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Figure 1: Tool-as-Interface. We propose a scalable data collection and policy learning framework designed to transfer diverse, intuitive, and
natural human data into effective visuomotor policies. The framework enables robots to learn robust policies that can operate effectively under
challenging conditions, such as base and camera movement, and achieve high performance on a variety of complex manipulation tasks.

Abstract:

Tool use is essential for enabling robots to perform complex real-world tasks,
but learning such skills requires extensive datasets. While teleoperation is widely
used, it is slow, delay-sensitive, and poorly suited for dynamic tasks. In contrast,
human videos provide a natural way for data collection without specialized hard-
ware, though they pose challenges on robot learning due to viewpoint variations
and embodiment gaps. To address these challenges, we propose a framework
that transfers tool-use knowledge from humans to robots. To improve the pol-
icy’s robustness to viewpoint variations, we use two RGB cameras to reconstruct
3D scenes and apply Gaussian splatting for novel view synthesis. We reduce the
embodiment gap using segmented observations and tool-centric, task-space ac-
tions to achieve embodiment-invariant visuomotor policy learning. We demon-
strate our framework’s effectiveness across a diverse suite of tool-use tasks, where
our learned policy shows strong generalization and robustness to human pertur-
bations, camera motion, and robot base movement. Our method achieves a 71%
improvement in task success over teleoperation-based diffusion policies and dra-
matically reduces data collection time by 77% and 41% compared to teleoperation
and the state-of-the-art interface, respectively.
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1 Introduction

Tool use enables humans to perform complex tasks by extending their physical capabilities. In
contrast, robotic systems remain largely limited to grasping and pick-and-place operations [1, 2, 3,
4,5, 6, 7]. To enable richer manipulation skills, robots must learn to use diverse tools in dynamic
environments. This work focuses on the efficient training of robot policies for tool use, with an
emphasis on scalable and low-cost data collection.

Imitation learning (IL) is a promising way to acquire tool-use skills from human demonstrations [8,
9, 10]. Prior work has leveraged teleoperation platforms [11, 12, 10] and hand-held grippers [13,
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14] to provide precise supervision. However, these systems often require expensive hardware, 3D-
printed tools, or expert calibration, hindering scalability across diverse users and environments.

As a scalable alternative, we learn from natural human manipulation videos. While abun-
dant, this data introduces challenges from viewpoint differences and human-robot embodiment
gaps [15, 16, 17]. We introduce a new framework that leverages two-view human manipulation
videos and appropriate representations of states and actions to train robot policies for tool use. To
close the viewpoint gap, our system uses 3D scene reconstruction and novel view synthesis to train a
viewpoint-invariant policy. To bridge the embodiment mismatch, we filter out embodiment-specific
features like hands using segmentation, and employ a task-space, tool-centric action representation
supports robustness to robot base variation (Figure 1).

Our contributions are as follows: (1) We introduce a framework for scalable, intuitive, and cost-
effective data collection for robot tool-use learning, using two-view human manipulation videos
without requiring teleoperation or specialized hardware; (2) We demonstrate strong generalization
across diverse real-world tool-use tasks (e.g., nail hammering, meatball scooping, pan flipping, wine
bottle balancing, and soccer ball kicking) achieving a 71% higher success rate and 77% reduction in
data collection time compared to diffusion policies trained on SpaceMouse [18] or Gello [19], and a
41% improvement over handheld grippers like UMI [14]; and (3) We provide a detailed robustness
analysis, evaluating performance under changes in viewpoint, robot base configuration, and human
motion, along with ablations on segmentation, novel view synthesis, and random cropping.

2 Related Works

Data Collection for Robot Learning: High-quality data is essential for teaching robots new skills.
Simulation offers scalability and low cost [20, 21, 22, 23], but the sim-to-real gap remains chal-
lenging. Learning from real-world teleoperated demonstrations helps train policies with minimal
distribution shift between training and testing [24, 25, 26, 27, 28]. Leader-follower systems (e.g.,
ALOHA [29, 30], GELLO [19]) simplify teleoperation by providing intuitive kinematic replication
but require real robots and are costly. Portable hand-held grippers (e.g., UMI [14], LEGATO [13])
enable flexible data collection but still require specialized hardware. Tool-based policy represen-
tations offer another direction. MimicTouch leverages tactile feedback for contact-rich skills [31],
while ScrewMimic models bimanual tasks as constrained screw motions for learning from human
videos [32]. However, tactile methods require extra hardware, and the screw motion assumption
may not hold. Another approach transfers single-demonstration trajectories across objects but
assumes static object configurations [33], which will not work with changing spatial configurations.
In contrast, our method uses natural human demonstrations without tactile sensors, special tools, or
motion constraints—enabling scalable, low-cost data collection in unconstrained environments.

