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Abstract

Previous work has shown that the languages recognized by average-hard attention transform-
ers (AHATs) and softmax-attention transformers (SMATs) are within the circuit complexity
class TC0. However, these results assume limited-precision arithmetic: using floating-point
numbers with O(log n) bits (where n is the length of the input string), Strobl showed that
AHATs can be approximated in L-uniform TC0, and Merrill & Sabharwal showed that SMATs
can be approximated in DLOGTIME-uniform TC0. Here, we improve these results, showing
that AHATs with no approximation, SMATs with O(poly(n)) bits of floating-point precision,
and SMATs with at most 2−O(poly(n)) absolute error are all in DLOGTIME-uniform TC0.

1 Introduction

Previous work (summarized in Table 1) has shown that the languages recognized by average-hard attention
transformers (AHATs) and softmax-attention transformers (SMATs) are within the circuit complexity class
TC0. This places some interesting computational problems beyond the power of these transformers. In
particular, if TC0 ̸= NC1 (as is often assumed, Williams 2022), then these transformers cannot solve any
NC1-complete problems. For example, consider Boolean formulas with constants 0 and 1 and no variables,
like (0 ∧ ¬ 1) ∨ (¬ 0 ∧ 1). Checking the syntax of such formulas is equivalent to the Dyck language, which
is recognizable by both AHATs (Yao et al., 2021) and SMATs (Yang & Chiang, 2024). But computing the
semantics of such formulas, that is, deciding whether a formula is true, is NC1-complete (Buss, 1987) and
therefore not solvable by these transformers (unless TC0 = NC1).

However, these non-solvability results assume limited-precision arithmetic. The best results that we are
aware of use floating-point numbers with O(log n) bits (where n is the length of the input string): Strobl
(2023) showed that AHATs can be approximated in L-uniform TC0, and Merrill & Sabharwal (2023b) showed
that SMATs can be approximated in DLOGTIME-uniform TC0. These results leave open the possibility that
AHATs and SMATs, as defined on paper using real numbers, might not be subject to the same limitations.
Here, we improve these results, showing that:

• AHATs (without any approximation) are in DLOGTIME-uniform TC0.

• SMATs with O(poly(n)) bits of floating-point precision are in DLOGTIME-uniform TC0.

Furthermore, because there are many different ways to approximate a transformer using limited precision,
and different ways appear to lead to different results, we propose an alternative assumption, which is that
the final output is approximated up to a certain (absolute) error. Thus, we show:

• SMATs with at most 2−O(poly(n)) absolute error are in DLOGTIME-uniform TC0.

This can also be rephrased as a statement, not about the expressivity of approximations of SMATs, but
about the expressivity of exact SMATs themselves:

• Any language that is recognized by a SMAT with margin 2−O(poly(n)) is in DLOGTIME-uniform TC0.
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Table 1: Summary of results on transformer encoders in previous work and in this paper. Our results
show that even when (average-hard attention or softmax-attention) transformers are computed to very high
precision, they remain limited to DLOGTIME-uniform TC0.

attention approximation class
Merrill et al. (2022) average O(log n) precision non-uniform TC0

Liu et al. (2023) softmax O(log n) precision non-uniform TC0

Strobl (2023) average O(log n) precision L-uniform TC0

Merrill & Sabharwal (2023a) softmax O(log n) precision L-uniform TC0

Merrill & Sabharwal (2023b) softmax O(log n) precision DLOGTIME-uniform TC0

This paper, Theorem 7 average none DLOGTIME-uniform TC0

This paper, Theorem 13 softmax O(poly(n)) precision DLOGTIME-uniform TC0

This paper, Theorem 14 softmax 2−O(poly(n)) error DLOGTIME-uniform TC0

2 Background

We write [n] for the set {1, 2, . . . , n}. We write ⌊x⌋ for the floor of x (greatest integer less than or equal to
x), and ⌈x⌉ for the ceiling of x (least integer greater than or equal to x). We write O(poly(n)) for the family
of functions

⋃
k≥0 O(nk).

2.1 Transformers

We assume familiarity with transformers (Vaswani et al., 2017) and describe a few concepts briefly. For more
detailed definitions, please see the survey by Strobl et al. (2024), whose notation and terminology we follow.

