generalise beyond its training distribution in a 84 

manner consistent with some models of human 85 

cognition (Baroni, 2020; Russin et al., 2020; 86 

Russin et al., 2019; Dankers et al., 2021). Many 87 

recent works evaluate and attempt to improve 88 

model performance on compositional 89 

generalisation, particularly in the context of 90 

semantic parsing (Lake and Baroni, 2018; Hupkes 91 

et al., 2020; Keysers et al., 2020; Furrer et al., 2020; 92 

Yin et al., 2021; Yanaka et al., 2021; Kim and 93 

Linzen, 2020). These works typically evaluate 94 

performance using non-i.i.d test splits where the 95 

test samples use elements seen in training, and 96 

where the labels are compositions derived from 97 

those elements but are different to those 98 

encountered in training. 99 

However, empirical study of this phenomena in 100 

the context of natural language inputs with non-101 

synthetic natural language outputs such as our 102 

question-answering domain is limited (Dankers et 103 

al., 2021). We take the liberty of suggesting that the 104 

compositional mechanism described above 105 

provides the vehicle for a Transformer to 106 

compositionally generalise in natural language. 107 

However, a conjecture that a Transformer could 108 

potentially exhibit this behaviour is different from 109 

a demonstration that a model actually does do this 110 

in any material way. We tested this through 111 

adapting the idea of using non-i.i.d test splits for 112 

natural language outputs. Starting by considering 113 

different datasets to those used in training as our 114 

test splits, we refine these further by only 115 

considering samples that have normalised answers 116 

(Rajpurkar et al., 2016) without word overlap with 117 

the normalised answer of the most semantically 118 

similar training example, the latter as measured 119 

using sentence embeddings (Reimers and 120 

Gurevych, 2019). In other words, those samples 121 

that have answers involving unlikely word 122 

compositions relative to similar training samples.  123 

There is not a consensus on the degree to which 124 

Transformers and other neural models are able to 125 

generalise beyond their training distribution 126 

(Bahdanau et al., 2019; Hupkes et al., 2020; 127 

 
1 Our usage of the compositional generalisation term is 

more literal than that by some authors in that we use it to 

describe a capability rather than a mechanism such as 

systematicity for instantiating the capability. 

Dankers et al., 2021). For example Lewis et al 128 

(2021) shows that when considering three open-129 

domain question-answering datasets, after 130 

eliminating test questions that are the same as those 131 

encountered in training, a BART (Lewis et al., 132 

2020) model performs extremely poorly. The 133 

authors suggest it may hence only be capable of 134 

memorising2 highly similar training examples. 135 

More broadly, various works (Lake and Baroni, 136 

2018; Bahdanau et al., 2019; Russin et al., 2020) 137 

note poor generalisation for unlikely compositions 138 

of known elements. On the other hand, a number of 139 

papers (Kim et al., 2021; Furrer et al., 2020; 140 

Ontañón et al., 2021) propose approaches to 141 

enhancing the ability of neural models to 142 

compositionally generalise, in some cases 143 

demonstrating performance to an impressive 144 

extent. In a relevant study to our work (Dasgupta et 145 

al., 2020), it was initially observed that sentence 146 

embeddings produced by training on SNLI 147 

(Bowman et al., 2015) generalised poorly to 148 

predictions made on the Comparisons dataset. The 149 

authors say this requires encoding of systematic 150 

rules rather than dataset-specific heuristics. After 151 

training in a multitask fashion on both SNLI and 152 

Comparisons, good performance on both datasets 153 

was observed suggesting that the resulting 154 

embeddings now encoded systematic information. 155 

Another study (Hendrycks et al., 2021), considers 156 

challenging test datasets which contain unlikely 157 

samples relative to their training data. It is 158 

noteworthy that the UnifiedQA-trained version of 159 

the T5 model (Raffel et al., 2020) outperforms the 160 

much larger GPT3 (Brown et al., 2020) model on 161 

these datasets. 162 

Our contributions can be summarised as: (1) A 163 

demonstration that a general-purpose Transformer 164 

can usefully compose disparate information 165 

learned across the training history to answer novel 166 

questions in the natural language domain and that 167 

composition and not memorisation is responsible 168 

for improved performance. (2) We illustrate a 169 

method of identifying evaluation samples that are 170 

unlikely to have memorisable answers. (3) We 171 

provide an environment for further study on the 172 

compositional effects of adding disparate tasks to a 173 

multitask training regime. 174 

2 We adopt this terminology of memorisation as the ability 

to directly derive an answer from a materially similar 

training sample. 
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2 Related Work 175 