Cross-Embodiment Policy Learning: Cross-embodiment learning enables policy transfer across
robots with diverse kinematic structures [34, 35, 36]. Prior approaches relying on multi-embodiment
datasets [37, 38, 39, 40, 41, 35, 42] focus solely on data from different robot embodiments and
struggle to leverage human demonstrations effectively. Recent methods tokenize observations and
actions into unified transformer networks [43, 44], but require large models, extensive datasets,
and cannot directly transfer policies across embodiments. Other efforts use human data to estimate
point flow [45] or generate high-level plans [46, 11], but still depend on robot-generated data for
low-level control. Additionally, prior works emphasize visual consistency through embodiment
masking [16, 47]. However, Bahl et al. [16] relies on predefined motion primitives and Kareer et al.
[47] requires robot data for augmentation. As a step further, our approach adopts a similar masking
idea but enables robots to learn freely, even agile motions from human videos without any robot data.

Cross-Viewpoint Policy Learning: Robots can encounter viewpoint variations when interact-
ing with their environments. Prior work addresses this by learning view-invariant representa-
tions [48, 49], equivariant 3D features [50, 51, 52], or augmenting datasets with varied view-
points [53, 54]. An early attempt by Sharma et al. [55] introduced a hierarchical model mapping
third-person demonstrations to first-person sub-goals, with a low-level module predicting actions.
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Figure 2: Policy Design. Human manipulation data was collected using two cameras and processed through the foundation model MASt3R [61]
to generate 3D reconstructions. Using 3D Gaussian splatting, we sampled novel views to augment the dataset. Human hands were segmented
to create embodiment-agnostic observations as policy inputs. For action labeling, FoundationPose [62] estimated the tool’s pose in the camera

frame, T2 which was transformed into task space, T{%5F. A diffusion model was then trained as the visuomotor policy.

Recent work by Chen et al. [56] leverages SAM [57] and ControlNet [58] to transform robot images
across different robots, employing ZeroNVS [59] for novel-view synthesis to augment datasets and
improve policy generalization across viewpoints. Another approach by Yuan et al. [60] integrates re-
inforcement learning, multi-view representation learning, and a Spatial Transformer Network to en-
hance policy robustness in visually complex environments. Despite promising results, these methods
face scalability issues, reliance on computationally intensive view synthesis, or the need for tailored
simulators. In contrast, our approach achieves efficient and scalable cross-viewpoint transfer directly
from human data by leveraging the MASt3R [61] foundation model for 3D reconstruction from two
RGB images and employing Gaussian splatting for fast, cost-effective novel-view synthesis.

3 Tool-as-Interface Framework

Problem Statement: We formulate robotic manipulation as a Markov Decision Process (MDP),
where the goal is to learn a policy 7 : O — A that enables a robot to perform a given task. The
robot’s observation space O consists of a single-view RGB image I” € Z" and proprioceptive
data 2" € SE(3), where each I" is a tensor in R128*128%3 We train the policy using an imitation

dataset of N human demonstrations, D = (OF, O} ... )5:1, where each O = {I" I} contains
two RGB images captured from different viewpoints and each I", € " is a tensor in R*80%640x3,
We preprocess the dataset to infer actions using a 6D pose estimation and tracking model, resulting
in D = {(OF,ap,0%, ay,...)}N_;, where each action a € SE(3). To bridge the embodiment
gap between humans and robots, we assume the tool is rigidly attached to both the human hand
(implicitly) and the robot end-effector (explicitly), with a fixed transformation estimated prior
to deployment. Under this setup, the robot can reproduce human-demonstrated tool trajectories,
enabling policy transfer across embodiments while preserving task-relevant behaviors (Figure 2).

Tool-Centric Demonstrations for Robot Manipulation: We leverage the fact that both humans
and robots can operate the same physical tools to facilitate policy learning. Tools serve as a shared
interface for interacting with objects, enabling the direct transfer of human demonstrations with
minimal embodiment-specific adaptation. Unlike prior work focused on grasping or pick-and-place
tasks [14, 13, 63], our approach enables robots to perform complex interactions using everyday
tools. Our formulation abstracts actions to the tool pose, reducing morphological dependence and
promoting policy generalization across embodiments. It also simplifies data collection by elimi-
nating the need for robot-specific demonstrations. Humans can naturally manipulate tools by hand
without extra instrumentation. For deployment, robots either rigidly grasp the tool, as demonstrated
with a Kinova Gen3 arm, or attach it using a custom fast tool changer described in Appendix B.2.1
and shown in Figure 10, compatible with ISO 9409-1-50-4-M6 flanges.

Perception Alignment Across Embodiments: To enable cross-embodiment policy transfer, we
align human and robot observations within a shared visual space Z° by applying a feature extrac-



tion function g : Z" UZ" — T°. We instantiate g with Grounded-SAM [64], using prompts such
as “human hand” and “robot arm” to mask out embodiment-specific regions—human hands dur-
ing training and robotic arms during deployment. Masking out these regions ensures that only
task-relevant visual information (e.g., tools and objects) remains visible in both phases. By mini-
mizing visual discrepancies between human and robot data, the feature extraction process reduces
embodiment-specific bias and improves generalization across embodiments.

