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ABSTRACT

We identify a new task for watermarking – namely the simultaneous identification
of text as being automatically generated alongside the identification of the LLM
user. We show that a naı̈ve approach that treats a text as artificially generated if
a user is correctly identified is prone to problems of false positives arising from
multiple hypothesis comparison. We propose a novel approach 1 that is much
more robust to the number of users. We derive theoretical bounds, and empically
validate our approach.

1 INTRODUCTION

Large Language Models (LLMs) (Radford et al., 2018; 2019; Brown et al., 2020; Achiam et al.,
2023; Touvron et al., 2023a;b) have emerged as the dominant technology across a wide range of
natural language processing tasks. While these models have significantly advanced the field, their
misuse has raised numerous ethical concerns. Of particular concern is the use of LLMs to imperson-
ate human text, and to generate text that appears to represent a sincere effort to engage, but is in fact
automatically generated. Example use cases include the automatic generation of homework; of sci-
entific papers, grants, and reviews; and the automatic generation of spam and astroturfing (Wachter
et al., 2024; Yang et al., 2023; Nikiforovskaya et al., 2020). The primary concern here is that such
automatically generated text can flood the environment, making it impossible to identify sincere
texts that are worth reading and responding to.

In response to these harms, researchers have suggested the use of digital watermarking (Aaronson &
Kirchner, 2023; Fernandez et al., 2023; Kirchenbauer et al., 2023b). These approaches modify the
sampling step of the LLM, allowing for the automatic identification of texts generated by a particular
sampler. If the use of watermarked samplers becomes common, it would be much easier to identify
and manage LLM generated content. However, this is not the only use of digital watermarking. As
experimentally shown in Fernandez et al. (2023), digital watermarking can also be used to identify
individual users of an LLM.

This use of watermarking, which we refer to as user watermarking, caries with it the risk of privacy
violations. For example, if LLMs are used as part of a pseudoanonymization process to rephrase
text, user watermarking could allow the text to be traced back to the account that rephrased the
text. However, if appropriately disclosed, it could replace more intrusive governance measures. For
example, user watermarking would allow LLM service providers to identify and shut down accounts
used for generating spam without requiring the monitoring of every customer’s API call.

However, user watermarking cannot be simultaneously performed alongside standard watermarking
(i.e. identifying if a text is LLM generated). While the most obvious option is to simply say that
a text is LLM generated if it is consistent with any user watermark – this is a form of multiple
hypothesis testing (i.e. either the text was generated with user 1, or user 2, or ...), and if the test is
fixed at a particular sensitivity, we find that the number of false positives increases as the number of
users considered grows, a phenomenon we refer to as the false recognition problem. As discussed
in the research by Liu et al. (2023b); Giboulot & Teddy (2024), false positives are considerably
more critical than false negatives, as erroneously identifying human-generated texts as watermarked
can result in more severe adverse consequences, including the wrongful suspension or shutdown of
user accounts. We demonstrate, both theoretically and empirically, that as the user size expands,
the false recognition bound increases exponentially. This rapid increase leads to failed watermark

1Our code is submitted as supplementary material. We will opensource it on Github after the anonymity
period.
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detection, even within a relatively small key space, hindering the watermark’s capacity to embed
richer information.

To address this issue, we propose a novel Dual Watermark Inspector (DWI) designed to detect the
information embedded within the watermark while mitigating the false positive recognition problem.
Our approach involves a joint encoding of indicator variable and key information into the text.
Specifically, the indicator variable is a binary variable that signals if the text is watermarked. In
contrast, the key information contains user identity encoded as an integer key, following the approach
of previous work (Fernandez et al., 2023). This approach can be easily extended to accommodate
more complex types of information. We use a hash decision function to determine whether the
current token encodes indicator or key information. Then, we follow Aaronson & Kirchner (2023);
Fernandez et al. (2023) to use the Gumbel trick to generate the current token. Afterwards, we
calculate statistics for the indicator variable and key information respectively, mark the text with
high indicator score as watermarked, and return the key with the maximal score as the encoded key.

Furthermore, we perform a rigorous analyses of the false positive error bounds associated with tra-
ditional methods compared to our proposed method. We prove a false positive error bound of a
standard threshold method (Fernandez et al., 2023) as well as Multibit Yoo et al. (2023b). Our the-
ory shows that the False Positive Ratio (FPR) can grow uncontrollably for threshold-based methods
(We refer to this as Full Key Encoding (FKE) in this paper) particularly when the key space, corre-
sponding to the number of user identities, is large or the text length is short. We analyze our method
theoretically and demonstrate that it significantly outperforms the FKE method. Specifically, we
prove that if the key space is larger than around 100, our method has a better FPR upper bound than
FKE. Additionally, we propose a Hybrid Dual Watermark Inspector (HDWI) strategy that combines
the DWI method and the original FKE method, with another theoretical bound to guarantee perfor-
mance. Both our theoretical and empirical findings indicate that our proposed approach surpasses
existing methods and substantially decreases the false recognition rate.

The contributions of this paper are as follows: (1) We conduct a rigorous theoretical and empiri-
cal analysis of the false recognition problem in watermarking for LLMs; (2) We propose a novel
analysis of the false positive rate, and illustrate the potential severity of this problem under specific
conditions, such as variations in text length, key space size, and other relevant factors; (3) We intro-
duce a novel method DWI to reduce the false recognition rate, while preserving a high true positive
rate, and empirically demonstrate the effectiveness of our proposed method.

2 RELATED WORKS

We categorize existing watermarking methods into two categories: Watermark Indicators and Infor-
mation Conveyance. Watermark Indicators encode a specific indicator within LLM-generated text,
that indicates whether the text is generated by a watermarked LLM or not. Aaronson & Kirchner
(2023); Fernandez et al. (2023); Fu et al. (2024) suggest employing the Gumbel trick to generate
a corresponding random variable with a distinct distribution for watermarked text. Kirchenbauer
et al. (2023a;b) propose dividing the vocabulary into red and green lists based on preceding tokens.
Christ et al. (2024) introduce the concept of embedding undetectable watermarks in language model
outputs using cryptographic techniques. Zhao et al. (2023) propose the Unigram-Watermark method
to improve the detection accuracy and robustness of watermarks in LLM-generated text.

