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ABSTRACT

Off-policy Actor-Critic algorithms have demonstrated phenomenal experimental
performance but still require better explanations. To this end, we show its policy
evaluation error on the distribution of transitions decomposes into: a Bellman er-
ror, a bias from policy mismatch, and a variance term from sampling. By compar-
ing the magnitude of bias and variance, we explain the success of the Emphasizing
Recent Experience sampling and 1/age weighted sampling. Both sampling strate-
gies yield smaller bias and variance and are hence preferable to uniform sampling.

1 INTRODUCTION

A practical reinforcement learning (RL) algorithm is often in an actor-critic setting (Lin, 1992;
Precup et al., 2000) where the policy (actor) generates actions and the Q/value function (critic)
evaluates the policy’s performance. Under this setting, off-policy RL uses transitions sampled from a
replay buffer to perform Q function updates, yielding a new policy π. Then, a finite-length trajectory
under π is added to the buffer, and the process repeats. Notice that sampling from a replay buffer
is an offline operation and that the growth of replay buffer is an online operation. This implies
off-policy actor-critic RL lies between offline RL (Yu et al., 2020; Levine et al., 2020) and on-
policy RL (Schulman et al., 2015; 2017). From a bias-variance perspective, offline RL experiences
large policy mismatch bias but low sampling variance, while on-policy RL has a low bias but high
variance. Hence, with a careful choice of the sampling from its replay buffer, off-policy actor-critic
RL may achieve a better bias-variance trade-off. This is the direction we explore this work.

To reduce policy mismatch bias, off-policy RL employs importance sampling with the weight given
by the probability ratio of the current to behavior policy (the policy that samples the trajectories)
(Precup et al., 2000; Xie et al., 2019; Schmitt et al., 2020). However, because the behavior policy is
usually not given in practice, one can either estimate the probability ratio from the data (Lazic et al.,
2020; Yang et al., 2020; Sinha et al., 2020) or use other reasonable quantities, such as the Bellman
error (Schaul et al., 2016), as the sampling weight. Even using a naive uniform sampling from the
replay buffer, some off-policy actor-critic algorithms can achieve a nontrivial performance (Haarnoja
et al., 2018; Fujimoto et al., 2018). These observations suggest we need to better understand the
success of off-policy actor-critic algorithms, especially in practical situations where a fixed behavior
policy is unavailable.

Our contributions are as follows. To understand the actor-critic setting without a fixed behavior
policy, we construct a non-stationary policy that generates the averaged occupancy measure. We use
this policy as a reference and show the policy evaluation error in an off-policy actor-critic setting
decomposes into the Bellman error, the policy mismatch bias, and the variance from sampling.
Since supervised learning during the Q function update only controls the Bellman error, we need
careful sampling strategies to mitigate bias and variance. We show that the 1/age weighting or its
variants like the Emphasizing Recent Experience (ERE) strategy (Wang & Ross, 2019) are preferable
because both their biases and variances are smaller than that of uniform weighting.

To ensure the applicability of our explanation to practical off-policy actor-critic algorithms, we adopt
weak but verifiable assumptions such as Lipschitz Q functions, bounded rewards, and a bounded ac-
tion space. We avoid strong assumptions such as a fixed well-explored behavior policy, concentra-
tion coefficients, bounded probability ratios (e.g., ratios of current to behavior policy), and tabular
or linear function approximation. Hence our analysis is more applicable to practical settings. In
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addition, our analysis suggests that 1/age-based samplings (e.g., ERE, ERE apx, 1/age) have advan-
tages in bias and variance. Our experiments verify that SAC (Haarnoja et al., 2018) with 1/age-based
samplings outperform the prior work. Thus, our results not only provide theoretical foundations for
practical off-policy actor-critic RL algorithms but also achieve better performances.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Consider an infinite-horizon Markov Decision Process (MDP) 〈S, A, T, r, γ〉, where S, A are
finite-dimensional continuous state and action spaces, r(s, a) is a deterministic reward function,
γ ∈ (0, 1) is the discount factor, and T (s′|s, a) is the state transition density; i.e., the density of
the next state s′ given the current state and action (s, a). Given an initial state distribution ρ0, the
objective of RL is to find a policy π that maximizes the γ-discounted cumulative reward when the
actions along the trajectory follow π:

max
π

J(π) = max
π

E

[ ∞∑
i=0

γir(si, ai)
∣∣∣s0 ∼ ρ0, ai ∼ π(·|si), si+1 ∼ T (·|si, ai)

]
. (1)

Let ρi(s|ρ0, π, T ) be the state distribution under π at trajectory step i. Define the normalized state
occupancy measure by

ρπρ0(s) , (1− γ)

∞∑
i=0

γiρi(s|ρ0, π, T ). (2)

Ideally, the maximization in (1) is achieved using a parameterized policy πθ and policy gradient
updates with (Sutton et al., 1999; Silver et al., 2014):

∇θJ(πθ) = (1− γ)−1E(s,a)∼ρπθρ0
[(∇θ log πθ(a|s))Qπθ (s, a)]. (3)

Here ρπθρ0 (s, a) = ρπθρ0 (s)πθ(a|s) is given in (2), and Qπθ is the Q function under policy πθ:

Qπ(s, a) = E

[ ∞∑
i=0

γir(si, ai)
∣∣∣s0 = s, a0 = a, ai ∼ π(·|si), si+1 ∼ T (·|si, ai)

]
. (4)

Off-policy RL estimates Qπ by approximating the solution of the Bellman fixed-point equation:

(BπQπ)(s, a) = r(s, a) + γEs′∼T (·|s,a), a′∼π(a|s)Q
π(s′, a′) = Qπ(s, a).

It is well-known that Qπ is the unique fixed point of the Bellman operator Bπ . Hence if
(BπQ̂)(s, a) ≈ Q̂(s, a), then Q̂ may be a “good” estimate of Qπ . In the next subsection, we
will see that an off-policy actor-critic algorithm encourages this to hold for the replay buffer.

2.2 OFF-POLICY ACTOR-CRITIC ALGORITHM

We study an off-policy actor-critic algorithm of the form shown in Alg. 1. In line 2, for episode
index e, πe samples one trajectory of length L. The transitions in this trajectory are then added to
the replay buffer. Since the policies for different episodes are distinct, the collection of transitions
in the replay buffer are generally inconsistent with the current policy. Notice the trajectory is simply
collected by πe, not a perturbed version of πe (e.g., gaussian corrupted version of pie).

Line 3 is a supervised learning that minimizes the Bellman error of Q̂ using gradient descents,
making (BπeQ̂)(s, a) ≈ Q̂(s, a) for (s, a) in the replay buffer. When this holds, we will prove that
the “distance” between Q̂ and Qπ

e

become smaller over the replay buffer. This is a crucial step for
line 4 to be truly useful. In line 4, Qπ

e

is replaced by Q̂, and the policy is updated accordingly.

In practice, line 3 is replaced by mini-batch updates (Fujimoto et al., 2018; Haarnoja et al., 2018)
where the summation of J(Q̂φ) is approximated by a sum over the mini-batches. In section 5.2,
we show that a uniform-weighted mini-batch sampling biases learning towards older samples; this
motivates the need for a countermeasure.
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Algorithm 1 Off-policy Actor-critic Algorithm

Require: Parameterized policy πe = πθe and Q function estimate Q̂φ. Learning rate α.
1: for episode e = 1, 2, ... do
2: Sample a length-L trajectory {(sei , aei )}

L−1
i=0 with initial distribution ρ0(s) and policy πe(a|s).

3: Evaluate the Bellman error as J(Q̂φ) =
∑e
j=1

∑L−1
i=0

(
Q̂φ(sji , a

j
i )− (BπeQ̂φ)(sji , a

j
i )
)2

and
update Q̂φ as φ← φ− α∇φJ(Q̂φ).

4: Approximate Eq. (3) as ∇θĴ(πθ) = (1 − γ)−1E(s,a)∼ρπθρ0
[(∇θ log πθ(a|s))Q̂(s, a)] and up-

date as θe+1 = θe + α∇θĴ(πθ).
5: end for

Note that Alg. 1 seems to be inconsistent in the horizon because the Q function, Eq. (4), is defined
in the infinite horizon but the trajectories are finite-length. In Corollary 1, we will address this
inconsistency by approximating the Q function using finite-length trajectories.

2.3 THE CONSTRUCTION OF OUR BEHAVIOR POLICY

Although Alg. 1 doesn’t have a fixed behavior policy, in Lemma 1, we construct a non-stationary
policy that generates the averaged occupancy measure at every step. This describes the averaged-
over-episode behavior at every trajectory step i of the historical trajectory {(sei , aei )}

L−1,N
i,e=0,1. We

hence define it to be our behavior policy and use it as a reference when analyzing Alg. 1.

The construction is as follows. Denote the state distribution at trajectory step i in episode e as
ρei (s) = ρi(s|ρ0, πe, T ). By Eq. (2), ρπ

e

ρ0 is the state occupancy measure generated by (ρ0, π
e, T ).

Intuitively, ρπ
e

ρ0 describes the discounted state distribution starting at trajectory step 0 in episode e.

More generally, define ρπ
e

ρei
as the state occupancy measure generated by (ρei , π

e, T ). Then, ρπ
e

ρei
describes the discounted state distribution starting at trajectory step i in episode e.

ρπ
e

ρei
(s) , (1− γ)

∞∑
j=i

γj−iρej(s) (5)

Behavior policy through averaging. Since Alg. 1 considers trajectories from all episodes, the
average-over-episodes distribution %(i) = N−1

∑
e ρ

πe

ρei
will be of interest. Namely, %(i) is the

average of all occupancy measures starting at step i. To describe the average-over-episodes behavior
at step i, we want a policy that generates %(i), and Eq. (5) helps construct such a policy. Concretely,
let ρi, π

D
i (a|s) be the averaged state distribution and the averaged policy at step i, respectively.