3D-Aware View Augmentation: We use cameras for data collection due to their widespread avail-
ability—over 7.14 billion smartphones are equipped with them [65]. However, single-camera setups
suffer from scale ambiguity and limited 3D perception and are sensitive to viewpoint changes.

3D RECONSTRUCTION: To address this, we use MASt3R [61], an image-matching model that re-
constructs accurate 3D environments from just two RGB images—eliminating the need for depth
sensors, which are less common and more power-hungry. Two cameras suffice to avoid scale ambi-
guity inherent in monocular settings. MASt3R produces high-quality point clouds without requiring
known camera extrinsics or intrinsics by globally aligning multi-view features.

VIEW SYNTHESIS AND AUGMENTATION: 3D Gaussian splatting synthesizes novel viewpoints
from the reconstructed scene, allowing the robot to observe interactions from multiple angles—even
when only two views are available. The resulting perspectives augment the training data, increasing
visual diversity and improving policy learning. To further enhance robustness and generalization,
random cropping is applied, following diffusion policy [25, 26].

Tool-Centric Action Representation and Policy Deployment: To support general tool usage, we

propose a task-frame, tool-centric action representation denoted as 7,%¥, which describes the tool’s

motion independently of human or robot morphology, camera pose, or base configuration. This in-
variant formulation enables robust policy transfer across different embodiments and viewpoints. As
shown in Figure 3, the tool’s pose is first estimated in the camera frame using a 6D pose estimation

model (e.g., FoundationPose [62]) as Ti3°™, and then transformed into the task frame:

task __ rptask camera
Ttool - Tcamera tool ’
where ng;'fm denotes the transformation from the camera to the task frame.
Camera [1]
Tool
Task
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A diffusion policy [25] maps a single-view RGB image to a pre-
dicted SE(3) action T®F. At deployment, the robot command
is computed by converting the prediction to the end-effector
frame. For stationary robots, the task frame aligns with the base
frame; for mobile platforms, base movement is compensated us-

ing 70%¢. The resulting end-effector pose is given by:
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where 79! is the known fixed transform between the tool and ~Figure 3: Coordinate System Diagram. The
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4 Policy Evaluations

Our evaluations aim to assess our framework across three dimensions: reliability (how consistently
and successfully the learned policies perform), execution efficiency (how smooth and natural the
resulting behaviors are), and versatility (how well the framework adapts to diverse tasks and gener-
alizes across conditions).

Experimental Tasks Overview: We evaluate five real-world robotic tasks on Kinova Gen3 and
URS5e robots, involving precision manipulation, dynamic object handling, and dexterous tool use.
Policies use RGB inputs from RealSense D415 cameras and handle variations in object positions and
camera poses. Tasks include: (1) Nail Hammering — Precise striking of a small target, (2) Meatball
Scooping — Contact-sensitive rolling object manipulation, (3) Pan Flipping — Fast, dynamic flipping
with varied objects, (4) Wine Balancing — Gravity-aware placement into an unstable rack, and (5)
Soccer Ball Kicking — Dynamic interception and obstacle avoidance. Full details in Appendix B.1.



Baselines: We evaluate the effectiveness and efficiency of learning directly from human manip-
ulation videos without relying on robot-generated data. We benchmark against a diffusion policy
trained on robot demonstrations and UMI [14], a hand-held gripper method. Robot demonstra-
tions are collected using SpaceMouse or Gello [19] under identical time budgets. Additionally, we
conduct ablations to assess random cropping before policy training, novel view synthesis data aug-
mentation, and embodiment segmentation. To further illustrate the advantages of our approach, we
compare trajectory rollouts for a meatball-scooping episode, highlighting how our method is more
sample-efficient and less prone to distribution shifts by eliminating excessive waypoints.

Evaluation Metrics: During testing, we introduce two types of variations: (1) randomizing the
initial spatial configurations of objects in each task to assess policy generalization, and (2) vary-
ing camera positions to evaluate the robustness of policies to different viewpoints. All methods,
including the baseline and ablation variants, are tested under the same conditions. Performance is
evaluated using two metrics: success rate, which measures the proportion of successfully completed
task trials and reflects policy effectiveness, and task completion time, which captures the average
duration to complete tasks and reflects policy efficiency.