The UnifiedQA  project (Khashabi et al., 2020) 176 

demonstrates that it is possible to attain good 177 

performance on unseen evaluation datasets (those 178 

that have not been involved in either pretraining or 179 

finetuning) after further training of a pretrained 180 

sequence-to-sequence Transformer  on a variety of 181 

question-answering datasets in a multitask fashion. 182 

However two datasets that still have relatively poor 183 

performance are DROP (Dua et al., 2019) and 184 

DROP-CS (Gardner et al., 2020). These datasets 185 

offer the particular characteristic that some simple 186 

mathematical literacy (e.g. simple addition or 187 

ability to select the second highest element from a 188 

list) is helpful in order to correctly answer a 189 

question. Geva et al (2020) demonstrated 190 

significant performance improvement on DROP by 191 

pretraining on two datasets (TD and ND), that they 192 

designed to instill simple mathematical skills. This 193 

is followed by finetuning on DROP. Our work 194 

extends this idea by adding TD and ND to our 195 

existing multitask training mixture and analysing 196 

the impact (without finetuning) on DROP, DROP-197 

CS, ROPES and on seven other question-198 

answering datasets that we would not expect to 199 

benefit from the addition of these tasks. Lacking 200 

the resources to train the larger T5 models (Raffel 201 

et al., 2020), we empirically determined that the 202 

much smaller BART (Lewis et al., 2020) model 203 

gave us slightly better results than T5-base. Hence, 204 

we use BART for all our experiments while 205 

expecting that our results will generally be much 206 

lower than those reported in the UnifiedQA paper 207 

against the larger T5 models. 208 

As noted, Hendrycks (2021) developed a 209 

number of challenging evaluation-only datasets. 210 

We combined four of their mathematics-focused 211 

datasets3 into a single evaluation dataset which we 212 

call MMLU-M. The ability of sequence-to-213 

sequence Transformers to learn simple 214 

mathematics is demonstrated by Nogueira et al 215 

(2021) and we experimented with their numerical 216 

representation format. In common with our work, 217 

Russin et al (2021) provide evidence for 218 

compositionality in contrast to memorisation of 219 

training data, in this case in the purely 220 

mathematical domain. They outline a method for 221 

probing embeddings to illuminate the 222 

 
3 MMLU-M is comprised of the elementary, high school 

and college mathematics datasets plus the high school 

statistics dataset. 

compositional processing mechanism 223 

Transformers employ in the math domain and 224 

suggest that with sufficient training data 225 

Transformers can learn to compose to an extent 226 

while also describing their limitations.  227 

It is challenging to measure the extent of Train-228 

Test data leakage in natural language question-229 

answering. In the area of open-domain question 230 

answering, Lewis et al (2021) identify training 231 

samples that have essentially the same normalised 232 

answers as an evaluation sample. For those, 233 

samples with questions that semantically match the 234 

evaluation question are manually identified. Noting 235 

that this approach focuses on identifying 236 

memorisable question-answers and lacking 237 

resources to perform manual annotation, we 238 

instead focus on identifying evaluation samples 239 

that cannot be memorised from any training 240 

example and find that it is possible to do so in a 241 

mostly automated fashion. Also considering the 242 

question of train-test overlap, Elangovan et al 243 

(2021) performs an analysis using cosine similarity 244 

of bag-of-words vectors as the similarity function. 245 

We initially adopted this approach but found that it 246 

does not work well for our numerical datasets 247 

where each individual number needs to be treated 248 

as a separate word, leading to an excessively large 249 

bag-of-words vector size. 250 

For brevity, here we omit works on 251 

compositional generalisation already discussed in 252 

the introduction. 253 

Our work has some commonality with a variety 254 

of work that focus on improving compositionality 255 

through training data enhancement. For example, 256 

Kim et al (2021) performs task-specific annotation 257 

of the training data with good results, and a number 258 

of works observe that compositional generalisation 259 

improves with variability in training data either 260 

through adding additional primitives to the SCAN 261 

training set (Kagitha, 2020), data augmentation 262 

(Andreas, 2020), or through the application of 263 

masked language pretraining (Furrer et al., 2020; 264 

Gontier et al., 2020). 265 

3 Experimental Setup 266 

3.1 Training Datasets 267 

We extended the UnifiedQA  multitask training 268 

environment (Khashabi et al., 2020) to incorporate 269 
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arbitrary training mixtures and with extensive 270 