%(i)(s) , N−1
N∑
e=1

ρπ
e

ρei
(s), ρi(s) , N−1

N∑
e=1

ρei (s), πDi (a|s) ,
∑N
e=1 π

e(a|s)ρπeρei (s)∑N
e=1 ρ

πe
ρei

(s)
. (6)

Lemma 1 shows πDi in Eq. (6) is a notion of behavior policy in the sense that (ρi, π
D
i , T ) generates

%(i); i.e., πDi generates the averaged occupancy measures when the initial state follows ρi. Since πDi
describes the averaged discounted behavior starting at step i, we define it to be our behavior policy.
This is a key to analyzing the policy evaluation error in Alg. 1.

Lemma 1. Let ρπ
D
i

ρi
(s) be the normalized state occupancy measure generated by (ρi, π

D
i , T ). Then

%(i)(s) = ρ
πDi
ρi

(s) a.e. and hence from Eq. (6), N−1
∑N
e=1 ρ

πe

ρei
(s)πe(a|s) = ρ

πDi
ρi

(s)πDi (a|s) a.e.

3 RELATED WORK

There are two main approaches to off-policy RL: importance sampling (IS) (Tokdar & Kass, 2010)
and regression-based approach. IS has a low bias but high variance, while the opposite holds for the
regression-based approach. Below, we briefly review these techniques.
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Importance Sampling. Standard IS uses behavior policy to form an importance weight from the
probability ratio of the current to the behavior policy. For a fully accessible behavior policy, exam-
ples of this approach include: the naive IS weight (Precup et al., 2000), importance weight clipping
(Schmitt et al., 2020) and the marginalized importance weight (Xie et al., 2019; Yin & Wang, 2020;
Yin et al., 2021). Alternatively, one can use the density ratio of the occupancy measures of the
current to the behavior policies (Liu et al., 2018). This is estimated using a maximum entropy ap-
proach (Lazic et al., 2020), a Lagrangian approach (Yang et al., 2020), or a variational approach
(Sinha et al., 2020). A distinct approach emphasizes experience without considering probability
ratios. Examples include emphasizing samples with a higher TD error (Schaul et al., 2016; Horgan
et al., 2018), emphasizing recent experience (Wang & Ross, 2019) or updating the policy towards
the past and discarding distant experience (Novati & Koumoutsakos, 2019). It is also shown that IS
on replay buffer is equivalent to weighting on loss functions (Fujimoto et al., 2020).

Regression-based. A regression-based approach can achieve strong experimental results using
proper exploration and function approximation (Fujimoto et al., 2018; Haarnoja et al., 2018). It also
admits strong theoretical results such as generalization error using a concentration coefficient (Le
et al., 2019), policy evaluation error using bounded probability ratios (Agarwal et al., 2019)[Chap
5.1], minimax optimal bound under linear function approximation Duan et al. (2020), confidence
bounds constructed by kernel Bellman loss Feng et al. (2020). However, these settings require a
fixed behavior policy and bounded probability ratios, which rarely hold in practice. We hence con-
struct a non-stationary behavior policy to avoid this issue.

Combined. Prior work also suggests that combining IS and the regression-based yields robust
results (Dudı́k et al., 2011; Jiang & Li, 2016; Thomas & Brunskill, 2016; Kallus & Uehara, 2020).
It is also common to consider some refined contractions to improve stability. Examples include n-
step Q-learning (Hessel et al., 2018), Retrace (Munos et al., 2016), Peng’s Q (Kozuno et al., 2021),
and other correction techniques (Harutyunyan et al., 2016; Tang et al., 2020; Rowland et al., 2020).

4 POLICY EVALUATION ERROR OF OFF-POLICY ACTOR-CRITIC ALGORITHMS

Let Q∗, Qπ
N

be the Q function of the optimal policy and πN , respectively. Let Q̂ be the estimated
Q function. The performance error |Q̂−Q∗| decomposes into |Q̂−QπN |+ |QπN −Q∗|. The first
term |Q̂−QπN | is the policy evaluation error and is the focus in the off-policy evaluation literature
(Duan et al., 2020). The second term is the policy’s optimality gap and to bound this term currently
requires strong assumptions such as tabular or linear MDPs (Jin et al., 2018; 2020). In an off-policy
actor-critic setting, the policy evaluation error has not been analyzed adequately since most analysis
requires a fixed behavior policy. This is the focus of our analysis.

Suppose we are given the trajectories sampled in the past episodes (the replay buffer). We ana-
lyze the policy evaluation error over the expected distribution of transitions. We express this error
in terms of the Bellman error of Q̂, the bias term in 1-Wasserstein distance between the policies
(πN , πDi ), and the variance term in the number of trajectories N . Note πDi is the behavior policy at
trajectory step i defined in Eq. (6). The use of 1-Wasserstein distance (Villani, 2008) makes the re-
sults applicable to both stochastic and deterministic policies. Since supervised learning only makes
the Bellman error small, we need good sampling strategies to mitigate the bias and variance terms.
We hence investigate sampling techniques from a bias-variance perspective in the next section.

4.1 PROBLEM SETUP

Notation. In episode e, a length-L trajectory {(sei , aei )}
L−1
i=0 following policy πe is sampled

(Alg. 1, line 2). Then, Q̂ is fitted over the replay buffer (line 3). Because the error of Q̂ at step
i depends on the states sampled at steps i, i+ 1, . . . , the importance of these samples (s, a) depends
on the trajectory step i. Also, due to the discount factor, the importance of step j > i is discounted
by γj−i relative to step i. Hence, we will use a Bellman error and a policy mismatch error that
reflects the dependency on the trajectory step and the discount factor. For f : S × A → R and
g : S → R, define an averaging-discounted operator over the replay buffer in N episodes:

ẼLi f(·, ·) , 1

N

N∑
e=1

L−1∑
j=i

(1− γ)γj−if(sej , a
e
j) and ẼLi g(·) , 1

N

N∑
e=1

L−1∑
j=i

(1− γ)γj−ig(sej)
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Using ẼLi , the Bellman error of Q̂ and the distance between the policies (πN , πDi ) on the replay
buffer are written as

εi,L
Q̂

= ẼLi

∣∣∣Q̂(·, ·)− (Bπ
N

Q̂)(·, ·)
∣∣∣,

W i,L
1 = ẼLi W1(πN ||πDi )(·).

(7)

W1(πN ||πDi )(s) = W1(πN (·|s)||πDi (·|s)) is the 1-Wasserstein distance between two policies at
state s, which can be viewed as a function of (s, a). Both the Bellman error εi,L

Q̂
and the policy

mismatch error W i,L
1 depend on trajectory step i and are both discounted by γ.

Assumptions. We now relate the Bellman error and the policy mismatch error defined in Eq. (7)
to the policy evaluation error |Q̂−QπN |. First, to control the error of Q̂ by policy mismatch error in
W1 distance, we assume that for every state, Q̂ and Qπ

N

are LA-Lipschitz over actions. We provide
reasoning for this assumption in the later discussion. Next, observe that both quantities in Eq. (7)
are random with sources of randomness from initial states, policies at different episodes, and the
state transitions. To control this randomness, we need assumptions on the Q functions and apply
a concentration inequality. Because Alg. 1 only samples one trajectory in each episode, higher-
order quantities (e.g., variance) is unavailable. This motivates us to use first-order quantities (e.g., a
uniform bound on the Q functions) and apply Hoeffding’s inequality. Hence, we assume that Q̂(s, a)

and Qπ
N

(s, a) are bounded in the interval [0, rmax/(1 − γ)] and that the action space is bounded
with the diameter diamA. A justification of these assumptions is provided in Appendix A.2.

4.2 POLICY EVALUATION ERROR

Observe that the Q function, Eq. (4), is defined on infinite-length trajectories while the errors, Eq. (7),
are evaluated on length-L trajectories. Discounting makes it possible to approximate the Q functions
using finite-length L. To approximate the Q function at trajectory step i up to a constant error, we
need samples at least to step i+ Ω((1− γ)−1). Hence, we first prove the main theorem with i = 0
and L =∞. Then, we generalize the result to i ≥ 0 and finite L in Corollary 1.

Theorem 1. Let N be the number of episodes. For f : S × A → R, define the operator Ẽ∞0 f ,
1
N

∑N
e=1

∑∞
i=0(1 − γ)γif(sei , a

e
i ). Denote the policy mismatch error and the Bellman error as

W 0,∞
1 = Ẽ∞0 W1(πN ||πD0 )(·) and ε0,∞

Q̂
= Ẽ∞0 |Q̂(·, ·)− (BπN Q̂)(·, ·)|, respectively. Assume

(1) For each s ∈ S, Q̂(s, a) and Qπ
N

(s, a) are LA-Lipschitz in a.

(2) Q̂(s, a) and Qπ
N

(s, a) are bounded and take values in [0, rmax/(1− γ)].

(3) The action space is bounded with diameter diamA <∞.

Then, with probability at least 1− δ,

E(s0,a0)∼ρ0(s)πD0 (a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣

≤ r
max

1− γ

√
1

2N
log

2

δ
+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)√ 2

N
log

2

δ
+

1

1− γ

(
ε0,∞
Q̂

+ 2LAW
0,∞
1

)
.

Theorem 1 expresses the error of Q̂ as the sum of Bellman error, bias, and variance terms. To be
more specific, the first two terms are understood as the “variance from sampling” because these
decrease in the number of episodesN . On the other hand, W 0,∞

1 is the “policy mismatch bias” w.r.t.
πN . Because the behavior policy πD0 is a mixture of the historical policies {πe}Ne=1, Eq. (6), we
expect it to increase in N until πN begins to converge.