In standard attention, attention weights are computed from attention scores using a softmax:

αi,j = [softmax si,∗]j = exp si,j∑
j′ exp si,j′

.

We call a transformer with standard attention a softmax-attention transformer (SMAT). An average-hard
attention transformer (AHAT, Pérez et al. 2019; Merrill et al. 2022) is one where the softmax is replaced by:

ahardmax si,∗ = lim
τ→0

softmax si,∗/τ.

In other words, each position i attends to those positions j that maximize the score si,j . If there is more
than one such position, attention is divided equally among them.

Layer normalization (Ba et al., 2016) scales and shifts the components of a vector to have mean and standard
deviation equal to parameters γ and β:

LayerNorm(x) = x − E[x]√
Var[x] + c

⊙ γ + β (1)

where ⊙ is componentwise multiplication and c ≥ 0 is a constant. When layer normalization is used, we
require that c > 0 (as is standard in practice).

We assume that a transformer has a single scalar output, computed from the last position. For simplicity,
we assume that the output is used for binary classification, as follows:
Definition 1. A transformer T : Σ∗ → R recognizes a language L if, for every string w ∈ Σ∗, if w ∈ L then
T (w) > 0, and if w ̸∈ L then T (w) < 0.
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2.2 Complexity classes

A TC0 circuit is one with made from the usual AND, OR, NOT gates, as well as MAJORITY gates, which
are true if a strict majority of their inputs are true. A TC0 circuit family is a set of circuits indexed by
lengths n > 0, such that the circuit for length n has polynomial size, bounded depth, and unbounded fan-in.
DLOGTIME-uniform TC0 is the set of TC0 circuit families for which queries about the circuit for length
n can be decided in deterministic O(log n) time. Throughout this paper, whenever we say TC0, we mean
DLOGTIME-uniform TC0.

The class TC0 is also the class of languages definable in first-order logic with majority quantifiers (Mx.ϕ(x)
iff ϕ(x) is true for a majority of positions x) and the BIT predicate (BIT(x, y) iff the y-th bit of x is 1)
(Barrington et al., 1990). Depending on the context, it may be easier to think about TC0 in terms of circuits
or in terms of logical formulas. Our descriptions of functions in TC0 abstract away from details of either
circuits or formulas, making use of functions already known to be in TC0 together with the fact that functions
in TC0 are closed under serial and parallel composition (Jeřábek, 2012).
Theorem 2. The following operations on O(poly(n)) bit integers are in TC0:

(a) Addition of two numbers

(b) Comparison of two numbers

(c) Maximum of n numbers

(d) Truncated base-2 logarithm ⌊log2 x⌋

(e) Iterated addition of n numbers

(f) Multiplication of two numbers

(g) Iterated multiplication of n numbers

(h) Truncated division of two numbers.

Proof. Addition (a) is shown by Immerman (1999, Prop. 1.9) for n bits and is easy to extend to O(poly(n))
bits. Comparison (b), maximum (c), and truncated base-2 logarithm (d) are also easy. These cases do not
require majority gates.

Iterated addition (e) is shown, for example, by Barrington & Maciel (2000, Lecture 7, Section 2), and
multiplication (f) is closely related.

Iterated multiplication (g) was proven to be in TC0 by Hesse et al. (2002, Theorem 5.1) and can be used for
truncated division (h).

2.3 Approximation error

We will define various numeric representations and associated concepts as they are needed, but will make
use of the following definitions throughout.
Definition 3. For functions f̂ : X → R and f : X → R, we say that f̂ approximates f with absolute error
at most ϵ if for all x ∈ X, we have |f̂(x) − f(x)| ≤ ϵ, and f̂ approximates f with relative error at most ϵ if
for all x ∈ X, we have

∣∣∣ f̂(x)−f(x)
f(x)

∣∣∣ ≤ ϵ.

3 Arbitrary-precision AHATs

In this section, we prove that AHATs without layer normalization, even with arbitrary precision, are in TC0.
We do this by representing rational numbers as pairs of integers. This turns out to only need a polynomial
number of bits, so it can be computed in TC0.
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Definition 4. A p-bit rational number is a pair ⟨a, b⟩, where a is an integer in [−2p, 2p) and b is an integer
in [1, 2p). The value of ⟨a, b⟩ is a/b.