instrumentation to facilitate comparative analysis 271 

of prediction performance of the same evaluation 272 

datasets against BART (Lewis et al., 2020) and T5 273 

(Raffel et al., 2020) models trained using different 274 

training mixtures. The baseline training datasets 275 

(collectively referred to as UQA) are: SQUAD 1.1 276 

(Rajpurkar et al., 2016), SQUAD 2 (Rajpurkar et 277 

al., 2018), NarrativeQA (Kočiský et al., 2018), 278 

RACE (Lai et al., 2017), ARC (Clark et al., 2018), 279 

Regents (Clark et al., 2019b), OpenbookQA 280 

(Mihaylov et al., 2018), MCTest (Richardson et al., 281 

2013), and BoolQ (Clark et al., 2019a). 282 

We reformatted the two numerical reasoning 283 

datasets from Geva et al. (2020) into UnifiedQA-284 

like format as follows: 285 

‘Numerical’ Dataset (ND): question 286 

\\n<tab>answer 287 

‘Textual’ Dataset (TD): question \\n 288 

context paragraph<tab>answer 289 

These two datasets were added singly and 290 

together to the baseline UQA mixture to form 291 

UQA+ND, UQA+TD and UQA+TDND mixtures. 292 

Training hyperpameters are listed in Appendix 293 

A. 294 

3.2 Evaluation Datasets 295 

At the expense of large performance gains, we did 296 

not finetune for evaluation datasets as this would 297 

remove our ability to determine what was causing 298 

any change in performance. This also enabled us to 299 

measure the effect of different training mixtures on 300 

each evaluation dataset from the same trained 301 

model checkpoint. 302 

Following standard practice (Rajpurkar et al., 303 

2016), we used the F1 score on the unstemmed 304 

word overlap between the normalised prediction 305 

and the normalised label as our prediction scoring 306 

metric for non-multichoice datasets. For multi-307 

choice datasets we considered the F1 score 308 

between the normalised prediction and each 309 

normalised option and selected the option with the 310 

highest score as the choice. We refer to this method 311 

in experiments as MC. 312 

We selected ten evaluation datasets as noted in 313 

Table 1. In all cases we started with the publicly 314 

available development split, except for MMLU-M 315 

which aggregates several test splits. 316 

It was discovered that the DROP development 317 

set contained over 800 duplicates with other DROP 318 

development set samples.  DROP-CS, MMLU-M 319 

and SIQA also contained small numbers of 320 

duplicates. All our experiments are reported on 321 

deduplicated versions of these datasets, hence 322 

counts given may not match prior work. 323 

After evaluating the similarity of each 324 

evaluation sample to the training set, we created 325 

separate versions of each that only contain samples 326 

for which there is no answer word overlap with the 327 

most similar training sample. We refer to these 328 

versions as filtered and note counts for these in 329 

Table 1. 330 

DROP and DROP-CS samples may have 331 

numeric or textual answers. In our experiments, 332 

samples with numeric answers have hugely lower 333 

prediction performance than samples with textual 334 

answers (Table 3). In creating our filtered datasets, 335 

we note that our method tends to eliminate 336 

proportionally more common numeric answers 337 

than textual ones which increases the overall 338 

performance of the filtered versions. 339 

Evaluation Dataset Count Filtered 

Count 

Eval Type Benefit From 

+TDND? 

DROP (Dua et al., 2019) 8734 3102 F1 Y 

DROP-CS (Gardner et al., 2020) 945 326 F1 Y 

MMLU-M (Hendrycks et al., 2021) 963 485 MC (4) N 

Physical IQA (PIQA) (Bisk et al., 2020) 1838 722 MC (2) N 

Social IQA (SIQA) (Sap et al., 2019) 1935 753 MC (3) N 

CommonsenseQA (CQA) (Talmor et al., 2019) 1221 408 MC (5) N 

QASC (Khot et al., 2020) 926 345 MC (8) N 

QASC with IR  (QASC-IR) (Khot et al., 2020)  926 338 MC (8) N 

ROPES (Lin et al., 2019) 1688 461 F1 Y 

NEWSQA (Trischler et al., 2017) 4341 1944 F1 N 

Table 1 Evaluation Datasets. Number of multi-choice options in brackets. +TDND refers to the addition of the 

two numerical literacy tasks to training. Note that MMLU-M obviously could benefit from numerical literacy 

but does not contain a significant number of examples that can benefit from the kind of simple mathematical 

skills imparted by TD or ND. 
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3.3 Similarity Evaluation Method  340 

In order to establish the extent to which general-341 

purpose Transformers are capable of 342 

compositionally deriving answers to evaluation 343 

questions, it is necessary to eliminate alternative 344 

explanations. Such mechanisms include a 345 

computation of the answer entirely from reasoning 346 

over the input text (abbreviated below as ROIT) of 347 

a given evaluation sample. In theory (i.e. ignoring 348 

background/commonsense knowledge 349 

requirements), this is possible by design in the case 350 

of some of our evaluation datasets (e.g. ROPES, 351 

NEWSQA and sometimes QASC-IR) but not in 352 

others such as PIQA, SIQA, CQA or QASC. This 353 

mechanism is itself compositional but differs from 354 

the phenomenon of composition over training 355 

samples. Another possibility is the derivation of a 356 

memorised answer from similar text encountered in 357 

masked language pretraining. We controlled for 358 

both of these situations by focusing on the 359 

difference in performance before and after the 360 

addition of the TD and ND tasks. 361 

Noting that any mechanism utilising information 362 

from more than one training sample to derive a 363 

correct answer to an evaluation question requires 364 

some form of composition, we focused on 365 

removing the remaining possibility; that an 366 

evaluation answer is memorisable from a single 367 

training example. As discussed earlier, it is 368 

challenging to automatically distinguish 369 

memorisable training samples, from those that are 370 

similar, but upon examination carry a different 371 

meaning. Therefore, we instead focused on 372 

identifying evaluation samples that have a very low 373 

probability of having an answer derivable from a 374 

singular training sample. We performed this in 375 

three steps:  376 

(1) We ranked training samples in order of 377 

similarity to each evaluation sample and assigned 378 

each evaluation sample into one of three similarity 379 

categories based on the similarity score to its most 380 

similar training sample.  381 

To evaluate similarity, we used sentence 382 

embeddings produced by the 'sentence-383 

transformers/stsb-roberta-large' model (Reimers 384 

and Gurevych, 2019), from the Huggingface 385 

library (Wolf et al., 2020). We initially conducted 386 

tests to determine whether considering both the 387 

question and the answer or just the question is 388 

necessary and concluded that considering both is 389 

most effective in the diverse question-answering 390 

domain we study.  391 

Hence, we adopted a similarity score between each 392 

evaluation sample and each training sample as: 393 

 394 

𝑆𝑖𝑚(𝑒𝑖, 𝑡𝑗) =
𝑐𝑠𝑖𝑚(𝑒𝑖

𝑞
, 𝑡𝑗

𝑞
)

2
+
𝑐𝑠𝑖𝑚(𝑒𝑖

𝑎 , 𝑡𝑗
𝑎)