Theorem 1 only indicates the difference between Q̂ andQπ
N

at i = 0 and infinite-length trajectories.
We can generalize it to i ≥ 0 and finite-length trajectories as follows. Recall from Eq. (6) and
Lemma 1, the average state distribution at the i-th step, ρi, and the behavior policy at the i-th step,
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πDi , generate the average state occupancy measure, i.e., ρπ
D
i

ρi
= N−1

∑N
e=1 ρ

πe

ρei
a.e. Therefore, by

restricting attention to the states sampled at time steps i, i + 1, . . . the “initial state distribution”
and the behavior policy become ρi and πDi , which generalizes Theorem 1 from i = 0 to i ≥ 0.
In addition, due to γ-discounting, we may use length-L trajectories to approximate infinite-length
ones, provided that L ≥ i+ Ω((1− γ)−1). These observations lead to the following corollary.

Corollary 1. Fix assumptions (1) (2) (3) of Theorem 1. Rewrite the policy mismatch error and the
Bellman error as W i,L

1 = ẼLi W1(πN ||πDi )(·) and εi,L
Q̂

= ẼLi |Q̂(·, ·)− (BπN Q̂)(·, ·)|, respectively.

Note ẼLi is defined in Eq. (7). Then, with probability at least 1− δ,

E(si,ai)∼ρi(s)πDi (a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣ ≤

rmax

1− γ

√
1

2N
log

2

δ
+
( rmax

(1− γ)2
+

2LAdiamA

1− γ
)(√ 2

N
log

2

δ
+ γL−i

)
+

1

1− γ
(
εi,L
Q̂

+ 2LAW
i,L
1

)
.

Moreover, if i ≤ L − log ε
log γ with 0 < ε < 1 and the constants are normalized as LA = c/(1 − γ),

εi,L
Q̂

= ξi,L
Q̂
/(1− γ), then, with probability at least 1− δ,

E(si,ai)∼ρi(s)πDi (a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣

≤Õ
( 1

(1− γ)2

(
(rmax + c · diamA)(1/

√
N + ε) + ξi,L

Q̂
+ c ·W i,L

1

))
,

where Õ(·) is a variant of O(·) that ignores logarithmic factors.

Note that if i = 0 and L = ∞, Corollary 1 is identical to Theorem 1. Because the Bellman error
of Q̂ and the bias of the policy are both evaluated using the averaging-discounted operator ẼLi ,
Corollary 1 implies the difference of Q̂ and Qπ

N

at trajectory step i mainly depends on states at
trajectory steps ≥ i. Since the Q function is a discounted sum of rewards from the current step to
the future, the error at step i should mainly depend on the steps ≥ i.

Normalization. Although the first conclusion in Corollary 1 gives a bound on the error of Q̂, the
constants may implicitly depend on the expected horizon (1−γ)−1.Hence its interpretation requires
care. For instance, LA, the Lipschitz constant of the Q functions w.r.t. actions, is probably the most
tricky constant. While it is used extensively in the prior work (Luo et al., 2019; Xiao et al., 2019; Ni
et al., 2019; Yu et al., 2020), its magnitude is never properly addressed in the literature. Intuitively,
if a policy π is good enough, it should quickly correct some disturbance on actions. In this case,
the rewards after the disturbance only differ in a few trajectory steps, so the Lipschitzness of Qπ in
actions is sublinear in (1 − γ)−1. On the other hand, if the policy π fails to correct a disturbance
δ, due to error propagation, the error δ propagates to every future step, leading to a linear error
dependency to the horizon O(δH). Therefore, the Lipschitzness of Qπ in actions can be as large
as O((1 − γ)−1). In addition to LA, the Bellman error εi,L

Q̂
should scale linearly in (1 − γ)−1

because the Q function represents the discounted cumulative reward, Eq. (4), which scales linearly
in (1 − γ)−1. These observations suggest that εi,L

Q̂
and LA in Corollary 1 are either linear in the

horizon or lie between sublinear and linear. To better capture the dependency on the horizon, we
normalize the constants and get the second conclusion.

Interpretation. The second conclusion shows the approximation error from infinite to finite-

length trajectories is bounded by a constant for i ≤ L − log ε
log γ

Taylor
≈ L − Ω((1 − γ)−1), and will

become harder to control for the higher i due to the lack of samples. Besides, the variance term
dominates when N is small, while the bias term dominates at large N . Therefore, one may imagine
that the training of Alg. 1 has two phases. At phase 1, the variance term dominates and decreases
in N , so the learning improves quickly as more trajectories are collected. At phase 2, the bias term
dominates, so the policy evaluation error becomes harder to improve and πN tends to converge.
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5 PRACTICAL SAMPLING STRATEGIES

As previously mentioned, the supervised learning during the Q function update fails to control the
bias and variance. We need careful sampling techniques during the sampling from the replay buffer
to mitigate the policy evaluation error. In particular, Wang & Ross (2019) proposes to emphasize
recent experience (ERE) because the recent policies are closer to the latest policy. We show below
that the ERE strategy is a refinement of 1/age weighting and that both methods help balance the
expected selection number of each training transition (s, a). Balanced selection numbers reduce
both the policy mismatch bias and sampling variance. Hence, this suggests the potential usefulness
of ERE and 1/age, which we verify through experiments in the last subsection.

5.1 EMPHASIZING RECENT EXPERIENCE

In Wang & Ross (2019), the authors use a length-K trajectory (K may differ across episodes) and
perform K updates. In the k-th (1 ≤ k ≤ K) update, a mini-batch is sampled uniformly from the
most recent ck = max(N0η

k
L0
K , cmin) samples, where N0 is the current size of the replay buffer,

L0 is the maximum horizon of the environment, η is the decay parameter, and cmin is the minimum
coverage of the sampling. For MuJoCo (Todorov et al., 2012) environments, the paper suggests the
values: (L0, η, cmin) = (1000, 0.996, 5000). One can see that η = 1 does a uniform weighting
over the replay buffer, and the emphasis on the recent data becomes larger as η becomes smaller. To
see how the ERE strategy affects the mini-batch sampling, we prove the following result.
Proposition 1. ERE is approximately equivalent (Taylor Approx.) to the non-uniform weighting:

wt ∝
1

max(t, cmin, N0ηL0)
− 1

N0
+
1(t ≤ cmin)

cmin
max

(
ln

cmin

N0ηL0
, 0
)
, (8)

where t is the age of a data point relative to the newest time step; i.e., w1 is the newest sample.

Note that Prop. 1 holds for η 6= 1 because it is derived from the geometric series formula: (1 −
ηn)/(1 − η), which is valid when η 6= 1. Despite this discontinuity, we may still claim that the
ERE strategy performs a uniform weighting when η is close to 1. This is because when η ≈ 1,
Eq. (8) suggests wt is proportional to 1/(N0η

L0) − 1/N0 for all 1 ≤ t ≤ N0, which is a uniform
weighting. The emphasis on the recent experience (indicated by 1(t ≤ cmin)) is also evident from
Eq. (8). Precisely, the second term increases logarithmically ln 1

η when η becomes smaller, so the
smaller η indeed gives more weight on the recent experience.
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Figure 1: Expected selection numbers (aggregate
weights) over a million time steps.

Discussion. A key distinction between the orig-
inal ERE and Prop. 1 is that the original ERE
considers the trajectory length K while Prop. 1
doesn’t. Intuitively, the disappearance of K’s de-
pendency results from the aggregation of all ef-
fects in 1 ≤ k ≤ K updates. We verify that
Eq. (8) tracks the original ERE well in the next
subsection.
Another feature of Prop. 1 is an implicit 1/age
weighting in Eq. (8). Although the original ERE
samples uniformly from the recent ck points, the
aggregate effect of all 1 ≤ k ≤ K updates appears
to be well approximated by a 1/age weighting.

To understand the effect of 1/age, recall from section 2.2 that in practice, Q̂ is updated using mini-
batch samples. Define a point (sei , a

e
i )’s time step as i+ 1 + L · (e− 1). Then the expected number

of times in all batch samples that a point at a certain time step is selected (the expected selection
number) gives the aggregate weight over the time steps. As shown in Figure. 1, 1/age weighting
and ERE apx, Eq. (8), give almost uniform expected selection numbers across time steps while
uniform weighting is significantly biased toward the old samples. Therefore, 1/age weighting and
its variants help balance the expected selection number.
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5.2 POLICY EVALUATION ERROR UNDER NON-UNIFORM WEIGHTS

Recall the expected selection numbers are the aggregate weights over time. To understand the
merit of balanced selection numbers, we develop an error analysis under non-uniform aggregate
weights in the Appendix A.5. In particular, Corollary 2 generalizes Corollary 1 to non-uniform
weights {wi > 0} such that the policy evaluation error is bounded by three terms: Hoeffiding error
Õ(
√∑

i w
2
i /
∑
i wi) (weighted variance), weighted bias W i,L

1,w, and normalized weighted bellman
error ξi,L

Q̂,w
. Since the weighted bellman error is well-controlled by supervised learning, in the follow-

ing, we discuss the weighted biases and variances in ERE, 1/age weighting, and uniform sampling.
We conclude that the ERE and 1/age weighting are better because both of their biases and variances
are smaller than that of uniform sampling.

For the bias from policy mismatch, Figure 1 shows the uniform sampling (for each sampling from
the replay buffer) makes the aggregate weights (expected selection number) bias toward old samples.
Because the old policies tend to be distant from the current policy, the uniform sampling induces a
larger weighted bias W i,L

1,w than ERE and 1/age do.