On the other hand, Information Conveyance methods embed much richer information within the
generated text. Most existing methods embed an integer key into the generated text, which could
be used to represent user ID. Fernandez et al. (2023) propose utilizing a hash key to represent
essential information. Yoo et al. (2023a;b); Wang et al. (2023); Boroujeny et al. (2024); Qu et al.
(2024) suggest encoding multibit information in the watermark. Abdelnabi & Fritz (2021) advocate
for adversarially encoding information into the watermark. However, these approaches determine
whether the text is watermarked by reusing the key information. To the best of our knowledge, no
prior work has analyzed how such reusing may result in false recognition as key capacity increases.

In general, the distinction between Indicator and Information Conveyancing is somewhat artificial.
Most indicator methods Aaronson & Kirchner (2023); Fu et al. (2024) draw on work on cryptograph-
ically secure hashing, and their behaviour depends on a hidden salt. Instead of randomly selecting
salts, they can simply be chosen to encode multibit data, and this approach was used by (Fernandez
et al., 2023) to encode user IDs.
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3 DUAL WATERMARK INSPECTOR

We propose a novel approach termed the Dual Watermark Inspector (DWI) to address the false
recognition problem when embedding keys with capacity K into LLM watermarking. Here, capacity
K refers to K distinct keys that can be encoded, such as a user ID. Instead of relying on all tokens to
encode the key information, we selectively require certain tokens to encode the indicator as well as
the key information. Additionally, we propose a Hybrid Dual Watermark Inspector (HDWI) method
that further leverages the key information to assist in detecting the watermark.

Our work builds upon Aaronson & Kirchner (2023); Fernandez et al. (2023), who deliberately con-
structed a statistic to guide both the generation and detection strategies. Although the original pa-
per does not explicitly identify this method as the Gumbel-Max trick (Gumbel, 1954; Maddison
et al., 2014; Jang et al., 2016), we show that this method is essentially a Gumbel-Max trick (Sec-
tion 3.3).We offer additional details to enhance the understanding of how and why the Gumbel-Max
trick contributes to effective watermark detection. This formulation underpins our analysis in Sec-
tion 4. In our discussion, we refer to the method introduced by Fernandez et al. (2023) as Full Key
Encoding (FKE), where all tokens are used to encode a single key.

Notation. We denote the key ID by ξ ∈ [1,K], with K ∈ N representing the total number of keys
i.e. the capacity. The token sequence [x1, . . . , xT ] is generated by an LLM L, where each token xi is
within the range [1, . . . , V ], V being the vocabulary size. Probabilities for predicting the next token
are denoted as pi, with corresponding logits ℓi, which are adjusted to ℓ̃i by incorporating the Gumbel
variable. The indicator function 1(·) returns 1 if the condition is true and 0 otherwise. The hash
function H is used to calculate the hash key. A uniform distribution U(0, 1, s) is used, where s is the
random seed to generate the standard uniform random variables. The scores Sd and Sk(ξ) are used
to detect the presence of watermarks and to retrieve key information, respectively. The parameter r
controls the proportion of tokens for encoding the indicator variable, while τk and τd are threshold
variables, respectively, used to determine if text contains a watermark, and or a particular key.

3.1 GENERATING

During generation, we follow the approach outlined by Aaronson & Kirchner (2023); Fernandez
et al. (2023), using a large language model (LLM) to generate a text sequence while encoding spe-
cific information through a deliberately designed sampling strategy. This strategy modifies standard
stochastic sampling (simply sampling a token based on the corresponding probability) by incorporat-
ing the Gumbel-Max trick, with the random seed for the Gumbel random variable being controlled
by the previous tokens and the information to be encoded. We discuss the relationship between the
Gumbel-Max trick and the original method (Aaronson & Kirchner, 2023; Fernandez et al., 2023) in
Section 3.3. The algorithm outline is provided in Algorithm 1.

Given a key ID ξ and a token sequence [x1, . . . , xi−1], where each xj is a token ID within the range
[1, . . . , V ], with V representing the vocabulary size, an LLM L generates the subsequent token. This
is done by calculating the logit as ℓi = L([x1, . . . , xi−1]), where ℓi ∈ RV represents the logits for
predicting the next token. In the standard generation process, various sampling methods are used
to select a token based on this logits vector, including Top-k sampling (Fan et al., 2018), Nucleus
sampling (Holtzman et al., 2020), and Stochastic sampling (Fan et al., 2018; Holtzman et al., 2020;
Fu et al., 2021). In this paper, following Aaronson & Kirchner (2023); Fernandez et al. (2023), we
focus on stochastic sampling to direct sample a token based on the corresponding probability, which
can be easily extended to other sampling methods, as discussed in Fernandez et al. (2023).

To embed both the indicator and the key information into the watermark, we first use an indicator
hash key hi to determine whether the current token encodes the indicator variable or key information.
Specifically, a hash key hi = H(xi−h, · · · , xi−1) is calculated based on the previous h tokens, and
di is determined using the indicator function di = 1((hi mod 100) < 100rd), where hi ∈ N is the
hash key derived from xi−h to xi−1. The indication ratio parameter rd ∈ [0, 1] is a user-specified
ratio that controls the proportion of tokens used for the indicator variable. The value di can be either
0 or 1: if di = 0, it indicates that the current token will encode an indicator to signify whether the
text is watermarked; if di = 1, the token will encode the key information. The information salt key
Ai is then computed as: Ai(ξ, di) = ξ ·1(di = 1) where ξ is the user-specified key information used
to store keys such as a user ID. This encoding method is naturally robust to deletion or insertion, as
the hash key depends solely on the previous h tokens. If a small number of tokens are removed or
added, most of the remaining salt keys remain unaffected, thereby preventing any significant change
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to the final detection score. We also empirically illustrate this claim using the insertion and deletion
attack experiments described in Appendix A.6.

Subsequently, a new random seed is generated using the hash function hg =
H(xi−h, · · · , xi−1, Ai(ξ, di)), which is then used to construct a standard uniform distribu-
tion ui ∼ U(0, 1, hg). Here, ui ∈ RV is a vector of standard uniform random variables generated
with the random seed hg . This uniform variable is transformed into a Gumbel variable vector
gi = − ln(− ln(ui)), where gi ∈ RV is a vector of standard Gumbel variables with parameters
µ = 0 and β = 1. The adjusted logits are then calculated as ℓ̃i = ℓi + gi. By incorporating
the Gumbel variable gi, we change the sampling process typically used in LLMs to directly
select the token with the maximum score of ℓ̃i. Consequently, the next token xi is determined as
xi = argmaxj ℓ̃ij , where ℓ̃ij is the jth element of the vector ℓ̃i. The Gumbel trick ensures that
the probability of sampling the kth token, P (k = argmaxj ℓ̃ij) = pik is an unbiased estimator
(Fernandez et al., 2023; Liu et al., 2023a), corresponds to the probability associated with the
logit ℓij . This property guarantees that the sampling process remains an unbiased estimator of
the original probability distribution. Thus, the sampling of the next token xi is now driven by a
random uniform vector ui, which is generated based on the previous tokens and the random seed
hg . Therefore, the essence of this conversion is that we shift from detecting the sampling process
to performing statistical analysis on the random variables, which is more feasible and operational.
When detecting, we analyze the distribution of the random variables to extract both the watermark
indicator and key information embedded in the text.