2
 395 

 396 

Where 𝑒𝑖and 𝑡𝑗 are evaluation and training 397 

samples, q and a refer to the question and answer 398 

components of each and csim is the cosine 399 

similarity function. 400 

We then categorised evaluation sample 401 

similarity to training samples into Sim (*100) 402 

ranges of 0:60 (least similar), 60:90 (typically not 403 

very similar), and 90-100 (usually similar on 404 

superficial inspection but not necessarily 405 

semantically the same). Overall, we identified very 406 

few evaluation-train pairs where the questions have 407 

the same meaning and have overlapping answers. 408 

However, considering those that we did find, we set 409 

the upper bound of the least similar category (60) 410 

well below the lowest similarity score of any such 411 

example observed (81). 412 

(2) Noting that neither of our prediction scoring 413 

methods involve stemming or lemmatisation (i.e. 414 

“cousin” will not match “cousins” and “4” will not 415 

match “four”), as already discussed we further 416 

refined our evaluation sets by eliminating all 417 

evaluation samples that have answers with any 418 

word overlap with the most similar training sample 419 

answer to create filtered datasets. 420 

(3) We then focused on analysing the 421 

performance of the remaining samples that are both 422 

filtered and that fall into the least similar category. 423 

This last step was necessary because there are 424 

two remaining possibilities for memorisation; a 425 

training example that is not the “most similar” to an 426 

evaluation example could nonetheless be 427 

memorisable, or alternatively a training sample 428 

could have a dissimilar answer, but the evaluation 429 

sample question and answer could be buried in the 430 

training sample’s input. The chances of this 431 

occurring were much reduced in both cases by 432 

considering only the items in the least similar 433 

category. We completed our analysis by a visual 434 

inspection of the remaining items in the least 435 

similar category and were unable to identify any 436 

memorisable examples. 437 

4 Results and Discussion 438 

All figures reported for the UQA and 439 

UQA+TDND models are the mean of three 440 
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training runs. Other figures are single runs. 441 

Evaluation datasets are the full (de-duplicated) 442 

versions unless denoted with an asterisk* (filtered 443 

versions), or with a double asterisk** (filtered and 444 

in the least similar category). All figures in tables 445 

are the mean prediction performance with 446 

bracketed items denoting the corresponding 447 

number of samples. 448 

Table 2 indicates the progressive performance 449 

difference from the UQA-trained model. Initially 450 

we added individual digit tokenisation (+ID) (Geva 451 

et al., 2020), adapted to work with the BART 452 

tokenizer to mitigate the unwanted effect of sub-453 

word tokenisation on common number patterns. 454 

We also tried a 10E-based number representation 455 

(Nogueira et al., 2021) but found it lowered 456 

performance in our multitask environment. For 457 

brevity we omit those results. As expected, adding 458 

+ID resulted in a slight diminishment of 459 

performance, particularly for evaluation datasets 460 

that contain a lot of numbers, as we are changing 461 

the distribution of numeric tokens from the initial 462 

masked language pretraining. Therefore, we 463 

designated the original UQA model trained without 464 

+ID as our baseline. 465 

Adding the TD dataset caused a material 466 

improvement to DROP, DROP-CS and ROPES. 467 

Other datasets were not significantly affected. This 468 

included NEWSQA which is similarity to DROP, 469 

DROP-CS and ROPES, but in contrast to them 470 

usually contains answers derivable from a single 471 

span in the input. 472 

Adding ND by itself did not materially affect 473 

any dataset excepting a diminishment in DROP-CS 474 

performance. 475 

Adding TD and ND in combination results in a 476 

large improvement to DROP, DROP-CS and 477 

ROPES. In all cases this improvement was slightly 478 

larger than when adding TD alone. The overall 479 

impact was far higher than on any of the other 480 

datasets, which had minimal change from baseline. 481 

Considering the nature of DROP and DROP-CS 482 

already noted, this suggests that the model had 483 

better learned to encode simple numerical 484 

strategies. It is less clear that ROPES can benefit 485 

from understanding numerical reasoning although 486 

it is tempting to ascribe some benefit from this to 487 

an ability to perform reasoning over qualitative 488 

relations such as “increase” or “less” which occur 489 

often in this dataset (Lin et al., 2019). Noting the 490 

multi-hop nature of ROPES samples it is just as 491 

plausible that improvement related to an improved 492 

ROIT strategy learned from TD. For our purposes 493 

we are less concerned with the specific strategy 494 

learned and more with evaluating a capability to 495 

compose such skills whatever they may be, so we 496 

leave further exploration of this idea to future work. 497 

Taken across the full datasets, the observed 498 

improvement alone did not entail that the model is 499 

composing new skills with what it has already 500 

learned about natural language. Without further 501 

analysis, it could equally be the case that the model 502 

had simply seen the necessary answers during 503 

training on the additional numerical literacy tasks 504 

and the strategy learned was simply to memorise 505 

the answer. Therefore, we turned our attention to 506 

the filtered versions of our evaluation datasets.  507 

Table 3 illustrates the previously discussed large 508 

performance gap between DROP (and DROP-CS) 509 

samples with numeric answers and those with 510 

textual answers. The superior performance of the 511 

0:60 category compared to 60:90 in Table 4 is 512 

because very few samples with numeric answers 513 

fall into 0:60. Hence, we do not claim that being 514 

Evaluation 

Dataset Metric UQA +ID 

+ID 

+TD 

+ID 

+ND 

+ID +TD +ND 

(UQA+TDND) 