(According to this definition, a p-bit rational number actually requires (2p + 1) bits: 1 for the sign, p for the
numerator, and p for the denominator.)
Lemma 5. The following operations on O(poly(n))-bit rational numbers are in TC0:

(a) Addition, multiplication, division, and comparison of two numbers

(b) Iterated multiplication of n numbers

(c) Iterated addition and maximum of n numbers.

Proof. The operations (a,b) can be expressed in terms of operations on O(poly(n))-bit integers, which are
in TC0 (Theorem 2):

⟨a1, b1⟩ + ⟨a2, b2⟩ = ⟨a1b2 + b1a2, b1b2⟩ (2)
⟨a1, b1⟩ × ⟨a2, b2⟩ = ⟨a1a2, b1b2⟩ (3)
⟨a1, b1⟩ ÷ ⟨a2, b2⟩ = ⟨a1b2, b1a2⟩ (4)
⟨a1, b1⟩ ≤ ⟨a2, b2⟩ ⇔ a1b2 ≤ b1a2 (5)∏

i∈[n]

⟨ai, bi⟩ =
〈 ∏

i∈[n]

ai,
∏

i∈[n]

bi

〉
. (6)

To find the sum or maximum of n rational numbers (c), we precompute the product of the denominators:

B =
∏

j∈[n]

bj

∑
i∈[n]

⟨ai, bi⟩ =
〈 ∑

i∈[n]

aiB/bi, B

〉
(7)

max
i∈[n]

⟨ai, bi⟩ =
〈

max
i∈[n]

aiB/bi, B

〉
. (8)

Lemma 6. Let T be an AHAT with rational weights, p-bit position embeddings, and no layer normalization.
Let L be the depth of T . Then the computation of T needs O(pnL) bits for each intermediate and final value.

Proof. First, note that if ⟨a1, b1⟩ uses O(nk) bits and ⟨a2, b2⟩ uses O(nk) bits, then their sum, product, and
quotient (Eqs. (2) to (4)) also use O(nk) bits. But if ⟨ai, bi⟩ for i ∈ [n] use O(nk) bits each, then their sum
(Eq. (7)) uses O(nk+1) bits.

We prove the lemma by induction on L. If L = 0, we just look up the embeddings, which need O(p) bits
per value. If L > 0, assume that layer (L − 1) required O(pnL−1) bits per value. In the self-attention, the
queries, keys, values, and scores need O(pnL−1) bits. The sum of the maximum-scoring values, which there
could be up to n of, needs O(pnL) bits, as does the average. Finally, the activations of the FFNN also need
O(pnL) bits.

Theorem 7. Let T be an AHAT with rational weights, O(poly(n))-bit position embeddings, and no layer
normalization. Then the language recognized by T is in TC0.

Proof. AHATs use only the operations in Lemma 5 on rational numbers with O(poly(n)) bits (Lemma 6).
Since these operations are all computable in TC0 and can be composed in TC0, the language recognized by
T is in TC0.
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Remark 8. We now have a more or less complete characterization of which regular languages can be
recognized by AHATs. Barrington et al. (1992) showed that every regular language L is either in ACC0 or
NC1-complete.

• If L is in ACC0, then it can be defined in linear temporal logic with modular counting (Baziramwabo
et al., 1999), and therefore it can be recognized by an AHAT with suitable position encodings (Barceló
et al., 2024).

• If L is NC1-complete, then by Theorem 7 it cannot be recognized by an AHAT unless TC0 = NC1.

4 Polynomial-precision SMATs

Next, we turn to SMATs, extending Merrill & Sabharwal’s proof from O(log n) bits to O(poly(n)) bits.
Definition 9. A p-bit floating-point number is a pair ⟨m, e⟩ where m (called the significand) and e (called
the exponent) are integers, |m| ∈ {0} ∪ [2p−1, 2p), and e ∈ [−2p, 2p). The value of ⟨m, e⟩ is m · 2e. We write
roundp(x), where x is either a real number or a floating-point number, for the p-bit floating-point number
nearest to x. If there are two such numbers, we call x a breakpoint and define roundp(x) to be the one with
an even significand.