As for the variance from sampling, we generalize Corollary 1’s uniform case: Õ(1/
√
N) to Corol-

lary 2’s weighted case: Õ(
√∑

i w
2
i /
∑
i wi). That is, the variance under non-uniform weight is

bounded by the Hoeffding error Õ(
√∑

i w
2
i /
∑
i wi) and is reduced to Õ(1/

√
N) when the weights

are equal. Furthermore, one can prove that the Hoeffding error is minimized under uniform weights:

Proposition 2. Let {wt > 0}Nt=1 be the weights of the data indexed by t. Then the Hoeffding error√∑N
t=1 w

2
t /
∑N
t=1 wt is minimized when the weights are equal: wt = c > 0, ∀ t.

Therefore, the variance from sampling is large under non-uniform aggregate weights and is mini-
mized by uniform aggregate weights. Since the uniform sampling leads to more non-uniform aggre-
gate weights than ERE and 1/age weighting, its variance is also larger.

Because the ERE and 1/age weighting have balanced selection numbers (i.e., balanced aggregate
weights), their biases and variance are smaller. They should perform better than uniform weighting
for off-policy actor-critic RL. We will verify this in the next subsection.

5.3 EXPERIMENTAL VERIFICATION

Since we’ve established a theoretical explanation for 1/age-based samplings (ERE, ERE apx, 1/age),
we will explore two main propositions from the preceding subsections: (1) Are 1/age-based sam-
plings better than uniform weighting? (2) Does the approximated ERE proposed in Eq. (8) track the
original ERE well? In addition, since prioritized experience replay (Schaul et al., 2016) (PER) is a
popular sampling method, a natural question is (3) Do 1/age-based samplings outperform PER?

We evaluate five sampling methods (ERE, ERE apx, 1/age weighting, uniform, PER) on five
MuJoCo continuous-control environments (Todorov et al., 2012): Humanoid, Ant, Walker2d,
HalfCheetah, and Hopper. All tasks have a maximum horizon of 1000 and are trained using a Py-
torch Soft-Actor-Critic (Haarnoja et al., 2018) implementation on Github (Tandon, 2018). Because
the standard SAC implementation uses the uniform sampling, by comparing uniform sampling with
the other four methods, we can deduce ways to boost SAC from a sampling’s perspective.

Most hyper-parameters of the SAC algorithm are the same as that in Tandon (2018) except for the
batch size, where we find a batch size of 512 tends to give more stable results. Our code is available
at https://github.com/sunfex/weighted-sac. The SAC implementation and the Mu-
JoCo environment are licensed under the MIT license and the personal student license, respectively.
The experiment is run on a server with an Intel i7-6850K CPU and Nvidia GTX 1080 Ti GPUs.

In Figure 2, 1/age-based samplings (ERE, ERE apx, 1/age) perform better than the uniform weight-
ing does in all tasks. This verifies our preceding assertion that 1/age-based samplings are superior
because their biases and variances of the estimated Q function are smaller. Moreover, ERE and
ERE apx mostly coincide with each other, so Eq. (8) is indeed a good approximation of the ERE
strategy. This also explains the implicit connection between ERE and 1/age weighting strategies:
ERE is almost equivalent to ERE apx and 1/age is the main factor in ERE apx, so ERE and 1/age

8
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Figure 2: ERE, ERE apx, 1/age weighting, PER, and uniform weighting on MuJoCo environments
in a million steps. The solid lines and shaded areas are the means and one standard deviations.

weighting should produce similar results. Finally, ERE and 1/age generally outperform PER, so the
1/age-based samplings that we study achieve nontrivial performance improvements.

Finally, we provide performance comparison with the prior work Fujimoto et al. (2020); Kozuno
et al. (2021) in Table 1). Table 1 shows the SAC with 1/age-based samplings (ERE, ERE apx,
1/age) outperform the prior work. This suggests 1/age-based samplings not only possess simplicity
and theoretical explanations but also achieve better performances.

Methods Hopper HalfCheetah Ant Walker2D Humanoid
SAC+ERE 3402 13591 6516 5530 7147
SAC+ERE apx 3477 13890 6757 5460 7088
SAC+1/age 3496 14328 5950 5774 6664
TD3+LAP (Fujimoto et al., 2020) 3364 10769 5593 4203 5445
TD3+PAL (Fujimoto et al., 2020) 3055 10584 4662 4458 5328
TD3+Peng (Kozuno et al., 2021) X X 4196 3675 X

Table 1: Performance comparison on MuJoCo environments at step 1 million. The numbers are
measured from Fujimoto et al. (2020)[Figure 1] and Kozuno et al. (2021)[Figure 4]. The X symbol
means the data are unavailable from the paper.

6 CONCLUSION

To understand off-policy actor-critic algorithms, we show the policy evaluation error on the expected
distribution of transitions decomposes into the Bellman error, the bias from policy mismatch, and
the variance from sampling. We use this to explain that a successful off-policy actor-critic algorithm
should have a careful sampling strategy that controls its bias and variance. Motivated by the empir-
ical success of Emphasizing Recent Experience (ERE), we prove that ERE is a variant of the 1/age
weighting. We then explain that 1/age-based samplings (e.g., ERE, ERE apx, 1/age) have smaller
bias and variance and are preferable over uniform sampling. Our experiments verify that soft actor-
critic with 1/age-based samplings outperforms the prior work. We hence conclude that a simple but
careful design in the sampling of off-policy actor-critic RL can lead to better performances.

9
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7 ETHICS STATEMENT

Our work explains off-policy actor-critic RL algorithms and designs simple but effective training
techniques. The results apply to real domains where past trajectories are abundant while new sam-
ples are costly, e.g., robotics, recommender systems, and power grid management. RL algorithms
may have positive economic effects by boosting efficiency and lowering risk. But inappropriate
use can have negative societal impacts. These include job loss due to automation, the ethical chal-
lenges of delegating important decisions to a machine, and data privacy issues (e.g., recommendation
agents). These implications apply to most control and RL studies and are not associated with any
specific work.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of the experiments, we’ve provided hyper-parameters in Appendix A.1
and the source code at an anonymous Github page https://github.com/sunfex/
weighted-sac. Discussions on the assumptions are in section 4.1 and justifications are in Ap-
pendix A.2. A complete proof of the theorems and lemmas can be found in Appendix.
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A APPENDIX

A.1 HYPER-PARAMETERS

To train the SAC agents, we use deep neural networks to parameterize the policy and Q functions.
Both networks consist of dense layers with the same widths. Table 2 presents the suggested hyper-
parameters. As mentioned in the experiment section, the hyper-parameters are similar as the imple-
mentation in Tandon (2018).

A.2 JUSTIFICATION OF ASSUMPTIONS

In section 4.1, we introduce three main assumptions in this work. Below is a validation for each.
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Variable Value
Optimizer Adam
Learning rate 3E-4
Discount factor 0.99
Batch size 512
Model width 256
Model depth 3

Table 2: Suggested hyper-parameters for SAC.

Environment Hopper HalfCheetah Walker2D Ant Humanoid
Temperature 0.2 0.2 0.2 0.2 0.05

Table 3: Temperature parameters for SAC in MuJoCo environments.

1. For each s ∈ S, Q̂(s, a) and QπN

(s, a) are LA-Lipschitz in a. As mentioned in the
paragraph ”Normalization” of section 4.2, the Lipschitzness of Qπ

N

is sublinear or linear in the
horizon, which quantifies the magnitude of Qπ

N

’s Lipschitz constant. Since Q̂ approximates
Qπ

N

, Q̂ should have a similar property as long as the training error is well controlled. The
practitioner can also enforce the Lipschitzness of Q̂ using gradient penalty (Gulrajani et al.,
2017) or spectral normalization (Miyato et al., 2018).

2. Q̂(s, a) and QπN

(s, a) are bounded and take values in [0, rmax/(1 − γ)]. This is a
standard assumption in the RL literature. If the bound is violated, one can either clip, translate,
or rescale to obtain new Q functions that satisfy the constraint. Note a bounded reward r(s, a) ∈
[0, rmax] has implied Qπ

N ∈ [0, rmax/(1− γ)].
3. The action space is bounded with diameter diamA < ∞. This is a standard assumption in

continuous-control environments and is usually satisfied in practice. It is also common to use
clipping to ensure the bounds of the actions generated by the policy (Fujita & Maeda, 2018).

A.3 THE CONSTRUCTION OF OUR BEHAVIOR POLICY

We first discuss some important relations between state occupancy measures and Bellman flow op-
erator. Similar results about Fact 1 and 2 be found in Liu et al. (2018)[Lemma 3].
Definition 1 (Bellman flow operator). The Bellman flow operatorBρ0,π,T (·) generated by (ρ0, π, T )
with discount factor γ is defined as

Bρ0,π,T (ρ)(s) , (1− γ)ρ0(s) + γ

∫
T (s|s′, a′)π(a′|s′)ρ(s′)ds′da′.

Fact 1. Bρ0,π,T is a γ-contraction w.r.t. total variational distance.

Proof. Let p1(s), p2(s) be the density functions of some state distributions.

DTV (Bρ0,π,T (p1)||Bρ0,π,T (p2)) =
1

2

∫ ∣∣Bρ0,π,T (p1(s))−Bρ0,π,T (p2(s))
∣∣ds

=
1

2

∫
γ
∣∣∣ ∫ T (s|s′, a′)π(a′|s′)

(
p1(s′)− p2(s′)

)
ds′da′

∣∣∣ds
≤ γ

2

∫
T (s|s′, a′)π(a′|s′)

∣∣p1(s′)− p2(s′)
∣∣ds′da′ds

=
γ

2

∫ ∣∣p1(s′)− p2(s′)
∣∣ds′ = γDTV (p1||p2).