5 Experiment Results

Capabilities and Effectiveness: Table 1 summarizes our real-world results, showing that
our framework consistently achieves higher success rates across all tasks compared to base-
lines. We also compare against the stronger hand-held gripper baseline UMI [14] (Ta-
ble 2). In our default setup, SLAM-based mapping failed due to low environmen-
tal texture, so we added a textured background to support reliable mapping for UMI.
For the nail hammering task, we evaluated UMI with 25 demonstrations (matching our
collection time) and 100 demonstrations (to assess ideal performance). UMI fails all
13 trials with 25 demonstrations but succeeded with 100. It was also inapplicable
to wine balancing and pan flipping due to contact and  Table 1: Task Success Rates and Completion Times. Suc-
inertial challenges and stmggled in soccer kicking due  cess rates show completed trials over total. “DP” is trained
. . o on teleoperation; “Not Feasible” means failure.
to localization failures. In contrast, our method demon-

strates reliable performance across all tasks: accurately 125k Method  Success Time (s)
detecting spatial locations (nail hammering, meatball . DP 0/13 -
scooping), performing high-speed motions (pan flip- CI))“;S 153;/1123 }é'g
ping), precisely inserting wine bottles, and swiftly re- ~ Scoop Ours 10/12 12.4
acting in soccer kicking. This strong performance is . Egg DP  NotFeasible -
enabled by collecting significantly larger and more di- %“Prf Notllfcla zljible L5
verse episodes within the same data collection time- ~ Pan: Bun Ours 912 1.9
frame (see Section 6), enabling robust policy training. . Patty DP  NotFeasible -
Our approach overcomes limitations of teleoperation C]))ulgs N tll(?)/lz'bl 2.3
. . . ot reasible -
tools like Gello and SpaceMouse, enabling data collec- ~ Wine Balance o 8/10 30.9
tion for scenarios they struggle to handle. Qualitative ¢ ...~ DP  NotFeasible -
policy rollouts are shown in Figure 9 in Appendix. Ours 6/10 2.0

Policy Execution Efficiency: Our framework demonstrates high execution efficiency, achieving
shorter task completion times and smoother action trajectories than baselines (Table 1). This ef-
ficiency stems from the natural human data, which captures the fluidity and speed of real-world
activities, resulting in higher-quality training trajectories. In contrast, teleoperated demonstrations
often produce SIOWGI‘, less natural motions, llmltll’lg Table 2: Task success rates comparing our method with the
dynamic performance. By leveraging more realis- hand-held gripper-based method on Nail Hammering.

tic data, our framework accelerates execution while Method  Demo Time & Count  Success
enhancing motion quality, making it suited for real- UMI [14] 180s (25) 013
world applications. See Appendix C for a detailed UMI 720s (100) 1313

Ours 180s (40) 13/13

comparison of policy rollouts.

Benefits of Tool-Based Action Representation in Task Space: Using the tool pose in the camera
frame works with a static camera but fails under camera movement due to unreliable real-time
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Figure 4: Policy Testing Across Camera Poses in Nail Hammering. (a) Camera poses for data collection and evaluation. (b-d) Performance
ranges for methods trained with/without random cropping (RC) and view augmentation (VA).
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Figure 5: Robustness to Camera and Base Movement. (a) Camera Pose Robustness: The policy demonstrated the ability to handle camera
shaking across three tasks—meatball scooping, nail hammering, and pan flipping. The first row shows the camera view, while the second row
provides a scene overview with the shaking motion. (b) Robot Base Robustness: The policy successfully compensated for base shaking, even
when the shaking frequency exceeded the robot’s control frequency. (c) Chicken Head Stabilization: At lower base movement frequencies,
the end effector displayed a stabilization effect similar to a chicken’s steady head. (d) Combined Robustness: The policy maintained task
performance under simultaneous camera and base shaking.

tracking and incorrect end-effector positioning in the base frame. Similarly, representing actions
in the base frame fails under base movement due to the assumption of a fixed base-to-workspace
transform. In contrast, representing actions in task space is invariant to both camera and base
movement, enabling robust execution even under large viewpoint shifts and base movements.

Effects of Random Cropping and View Augmentation: Our experiments show that random crop-
ping (RC) and view augmentation (VA) together enhance policy robustness to camera pose varia-
tions. RC improves resilience to minor perturbations such as small movements or shaking, while
VA exposes the model to a broader distribution of viewpoints during training. We evaluated these
techniques on the nail hammering task (Figure 4), comparing three models: one trained with both
RC and VA, one with RC only, and one without either. The combined use of RC and VA significantly
expands the range of camera configurations under which the policy can successfully operate.

Generalization:
Spatial Generalization: We evaluated spatial generalization by varying initial conditions across
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tasks: nail positions for hammering, meatball locations for scooping, goalkeeper setups for soccer
ball kicking, and object poses across the pan for flipping (illustrated in Figure 11 in Appendix).

Object Generalization: Our method generalizes effectively to different objects in the pan-flipping
task, including the egg and burger bun seen during training, and a 3D-printed meat patty (illustrated
in Figure 11, second column, in Appendix). The policy learns to tilt the pan to slide the object into
a corner, then flick it to achieve a successful flip, enabling robust generalization across object types.

Tool Generalization: We evaluated tool generalization by testing the policy with five different pans:
large, medium, small, tiny, and square. The policy was trained using demonstrations with the large,
medium, and square pans and evaluated on all five, with 12 trials per pan under varying initial
configurations (illustrated in Figure 13 in Appendix). It achieved high success rates on the trained
pans (large and medium). Performance declined on smaller pans due to limited surface area, and on
the square pan due to shallow edges causing the bun to slide out during flipping.