(According to this definition, a p-bit floating-point number actually requires (2p + 2) bits: (p + 1) for the
significand and its sign, and (p + 1) for the exponent and its sign.)

To compute a SMAT with p-bit floating-point numbers means to approximate the operations in the SMAT
with operations on floating-point numbers. In typical floating-point implementations, addition, multiplica-
tion, division, and square root are rounded to the nearest floating-point number, but exp is only approximated
with a relative error of about 2−p. We also assume that summation of n numbers is performed exactly and
then rounded (following Liu et al. 2023; Chiang et al. 2023; Merrill & Sabharwal 2023a; but pace Li et al.
(2024), who argue that rounding should be performed after each addition).
Lemma 10. The following operations on floating-point numbers with p ∈ O(poly(n)) bits are computable in
TC0, with exact rounding to the nearest p-bit floating-point number:

(a) Addition, multiplication, division, and comparison of two numbers

(b) Iterated multiplication of n numbers.

Proof. These operations on O(poly(n))-bit integers are in TC0 (Theorem 2). We just have to show that they
are also definable on floating-point numbers. This is not a new result, but we try to fill in some details here
that are missing elsewhere.

First, roundp(⟨m, e⟩) can be computed in TC0 as follows: Count the number of significand bits q =
⌊log2 |m|⌋ + 1 (Theorem 2d), shift m right by (q − p) bits, and increment e by (q − p). Round m to
the nearest integer, and if |m| = 2p, shift m and increment e once more. For the operations (a), we have

⟨m1, e1⟩ + ⟨m2, e2⟩ =
{

roundp(⟨m1 + m2 // 2e1−e2 , e1⟩) if e1 ≥ e2

roundp(⟨m1 // 2e2−e1 + m2, e2⟩) if e1 ≤ e2

⟨m1, e1⟩ × ⟨m2, e2⟩ = roundp(⟨m1m2, e1 + e2⟩)
⟨m1, e1⟩ ÷ ⟨m2, e2⟩ = roundp(

〈
m1 · 2p−1 // m2, e1 − e2 − p + 1

〉
)

⟨m1, e1⟩ ≤ ⟨m2, e2⟩ ⇔

{
m1 ≤ m2 // 2e1−e2 if e1 ≥ e2

m1 // 2e2−e1 ≤ m2 if e1 ≤ e2.

The operation // is defined as

a // b =
{

a/b if a/b is a multiple of 1/4
a/b + 1/8 otherwise.
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summands

O(poly(n)) ≥ p + ⌈log2 n⌉ O(poly(n))

block-sums

O(poly(n)) ≥ p O(poly(n))

Figure 1: Overview of algorithm for iterated addition of p-bit floating-point numbers. The summands are
grouped into blocks that each span O(poly(n)) bits. They are separated by at least p + ⌈log2 n⌉ bits, so that
the block-sums are separated by at least p bits.

The result has three fractional bits (called the guard, round and sticky bits), which ensure that the result is
correctly rounded to the nearest floating point number (Goldberg, 2017). Note that this can be computed
efficiently even if b is a large power of 2.

For iterated multiplication (b), we have

∏
i∈[n]

⟨mi, ei⟩ = roundp

〈 ∏
i∈[n]

mi,
∑
i∈[n]

ei

〉 .

Lemma 11. Iterated addition of n floating-point numbers, each with p ∈ O(poly(n)) bits, is in TC0.

Proof. We are given p-bit floating-point numbers ⟨m1, e1⟩ , . . . , ⟨mn, en⟩. Without loss of generality, assume
mi ̸= 0. We need to compute the sum

s = roundp

 ∑
i∈[n]

⟨mi, ei⟩

 .

Step 1. Define the relation i ∼ j just in case |ei − ej | < 2p + ⌈log2 n⌉. The transitive closure of ∼ partitions
the (indices of the) summands into blocks B1, . . . , Bk ⊆ [n] (that is, if i ∼ j, then i and j are in the same
block). The intuition (Fig. 1) is that, in the binary representation, the numbers within each block are close
enough together that we can sum them by brute force, while numbers in different blocks are far enough apart
that we can ignore all but the two leftmost blocks.