Fact 2. The normalized state occupancy measure ρπρ0 generated by (ρ0, π, T ) with discount factor
γ is a fixed point of Bρ0,π,T ; i.e., Bρ0,π,T (ρπρ0)(s) = ρπρ0(s).
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Proof.

ρπρ0(s) =(1− γ)

∞∑
i=0

γifi(s|ρ0, π, T )

=(1− γ)f0(s|ρ0, π, T ) + γ(1− γ)

∞∑
i=0

γifi+1(s|ρ0, π, T )

=(1− γ)ρ0(s) + γ(1− γ)

∞∑
i=0

γi
∫
T (s|s′, a′)π(a′|s′)fi(s′|ρ0, π, T )ds′da′

=(1− γ)ρ0(s) + γ

∫
T (s|s′, a′)π(a′|s′)(1− γ)

∞∑
i=0

γifi(s
′|ρ0, π, T )ds′da′

=(1− γ)ρ0(s) + γ

∫
T (s|s′, a′)π(a′|s′)ρπρ0(s′)ds′da′ = Bρ0,π,T (ρπρ0)(s).

Thus, the Bellman flow operator is useful to analyze the state occupancy measures, and we have the
following lemma to construct the behavior policy πDi .

Lemma 1. Let ρei (s) the state distribution at trajectory step i in episode e. Let ρπ
e

ρei
(s) be the

normalized occupancy measure starting at trajectory step i in episode e. Then 1
N

∑N
e=1 ρ

πe

ρei
(s) =

ρ
πDi
ρi

(s) a.e., where ρπ
D
i

ρi
is the normalized state occupancy measure is generated by (ρi, π

D
i , T ).

Moreover, we have 1
N

∑N
e=1 ρ

πe

ρei
(s)πe(a|s) = ρ

πDi
ρi

(s)πDi (a|s) a.e.

Proof. Precisely, ρei (s) = ρi(s|ρ0, πe, T ) is the state distribution at trajectory step i following the
laws of (ρ0, π

e, T ). Since ρπ
e

ρei
is the normalized occupancy measure generated by (ρei , π

e, T ), each
ρπ

e

ρei
is the fixed-point of the Bellman flow equation:

ρπ
e

ρei
(s) = (1− γ)ρei (s) + γ

∫
T (s|s′, a′)πe(a′|s′)ρπ

e

ρei
(s′)ds′da′, ∀ e ∈ [1, ..., N ].

This implies the average normalized occupancy measure is the fixed point of the Bellman flow
equation characterized by (ρi, π

D
i , T ):

1

N

N∑
e=1

ρπ
e

ρei
(s) =

1

N

N∑
e=1

[
(1− γ)ρei (s) + γ

∫
T (s|s′, a′)πe(a′|s′)ρπ

e

ρei
(s′)ds′da′

]

= (1− γ)ρi(s) + γ

∫
T (s|s′, a′) 1

N

N∑
e=1

[
πe(a′|s′)ρπ

e

ρei
(s′)
]
ds′da′

= (1− γ)ρi(s) + γ

∫
T (s|s′, a′)

∑N
e=1 π

e(a′|s′)ρπeρei (s′)∑N
e=1 ρ

πe
ρei

(s′)

∑N
e=1 ρ

πe

ρei
(s′)

N
ds′da′

= (1− γ)ρi(s) + γ

∫
T (s|s′, a′)πDi (a′|s′) 1

N

N∑
e=1

ρπ
e

ρei
(s′)ds′da′,

where πDi (a|s) ,
∑N
e=1 π

e(a|s)ρπ
e

ρe
i
(s)∑N

e=1 ρ
πe

ρe
i
(s)

is the average behavior policy at step i. Since the Bellman flow

operator is a γ-contraction in TV distance and hence has a unique fixed point in TV distance, denoted
as ρπ

D
i

ρi
(s), we arrive at 1

N

∑N
e=1 ρ

πe

ρei
(s) = ρ

πDi
ρi

(s) almost everywhere. Also, by construction, we
have

1

N

N∑
e=1

ρπ
e

ρei
(s)πe(a|s) = ρ

πDi
ρi

(s)πDi (a|s) a.e.
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A.4 POLICY EVALUATION ERROR

Lemma 2. If Q(s, a) is LA-Lipschitz in a for any s, then, for any state distribution ρ,

Es∼ρ
∣∣∣Ea∼π1(·|s)Q(s, a)− Ea∼π2(·|s)Q(s, a)

∣∣∣ ≤ LAEs∼ρW1(π1(·|s)||π2(·|s)).

Proof. For any fixed s, we have

Ea∼π1(·|s)Q(s, a)− Ea∼π2(·|s)Q(s, a) = LA

[
Ea∼π1(·|s)

Q(s, a)

LA
− Ea∼π2(·|s)

Q(s, a)

LA

]
≤LA

[
sup
‖f‖Lip≤1

Ea∼π1(·|s)f(a)− Ea∼π2(·|s)f(a)
]

= LAW1(π1(·|s)||π2(·|s)),

where the second line follows from Kantorovich-Rubinstein duality (Villani, 2008). Since the 1-
Wasserstein distance W1 is symmetric, we can interchange the roles of π1 and π2, yielding∣∣∣Ea∼π1(·|s)Q(s, a)− Ea∼π2(·|s)Q(s, a)

∣∣∣ ≤ LAW1(π1(·|s)||π2(·|s)).

Taking the expectation Es∼ρ on both sides completes the proof.

Lemma 3. If Qπ(s, a) is LA-Lipschitz in a for any s, then

E(s0,a0)∼ρ̂0(s)πD0 (a|s)

∣∣∣QπD0 (s0, a0)−Qπ(s0, a0)
∣∣∣ ≤ LA

1− γ
E
s∼ρ

πD0
ρ̂0

W1(πD0 (·|s)||π(·|s)).

Proof. For any (s, a), we have

|Qπ
D
0 (s, a)−Qπ(s, a)|

=γ
∣∣∣Es′∼T (·|s,a)EπD0 Q

πD0 (s′, πD0 (s′))− EπQπ(s′, π(s′))
∣∣∣

≤γEs′∼T (·|s,a)

∣∣∣EπD0 ,πQπD0 (s′, πD0 (s′))−Qπ(s′, πD0 (s′)) +Qπ(s′, πD0 (s′))−Qπ(s′, π(s′))
∣∣∣

≤γEs′∼T (·|s,a)

(∣∣∣EπD0 QπD0 (s′, πD0 (s′))−Qπ(s′, πD0 (s′))
∣∣∣+
∣∣∣EπD0 ,πQπ(s′, πD0 (s′))−Qπ(s′, π(s′))

∣∣∣)
≤γEs′∼T (·|s,a)

(
EπD0

∣∣∣QπD0 (s′, πD0 (s′))−Qπ(s′, πD0 (s′))
∣∣∣+ LAW1(πD0 (·|s′)||π(·|s′))

)
,

where the last line follows from Lemma 2. Let ρπ
D
0
i be the state distribution at step i following the

laws of (ρ̂0, π
D
0 , T ). Take expectation over ρ̂0 and expand the recursive relation. We arrive at

E(s0,a0)∼ρ̂0(s)πD0 (a|s)

∣∣∣QπD0 (s0, a0)−Qπ(s0, a0)
∣∣∣ ≤ LA ∞∑

i=1

γiE
si∼ρ

πD0
i

W1(πD0 (·|si)||π(·|si))

=
LA

1− γ
E
s∼ρ

πD0
ρ̂0

W1(πD0 (·|s)||π(·|s))− LAEs∼ρ̂W1(πD0 (·|s)||π(·|s))

≤ LA
1− γ

E
s∼ρ

πD0
ρ̂0

W1(πD0 (·|s)||π(·|s)),

where the second line follows from ρ
πD0
ρ̂0

= (1− γ)
∑∞
i=0 γ

iρ
πD0
i .

Lemma 4. If Q(s, a) is LA-Lipschitz in a for any s, then

E(s0,a0)∼ρ̂0(s)πD0 (a|s)

∣∣∣Q(s0, a0)−Qπ
D
0 (s0, a0)

∣∣∣
≤
E
(s,a)∼ρ

πD0
ρ̂0

(s)πD0 (a|s)

∣∣∣Q(s, a)− BπQ(s, a)
∣∣∣+ LAW1(π(·|s)||πD0 (·|s))

1− γ
.
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Proof. For any (s, a) ∈ S ×A, we have a recursive relation:∣∣∣Q(s, a)−Qπ
D
0 (s, a)

∣∣∣ =
∣∣∣Q(s, a)− Bπ

D
0 Qπ

D
0 (s, a)

∣∣∣
≤
∣∣∣Q(s, a)− Bπ

D
0 Q(s, a)

∣∣∣+
∣∣∣BπD0 Q(s, a)− Bπ

D
0 Qπ

D
0 (s, a)

∣∣∣
=
∣∣∣Q(s, a)− Bπ

D
0 Q(s, a)

∣∣∣+ γ
∣∣∣Es′∼T (·|s,a),a′∼πD0 (·|s′)Q(s′, a′)−Qπ

D
0 (s′, a′)

∣∣∣
≤
∣∣∣Q(s, a)− Bπ

D
0 Q(s, a)

∣∣∣+ γEs′∼T (·|s,a),a′∼πD0 (·|s′)

∣∣∣Q(s′, a′)−Qπ
D
0 (s′, a′)

∣∣∣
Expand the recursive relation. We have

E(s0,a0)∼ρ̂0(s)πD0 (a|s)

∣∣∣Q(s0, a0)−Qπ
D
0 (s0, a0)

∣∣∣
≤Es0∼ρ̂0Ea0∼πD0 (·|s0)

∣∣∣Q(s0, a0)− Bπ
D
0 Q(s0, a0)

∣∣∣
+ Es0∼ρ̂0

∞∑
i=1

γiEa0,s1,a1,...,si−1,ai−1Esi∼T (·|si−1,ai−1),ai∼πD0 (·|si)

∣∣∣Q(si, ai)− Bπ
D
0 Q(si, ai)

∣∣∣
=Es0∼ρ̂0

∞∑
i=0

γiEa0,s1,a1,...,si,ai∼T,πD0
∣∣∣Q(si, ai)− Bπ

D
0 Q(si, ai)

∣∣∣
=

1

1− γ
E
(s,a)∼ρ

πD0
ρ̂0

(s)πD0 (a|s)

∣∣∣Q(s, a)− Bπ
D
0 Q(s, a)

∣∣∣.
(9)

The last line uses a fact for the normalized occupancy measure :

E
ρ
πD0
ρ̂0

= (1− γ)
[
Es0∼ρ̂0Ea0∼πD0 (·|s0) +

∞∑
i=1

γiEs0∼ρ̂0Ea0∼πD0 (·|s0)...Esi∼T (·|si−1,ai−1),ai∼πD0 (·|si)

]
.