Robustness:

Camera Pose Robustness: We evaluated the policy’s ability to handle camera pose variations by
introducing camera shaking in three tasks: meatball scooping, nail hammering, and pan flipping
(Figure 5(a)). The first row shows the camera view, and the second shows the scene overview
and shaking motion. Despite disturbances, the policy consistently completed all tasks, enabled by
random cropping during training, improving adaptation to partial views and minor visual changes.

Robot Base Robustness: To assess robustness to base movement, we manually shook the robot base
during execution (Figure 5(b)). When the shaking frequency exceeded the control frequency, the
end effector oscillated with the base; however, the task-space action design enabled compensation
and successful task completion. As shown in Figure 5(d), the policy also maintained effectiveness
under simultaneous camera and base shaking.

Chicken Head Stabilization: At lower shaking frequencies, where the perturbation was slower than
the robot’s control loop, the end effector exhibited a stabilization behavior similar to a chicken’s
head [66] (Figure 5(c)), maintaining steady control during mild base movements.

Human Perturbation Robustness: We evaluated resilience to human interventions (Figure 6). The
robot tracked moving nails, adapted to new meatballs thrown in mid-task, and re-flipped repositioned
eggs, demonstrating robustness to real-time disturbances.

6 Data Collection Efficiency and Affordability

We compare data collection methods for robot imitation learning across throughput, reliability, cost,
usability, and precision. Full quantitative and qualitative analysis is provided in Appendix D.

Data Collection Efficiency: Leveraging the natural dexterity and intuitive control of human hands
(Figure 7(a)), our method achieves significantly higher data collection throughput compared to tra-
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Figure 7: Data Collection Efficiency and Reliability. (a) Human hands excel in manipulation tasks, leveraging natural and intuitive efficiency.
(b) Failure cases for Gello and Spacemouse include insufficient speed, lack of tactile feedback during data collection, safety stops, collisions,
teleoperation delays, and difficulty handling high-speed or complex tasks. (c) Failure cases for handheld grippers such as UMI [14], where
issues arise from tool slippage due to inertia or displacement caused by contact forces.

ditional methods. Quantitatively, human demonstrations reduce data collection time by 73 % for nail
hammering and 81% for meatball scooping relative to teleoperation methods (Gello, Spacemouse),
as shown in Figure 8. Compared to handheld grippers (e.g., UMI [14]), human demonstrations
are 41% faster in nail hammering, and further succeed in dynamic tasks where both teleoperation
and handheld methods consistently fail. This efficiency enables high-throughput, low-variance data
collection critical for scalable robot learning.

Reliability: In contrast, Figures 7(b) and (c) highlight typical failures for Gello, Spacemouse, and
handheld grippers, including collisions, tool slippage, safety stops, and failures in dynamic or high-
precision tasks. Teleoperation tools frequently suffer from latency, lack of tactile feedback, and
difficulty handling rapid motions, leading to inconsistent trajectories and poor-quality demonstra-
tions. Handheld grippers are prone to inertial slippage and loss of tool control under high forces,
further limiting their applicability. 50

Cost and Usability: Our method requires no NAL e e o®
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cost compared to teleoperation devices, hand-
held grippers, and VR/AR equipment, all of
which demand substantial investment and main-
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ing throughput and precision, our human-centric Figure 8: Quantitative Comparison of Data Collection Methods.

data collection framework enables scalable, effi- Human hands reduce data collection time by 73% for nail hammer-

. . e . ing and 81% for meatball scooping, while maintaining low varia-

cient, and reliable robot imitation leamlng. tion. Teleoperation fails in dynamic and high-precision tasks. In nail
hammering, human hands are 41% faster than UMI [14], which also
struggles with dynamic and low-texture environments.

7 Conclusion

In this work, we presented a framework that enables robust policy training for diverse tool-use tasks
by learning from human manipulation videos and bridging the embodiment gap they introduce.
Unlike traditional data collection methods, which are costly and hardware-dependent, our approach
democratizes data collection by eliminating the need for specialized equipment or technical
expertise, making large-scale robot learning accessible and scalable. We validated the framework
across challenging tasks, including nail hammering, meatball scooping, pan flipping, wine bottle
balancing, and soccer ball kicking, demonstrating superior performance, robustness to variations
in camera poses and base movements, and adaptability across 6-DOF and 7-DOF robots. By
improving accessibility, scalability, and reliability, our work lays a strong foundation for advancing
robotic manipulation in complex, real-world scenarios.