The partitioning into blocks can be computed in TC0 as follows. Call i ∈ [n] block-minimal iff there is no
j ∈ [n] such that ⟨mj , ej⟩ < ⟨mi, ei⟩ and i ∼ j. Then i and j belong to the same block if and only if there is
no block-minimal k ∈ [n] such that ei < ek ≤ ej or ej < ek ≤ ei.

Step 2. For each block B, we compute the sum of all the numbers in B. Let e be the minimal exponent in B
(that is, e = mini{ei | i ∈ B}). Since all the exponents in B are bigger than e by at most n(2p + ⌈log2 n⌉) ∈
O(poly(n)), we can perform this sum exactly (Merrill & Sabharwal, 2023a):

∑
i∈B

⟨mi, ei⟩ =
〈∑

i∈B

mi · 2ei−e, e

〉
.
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p ≥ 1 ≥ p

s(1) ±1 · · · 10 · · · 0

s(2) ±1 · · ·

s ±1 · · ·

p

≥ 1 ≥ p

s(1) ±1 · · ·

s(2) ±1 · · ·

s ±1 · · ·

p

Case 2 Case 3

Figure 2: In Case 2, s(1) is a breakpoint, so the sum s depends on the sign (and only the sign) of s(2). In
Case 3, even if m(1) has only a single bit, the remaining block-sums do not affect the whole sum.

We’ve left the block-sums unnormalized; that is, their significands could have more or less than p bits.

Step 3. Let s(i) =
〈
m(i), e(i)〉 be the sum of the block with the i-th largest absolute sum. Then the first

block-sum s(1) dominates the whole sum; any number not in the first block has absolute value less than〈
2p, e(1) − 2p − ⌈log2 n⌉

〉
. So we can bound the rest of the sum as:

r =
k∑

i=2
s(i) < n · 2p · 2e(1)−2p−⌈log2 n⌉ ≤ 2e(1)−p. (9)

In other words, in the binary representation, there is a gap of at least p zero bits between the first block-sum
and the remaining block-sums.

It’s not necessary to sort all the block-sums; it’s enough to find the maximal block-sum s(1) and the second
block-sum s(1). Then we consider three cases (see Fig. 2).

Case 1: If m(1) = 0, then the whole sum is zero, and we are done.

Case 2: If s(1) is a breakpoint, then we need to look at the remainder r to see which way to round. Since
r < 2e(1) (Eq. (9)), it’s enough to look at the sign of r, which is the sign of m(2).

Case 3: Otherwise, s(1) is sufficiently far (on the number line) from a breakpoint that the addition of r
cannot change the result. Due to cancellation, m(1) could have fewer than p bits, down to just one bit. So
the distance to the nearest breakpoint could be as small as 2e(1)−p. But r < 2e(1)−p by Eq. (9).

Lemma 12. Given a floating-point number x with O(poly(n)) bits, the following functions can be computed
in TC0:

(a)
√

x, rounded to the nearest floating-point number

(b) exp x, with a relative error of at most 2−p.

Proof. The basic idea is to use a truncated Taylor series (Merrill, p.c.; Hesse et al., 2002, Cor. 6.5). This is
not a new result, but we try to fill in some details here that are missing elsewhere. Let p ∈ O(poly(n)).

For
√

x: Find r ∈ [ 1
4 , 1] and an even integer k such that x = r · 2k, as follows. If x = ⟨m, e⟩ and e + p is even,

let r = m · 2−p ∈ [ 1
2 , 1) and k = e + p; if e + p is odd, let r = m · 2−p−1 ∈ [ 1

4 , 1
2 ) and k = e + p + 1. Then

compute
√

r using the Taylor series about 1:

√
r =

N−1∑
i=0

( 1
2
i

)
(r − 1)i + O(|r − 1|N ).
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Since the error term is in O(|r − 1|N ) and r ≥ 1
4 , there is some a such that the error is at most a|r − 1|N ≤

a
( 3

4
)N . To make this less than 2−p−1, we set N = (p+1) log 2+log a

− log 3
4

∈ O(p). Then we decide which way to
round by squaring the breakpoint nearest to the approximation of

√
r and comparing it with r. Finally,√

x =
√

r · 2k/2.

For exp x: Let k = ⌊x/ log 2⌋ and r = x − k log 2, where log 2 is computed using the series:

log 2 =
N−1∑
i=1

1
i · 2i

+ O(2−N ).