We are almost done once the BπD0 in Eq. (9) is replaced by Bπ . Note that

E
(s,a)∼ρ

πD0
ρ̂0

(s)πD0 (a|s)

∣∣∣Q(s, a)− Bπ
D
0 Q(s, a)

∣∣∣
≤E

(s,a)∼ρ
πD0
ρ̂0

(s)πD0 (a|s)

∣∣∣Q(s, a)− BπQ(s, a)
∣∣∣+
∣∣∣BπQ(s, a)− Bπ

D
0 Q(s, a)

∣∣∣
=E

(s,a)∼ρ
πD0
ρ̂0

(s)πD0 (a|s)

∣∣∣Q(s, a)− BπQ(s, a)
∣∣∣+ γ

∣∣∣Es′∼T (·|s,a)Eπ,πD0 Q(s′, π(s′))−Q(s′, πD0 (s′))
∣∣∣

Lem. 2
≤ E

(s,a)∼ρ
πD0
ρ̂0

(s)πD0 (a|s)

[∣∣∣Q(s, a)− BπQ(s, a)
∣∣∣+ γLAEs′∼T (·|s,a)W1(π(·|s′)||πD0 ·|s′)

]
=E

(s,a)∼ρ
πD0
ρ̂0

(s)πD0 (a|s)

∣∣∣Q(s, a)− BπQ(s, a)
∣∣∣

+ LAE
s∼ρ

πD0
ρ̂0

W1(π(·|s)||πD0 (·|s))− (1− γ)LAEs∼ρ̂0W1(π(·|s)||πD0 (·|s))

≤E
(s,a)∼ρ

πD0
ρ̂0

(s)πD0 (a|s)

∣∣∣Q(s, a)− BπQ(s, a)
∣∣∣+ LAW1(π(·|s)||πD0 (·|s)).

(10)

The second-last line follows from that the distribution of s′ is ρπ
D
0

ρ̂0,1
(s′) =

∫
sa
T (s′|s, a)ρ

πD0
ρ̂0

(s, a),
which satisfies the identity

ρ
πD0
ρ̂0

(s′) = (1− γ)ρ̂0(s′) + γ

∫
T (s′|s, a)ρ

πD0
ρ̂0

(s, a)dsda = (1− γ)ρ̂0(s′) + γρ
πD0
ρ̂0,1

(s′).

Combining Eq. (9) and Eq. (10), the result follows.

Lemma 5. Let 0 ≤ f(s, a) ≤ ∆ be a bounded function for (s, a) ∈ S × A. Let Ẽ∞0 be
the averaging-discounted operator with infinite-length trajectories in N episodes; i.e., Ẽ∞0 f =
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1
N

∑N
e=1

∑∞
i=0(1− γ)γif(sei , a

e
i ). Then, with probability greather than 1− δ,(

Ẽ∞0 − E
ρ
πD0
ρ̂0

(s)πD0 (a|s)

)
f ≤ ∆

√
2

N
log

1

δ
.

Proof. Let δse0(s) be the delta measure at the initial state in episode e. Because the empir-
ical distribution ρ̂0 is composed of the realization of the trajectories’s initial states, we know
ρ̂0 = 1

N

∑N
e=1 δse0 . Then, Lemma 1 implies ρπ

D
0

ρ̂0
is an average of the normalized occupancy mea-

sures in N episodes.

ρ
πD0
ρ̂0

(s)πD0 (a|s) a.e.=
1

N

N∑
e=1

ρπ
e

δse0
(s)πe(a|s)

def. of ρπ
e

δse0=
1

N

N∑
e=1

∞∑
i=0

(1− γ)γiρei (s|δse0 , π
e, T )πe(a|s),

(11)

where ρei is the state density at trajectory step i in episode e. Since (sei , a
e
i ) ∼

ρei (s|δse0 , π
e, T )πe(a|s), we have(

Ẽ∞0 − E
ρ
πD0
ρ̂0

(s)πD0 (a|s)

)
f =

1

N

N∑
e=1

[ ∞∑
i=0

(1− γ)γif(sei , a
e
i )− Eρπeδse0

(s)πe(a|s)f

]
(11)
=

1

N

N∑
e=1

[ ∞∑
i=0

(1− γ)γi
[
f(sei , a

e
i )− E[f(sei , a

e
i )|se0]

]]
=

1

N

N∑
e=1

Me.

(12)

We claim that {Me}Ne=1 defined as Me =
∑∞
i=0(1− γ)γi

[
f(sei , a

e
i )−E[f(sei , a

e
i )|se0]

]
is a martin-

gale difference sequence. To see this, let Fe be the filtration of all randomness from episode 1 to e,
with F0 being a null set. Clearly, we have Me ∈ Fe, E[Me|Fe−1] = 0 and Me ∈ [−∆,∆] since
f(s, a) ∈ [0,∆] by assumption, which proves {Me}Ne=1 is a martingale difference sequence.

Finally, since Me is bounded in [−∆,∆], by Azuma-Hoeffding inequality, we conclude that with
probability greater than 1− δ,

Eq. (12) ≤ N−1
√∑N

e=1(2∆)2

2
log

1

δ
= ∆

√
2

N
log

1

δ
.

Theorem 1. Let N be the number of episodes. For f : S × A → R, define the operator Ẽ∞0 f ,
1
N

∑N
e=1

∑∞
i=0(1 − γ)γif(sei , a

e
i ). Denote the policy mismatch error and the Bellman error as

W 0,∞
1 = Ẽ∞0 W1(πN ||πD0 )(·) and ε0,∞

Q̂
= Ẽ∞0 |Q̂(·, ·)− (BπN Q̂)(·, ·)|, respectively. Assume

(1) For each s ∈ S, Q̂(s, a) and Qπ
N

(s, a) are LA-Lipschitz in a.

(2) Q̂(s, a) and Qπ
N

(s, a) are bounded and take values in [0, rmax/(1− γ)].

(3) The action space is bounded with diameter diamA <∞.

NoteW1(πN ||πDi )(s) meansW1(πN (·|s)||πDi (·|s)), which is a function of s. Then, with probability
greater than 1− δ, we have

E(s0,a0)∼ρ0(s)πD0 (a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣

≤ r
max

1− γ

√
1

2N
log

2

δ
+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)√ 2

N
log

2

δ
+

1

1− γ

(
ε0,∞
Q̂

+ 2LAW
0,∞
1

)
.
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Proof. The proof basically combines Lemma 3, 4 and 5. To start with, the objective is decomposed
as:

E(s0,a0)∼ρ0(s)πD0 (a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣

=H1 + E(s0,a0)∼ρ̂0(s)πD0 (a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣

≤H1 + E(s,a)∼ρ̂0(s)πD0 (a|s)

∣∣∣Q̂(s0, a0)−Qπ
D
0 (s0, a0)

∣∣∣+
∣∣∣QπD0 (s0, a0)−Qπ

N

(s0, a0)
∣∣∣

4, 3

≤ H1 +
1

1− γ
E
(s,a)∼ρ

πD0
ρ̂0

(s)πD0 (a|s)

[∣∣∣Q̂(s, a)− (Bπ
N

Q̂)(s, a)
∣∣∣+ 2LAW1(πN (·|s)||πD0 (·|s))

]
=H1 +

H2

1− γ
+

1

1− γ
Ẽ∞0

[∣∣∣Q̂(·, ·)− (Bπ
N

Q̂)(·, ·)
∣∣∣+ 2LAW1(πN ||πD0 )(·)

]
Assump.
≤ H1 +

H2

1− γ
+

1

1− γ

(
ε0,∞
Q̂

+ 2LAW
0,∞
1

)
.

(13)

Because |Q̂(s, a)−QπN (s, a)| ∈ [0, r
max

1−γ ], we know Ea∼πD0 (·|s)|Q̂(s, a)−QπN (s, a)| ∈ [0, r
max

1−γ ],
too. Suppose ρ̂0 have N independent samples. By Hoeffding’s inequality, with probability ≥ 1− δ,

H1 =
(
Es0∼ρ0 − Es0∼ρ̂0

)
Ea0∼πD0 (·|s0)

∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣ ≤ rmax

1− γ

√
1

2N
log

1

δ
. (14)

Also, let f(s, a) =
∣∣Q̂(s, a)−(BπN Q̂)(s, a)

∣∣+2LAW1(πN (·|s)||πD0 (·|s)). Then f(s, a) is bounded
in [0, r

max

1−γ + 2LAdiamA]. Thereby, Lemma 5 implies that with probability greater than 1− δ,

H2 =
(
E
(s,a)∼ρ

πD0
ρ̂0

(s)πD0 (a|s)
− Ẽ∞0

)[∣∣∣Q̂(s, a)− (Bπ
N

Q̂)(s, a)
∣∣∣+ 2LAW1(πN (·|s)||πD0 (·|s))

]
≤
( rmax

1− γ
+ 2LAdiamA

)√ 2

N
log

1

δ
(15)

Combining Eq. (13), (14) and (15), a union bound implies with probability greater than 1− 2δ,

E(s0,a0)∼ρ0(s)πD0 (a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣

≤ r
max

1− γ

√
1

2N
log

1

δ
+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)√ 2

N
log

1

δ
+

1

1− γ

(
ε0,∞
Q̂

+ 2LAW
0,∞
1

)
Finally, rescaling δ to δ/2 finishes the proof.