8 Limitations and Future Work

Our framework has certain limitations. First, the perception pipeline relies on FoundationPose for
extracting the tool’s pose during manipulation. Errors in pose estimation may occasionally require
data recollection, adding time and effort. Improving the reliability of the perception pipeline through
more robust pose estimation algorithms or self-correction mechanisms is a promising direction for
future work. Second, for novel view augmentation, significant noise and reduced realism are ob-
served when augmented views deviate too far from the collected camera views, which can hinder
policy performance. Future efforts could focus on leveraging advanced rendering techniques to en-
hance the realism of augmented views and improve policy generalization. Third, we assume the tool
is rigidly attached to the robot’s end effector; however, in real-world, contact-rich manipulation,
minor shifts may occur, potentially affecting performance. Addressing this issue by incorporat-
ing tactile sensing could improve performance in contact-intensive tasks. Additionally, our method
assumes a rigid tool and does not account for flexible or soft tools. Future work could explore us-
ing flexible representations for tool state estimation to better handle deformable tools in real-world
manipulation scenarios.
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A Design Choice

A.1 Key Capabilities and Practical Benefits

Our framework enables the direct transfer of human manipulation data into deployable robot poli-
cies. It is designed to fulfill the following key objectives:

* Support for Dynamic and High-Precision Tasks: Human manipulation, with its inher-
ent fluidity, enables the execution of highly dynamic tasks. Examples include flipping an
egg in a pan or performing other actions that require swift, accurate, and natural motions
— challenges that are often difficult to address with traditional teleoperation systems or
handheld grippers.

* Robustness: The framework ensures robust performance under dynamic conditions, en-
abling reliable task execution even with moving or shaking cameras. While broader de-
ployment on mobile platforms such as quadrupeds or humanoids remains an open chal-
lenge, our design and experimental results suggest strong potential for generalization to
dynamic environments.

¢ Generalization Across Robotic Embodiments and Object Categories: The framework
demonstrates broad generalizability, validated on robotic platforms such as the UR5e and
Kinova Gen3. It extends its capabilities to manipulate a wide range of object categories,
showcasing its adaptability to various tasks, setups, and environments.

» Affordability and Accessibility: The framework requires only two monocular RGB cam-
eras, such as smartphones, webcams, or RealSense cameras. With approximately 7.14
billion smartphones worldwide — covering around 90% of the global population — this
setup is accessible to almost anyone [65]. By relying solely on RGB cameras, the frame-
work eliminates the need for designing, printing, or manufacturing additional hardware
during the data collection, ensuring a cost-effective and inclusive solution.

* Intuitive and Natural Interaction: Users can interact naturally, without the need for spe-
cialized equipment or additional tools. Using their bare hands and common tools, partic-
ipants can intuitively perform a variety of tasks. Our approach removes technical barriers
associated with 3D printing and other hardware setups, fostering a seamless, user-friendly
experience for data collection.

B Detailed Experiment Setup

B.1 Task Descriptions

Nail Hammering: The task involves hammering a 3D-printed nail, requiring the robot to locate the
nail, draw back the hammer, and strike the nail tip accurately. With a diameter of less than 15.5
mm, the nail tip demands high precision. Challenges include localizing the nail tip precisely and
planning effective hammer trajectories. To evaluate generalization, the initial position of the nail is
varied across different spatial configurations. We collected 180 seconds of data (40 episodes) from
a single participant.

Meatball Scooping: In this task, the robot must use a spoon to scoop a meatball from a pan and
transfer it to a bowl. This task is challenging due to the complex dynamics of the meatball, which can
roll unpredictably within the pan. Additionally, the interaction between the spoon and the meatball
requires careful control, as improper contact can cause the meatball to slip or escape the spoon. We
randomize the initial position of the meatball within the pan to test its generalization capability. We
collected 340 seconds of data (50 episodes) from a single participant.

Pan Flipping (Egg, Burger Bun, Meat Patty): The objective of this task is to use a pan to flip
various objects, such as an egg, a burger bun, and a meat patty. The task is challenging due to its
high-speed dynamics, requiring the robot to overcome gravity and accurately manage the interaction
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Table 3: Benchmark Attributes of Real-World Tasks. These benchmarks evaluate the precision, adaptability, and capability of our framework
to address tasks requiring high precision, handling extreme dynamics, utilizing extrinsic dexterity, performing in contact-rich scenarios, and
overcoming gravity.

Benchmark High-Precision Extreme Dynamics Using Extrinsic Dexterity =~ Contact-Rich ~ Overcoming Gravity
Task 1: Nail Hammering v - -
Task 2: Meatball Scooping v

Task 3: Pan Flipping (Egg, Bun, Patty) v
Task 4: Wine Balancing
Task 5: Soccer Ball Kicking

I X1

I XX\
NN\\X\1I
1 X\1

Task 1: Nail Hammering

&
]

Init

Task 2: Meatball Scooping
p—

Task 5: Soccer Ball Kicking

Ball slid into the field Strike ball Score goal

Figure 9: Policy Rollouts. We evaluate diverse real-world tasks: nail hammering (precision in locating a nail tip), meatball scooping (slippery
object, constrained environments), pan flipping (extremely dynamic, high-speed, contact-rich), wine balancing (precise control of unstable
objects), and soccer ball kicking (dynamic object handling, goal-directed actions).

between the pan and the objects. Each object differs in weight, shape, and texture, adding further
complexity. This task evaluates the policy’s ability to handle fast, contact-rich interactions and adapt
to diverse object types. To increase variability, the initial positions of the objects within the pan are
randomized. Furthermore, the rapid and dynamic nature of the task makes it unsuitable for classical
demonstration collection methods, highlighting the advantages of using bare-handed human videos
for data collection. We collected 50 seconds of data (38 episodes) from a single participant using
three different pans and two object types.