UQA →  

UQA+TDND 

Change % 

DROP F1 19.66 ±0.39 18.73 22.24 19.73 24.92 ±0.44 26.74 

DROP-CS F1 21.05 ±2.13 17.96 23.40 16.63 24.75 ±1.02 17.60 

MMLU-M MC 27.59 ±0.38 25.03 28.56 28.04 27.24 ±0.62 -1.25 

PIQA MC 63.49 ±0.82 63.87 64.64 61.81 62.26 ±0.52 -1.94 

SIQA MC 53.47 ±0.80 51.99 51.11 53.49 54.14 ±0.24 1.26 

CQA MC 55.64 ±1.31 54.79 55.77 56.67 55.42 ±0.14 -0.39 

QASC MC 37.69 ±0.97 36.50 37.37 37.58 36.25 ±0.66 -3.82 

QASC-IR MC 57.67 ±0.64 53.56 58.32 59.29 55.72 ±1.42 -3.37 

ROPES F1 41.16 ±1.74 41.19 50.40 42.56 51.88 ±3.06 26.05 

NEWSQA F1 57.35 ±1.34 56.49 56.05 58.12 56.57 ±0.90 -1.35 

Table 2 Effect on unfiltered Evaluation Dataset Performance of changing the training regime from baseline 

training datasets (UQA) through adding individual digit tokenisation (+ID), textual numerical literacy (+TD), 

numeric literacy (+ND), and both (UQA+TDND). ± figures are one standard deviation. Bold items indicate a 

material change discussed in the text. 
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highly dissimilar to any training sample is actually 515 

necessary for improved performance, simply that 516 

when it is the case, the chances of any improvement 517 

relating to memorisation are reduced. We instead 518 

focused on the prediction improvement between 519 

the UQA and UQA+TDND models. 520 

The number of samples in the 0:60 category 521 

often reduces between UQA and UQA+TDND due 522 

to cases where exposure to a more similar TD or 523 

ND item pushed an evaluation sample into a higher 524 

similarity category. Therefore in Table 5 and 525 

discussion below we explore whether individual 526 

evaluation samples that “move” categories are 527 

those that tend to have better prediction 528 

performance. We conclude that those that “stay” 529 

tend to do better. This eliminates the possibility that 530 

items that “moved” were low scoring to begin with 531 

and then improved through direct exposure to TD 532 

or ND samples. 533 

ROPES* also improves materially between 534 

UQA and UQA+TDND similarly to DROP* and 535 

DROP-CS*, in both 0:60 and 60:90 categories. A 536 

difference is that in contrast to the latter, ROPES* 537 

samples in the 60:90 category tend to outperform 538 

those in the 0:60 category. 539 

Turning to the other datasets it is variable 540 

whether the items in the 0:60 or the 60:90 541 

categories have better prediction performance, but 542 

in comparing the same categories between UQA 543 

and UQA+TDND, the differences are generally 544 

much smaller than the corresponding differences 545 

for DROP*, DROP-CS*, or ROPES*. The 546 

difference in behaviour between these three and 547 

other datasets relates to TD and ND imparting 548 

some combination of the numerical reasoning and 549 

ROIT strategies that are directly applicable to these 550 

datasets, whereas success on the other datasets 551 

relates more to a need for alternative strategies. 552 

After adding TD and ND to the training regime, 553 

an evaluation sample may or may not then be 554 

exposed to a more similar training sample from the 555 

newly added datasets. It can be seen in Table 5 that 556 

there is often more improvement for evaluation 557 

samples that did not encounter a more similar 558 

training sample. 559 

In the case of DROP** and DROP-CS** it is 560 

thus possible to be sure that there are many 561 

evaluation examples that have significantly better 562 

prediction performance than the overall mean and 563 

did not derive this improvement from memorizing 564 

a training sample. Without any alternative 565 

explanation, we take this as strong evidence that the 566 

compositional conjecture we started with is 567 

evidenced in the actual model behaviour. 568 

ROPES** is slightly less clear-cut in this regard as 569 

the small number of samples that “moved” 570 

improved by more than those that “stayed”. 571 

However, we note that “stayers” also improved by 572 

a large amount and did not do so by memorisation. 573 

For the other datasets that would not be expected 574 

to benefit from the addition of numerical literacy 575 

tasks, we can see that improvement is variable 576 

between “stay” and “move” samples, but this is less 577 

interesting given that these datasets were not 578 

Evaluation 

Dataset 

Sim. 

Cat. UQA 

UQA 

+TDND 

DROP* 0:60 38.62 (1129) 45.14 (657) 

25.36 → 30.04 60:90 17.77 (1973) 25.93 (2440) 

  90:100 - 53.33 (5) 

DROP-CS* 0:60 39.53 (158) 42.18 (110) 

28.13 → 31.18 60:90 17.41 (168) 25.7 (215) 

  90:100 - 0.0 (1) 

MMLU-M* 0:60 25.3 (307) 24.26 (136) 

28.32 → 27.35 60:90 33.52 (178) 28.56 (349) 

  90:100 - - 

PIQA* 0:60 60.81 (598) 60.37 (588) 

62.74 → 61.63 60:90 72.04 (124) 67.16 (134) 

  90:100 - - 

SIQA* 0:60 57.18 (383) 55.05 (373) 

58.08 → 56.31 60:90 59.01 (370) 57.54 (380) 