Algorithm 1 Watermarked Text Generation and Detection
Generation Process:
Require: Language model L, key ID ξ, indication ratio rd ∈ [0, 1],

token sequence [x1, . . . , xi−1]
Ensure: Generated token xi

1: Compute logits: ℓi = L([x1, . . . , xi−1])

2: Compute hash key: hi = H(xi−h, · · · , xi−1)

3: Determine indicator: di = 1 if (hi%100) < (100rd) else 0

4: Compute salt key: Ai = ξ · 1(di = 1)

5: Compute random seed: hg = H(xi−h, · · · , xi−1, Ai)

6: Generate uniform random variables: ui ∼ U(0, 1, hg)

7: Transform to Gumbel variables: gi = − ln(− ln(ui))

8: Adjust logits: ℓ̃i = ℓi + gi
9: Next token: xi = argmaxj ℓ̃ij
10: return xi

Detection Process:
Require: Language model L, token sequence [x1, . . . , xT ], se-

quence length T , candidate keys {ξ}, ratio r ∈ [0, 1], thresh-
olds τd, τk

Ensure: Indicator variable Id, key information Ik

1: Initialize indicator score: Sd = 0
2: Initialize key scores: Sk(ξ) = 0 for all ξ
3: for i = 1 to T do
4: Compute hash key: hi = H(xi−h, · · · , xi−1)

5: Determine indicator: di = 1((hi%100) < 100rd)

6: for each candidate key ξ in {ξ} do
7: Compute salt key: Ai(ξ, di) = ξ · 1(di = 1)

8: Compute random seed: hg(ξ) = H(xi−2, · · · , xi−1, Ai)

9: Generate uniform random variables: ui(ξ) ∼
U(0, 1, hg(ξ))

10: Update key score: Sk(ξ) += di · (− ln(1 −
uixi

(ξ)))

11: end for
12: Update indicator score: Sd += (1 − di) · (− ln(1 − uixi

(0)))

13: end for
14: Compute indicator variable: Id = 1(Sd > τd)

15: Identify key information: Ik = argmaxξ Sk(ξ)

16: return Id, Ik

* Green highlights represent newly added components in DWI compared with FKE.

3.2 DETECTING

When detecting the watermark (the algorithm outline is provided in Algorithm 1), we follow the
same procedure by using the previous tokens and the salt key to recover the random variable ui(ξ) ∈
RV corresponding to the current token ID xi and a probing key ID ξ and we denote uixi

(ξ) as
the xi-th element of the vector ui(ξ). If the text is not generated by above generating procedure
or if the salt key does not match, the corresponding random variables will simply be uniformly
distributed. However, if the text is generated with the specified procedure and the correct salt key,
the corresponding random variable will follow a Beta distribution (Fernandez et al., 2023), as it is
the maximum element of a uniform vector. Then, we use a specific test variable Sd to differentiate
between these two distributions.

Specifically, given an LLM L and token sequence [x1, . . . , xT ], where each xi is a token ID within
the range [1, . . . , V ] and T ∈ N is the sequence length, we detect the indicator variable Id ∈ {0, 1}
and key information Ik ∈ [1, . . . ,K] using deliberately designed score functions. Simliar to the gen-
erating phase, we first calculate the hash key based on previous tokens as hi = H(xi−h, · · · , xi−1)
and di = 1((hi mod 100) < 100rd), where hi is a natural number and di is in {0, 1}. Unlike
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the generating process, here, the key information is unknown and must be inferred, Ai is made a
function of ξ and di, resulting in different values for Ai(ξ, di) defined as Ai(ξ, di) = ξ · 1(di = 1).

Then, we calculate the random seed hg as a function of Ai(ξ, di), denoted as hg(ξ) =
H(xi−h, · · · , xi−1, Ai(ξ, di)), and use it to generate the random seed ui(ξ) ∼ U(0, 1, hg(ξ)), where
ui(ξ) ∈ RV is a vector of standard uniform random variables generated with the seed hg(ξ). It is
important to note that for unwatermarked text or when the salt key does not match the generating
key, the xi-th random variable in ui (denoted as uixi ) will simply follow a uniform distribution.
However, if the text is watermarked and the salt key is correct, the xi-th random variable in ui is
sampled as the maximum of the Gumbel-modified logits ℓi, leading to a Beta distribution (Fernandez
et al., 2023). Similiar to the detection method (Aaronson & Kirchner, 2023; Fernandez et al., 2023),
we calculate the score as Sd = −

∑T
i (1−di) ln(1−uixi(0)) and Sk(ξ) = −

∑T
i di ln(1−uixi(ξ)),

where Sd is the indicator score to decide whether it is watermarked or not. Additionally, Sk(ξ) is the
key information score, indicating the likelihood that key ξ is embedded. We calculate the indicator
variable as Id = 1(Sd > τd) and the user key information Ik as the argument maximizing Sk(ξ)
which denotes as Ik = argmaxξ Sk(ξ).

The original paper showing user watermarking Fernandez et al. (2023) considered two separate
tasks; either standard watermarking, in which all tokens are used to indicate if a text was LLM
encoded, or a second strategy in which all tokens were used to encode key/user information. They do
not consider the task of jointly identifying if it is LLM generated while simultaneously identifying a
second key. To answer this question, we propose a simple baseline, FKE, that introduces a threshold
τk, where samples with the maximum score maxξ Sk(ξ) below τk are considered not watermarked.
In the FKE method, all tokens are used to encode the key information, and the maximal score is
used to determine whether it is watermarked. We also explore extensions of the DWI framework to
search for potential improvements. The FKE method and models we investigated are shown below:

Full Key Encoding (FKE). We extend the method proposed by Fernandez et al. (2023) by utilizing
the maximal score within the full key space and checking if it exceeds a specified threshold τk. In
FKE, as all tokens are used to encode the key informaiton, Sk(ξ) = −

∑T
i ln(1 − uixi(ξ)) . Id

is determined as Id = 1(maxξ Sk(ξ) > τk), where the condition evaluates whether the maximum
score maxξ Sk(ξ) surpasses the key threshold τk.