Corollary 1. Let ẼLi be the operator defined as ẼLi f = 1
N

∑N
e=1

∑L−1
j=i (1 − γ)γj−if(sej , a

e
j).

Fix assumptions (1) (2) (3) of Theorem 1. Rewrite the policy mismatch error and the Bellman
error as W i,L

1 = ẼLi W1(πN ||πDi )(·) and εi,L
Q̂

= ẼLi |Q̂(·, ·) − (BπN Q̂)(·, ·)|, respectively, where

W1(πN ||πDi )(s) = W1(πN (·|s)||πDi (·|s)). Let ρi(s) be the average state density at trajectory step
i over all N episodes. Then, with probability greater than 1− δ, we have

E(si,ai)∼ρi(s)πDi (a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣ ≤

rmax

1− γ

√
1

2N
log

2

δ
+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)(√ 2

N
log

2

δ
+ γL−i

)
+

1

1− γ

(
εi,L
Q̂

+ 2LAW
i,L
1

)
.

Moreover, if i ≤ L− log ε
log γ and the constants are normalized as LA = c/(1−γ), εi,L

Q̂
= ξi,L

Q̂
/(1−γ),

then, with probability greater than 1− δ, we have

E(si,ai)∼ρi(s)πDi (a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣

≤Õ
( 1

(1− γ)2

(
(rmax + c · diamA)(1/

√
N + ε) + ξi,L

Q̂
+ c ·W i,L

1

))
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Proof. Notice that Theorem 1 is the situation when i = 0 and L = ∞. To push this to i ≥ 0
and L = ∞, recall that Lemma 1 defines the behavior policy πDi , the average state distribution

ρi and the state occupancy measure ρπ
D
i

ρi
at step i. Also, since the trajectories in each episode are

initialized using the same initial state distribution, we have ρ0 = ρ0. Therefore, the objective of
Theorem 1 is actually E(s0,a0)∼ρ0(s)πD0 (a|s)

∣∣∣Q̂(s0, a0)−QπN (s0, a0)
∣∣∣. This is generalized to i ≥ 0

using substitutions: (ρ0, π
D
0 , Ẽ

∞
0 )→ (ρi, π

D
i , Ẽ

∞
i ), yielding

E(si,ai)∼ρi(s)πDi (a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣

≤ r
max

1− γ

√
1

2N
log

2

δ
+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)√ 2

N
log

2

δ
+

1

1− γ

(
εi,∞
Q̂

+ 2LAW
i,∞
1

)
.

Finally, observe that for any bounded f :

Ẽ∞i f ≤ ẼLi f + γL−i‖f‖∞

We arrive at

E(si,ai)∼ρi(s)πDi (a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣

≤ r
max

1− γ

√
1

2N
log

2

δ
+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)(√ 2

N
log

2

δ
+ γL−i

)
+

1

1− γ

(
εi,L
Q̂

+ 2LAW
i,L
1

)
.

As for the second conclusion, with the substitutions in the statement, we know γL−i ≤ ε. Hence,

E(si,ai)∼ρi(s)πDi (a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣

≤ r
max

1− γ

√
1

2N
log

2

δ
+
( rmax

(1− γ)2
+

2c · diamA
(1− γ)2

)(√ 2

N
log

2

δ
+ ε
)

+
1

(1− γ)2

(
ξi,L
Q̂

+ 2c ·W i,L
1

)
=Õ
( 1

(1− γ)2

(
(rmax + c · diamA)(1/

√
N + ε) + ξi,L

Q̂
+ c ·W i,L

1

))

A.5 POLICY EVALUATION ERROR UNDER NON-UNIFORM WEIGHTS

Lemma 6. Following from Lemma 1, let w = {we > 0}Ne=1 be the (unnormalized) weights

for the episodes. We have for the weighted case, 1∑
e we

∑
e weρ

πe

ρei
(s) = ρ

πDi,w
ρi,w

(s) a.e., where

ρ
πDi,w
ρi,w

(s) is the normalized state occupancy measure is generated by (ρi,w, π
D
i,w, T ). Also,

1∑
e we

∑
e weρ

πe

ρei
(s)πe(a|s) = ρ

πDi,w
ρi,w

(s)πDi,w(a|s) a.e.

Proof. The proof is basically a generalization of Lemma 1. Since ρπ
e

ρei
is the normalized occupancy

measure generated by (ρei , π
e, T ), we know each ρπ

e

ρei
is the fixed-point of the Bellman flow equation:

ρπ
e

ρei
(s) = (1− γ)ρei (s) + γ

∫
T (s|s′, a′)πe(a′|s′)ρπ

e

ρei
(s′)ds′da′, ∀ e ∈ [1, ..., N ].
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Taking a weighted average, we get
1∑
e we

∑
e

weρ
πe

ρei
(s)

=
1∑
e we

∑
e

we

[
(1− γ)ρei (s) + γ

∫
T (s|s′, a′)πe(a′|s′)ρπ

e

ρei
(s′)ds′da′

]
=(1− γ)ρi,w(s) + γ

∫
T (s|s′, a′) 1∑

e we

∑
e

we

[
πe(a′|s′)ρπ

e

ρei
(s′)
]
ds′da′

=(1− γ)ρi,w(s) + γ

∫
T (s|s′, a′)

∑
e weπ

e(a′|s′)ρπeρei (s′)∑
e weρ

πe
ρei

(s′)

∑
e weρ

πe

ρei
(s′)∑

e we
ds′da′

=(1− γ)ρi,w(s) + γ

∫
T (s|s′, a′)πDi,w(a′|s′) 1∑

e we

∑
e

weρ
πe

ρei
(s′)ds′da′,

where πDi (a|s) ,
∑
e weπ

e(a|s)ρπ
e

ρe
i
(s)∑

e weρ
πe

ρe
i
(s)

is the weighted behavior policy at step i. Since the Bell-

man flow operator is a γ-contraction in TV distance and hence has a unique (up to difference

in some measure zero set) fixed point, denoted as ρ
πDi,w
ρi,w

(s), we arrive at 1∑
e we

∑
e weρ

πe

ρei
(s) =

ρ
πDi,w
ρi,w

(s) a.e. Finally, by definition of πDi,w(a|s), we conclude that 1∑
e we

∑
e weρ

πe

ρei
(s)πe(a|s) =

ρ
πDi,w
ρi,w

(s)πDi,w(a|s) a.e.

Theorem 2. Let w = {we > 0}Ne=1 be the (unnormalized) weights for the episodes. Let Ẽ∞0,w
be the operator defined as Ẽ∞0,wf = 1∑

e we

∑N
e=1

∑∞
i=0(1 − γ)γiwef(sei , a

e
i ). Fix assump-

tions (1) (2) (3) of Theorem 1. Rewrite the policy mismatch error and the Bellman error as
W 0,∞

1,w = Ẽ∞0,wW1(πN ||πD0,w)(·) and ε0,∞
Q̂,w

= Ẽ∞0,w|Q̂(·, ·) − (BπN Q̂)(·, ·)|, respectively, where

W1(πN ||πD0,w)(s) = W1(πN (·|s)||πD0,w(·|s)). With probability greater than 1− δ, we have

E(s0,a0)∼ρ0(s)πD0,w(a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣ ≤ rmax

1− γ

√ ∑
e w

2
e

2(
∑
e we)

2
log

2

δ

+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)√ 2
∑
e w

2
e

(
∑
e we)

2
log

2

δ
+

1

1− γ

(
ε0,∞
Q̂,w

+ 2LAW
0,∞
1,w

)
.

Proof. The proof basically follows from Theorem 1. Decompose the objective using Lemma 3, 4
as:

E(s0,a0)∼ρ0(s)πD0,w(a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣

=H1 + E(s0,a0)∼ρ̂0,w(s)πD0,w(a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣

≤H1 + E(s,a)∼ρ̂0,w(s)πD0,w(a|s)

∣∣∣Q̂(s0, a0)−Qπ
D
0,w(s0, a0)

∣∣∣+
∣∣∣QπD0,w(s0, a0)−Qπ

N

(s0, a0)
∣∣∣

4, 3

≤ H1 +
1

1− γ
E
(s,a)∼ρ

πD0,w
ρ̂0,w

(s)πD0,w(a|s)

[∣∣∣Q̂(s, a)− (Bπ
N

Q̂)(s, a)
∣∣∣+ 2LAW1(πN (·|s)||πD0,w(·|s))

]
=H1 +

H2

1− γ
+

1

1− γ
Ẽ∞0,w

[∣∣∣Q̂(·, ·)− (Bπ
N

Q̂)(·, ·)
∣∣∣+ 2LAW1(πN ||πD0,w)(·)

]
Assump.
≤ H1 +

H2

1− γ
+

1

1− γ

(
ε0,∞
Q̂,w

+ 2LAW
0,∞
1,w

)
,

(16)

where ρ̂0,w(s) =
∑
e weδ(s−s

e
0)∑

e we
is the weighted empirical initial state distribution. Because

|Q̂(s, a) − QπN (s, a)| ∈ [0, r
max

1−γ ], we know Ea∼πD0,w(·|s)|Q̂(s, a) − QπN (s, a)| ∈ [0, r
max

1−γ ], too.
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By Hoeffding’s inequality, with probability greater than 1− δ,

H1 =
(
Es0∼ρ0 − Es0∼ρ̂0,w

)
Ea0∼πD0,w(·|s0)

∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣

≤ 1∑
e we

√√√√∑e

(
we

rmax

1−γ

)2
2

log
1

δ
=

rmax

1− γ

√ ∑
e w

2
e

2(
∑
e we)

2
log

1

δ
.