Compute exp r using the Taylor series about 0:

exp r =
N−1∑
i=0

ri

i! + O(rN ).

Since the error term is in O(rN ) and r ∈ [0, log 2), there is some a such that the relative error is at most
arN

exp r ≤ a(log 2)N . So to get a relative error of 2−p, we set N = p log 2+log a
− log log 2 ∈ O(p). Finally, exp x =

(exp r) · 2k.

Theorem 13. Any language that is recognizable by an O(poly(n))-bit precision SMAT is in TC0.

Proof. SMATs use only the operations in Lemmas 10 to 12. Since these operations are all computable in TC0

and can be composed in TC0, the language recognized by an O(poly(n))-bit precision SMAT is in TC0.

5 Approximating SMATs with 2−O(poly(n)) error

Defining “transformers with p-bit precision” and characterizing the class of languages they recognize is
complicated, because there are many different ways to perform rounding, which can lead to differences in
expressive power (Li et al., 2024). In this section, we propose an alternative approach, which is to limit the
error of the final result of a transformer approximation and abstract away from details (like precision and
rounding) of how that level of error is achieved. We show that approximating a SMAT with absolute error
at most 2−O(poly(n)) can be done in TC0.

This has two advantages. First, it has a simple and unambiguous definition. Second, it will allow us to say
something about the expressivity of a large subclass of exact SMATs, namely, those that accept or reject
strings with margin 2−O(poly(n)).
Theorem 14. For any SMAT T : Σ∗ → R and for any ϵ(n) ∈ 2−O(poly(n)), there is a function T̂ : Σ∗ → R
in TC0 such that for all w ∈ Σ∗ with n = |w|, |T̂ (w) − T (w)| ≤ ϵ(n).

Proof. We construct T̂ out of the following operations, where C > 0 and c > 0 do not depend on n:

(a) Addition of two numbers

(b) Multiplication xy where |x|, |y| ≤ C

(c) Comparison of two numbers

(d) Inverse square root 1√
x

where |x| ≥ c

(e) Iterated addition of n numbers

(f) Softmax of n numbers.
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The upper bound C on all activations was shown by Hahn (2020), and in operation (d), the lower bound c
exists because we defined layer normalization to add a constant to the variance (Eq. (1)).

To simplify the error analysis, all of the above operations are performed on O(poly(n))-bit rational numbers.
In TC0, all of these operations can be computed exactly (Lemma 5), except

√
x and exp x, which can be

approximated with relative error ϵ for any ϵ ∈ 2−O(poly(n)), by Lemma 12. In that Lemma, the case for
square root asks for r ∈ [ 1

4 , 1] and an even integer k such that x = r · 2k. We do this as follows. If a ≥ b,
compute ⌊ a

b ⌋ using truncated division (Theorem 2h), then count the number of bits (Theorem 2d) to get
k = ⌊log2⌊ a

b ⌋⌋ + 1. Similarly, if a < b, compute k = −⌊log2⌊ b
a ⌋⌋ + 1. Finally, if k is odd, increment it by 1.

Fix ϵfinal > 0. We show by induction that, for each operation i in the computation of T̂ , there is a
δi ∈ Θ(ϵ/poly(n)) such that if we compute operation i with error δi, then the final answer has error ϵfinal.
In particular, it is possible to compute T̂ using O(poly(n))-bit rationals and achieve a final error of at most
2−O(poly(n)).

For each operation, we will show that for any ϵ > 0, there is a δ ∈ Ω(ϵ/n) such that if the inputs to the
operation are approximated with error δ, then the output is approximated with error ϵ.

If a function f : Rd → R is ρ-Lipschitz continuous, then for any ϵ > 0, if ∥h∥ ≤ ϵ/ρ, then |f(x + h) − f(x)| ≤
ρ ∥h∥ ≤ ϵ. Operations (a–d) are ρ-Lipschitz continuous with ρ not depending on n, while iterated addition
of n numbers (e) is n-Lipschitz continuous, and softmax of n numbers (f) is ρ-Lipschitz continuous with ρ
not depending on n.

We show the cases of inverse square root and softmax, as these also have error due to the Taylor approxi-
mations.