Partial Key Encoding (PKE). To better compare the results of PKE with our proposed strat-
egy, we utilize only a portion of the tokens to encode key information and use this information
to determine whether the text is watermarked. The remaining tokens are left unused for encod-
ing. In PKE, since only partial tokens are used to encode the key information, the score is calcu-
lated as S′

k(ξ) = −
∑T

i 1{Ai(ξ, di) ̸= 0} ln(1 − uixi(ξ)). The indicator Id is then determined as
Id = 1(maxξ S

′
k(ξ) > τk). This method serves as an ablation study of the FKE method.

Hybrid Dual Watermark Inspector (HDWI). The HDWI method combines both the indicator
variable and the key information to determine the watermark status, thereby reducing recognition
errors. In HDWI, Id is calculated as Id = 1(Sd > τd ∩ maxξ Sk(ξ) > τk), where the condition
evaluates whether the score Sd exceeds a certain threshold τd and whether the maximum score
maxξ Sk(ξ) surpasses the key threshold τk.

Mean Rebalance (MR). This heuristic represents a natural variant of the HDWI technique, specif-
ically designed to accommodate variations observed across different sequences. Since the mean
value of scores can vary for each sequence, using a fixed threshold may lead to errors. To mitigate
this, the MR method compares the maximum score Sk(ξ) with the mean value of the scores and
considers the sequence as unwatermarked if the difference is smaller than a particular threshold.
The condition is adjusted as Id = 1(Sd > τd ∩maxξ Sk(ξ)− 1

K

∑K
ξ=1 Sk(ξ) > τk).

Second Rebalance (SR). Similar to the MR method, the SR method utilizes the difference between
the highest score and the second highest score in the sequence. The indicator Id can be calculated
as Id = 1(Sd > τd ∩maxξ Sk(ξ)−maxξ ̸=argmaxSk(ξ) Sk(ξ) > τk), where the condition specifies
that the gap between the maximum score and the second largest score must exceed a threshold τk.

3.3 GUMBEL-MAX TRICK EQUIVALENCE

It is worth noting that in Aaronson & Kirchner (2023)’s work, they do not explicitly generate the
Gumbel variable and select the maximal one. Instead, they perform an equivalent trick by sampling
V random variables u = (u1, . . . , uV ), where uv are i.i.d. with uv ∼ U(0, 1). Then, given the
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probability vector p = (p1, . . . , pV ), the current token is selected as V ⋆ = argmaxv u
1/pv
v . In

Proposition 1, we demonstrate this method is essentially equivalent to the Gumbel-Max Trick.

4 THEORETICAL ANALYSIS

To provide a thorough understanding of the false recognition problem inherent in the traditional Full
Key Encoding (FKE) method, and to demonstrate how our proposed DWI and HDWI approaches
address this issue, we derive the false positive bound for these methods. We denote the capacity
of key information as K (which can be used to represent the total number of user IDs), the gener-
ated sequence length as T , and the user-specified threshold as s. We compute three false positive
bounds. The first bound, presented in Theorem 1, provides a theoretical understanding of the base-
line FKE method, which considers a document as watermarked if it matches any one of the key ID
ξ. Next, we conduct the second analysis in Theorem 2 to demonstrate how and why our proposed
DWI method effectively addresses the false recognition problem. Following this, we perform addi-
tional analysis in Theorem 3, illustrating how the HDWI method can further enhance performance.
Then, we conduct a numerical experiment based on these bounds that empirically demonstrates the
differences between FKE and our proposed approach DWI. We also present an theoretical analysis
of multi-bit methods (Yoo et al., 2023b; Wang et al., 2023), based on Kirchenbauer et al. (2023a) in
Appendix A.12, showing that false recognition persists as key capacity increases.

4.1 FALSE RECOGNITION BOUND

For FKE, we consider a text sequence to be watermarked if the maximum score maxξ Sk(ξ) exceeds
a certain threshold τk. However, some unwatermarked text may also be mistakenly classified as
watermarked due to an inherent issue with this method. Specifically, as discussed in Section 3.2, if
the text is unwatermarked, all elements in the random variable vector ui(ξ) ∈ RV , drawn during
detection, will follow a uniform distribution. We denote uixi

(ξ) as the xi-th element of ui(ξ), which
is the random variable corresponding to the generated token xi. We can compute the probability
that, given all uixi

(ξ) are uniformly distributed, the statistic Sk(ξ), constructed from ui(ξ), exceeds
a specified threshold τk. This probability corresponds to the false positive probability. We begin by
establishing the following theorem.

Theorem 1. Consider random variables uixi
(ξ) drawn from a uniform distribution over [0, 1],

where ξ = [1, . . . ,K] represents the key, and K denotes the total key capacity. The index i =
[1, . . . , T ] refers to the ith token in the generated sequence. Each ui is a vector in RV , where V
is the vocabulary size, and uixi

corresponds to the xith token in ui. The score is calculated as:
Sk(ξ) = − 1

T

∑T
i=1 ln(1 − uixi(ξ)). We consider the sample is watermarked if maxξ Sk(ξ) ≥ τk,

where τk is a threshold parameter. Then the false positive probability is bounded as follows:

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

. (1)

For detailed proof, please refer to Appendix A.1. In Theorem 1, we demonstrate the relationship
between false recognition and the parameters T , K, and τk for the traditional FKE method. Our
theory shows that as T increases, false recognition can be alleviated, which aligns with the intuition
that more tokens provide more accurate information. However, as the capacity K increases, the false
positive bound also increases. This implies that with a larger capacity, traditional FKE methods are
more likely to mistakenly identify plain text as watermarked text. We can also observe that as τk
increases, the bound decreases, indicating that using a stricter threshold can help alleviate false
recognition problem.

The key aspect of our proposed DWI method is that we use a subset of tokens to indicate whether
the text is watermarked, rather than using all of them to encode key information. To analysize our
method, we assume that we use T ′ = ⌊rT ⌋ tokens to encode an indicator variable, where r ∈ (0, 1)
represents the ratio of such tokens, and ⌊·⌋ denotes the floor function. In Theorem 2, we prove the
upper bound for false recognition in the DWI method.

Theorem 2. Consider random variables uixi
drawn from a uniform distribution on [0, 1]. The

index i = [1, . . . , T ′] represents the ith token of the generated text. We calculate the score as
Sd = − 1

T ′

∑T ′

i=1 ln(1 − uixi). We regard the sample as watermarked if Sd ≥ τd, where τd is a
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Figure 1: Numerical comparison of the probability
bounds for DWI and FKE methods, presenting the nu-
merical bounds for Theorem 1 and Theorem 2.