Wine Balancing: In this task, the robot needs to use a hook to lift a wine bottle and carefully insert
it into an unstable, zero-gravity wine rack. The task is challenging due to the precise control required
to suspend the bottle in mid-air and counteract gravitational forces effectively. Any over-insertion
or under-insertion will cause the bottle to lose balance. To constrain the horizontal movement of
the rack, screws were added as obstacles to limit lateral motion. No additional variability was
introduced. We collected 223 seconds of data (15 episodes) from a single participant.

Soccer Ball Kicking: In this task, the robot must use a golf club to kick a ball that slides into a field
and direct it into the goal. To increase the challenge, a 3D-printed row of players serves as obstacles
between the robot and the goal. The task is difficult because the robot must accurately intercept
the moving ball, strike it with the correct force and direction, and ensure it avoids obstacles before
reaching the goal. The position of the player obstacle varies. We collected 78 seconds of data (20
episodes) from a single participant.
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Figure 10: Fast Tool Changer. Two designs are shown: the left accommodates general tools with a screw mechanism, and the right clips onto
tools with specific mounting shapes.

s @ TR & and
Figure 11: Initial States for All Evaluation Episodes. All methods are evaluated using the same set of manually defined initial states, overlaid
in the image. These states ensure diverse variations to test the policy’s spatial generalization capabilities.

B.2 Implementation Details
B.2.1 Hardware Design

We designed two fast tool changers compatible with robots using the ISO 9409-1-50-4-M6 flange,
as shown in Figure 10. The left design utilizes a screw mechanism to accommodate general tools,
while the right design employs clips for tools with specific mounting shapes.

B.2.2 Tool Pose Estimation

We use Polycam to scan the tool and obtain its mesh. The mesh is later feed into FoundationPose [62]
for 6D pose estimation.

C Additional Experimental Results

Policy Execution Trajectory Comparison: Our framework produces faster, smoother, and more
natural trajectories compared to traditional approaches, as shown by the end-effector (EEF) XY
trajectory for the meatball scooping task in Figure 12. Figure 12(a) shows the task setup, and Fig-
ure 12(b) compares our policy rollout with a baseline trained on robot-collected data. Our trajectory
is significantly smoother, with 10x fewer waypoints, resulting in more fluid execution, reduced
cumulative errors, and improved sample efficiency, thereby mitigating the distribution shifts com-
monly observed in behavior cloning. In contrast, the baseline exhibits excessive waypoints and
discontinuous motions that hinder precise task execution.

Effects of Embodiment Segmentation: Embodiment Segmentation masks the agent’s embodi-
ments during data collection and policy deployment, ensuring visually consistent scenes and reduc-
ing the training-deployment visual gap. Embodiment Segmentation significantly improves policy
performance, as shown in Figure 14. Figure 14(a) highlights failure cases without segmentation.
In the wine balancing task, the robot strikes the table, triggering safety stops due to improper bot-
tle handling. In the soccer ball kicking task, the robot’s actions are inconsistent, shorter, and less
precise than during training. Quantitative results in Figure 14(b) further underscore segmentation’s
impact. Across 10 trials, segmentation enabled 8 successes in the wine balancing task, while the
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Figure 12: Policy Execution Trajectory Comparison. (a) Initial
setup for meatball scooping. (b) Comparison of end-effector XY tra-
jectories from our framework and a policy trained on robot-collected
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Figure 13: Tool Generalization. (a) The tested pans. (b) Success

rate across 12 testing trials.
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Figure 14: Effects of Embodiment Segmentation. (a) Failure cases without segmentation: In the wine balancing task, the robot strikes the

table, triggering safety stops. In the soccer ball kicking task, it performs shorter, less precise actions. (b) Quantitative results: Segmentation
improved success rates in wine balancing (8 vs. 0) and soccer ball kicking (6 vs. 2) by reducing the visual gap between training and deployment.

(b) Quantitative Results

model without it achieved none. Similarly, in the soccer ball kicking task, segmentation resulted
in 6 successes, compared to 2 without it. By aligning training and testing visual distributions, Em-
bodiment Segmentation ensures consistent and reliable robot performance during the training and
deployment.