  90:100 - - 

CQA* 0:60 56.56 (155) 60.98 (129) 

58.74 → 58.33 60:90 60.08 (253) 57.11 (279) 

  90:100 - - 

QASC* 0:60 34.04 (142) 33.67 (99) 

38.55 → 35.36 60:90 41.71 (203) 36.04 (246) 

  90:100 - - 

QASC-IR* 0:60 48.15 (81) 49.07 (72) 

56.21 → 52.47 60:90 58.75 (257) 53.38 (266) 

  90:100 - - 

ROPES* 0:60 41.87 (197) 52.62 (197) 

44.86 → 61.49 60:90 47.09 (264) 68.11 (264) 

  90:100 - - 

NEWSQA* 0:60 53.15 (770) 51.36 (759) 

53.7 → 52.86 60:90 54.07 (1174) 53.82 (1185) 

  90:100 - - 

Table 4 Prediction performance on filtered 

Evaluation Datasets grouped by similarity to most 

similar training example. Figures under dataset 

names are the overall mean prediction performance 

for UQA and UQA+TDND. Bold figures indicate 

discussion in the main text. 

Sim. 

Cat. 

Answer. 

Type UQA 

UQA 

+TDND 

0:60 
Numeric 0.40 (84) 0.00 (5) 

Textual 41.69 (1045) 45.49 (652) 

60:90 
Numeric 4.11 (1154) 6.60 (1229) 

Textual 37.03 (819) 45.55 (1211) 

90:100 
Numeric - 66.67 (4) 

Textual - 0.00 (1) 

Table 3 DROP*: Prediction performance for 

Numeric versus Textual Answer Types. 
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expected to benefit from the addition of the 579 

numerical literacy tasks, whether by memorisation 580 

or by learning a strategy to begin with. 581 

5 Conclusion 582 

There has been limited detailed empirical 583 

confirmation of the ability of Transformers to 584 

compositionally generalise in the natural language 585 

question-answering domain. We have built upon 586 

much informative prior work to develop a platform 587 

for analysing whether performance improvement 588 

on unseen datasets from adding disparate new 589 

training tasks to an existing multitask training 590 

regime can be attributed to memorisation or to a 591 

compositional mechanism. In our experiments, we 592 

created filtered evaluation datasets containing only 593 

samples that are unlikely to have memorisable 594 

answers and demonstrated that performance on 595 

these samples can be improved in a manner 596 

attributable to a compositional mechanism and not 597 

to memorisation. 598 

We also began by observing that the simple 599 

compositional mechanism that general-purpose 600 

Transformers explicitly instantiate could 601 

hypothetically provide a basis for an ability to 602 

compositionally generalise and we conclude that 603 

our experiments provide evidence that it actually 604 

does. 605 
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6 Appendices 940 

Appendix A. Hyperparameters and other 941 

Details 942 

Models: After experimenting with T5-Base (220 943 

million parameters) and T5-Large (770 million 944 

parameters) we determine that BART with 440 945 

million parameters is a good trade-off between 946 

training speed and performance. 947 

Batch Size: For all experiments reported we use a 948 

batch size of 32 with two gradient accumulation 949 

steps. 950 

Steps: For all reported experiments we take the 951 

best model after training for 150,000 steps 952 

(batches) irrespective of the number of tasks in the 953 

particular training mixture. 954 

Learning Rate: All experiments have an initial 955 

learning rate of 2e-5 with a linear decay to zero 956 

over 250,000 steps. 957 

Sequence Length: We use a maximum input 958 

sequence length of 512 and a maximum output 959 

sequence length of 100. 960 

Hardware: We train each model on a single 961 

machine running Ubuntu 20.04 LTS with 768 GB 962 

of RAM. We utilise two RTX8000 GPU cards for 963 

all training runs.  964 

Training Time: Each model in the above 965 

configuration takes approximately 80 hours to 966 

reach 150,000 steps. 967 

 968 

Appendix B. ND and TD Dataset formatting 969 

examples 970 

 971 

ND Example: 972 

What is 13441 + 3068? \n Answer: 16509 

 973 

TD Example:  974 

How many more urban families were in the country 

than Spanish families ? \n There were 522 urban 

families in the country . The commander executed 
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644 Japanese families . The commander appointed 

411 Spanish families in the city . The commander 

appointed 942 urban families and the military 

appointed 1592 urban families . The military 

borrowed 1179 English families from the 

commander . Answer: 111 

 975 

Appendix C. Challenges in using sentence 976 

embedding similarity to determine 977 

memorisability.  978 

Considering the following memorisable QASC 979 

example which has similarity score of 95.14 980 

against the most similar training example: 981 

What is a tool for indicating air pressure? \n (A) rain 

guage (B) vibration (C) seismograph (D) lamphreys 

(E) barometer (F) Otoacoustic (G) thermometer (H) 

weater Answer: barometer 

 982 

Most similar training example (from the 983 

REGENTS easy dataset): 984 

Which weather instrument measures air pressure? \n 

(A) thermometer (B) anemometer (C) rain gauge (D) 

barometer   Answer: barometer 

 985 

However after additional retrieved text is added to 986 

the same example in QASC-IR, the additional 987 

paragraphs obscure the original meaning of the 988 

example such that the similarity score is now only 989 

81.04 (noting though the most similar training 990 

example is still correctly identified as the same 991 

above REGENTS example): 992 

What is a tool for indicating air pressure? \n (A) rain 

guage (B) vibration (C) seismograph (D) lamphreys 

(E) barometer (F) Otoacoustic (G) thermometer (H) 

weater\nThermometer barometer and hygrometer 

give the complete weather picture. … Otoacoustic 

emissions are sounds the ear generates. Answer: 

barometer 

993 
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Appendix D. Evaluation and Similar Training Samples 

All samples in this section are from the filtered versions of evaluation datasets.  