T r = 0.2 r = 0.5 r = 0.8
200 9.3 3.6 1.6
300 21.1 6.0 2.0
400 48.7 10.2 2.5
500 114.7 17.7 3.1

Table 1: Lower bounds for K that DWI
is better than FKE with τd = τk = 1.6
and varying T and r.

threshold parameter. Then the false positive probability is bounded as follows:

Pr (Sd ≥ τd) ≤ exp

(
T ′
(
τd

(
1

e
− 1

)
+ 1

))
. (2)

For detailed proof, please see Appendix A.2. Theorem 2 demonstrates the relationship between
false recognition and the parameters T ′ = ⌊rT ⌋ and τd for the DWI method. Similar to FKE, as T ′

increases, the false recognition problem can be alleviated. Specifically, when T is fixed, increasing
r can help mitigate the false recognition issue. Similarly, we observe that as τd increases, the
bound decreases, indicating that using a stricter threshold can further alleviate the false recognition
problem. It should be noted that the bound is independent of the capacity K, which significantly
helps in reducing the false recognition problem especially when K is large.

To provide a detailed comparison between the FKE and DWI methods, we conducted a numerical
experiment by plotting the probability bound for Theorem 1 with K ranging from 50 to 500, and
the probability bound for Theorem 2 with r ranging from 0.2 to 0.8, as shown in Figure 1. The plot
clearly shows that the bound for DWI methods is significantly lower than that of FKE, demonstrating
the effectiveness of our approach. Since the number of tokens used in the DWI method is smaller
than that used in FKE, we numerically calculated the minimal K value for which DWI’s bound
outperforms FKE’s bound, given specific T and r. As shown in Table 1, if K is larger than 114.7, the
DWI method’s bound is superior for all settings we test. This capacity is relatively small, indicating
that, our DWI method outperforms the FKE method for almost any capacity K. This conclusion is
also supported by our analysis in Lemma 6.

It is a natural extension to combine the FKE and DWI methods to form the HDWI method, as
discussed. Here, we also establish a theoretical analysis of the HDWI method to demonstrate its
effectiveness. The bound is provided in Theorem 3.
Theorem 3. With the same notation introduced in Theorem 1 and Theorem 2, we
use ⌊rT ⌋ tokens to calculate Sd and ⌊(1 − r)T ⌋ tokens to calculate Sk(ξ). The
hybrid probability Pr(Sd > τd ∩ maxξ Sk(ξ) > τk) is bounded as follows:

Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
= Pr (Sd ≥ τd) · Pr

(
max

ξ
Sk(ξ) > τk

)
(3)

≤ exp

(
⌊rT ⌋

(
τd

(
1

e
− 1

)
+ 1

))(
1−

(
1− exp

(
⌊(1− r)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K
)

(4)

Theorem 3 is a straightforward combination of the results from Theorem 1 and Theorem 2. A de-
tailed proof can be found in Appendix A.3. From Theorem 3, a similar conclusion can be observed:
as T increases, the bound decreases, indicating an improved ability to alleviate the false recognition
problem. Similarly, if τk and τd increase, the bound also decreases, further enhancing performance
against false recognition. The effect of r depends on which part is dominant. The bound for the
hybrid strategy generally dominates those of method FKE and DWI. It strictly dominates strategy
DWI when r < 1 and coincides with it when r = 1. Likewise, it coincides with strategy FKE when
K = 1 and strictly dominates it when K > 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Our experiments following the same setup as Fernandez et al. (2023), using the Guanaco-7b model
(Dettmers et al., 2024), an instruction fine-tuned LLaMA model (Touvron et al., 2023a), with the
first 1,000 prompts from the Alpaca dataset (Taori et al., 2023). Our dataset consists of 1,000 sam-
ples, including a mix of watermarked and unwatermarked text. We utilize a salt key to represent
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key IDs ranging from 1 to 1,000. Our framework returns either ‘None’—indicating that the text is
unwatermarked—or an integer representing the key ID. We use 1000 samples mixed with water-
marked and unwatermarked text to test all the methods. To assess the models’ capability across a
range of proportions of watermarked text, we generated 11 datasets with watermarked text ratios
ranging from [0%, 10%, . . . , 90%, 100%]. We report the overall scores by averaging the metrics
across all datasets with different watermarked ratios. We utilized 500 samples as a development set
for hyperparameter selection and another 500 samples as a test set for evaluation with the chosen hy-
perparameters. To determine the optimal hyperparameters, we employed a grid search on τd and τk,
exploring values within the range [0.02, 0.04, . . . , 7.98, 8.0] for all models. We evaluate our method
using three metrics: Accu-I measures the accuracy of determining whether the text is watermarked,
irrespective of the correctness of the key prediction. It converts all results to binary outcomes—1
for watermarked and 0 for non-watermarked—and compares these with the gold standard; Accu-O
represents the overall accuracy, assessing both the accuracy of watermark indicator predictions and
key predictions. and False Positive Ratio (FPR), which indicates the extent of the false recognition
problem. We follow Fernandez et al. (2023) in using cosine similarity (Sim) between watermarked
and unwatermarked text to evaluate generation quality and information loss. A higher cosine simi-
larity score indicates that the generated watermarked text closely resembles the unwatermarked text,
reflecting better quality and minimal information loss. We run all of our models on NVIDIA A100
GPU with 80GB memory and for the inference, we use parallel programming to calcuate the scores
for different candidate ξ on a 128 core Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz machine.

We compare our DWI method, with the following baseline methods: Full Key Encoding (FKE),
Partial Key Encoding (PKE), Hybrid Dual Watermark Inspector (HDWI), Mean Rebalance (MR),
and Second Rebalance (SR). Details of these methods have been discussed in Section 3.2. We
also compare our models to the MultiBit model (Yoo et al., 2023b; Wang et al., 2023). For the
main experiment, we modify the implementation of Yoo et al. (2023b)’s method to align with the
FKE framework. For the generalizability study, we use the original implementation from Yoo et al.
(2023b); Wang et al. (2023), which involves splitting the vocabulary into colored lists.