(17)

Also, let f(s, a) =
∣∣Q̂(s, a) − (BπN Q̂)(s, a)

∣∣ + 2LAW1(πN (·|s)||πD0,w(·|s)). Then f(s, a) is
bounded in [0, r

max

1−γ + 2LAdiamA]. Using a weighted version of Azuma-Hoeffding in Lemma 5,
we have that with probability greater than 1− δ,

H2 =
(
E
(s,a)∼ρ

πD0,w
ρ̂0,w

(s)πD0,w(a|s)
− Ẽ∞0,w

)[∣∣∣Q̂(s, a)− (Bπ
N

Q̂)(s, a)
∣∣∣+ 2LAW1(πN (·|s)||πD0,w(·|s))

]

≤
( rmax

1− γ
+ 2LAdiamA

)√ 2
∑
e w

2
e

(
∑
e we)

2
log

1

δ

(18)

Combining Eq. (16), (17) and (18), a union bound implies with probability greater than 1− 2δ,

E(s0,a0)∼ρ0(s)πD0,w(a|s)

∣∣∣Q̂(s0, a0)−Qπ
N

(s0, a0)
∣∣∣ ≤ rmax

1− γ

√ ∑
e w

2
e

2(
∑
e we)

2
log

1

δ

+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)√ 2
∑
e w

2
e

(
∑
e we)

2
log

1

δ
+

1

1− γ

(
ε0,∞
Q̂,w

+ 2LAW
0,∞
1,w

)
Finally, rescaling δ to δ/2 finishes the proof.

Corollary 2. Let ẼLi,w be the operator defined as ẼLi,wf = 1∑
e we

∑
e

∑L−1
j=i (1 −

γ)γj−iwef(sej , a
e
j). Fix assumptions (1) (2) (3) of Theorem 1. Rewrite the policy mismatch error and

the Bellman error as W i,L
1,w = ẼLi,wW1(πN ||πDi,w)(·) and εi,L

Q̂,w
= ẼLi,w|Q̂(·, ·) − (BπN Q̂)(·, ·)|, re-

spectively, where W1(πN ||πDi,w)(s) = W1(πN (·|s)||πDi,w(·|s)). Let ρi,w(s) be the average weighted
state density at trajectory step i. Then, with probability greater than 1− δ, we have

E(si,ai)∼ρi,w(s)πDi,w(a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣ ≤ rmax

1− γ

√ ∑
e w

2
e

2(
∑
e we)

2
log

2

δ

+
( rmax

(1− γ)2
+

2LAdiamA
1− γ

)(√ 2
∑
e w

2
e

(
∑
e we)

2
log

2

δ
+ γL−i

)
+

1

1− γ

(
εi,L
Q̂,w

+ 2LAW
i,L
1,w

)
.

Moreover, if i ≤ L− log ε
log γ and the constants are normalized as LA = c/(1−γ), εi,L

Q̂,w
= ξi,L

Q̂,w
/(1−

γ), then, with probability greater than 1− δ, we have

E(si,ai)∼ρi,w(s)πDi,w(a|s)

∣∣∣Q̂(si, ai)−Qπ
N

(si, ai)
∣∣∣

≤Õ
( 1

(1− γ)2

(
(rmax + c · diamA)

(√
(
∑
e

w2
e)/(

∑
e

we)2 + ε
)

+ ξi,L
Q̂,w

+ c ·W i,L
1,w

))

Proof. Observe that for any bounded f :

Ẽ∞i,wf ≤ ẼLi,wf + γL−i‖f‖∞

Thus, we can start from Theorem 2 and prove with the same argument in Corollary 1.
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A.6 PROOF OF EMPHAZING RECENT EXPERIENCE

Proposition 1. The ERE strategy in Wang & Ross (2019) is equivalent to a non-uniform sampling
with weight wt:

wt ∝
1

1− ηL0/K

( 1

max(t, cmin, N0ηL0)
− 1

N0

)
+
1(t ≤ cmin)K

cmin
max

(
1− ln cmin/N0

L0 ln η
, 0
)
,

where t is the age of a data point relative to the newest time step; i.e., w0 is the newest sample.
N0 is the size of the experience replay. L0 = 1000 is the maximum horizon of the environment.
K is the length of the recent trajectory. η ≈ 0.996 is the decay parameter. cmin ≈ 5000 is the
minimum coverage of the sampling. Moreover, the ERE strategy can be approximated (by Taylor
Approximation) as

wt ∝
1

max(t, cmin, N0ηL0)
− 1

N0
+
1(t ≤ cmin)

cmin
max

(
ln

cmin

N0ηL0
, 0
)

Proof. Recall that Wang & Ross (2019) assume a situation of doing K updates in each episode.
In the kth update, the data is sampled uniformly from the most recent ck = max(N0η

k
L0
K , cmin)

points.

To compute the aggregrated weight wt over these K updates, observe that a data point of age t is in
the most recent ck points if ck ≥ t and that the weight in each uniform sample is 1/ck. Therefore,
wt should be proportional to

wt ∝
∑

k: 1≤k≤K,
ck≥t

1

ck
. (19)

Because ck is designed to be lower bounded by cmin, we shall discuss Eq. (19) by cases.

(1) When t > cmin, we know ck > cmin because ck ≥ t is a constraint in the sum. This means
ck = N0η

kL0/K and hence ck ≥ t is equivalent to k ≤ ln t
N0
/ ln ηL0/K . Eq. (19) becomes

∑
k: 1≤k≤K,

ck≥t

1

ck
=

min(K, ln t
N0
/ ln ηL0/K)∑

k=1

1

N0
η−L0k/K (∗)

=

min(K, ln t
N0
/ ln ξ)∑

k=1

1

N0
ξ−k

=

 ξ−1

N0

1−ξ
− logξ

t
N0

1−ξ−1 = 1/t−1/N0

1−ηL0/K
if K > ln t

N0
/ ln ηL0/K

ξ−1

N0

1−ξ−K
1−ξ−1 = η−L0/N0−1/N0

1−ηL0/K
if K ≤ ln t

N0
/ ln ηL0/K

=

{
1/t−1/N0

1−ηL0/K
if t > N0η

L0

1/(N0η
L0 )−1/N0

1−ηL0/K
if t ≤ N0η

L0
=

1

1− ηL0/K

( 1

max(t, N0ηL0)
− 1

N0

)
where (*) is a substitution: ξ = ηL0/K .

(2) When t ≤ cmin, we know ck ≥ t for all k because ck ≥ cmin by definition. Eq. (19)
becomes ∑

k: 1≤k≤K,
ck≥t

1

ck
=

K∑
k=1

1

ck

(∗)
=

min(K, ln
cmin
N0

/ ln ξ)∑
k=1

1

N0
ξ−k + max(K − ln

cmin

N0
/ ln ξ, 0)

1

cmin

(∗∗)
=

1

1− ηL0/K

( 1

max(cmin, N0ηL0)
− 1

N0

)
+ max(K −K ln cmin/N0

L0 ln η
, 0)

1

cmin

=
1

1− ηL0/K

( 1

max(cmin, N0ηL0)
− 1

N0

)
+

K

cmin
max

(
1− ln cmin/N0

L0 ln η
, 0
)
,
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where (*) does a substitution: ξ = ηL0/K and split the sum. (**) reuses the analysis in
case (1).

Combining cases (1) and (2), we arrive at the first conclusion. As for the approximation, since
η ≈ 0.996, let η = 1− κ. We have

1− ηL0/K = 1− (1− κ)L0/K ≈ 1− 1 + κL0/K = κ
L0

K
≈ −L0

K
ln(1− κ) = −L0

K
ln η

Thus the first term in the conclusion of Prop. 1 is proportional to K. The second term is also
proportional to K. Since wt is only made to be proportional to the RHS and both terms on the RHS
become proportional to K, we can remove K on the RHS:

wt ∝
1

−L0 ln η

( 1

max(t, cmin, N0ηL0)
− 1

N0

)
+
1(t ≤ cmin)

cmin
max

(
1− ln cmin/N0

L0 ln η
, 0
)

Finally, because 0 < η < 1, −L0 ln η is a positive number, the above expression can be further
simplified by timing −L0 ln η on the RHS, yielding the result.

Proposition 2. Let {wt > 0}Nt=1 be the weights of the data indexed by t. Then the Hoeffding error√∑N
t=1 w

2
t /
∑N
t=1 wt is minimized when the weights are equal: wt = c > 0, ∀ t.

Proof. Let w = [w1, ..., wN ]> be the weight vector and f(w) =
√
w>w/(1>w) be the Hoeffding

error. Observe that f(w) is of the form:

f(w) = ‖w‖/(1>w) = ‖w/(1>w)‖,

where ‖w‖ =
√
w>w is the 2-norm of w. Thereby, let z = w/(1>w) be the normalized vector.

That f(w) is minimized is equivalent to that g(z) = ‖z‖ is minimized for 1>z = 1. By the lagrange
multiplier, this happens when

∇g =
z

‖z‖
= λ1, for some λ ∈ R.

This can be achieved by zt = c for some c > 0. Therefore, we know f is minimized when

zt =
wt
1>w

= c for some c.

Since 1>w does not depend on t, we conclude that the minimizer happens at wt = c > 0, ∀t.
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