 

Evaluation Sample Most Similar Training Sample 

DROP*: Which kicker made more field goals? \n  Coming 

off their home win over the Texans the Titans stayed at 

home for a Week 4 interconference duel with the Minnesota 

Vikings. In the first quarter Tennessee drew first blood as 

kicker Rob Bironas got a 20-yard field goal along with 

rookie RB Chris Johnson getting a 1-yard TD run. In the 

second quarter the Vikings responded with RB Adrian 

Peterson getting a 28-yard TD run. Afterwards the Titans 

answered with Bironas kicking a 32-yard field goal along 

with RB LenDale White getting a 1-yard TD run. 

Minnesota closed out the half with kicker Ryan Longwell 

getting a 42-yard field goal. In the third quarter Tennessee 

increased its lead with Bironas nailing a 49-yard field goal. 

In the fourth quarter the Vikings tried to rally as Peterson 

got a 3-yard TD run yet the Titans pulled away with 

TD: How many running yards did Lions 

completed ? \n 5 impressive wins  38 field goal 

yards  and 25 points were fired in Chicago . 

Lions completed 28 running yards . Houston 

threw 20 field goal yards and 2 tight wins . 

Answer: 28 

Evaluation Sample Most Similar Training Sample 

DROP*: Which quarter were the only touchdowns scored 

during? \n  Hoping to rebound from their tough road loss to 

the Ravens the Chiefs played their Week 2 home opener 

against their AFC West foe the Oakland Raiders. Kansas 

City would score in the first quarter as rookie kicker Ryan 

Succop got a 23-yard field goal. In the second quarter the 

Raiders tied the game as kicker Sebastian Janikowski made 

a 48-yard field goal. Oakland would take the lead in the 

third quarter as Janikowski nailed a 54-yard field goal. In 

the fourth quarter the Chiefs would retake the lead as 

quarterback Matt Cassel completed a 29-yard touchdown 

pass to wide receiver Dwayne Bowe. However the Raiders 

sealed the win as running back Darren McFadden got a 5-

yard touchdown run. Answer: fourth 

TD: How many rushing touchdowns did Jaguars' 

quarterback completed ? \n Jaguars' quarterback 

completed 23 passing yards and 3 impressive wins 

. Eagles' receiver had 30 points  Manning had 33 

points  and Jaguars' quarterback had 26 points . 

Manning completed 13 field goal yards and 4 tight 

wins . Jaguars' quarterback completed 4 rushing 

touchdowns and 34 field goal yards . Jaguars' 

quarterback completed 5 impressive wins . 

Answer: 4 

DROP-CS*:How many yards was Jason Elam's second 

shortest field goal? \n Coming off their divisional road win 

over the Texans the Colts went home for an intraconference 

duel with the Denver Broncos.  In the first quarter 

Indianapolis trailed early with Broncos kicker Jason Elam 

getting a 35-yard field goal while QB Jay Cutler 7-yard TD 

pass to WR Brandon Marshall.  In the second quarter the 

Colts would respond with RB Joseph Addai getting a 14-

yard field goal.  Denver tried to increase its lead with Elam 

kicking a 22-yard field goal. Indianapolis would take the 

lead with QB Peyton Manning completing a 9-yard TD pass 

to TE Dallas Clark. In the third quarter the Colts began to 

dominate with Manning getting a 1-yard TD run.  He would 

also hook up with Clark again on a 3-yard TD pass.  The 

Broncos' only response was Cutler's 2-yard TD run. In the 

fourth quarter Indianapolis managed to put the game away 

with Manning's 5-yard TD pass to WR Reggie Wayne along 

with kicker Adam Vinatieri nailing a 22-yard field goal. 

Answer: 35 

TD: How many passing yards did Dolphins nailed 

? \n Dolphins nailed 36 passing yards and 5 tight 

wins . Vikings nailed 33 rushing yards in 

Pittsburgh . Dolphins drove 4 tight wins in 

Pittsburgh . Vikings drove 7 field goals and 

Dolphins drove 5 field goals . Lions nailed 47 

rushing yards and Vikings nailed 21 rushing yards 

. Answer: 36 

Table 6 Most similar evaluation-training pairs in the highest similarity category (90:100). 
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Johnson getting a 6-yard TD run. With the win Tennessee 

acquired its first 4-0 start in franchise history. Answer: Rob 

Bironas 

DROP-CS*: Which receiver got the Giants first and second 

TD? \n  The Giants opened their new home in search of 

revenge against the Panthers who had soundly defeated 

them in the last game at Giants Stadium. In the first quarter 

Carolina scored the stadium's first points as kicker John 

Kasay got a 21-yard field goal. New York would answer 

with the stadium's first touchdown as quarterback Eli 

Manning found wide receiver Hakeem Nicks from 26 yards 

out. The Panthers would retake the lead in the second 

quarter as Kasay made field goals from 52 and 43 yards. 