5.2 MAIN EXPERIMENTS

We compare our proposed DWI and HDWI methods with several baseline models. It can be observed
from the results shown in Table 2 that: (1) The HDWI method and its variants outperform all other
models in Accu-I and FPR, demonstrating the effectiveness of our proposed methods in detecting
watermarked text. The FPR of these models is consistent with our analysis in Theorem 3, further
showing the correctness of our theory. (2) Compared to the baseline model FKE, DWI shows a
slight decrease in Accu-O. This reduction occurs because only half of the tokens are utilized to
encode the key information. However, given that this approach significantly mitigates the false
recognition problem, this compromise is considered acceptable. (3) By comparing HDWI, SR, and
MR, it shows that SR and MR effectively improve performance, highlighting the effectiveness of
these variant strategies to enhance performance. (4) The performance of PKE lags significantly
behind FKE. This discrepancy arises because PKE utilizes only half of the tokens to encode the key
information and leaves the remaining tokens unused. This comparison highlights the crucial role
of the parameter T in influencing performance and further substantiates the validity of our theory.
These results also elucidate why HDWI achieves only marginal improvements; using only half of
the tokens to encode key information may lead to a decline in performance. (5) Regarding the FPR
score, HDWI outperforms both DWI and FKE, further demonstrating the correctness of our analysis
as detailed in Section 4.1. (6) The Sim scores across all models are closely clustered around 0.69,
suggesting that the quality of the generated text is similar among the models. This also indicates
that all models maintain an adequate level of similarity to the unwatermarked text.

5.3 INDICATION RATIO rd

In the main experiment, we set rd = 50%, thereby utilizing half of the tokens to encode whether
the text is watermarked, while the remaining tokens encode the key information. In this subsequent
experiment, we evaluate the ratios rd in [10%, 30%, 50%, 70%, 90%] to assess the impact of em-
ploying more tokens to encode the watermark indicator. The results, depicted in Figure 2, indicate
that (1) employing more tokens for encoding the indicator can substantially mitigate the FPR. (2) It
can be observed that as the watermarked text ratio increases, the FPR also rises. This phenomenon
occurs because, during threshold tuning on development set, when the ratio of watermarked text
approaches zero, the model tends to select a threshold that directly classifies all samples as unwa-
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Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.857 0.754 0.231 0.685
PKE 0.794 0.646 0.25 0.690
MultiBit 0.856 0.62 0.178 0.685
DWI 0.903 0.715 0.109 0.691
HDWI 0.906 0.718 0.092 0.690
MR 0.907 0.719 0.0917 0.690
SR 0.901 0.723 0.0858 0.690

Table 2: Main Experiment. ↑
means higher is better, and ↓
means lower is better.
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Figure 2: Relationship be-
tween FPR and r. Each curve
represents a specific r value.
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Figure 3: Relationship be-
tween FPR and sample size.
Each curve represents a size.
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Figure 4: Watermarked text ratio results. The figures illustrate the relationship between the wa-
termarked text ratio r and the corresponding metrics. Each plot represents a specific metric, with
metrics calculated by varying the thresholds τk and τd according to the watermark ratio r.

termarked and thus make less false positive error. When the watermarked text ratio is high, the
threshold is adjusted to classify more samples as watermarked. This setting leads to an increase in
false positive errors.

5.4 SAMPLE SIZE EXPERIMENT

To demonstrate that our experiments used a reasonable sample size and that our results are not sen-
sitive to sample size, we performed an experiment by varying the total sample size within the range
of [100, 200, 500, 1000, 2000]. As observed in Figure 3, the results did not differ significantly with
changes in sample size. This indicates that the sample size we chose is suitable for our current ex-
periment and that our proposed method has good generalizability, not relying heavily on the number
of samples. It can be observed that as the ratio of watermarked text increases, the FPR also rises.
The underlying reason for this phenomenon is the same as discussed in Section 5.3.

5.5 WATERMARKED TEXT RATIO

The thresholds τk and τd are critical in determining whether a text is watermarked, with their op-
timal values varying according to the watermarked text ratio. The metrics presented in the main
experiment are averaged across datasets with differing ratios of watermarked text. To provide a
comprehensive analysis of performance across various watermarked text ratios, we examine the
relationship between the watermarked text ratio and the metrics Accu-I, Accu-O, and FPR. As illus-
trated in Figure 4, the following observations are made: (1) As the watermarked text ratio increases
from 0% to 100%, Accu-I initially decreases and then rises after the 50% mark. This trend occurs
because, when the watermark ratio is 0%, tuning the threshold on the development set to a very high
value results in classifying all samples as unwatermarked, thereby leading to optimal performance.
A similar situation arises when the watermark ratio nears 100%, tuning the threshold to classify all
samples as watermarked yields the best performance on both the development set and the test set.
(2) Accu-O decreases as the watermark ratio increases, due to models “overfitting” to predict all
samples as unwatermarked when the ratio is 0%. As the ratio increases, predicting the exact key
ID becomes more challenging than merely predicting whether the text is watermarked. However,
Accu-O slightly increases as the watermark ratio approaches 100% for FKE and PKE. This improve-
ment occurs because the models are tuned to avoid predicting any samples as unwatermarked. (3)
With an increasing watermarked text ratio, FPR also increases. This is because, at low watermark
ratios, the tuned thresholds are set very high, making it unlikely for any sample to be classified as
watermarked, thus eliminating false positive inferences. (4) It is evident that our proposed DWI and
HDWI models outperform the FKE model across nearly all watermarked text ratios, demonstrating
the effectiveness of our approach in various scenarios.
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Figure 5: Key capacity results for FKE (left) and HDWI
(right). The figures illustrate the relationship between the
watermarked text ratio and FPR for varying key capaci-
ties ( K ranges from 20 to 2000).
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Figure 6: Generalizability. Based on
Kirchenbauer et al. (2023a)’s meth-
ods, showing the relationship between
FPR and watermarked text ratio (r).

Accu-I↑ Accu-O↑ FPR↓

20 0.877 0.824 0.178
50 0.866 0.796 0.234
100 0.867 0.799 0.233
200 0.853 0.777 0.260
500 0.843 0.748 0.258
1000 0.832 0.735 0.289
2000 0.824 0.721 0.295

Accu-I↑ Accu-O↑ FPR↓

20 0.887 0.786 0.173
50 0.904 0.786 0.149
100 0.901 0.777 0.12
200 0.904 0.757 0.127
500 0.902 0.742 0.103
1000 0.899 0.717 0.141
2000 0.893 0.689 0.095

Table 3: Key capacity results for FKE (left) and HDWI
(right) methods at varying key capacities (20 to 2000).
FKE performance decreases as K increases, while
HDWI remains stable across different key capacities.

Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.926 0.883 0.120 0.550
PKE 0.898 0.835 0.175 0.562
MultiBit 0.936 0.863 0.0412 0.561
DWI 0.959 0.910 0.0178 0.562
HDWI 0.955 0.909 0.0142 0.562
MR 0.957 0.903 0.0243 0.556
SR 0.948 0.910 0.0174 0.562

Table 4: Generalizability. Based on
Kirchenbauer et al. (2023a)’s methods,
which divide the dictionary into green
and red sets.

5.6 KEY CAPACITY EXPERIMENT

To demonstrate the model’s capacities for different key capacities K, we compare the FKE and
HDWI methods with the capacity K ranging in [20, 50, 100, 200, 500, 1000, 2000]. We present the
average scores for FKE and HDWI in Section 5.6 (left) and Section 5.6 (right), respectively. Addi-
tionally, we provide a detailed breakdown of scores relative to different watermarked text ratios in
Figure 5, respectively. It can be observed from the results that: (1) In the FKE model, since it relies
entirely on the maximal score of all keys in the key space, the performance decreases significantly as
K increases. This is supported and guaranteed by our analysis in Theorem 1. (2) The HDWI results
show no significant differences for different key capacities in our HDWI method. This is because
the indicator is the dominant part and can ensure the FPR avoids the influence of the total key count.

5.7 GENERALIZABILITY STUDY

Our previous experiments and analysis were based on the watermarking methods proposed by
Aaronson & Kirchner (2023); Fernandez et al. (2023). To demonstrate that our approach is gen-
eralizable to other methods, we have adapted our technique to models introduced by Kirchenbauer
et al. (2023a); Fernandez et al. (2023), which categorize the word dictionary into green and red lists
based on the keys. We report the scores for different models in Table 4 and provide a detailed break-
down of scores relative to varying watermarked text ratios in Figure 6. The results indicate that (1)
across different models, our models consistently outperform the baseline FKE model significantly.
(2) Our proposed method significantly mitigates the false recognition issue across all watermarked
text ratios. These observations demonstrate that our proposed method can be generalized to other
watermarking methods and effectively alleviate the false recognition problem.

6 CONCLUSION

In this paper, we address the false recognition problem in watermarking methods for text gener-
ated by LLMs. We establish a rigorous theoretical bound demonstrating the inherent inevitability
of false positive errors in Information Conveyance watermarking techniques like FKE. To mitigate
this problem, we introduce a novel DWI method that jointly encodes indicator and key information.
Furthermore, we present a analysis of our proposed method and validate it through extensive em-
pirical experiments. Our results, both theoretical and empirical, indicate that the DWI method and
its variants effectively reduces the false positive ratio, thereby alleviating the false recognition prob-
lem. This enhancement in watermarking reliability can significantly promote the trustworthiness of
LLM-generated content.
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Appendix. Supplementary Material
A.1 PROOF OF THEOREM 1

Theorem 1. Consider random variables uixi(ξ) drawn from a uniform distribution over [0, 1],
where ξ = [1, . . . ,K] represents the key, and K denotes the total key capacity. The index i =
[1, . . . , T ] refers to the ith token in the generated sequence. Each ui is a vector in RV , where V
is the vocabulary size, and uixi corresponds to the xith token in ui. The score is calculated as:
Sk(ξ) = − 1

T

∑T
i=1 ln(1 − uixi

(ξ)). We consider the sample is watermarked if maxξ Sk(ξ) ≥ τk,
where τk is a threshold parameter. Then the false positive probability is bounded as follows:

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

. (1)

Proof Sketch. From Lemma 1, we know that if r is uniformly distributed over [0, 1], then X =
− ln(1− r) follows an exponential distribution with parameter 1. According to Lemma 2, if uixi(ξ)

are independent and uniformly distributed over [0, 1], then Sk(ξ) = − 1
T

∑T
i=1 ln(1 − uixi

(ξ)) ∼
Gamma(T, 1

T ). Using Lemma 3, given X ∼ Gamma(T, 1
T ), with probability 1 − δ, X ≤

log δ
T −1

1/e−1 .

Therefore, for Sk(ξ) ∼ Gamma(T, 1
T ), with probability 1 − δ, Sk(ξ) ≤

log δ
T −1

1/e−1 . Given this bound
for each Sk(ξ), we use Lemma 4 to bound the probability of the maximum Sk(ξ) over ξ. Specif-
ically, Lemma 4 states that Pr (maxξ Sk(ξ) ≤ τk) ≥

(
1− exp

(
T
(
τk
(
1
e − 1

)
+ 1
)))K

. Taking

the complement, we get Pr (maxξ Sk(ξ) ≥ τk) ≤ 1 −
(
1− exp

(
T
(
τk
(
1
e − 1

)
+ 1
)))K

. This
completes the proof of the theorem.

Proof. We will prove the theorem step-by-step using the provided lemmas.

Step 1: Showing the Transformation is Exponential

From Lemma 1, we know that if r is uniformly distributed over [0, 1], then X = − ln(1−r) follows
an exponential distribution with parameter 1, i.e., X ∼ Exp(1).

Step 2: Distribution of Sk(ξ)

From Lemma 2, we know that if uixi(ξ) are independent and uniformly distributed over [0, 1], then

Sk(ξ) = − 1

T

T∑
i=1

ln(1− uixi(ξ)) ∼ Gamma
(
T,

1

T

)
.

Step 3: Bounding Sk(ξ)

Using Lemma 3, given X ∼ Gamma(T, 1
T ), with probability 1− δ,

X ≤
log δ
T − 1

1/e− 1
.

Therefore, for Sk(ξ) ∼ Gamma(T, 1
T ), with probability 1− δ,

Sk(ξ) ≤
log δ
T − 1

1/e− 1
.

Step 4: Probability Bound on Maximum Sk(ξ)

Given Sk(ξ) ≤
log δ
T −1

1/e−1 with probability 1− δ for each i, we use Lemma 4 to bound the probability
of the maximum Sk(ξ).