For inverse square root y = 1√
x

for x ≥ c: For any ϵ > 0, let δ = min
(

c
2 , c

√
c

(2c+1)
√

2 ϵ
)

. Suppose that x has
been approximated as x̂ = x + h where |h| ≤ δ. Because

√
x for x ≥ c − h ≥ c

2 is 1√
c
-Lipschitz continuous,

we have |
√

x̂ −
√

x| ≤ δ√
c
. Furthermore, we approximate

√
x̂ with relative error η where |η| ≤ δ. So we

approximate y as ŷ = 1√
x̂(1+η) , and the error is

|ŷ − y| =
∣∣∣∣ 1√

x̂(1 + η)
− 1√

x

∣∣∣∣
≤

∣∣∣∣ 1√
x̂(1 + η)

− 1√
x̂

∣∣∣∣ +
∣∣∣∣ 1√

x̂
− 1√

x

∣∣∣∣ triangle inequality

=
∣∣∣∣ η√

x̂(1 + η)

∣∣∣∣ +
∣∣∣∣∣
√

x −
√

x̂√
x̂x

∣∣∣∣∣
≤ δ√

c
2 · 1

2
+

δ√
c√

c
2 · c

η ≤ δ, x̂ ≥ c, x̂ ≥ c
2

= (2c + 1)
√

2
c
√

c
δ

≤ ϵ.

For softmax of n numbers: For any ϵ > 0, let δ = min
( 1

2 , ϵ
16

)
. Suppose that for all i ∈ [n], xi has been

approximated as xi + hi where |hi| ≤ δ, and let ηi where |ηi| ≤ δ be the relative error of approximating
exp(xi + hi). Then the softmax and its approximation are

yi = exp xi∑
j exp xj

ŷi = (exp(xi + hi))(1 + ηi)∑
j(exp(xj + hj))(1 + ηj)

9
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and ŷ overestimates y by at most

ŷi − yi ≤ (exp(xi + δ))(1 + δ)∑
j(exp(xj − δ))(1 − δ) − yi

=
(

(exp 2δ)(1 + δ)
1 − δ

− 1
)

yi

≤ (exp 2δ)(1 + δ)
1 − δ

− 1 yi ≤ 1

≤ (1 + 4δ)(1 + δ)
1 − δ

− 1 2δ ∈ [0, 1] ⇒ exp 2δ ≤ 1 + 4δ

≤ 8δ

1 − δ
δ ≤ 1

2

≤ 16δ δ ≤ 1
2

≤ ϵ δ ≤ ϵ
16 .

Similarly, we can show that ŷ underestimates y by at most

yi − ŷi ≤ 8δ ≤ ϵ.

The above is a statement about the expressivity of SMAT approximations, but as mentioned at the beginning
of this section, it also makes it possible to say something about the expressivity of a large subclass of exact
SMATs.
Definition 15. A transformer T : Σ∗ → R recognizes a language L with margin ϵ(n) if, for every string
w ∈ Σ∗ with n = |w|, if w ∈ L then T (w) > ϵ(n), and if w ̸∈ L then T (w) < −ϵ(n).
Corollary 16. Any language that is recognizable by a SMAT with margin 2−O(poly(n)) is in TC0.

Proof. Let L be a language recognized by SMAT T with margin ϵ ∈ 2−O(poly(n)). By Theorem 14, there is a
function T̂ in uniform TC0 such that for all w, we have −ϵ ≤ T̂ (w) − T (w) ≤ ϵ. If w ∈ L, then T (w) > ϵ,
so T̂ (w) ≥ T (w) − ϵ > 0. Similarly, if w ̸∈ L, then T (w) < −ϵ, so T̂ (w) ≤ T (w) + ϵ < 0. Therefore, T̂ also
recognizes L.

6 Limitations and Conclusions

The levels of precision considered here go far beyond what is practical to compute with. Nevertheless, these
results are valuable because they further strengthen the case that transformers cannot compute any function
outside of TC0.

Moreover, Section 5 offers an alternative approach to limited-precision transformers that may be useful in
more realistic settings. In particular, an analogous argument shows that it takes O(log n) bits of precision to
achieve an error of 1/O(poly(n)), which may make SMATs with margin 1/O(poly(n)) an interesting target
for future research.
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