D Detailed Analysis on Data Collection Efficiency and Affordability

We compare various data collection methods for robot imitation learning, focusing on throughput,
reliability, cost, usability, and precision. Our evaluation includes teleoperation tools like Gello and
Spacemouse for 6DOF (URS5e) and 7DOF (Kinova Gen3) robots, alongside methods such as Visual
Imitation Made Easy, handheld grippers (e.g., UMI and LEGATO), and devices like VR (Meta Quest
2), AR (Apple Vision Pro), and Kinematic replicate (Gello).

D.1 Data Collection Efficiency

Our framework achieves significantly higher data collection throughput than traditional methods, en-
abling more demonstrations within the same timeframe. The improvement is driven by the natural
and intuitive efficiency of human manipulation, which ensures faster and more reliable task execu-
tion. Figure 7(a) highlights the superior manipulation capabilities of human hands, while Figure 8
quantifies the substantial time savings per episode. For nail hammering and meatball scooping,
Gello and Spacemouse were used as teleoperation methods, respectively. Human hands reduced
data collection time by 73% and 81% for nail hammering and meatball scooping, with consistently
low variation in performance. In more complex tasks like pan flipping, wine balancing, and soccer
ball kicking, teleoperation methods failed entirely due to limitations such as lack of tactile feed-
back, delays, and difficulty handling dynamic or precise actions. Our method further reduces data
collection time by 41% compared to handheld grippers such as UMI [14] in nail hammering. UMI
proved ineffective in wine balancing and pan flipping due to tool inertial slippage or contact-induced
displacement, and failed in soccer kicking because of difficulty localizing large, fast motions. More-
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Table 4: Comparison of Data Collection Methods. This table compares various data collection methods for robotics. For cost, we calculate
only the additional expenses required for data collection, excluding cameras, as they are considered a basic and commonly used sensor for
robots rather than an additional purchase. Each method is assessed based on cost, ease of use, required expertise, precision, and maintenance
effort. Our method stands out as cost-free, easy to use, highly precise, and requiring minimal maintenance.

Method Cost  Ready-to-Use Pre-Knowledge Required Precise Maintenance Expense
Visual Imitation Made Easy [63]  $340 No Yes No Moderate

UMI [14] $371 No Yes Yes Moderate
LEGATO [13] $1060 No Yes Yes Moderate
Spacemouse [18] $169 Yes Yes Yes Low

VR (Meta Quest 2 [67]) $300 Yes Yes No Moderate

AR (Apple Vision Pro [68]) $3499 Yes Yes Yes High

Gello [19] $272 No Yes No Moderate

Ours $0 Yes No Yes Minimal

over, it requires rich textures to build a pre-collection map, which our method does not. These results
underscore the superior efficiency, robustness, and versatility of human manipulation as a scalable
solution for high-quality robot learning datasets.

D.2 Reliability

Figure 7(b) and Figure 7(c) illustrates typical failure cases with Gello, Spacemouse, and UMI [14],
which frequently encounter issues such as safety stops or collisions during data collection. In con-
trast, our method ensures smooth, uninterrupted operation, avoiding these limitations. Traditional
methods face significant challenges in high-speed or complex tasks. For example, Gello and Space-
mouse struggle with replicating the extreme dynamics and precise motions required for flipping
objects like eggs during pan flipping, often resulting in unsuccessful attempts. Similarly, teleoper-
ation delays prevent timely strikes during soccer ball kicking, consistently leading to missed kicks
and repeated failures. In tasks like wine balancing, the absence of tactile feedback impairs precision
during the data collection, causing the wine bottle to tip over during data collection. Furthermore,
in meatball scooping, the velocity vectors generated by Spacemouse input lead to jerky trajectories
with redundant waypoints, significantly reducing efficiency. These challenges make effective train-
ing impractical with traditional methods. By leveraging human manipulation, our framework not
only addresses these limitations but also provides a reliable and scalable solution for dynamic and
precision-demanding tasks.

D.3 Discussion of Data Collection Methods

Table 4 compares various data collection methods based on cost, usability, expertise requirements,
intuitiveness, and precision. Our method incurs no additional cost ($0), unlike hardware-dependent
solutions like UMI and LEGATO, which demand significant investment. This affordability makes
our approach accessible to users from diverse backgrounds without financial constraints. Unlike
hardware-based systems such as UMI, LEGATO, Gello, and Spacemouse, which are prone to mal-
functions and maintenance issues, our hardware-free framework ensures reliability and eliminates
repair delays or expenses. Additionally, it requires no supplementary 3D printing, in contrast to
approaches like Visual Imitation Made Easy, UMI, and LEGATO. The simplicity of our design
promotes inclusivity in collecting large-scale dataset for robot learning research. Our method also
offers a more natural experience compared to tools like Spacemouse, while being far more cost-
effective than VR and AR devices. Moreover, systems like Gello and Spacemouse lack the preci-
sion necessary for dynamic tasks, a limitation addressed by our approach. Overall, our method is
a cost-effective, and accessible solution for data collection, overcoming key drawbacks of existing
approaches while reducing complexity and maintenance needs.
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