Manning found Nicks again on a 19-yard touchdown pass 

with less than a minute left in the first half but Carolina 

quarterback Matt Moore completed a 19-yard touchdown 

pass to wide receiver Steve Smith with six seconds 

remaining. The Giants would get back on top in the third 

quarter as kicker Lawrence Tynes nailed a 32-yard field 

goal followed by Nicks' third touchdown of the game (a 6-

yard catch). In the fourth quarter the Giants added one more 

touchdown as running back Ahmad Bradshaw ran for a 4-

yard score. Carolina's Greg Hardy blocked a Matt Dodge 

punt out of the end zone to round out the scoring with a 

safety. The Giants' historic win had come with a price 

however; tight end Kevin Boss left the game in the first 

quarter with a concussion and Will Beatty who filled in for 

Boss afterward was benched with a broken foot. The Giants 

signed tight end Bear Pascoe from their practice squad to 

play against the Colts. Answer Hakeem Nicks 

TD: Who had less field goals Eagles' receiver or 

Brady ? \n 19 running yards  4 tight wins  and 3 

running touchdowns were got in Pittsburgh . 

Eagles' receiver fired 9 field goals and 51 

passing yards . Patriots fired 2 impressive wins . 

Patriots threw 12 points . Brady fired 8 field 

goals and Eagles' receiver fired 4 field goals . 

Answer: Brady 

ROPES*: Which spot should Allan take his family to have 

a better chance to view limestone formations? \n About 

10% of sedimentary rocks are limestones. The solubility of 

limestone in water and weak acid solutions leads to karst 

landscapes in which water erodes the limestone over 

thousands to millions of years. Most cave systems are 

through limestone bedrock. Allan has to plan a couple of 

adventures this year. One adventure involves taking his 

family on vacation and his son has been interested in seeing 

different formations of limestone. The other adventure 

Allan must plan for is a trip with his coworkers one of 

which has mentioned that they have seen all the limestone 

formations that they want to see and want to see other rock 

formations. He has narrowed down his adventure spots to 

Wilson Caves and Mt. Everest. Answer: Wilson Caves 

RACE: What is the best title for the story? \n  (A) 

Father and Son (B) A Father's Wish (C) Catching 

Crabs (D) Tips for Job Hunting \n "So?"he 

said."Er...so what?""So what do you really want 

to do?"he asked. My father was a lawyerand I 

had always assumed he wanted me to go to law 

schooland follow his path through life."I want to 

traveland I want to be a writer."I replied. This 

was not the answer he would expect."Interesting 

idea"he said."I kind of wish I'd done that when I 

was your age."I wailed. "You have plenty of 

time.You need to find out what you really enjoy 

now.Lookit's late. Let's take the boat out 

tomorrow morningjust you and me. Maybe we 

can catch some crabs for dinnerand we can talk 

more." Early next morning we set off along the 

coast. We didn't talk muchbut enjoyed the sound 

of the seagulls and the sight of the coastline and 

the sea beyond. There was no surf on the coastal 

waters at that time."Let's see if we get lucky"he 

saidpicked up a mesh basket with a rope attached 

and threw it into the sea. We waited a whilethen 

my father stood up and said"Give me a hand 

with this"and we pulled up the crab cage onto the 

deck. The cage was filled with dozens of soft 

shell crabs."Why don't they try to escape?" "just 

watch them for a moment. Look at that 
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onethere!He's trying to climb outbut every time 

the other crabs pull him back in"said my father. 

After several timesnot only did the crab give up 

its struggle to escapebut it actually began to help 

stop other crabs trying to escape.He'd finally 

chosen an easy way of life. Suddenly I 

understood why my father had suggested 

catching crabs that morning. He looked at me. 

"Don't get pulled back by the others"he 

said."Spend some time figuring out who you are 

and what you want in life.Think about what's 

really important to youwhat really interests 

youwhat skills you have.If you can't answer 

these questions nowthen take some time to find 

out. Because if you don'tyou'll never be happy." 

My father started the motor and we set off back 

home. Answer Catching Crabs 

QASC*: What is a bolus? \n (A) moistened food (B) SI 

units (C) a producer (D) unicellular organisms (E) 

precipitation (F) Fractions (G) holding nutrients (H) 

measuring device Answer: moistened food 

ND: What is argmax(reflectional 10928.9 

audiology 6019 moist 17187.0)? \n Answer: 

moist 

PIQA*: Turn any cup into a travel cup \n (A) use press and 

seal to make a super tight seal at the top of your cup (B) use 

press and seal to make a super tight opening at the top of 

your cup Answer: use press and seal to make a super 

tight seal at the top of your cup   

SQUAD1.1: How is a vacuum created inside of 

a manual water pump? \n (Vacuum) To continue 

evacuating a chamber indefinitely without 

requiring infinite growth a compartment of the 

vacuum can be repeatedly closed off exhausted 

and expanded again. This is the principle behind 

positive displacement pumps like the manual 

water pump for example. Inside the pump a 

mechanism expands a small sealed cavity to 

create a vacuum. Because of the pressure 

differential some fluid from the chamber (or the 

well in our example) is pushed into the pump's 

small cavity. The pump's cavity is then sealed 

from the chamber opened to the atmosphere and 

squeezed back to a minute size. Answer: a 

mechanism expands a small sealed cavity 

 
Table 7 Randomly selected evaluation-train pairs after filtering that are in the least similar category (0:60). 