From Lemma 4, we have:

Pr

(
max

ξ
Sk(ξ) ≤ τk

)
≥
(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.
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Step 5: Complement of Maximum Bound

To find the probability that the maximum of Sk(ξ) exceeds τk, we take the complement of the bound
derived above:

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

Conclusion

We have shown that the probability of the maximum score maxξ Sk(ξ) being greater than or equal
to τk is bounded by

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

This completes the proof of the theorem. With probability 1− δ,

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

A.2 PROOF OF THEOREM 2

Theorem 2. Consider random variables uixi
drawn from a uniform distribution on [0, 1]. The

index i = [1, . . . , T ′] represents the ith token of the generated text. We calculate the score as
Sd = − 1

T ′

∑T ′

i=1 ln(1 − uixi). We regard the sample as watermarked if Sd ≥ τd, where τd is a
threshold parameter. Then the false positive probability is bounded as follows:

Pr (Sd ≥ τd) ≤ exp

(
T ′
(
τd

(
1

e
− 1

)
+ 1

))
. (2)

Proof Sketch. Given uixi drawn from a uniform distribution on [0, 1], we transform uixi using
− ln(1− uixi

), which follows an exponential distribution with parameter 1, as shown in Lemma 1.
The score Sd is then the average of T ′ such transformed variables, scaled by − 1

T ′ , which, by
Lemma 2, follows a Gamma distribution with shape parameter T ′ and scale parameter 1

T ′ . Us-
ing the bound from Lemma 3, with probability 1 − δ, Sd is less than or equal to a certain function
of log δ. By expressing δ in terms of τd and solving, we derive that the false positive probability
Pr(Sd ≥ τd) is bounded by an exponential function exp

(
T ′ (τd ( 1e − 1

)
+ 1
))

. Thus, the false
positive probability is bounded as claimed in the theorem.

Proof. We will prove this theorem using the following lemmas.

From Lemma 1, we know that if uixi ∼ Uniform(0, 1), then − ln(1− uixi) ∼ Exp(1).

Using Lemma 2, the sum of T ′ independent exponential random variables follows a Gamma distri-
bution with shape parameter T ′ and scale parameter 1

T ′ :

Sd = − 1

T ′

T ′∑
i=1

ln(1− uixi
) ∼ Gamma(T ′,

1

T ′ ).

From Lemma 3, we know that for X ∼ Gamma(T ′, 1
T ′ ), with shape parameter T ′ and scale param-

eter 1
T ′ , with probability 1− δ:

X ≤
log δ
T ′ − 1

1/e− 1
.

Adapting this for our case where the shape parameter is T ′, with probability 1− δ:

Sd ≤
log δ
T ′ − 1

1/e− 1
.
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Let’s express δ as a function of τd. We set:

τd =
log δ
T ′ − 1

1/e− 1
.

Solving for log δ:

τd(1/e− 1) =
log δ

T ′ − 1,

log δ = T ′(τd(1/e− 1) + 1).

Thus, we have:
δ = exp (T ′(τd(1/e− 1) + 1)) .

The false positive probability Pr(Sd ≥ τk) is given by δ:

Pr(Sd ≥ τk) = exp (T ′(τd(1/e− 1) + 1)) .

Thus, we have shown that the false positive probability is bounded as follows: with probability 1−δ,

Pr (Sd ≥ τk) ≤ exp

(
T ′
(
τd

(
1

e
− 1

)
+ 1

))
.

A.3 PROOF OF THEOREM 3

Theorem 3. With the same notation introduced in Theorem 1 and Theorem 2, we use ⌊rT ⌋ tokens
to calculate Sd and ⌊(1 − r)T ⌋ tokens to calculate Sk(ξ). The hybrid probability Pr(Sd > τd ∩
maxξ Sk(ξ) > τk) is bounded as follows:

Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
= Pr (Sd ≥ τd) · Pr

(
max

ξ
Sk(ξ) > τk

)
(3)

≤ exp

(
⌊rT ⌋

(
τd

(
1

e
− 1

)
+ 1

))(
1−

(
1− exp

(
⌊(1− r)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K
)

(4)

Proof. We start by considering the two probabilities involved in the hybrid probability Pr(Sd ≥
τd ∩ maxξ Sk(ξ) > τk). By the definition of joint probability for independent events, we can
express the hybrid probability as the product of the individual probabilities:

Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
= Pr (Sd ≥ τd) · Pr

(
max

ξ
Sk(ξ) > τk

)
.

Given that Sd is calculated using ⌊rT ⌋ tokens and Sk(ξ) is calculated using ⌊(1− r)T ⌋ tokens, we
can apply the bounds from Theorem 2 and Theorem 1 respectively.

First, by applying the bound from Theorem 2 to the probability Pr(Sd ≥ τd), we have:

Pr (Sd ≥ τd) ≤ exp

(
⌊rT ⌋

(
τd

(
1

e
− 1

)
+ 1

))
.

Next, by applying the bound from Theorem 1 to the probability Pr(maxξ Sk(ξ) > τk), we obtain:

Pr

(
max

ξ
Sk(ξ) > τk

)
≤ 1−

(
1− exp

(
⌊(1− r)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K

.

Thus, combining these two results, the hybrid probability can be bounded as follows:
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Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
≤ exp

(
⌊rT ⌋

(
τd

(
1

e
− 1

)
+ 1

))
· (5)(

1−
(
1− exp

(
⌊(1− r)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K
)
.

(6)

This completes the proof.

A.4 PROOF OF THE EQUIVALENCE OF GUMBEL-MAX TRICK

Proposition 1. Consider a discrete distribution p = (p1, . . . , pV ) and V random variables u =

(u1, . . . , uV ) such that uv are i.i.d. with uv ∼ U[0,1]. Let V ⋆ = argmaxv u
1/pv
v . Define Gv =

log(pv) + gv , where gv = − log(− log(uv)). Then

V ⋆ = G⋆

Proof.
argmax

v
Gv = argmax

v
(log(pv) + gv)

= argmax
v

(log(pv)− log(− log(uv)))

= argmax
v

exp (log(pv)− log(− log(uv)))

= argmax
v

(exp(log(pv)) · exp(− log(− log(uv))))

= argmax
v

(
pv ·

1

− log(uv)

)
= argmin

v

(
− log(uv)

pv

)
= argmax

v

(
log(uv)

pv

)
= argmax

v

(
log(u1/pv

v )
)

= argmax
v

(
u1/pv
v

)
Therefore,

V ⋆ = argmax
v

u1/pv
v

Thus, the theorem is proved:
V ⋆ = G⋆

A.5 LEMMAS

Lemma 1. Let r be a random variable uniformly distributed over the interval [0, 1]. Define X =
− ln(1− r). Then X follows an exponential distribution with parameter 1, i.e., X ∼ Exp(1).

Proof. To show that X = − ln(1− r) follows an exponential distribution with parameter 1, we first
find the cumulative distribution function (CDF) of X .
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For any x ≥ 0,

FX(x) = P (X ≤ x)

= P (− ln(1− r) ≤ x)

= P (ln(1− r) ≥ −x)

= P (1− r ≥ e−x)

= P (r ≤ 1− e−x).

Since r is uniformly distributed over [0, 1], its CDF is Fr(r) = r. Therefore,

FX(x) = 1− e−x, for x ≥ 0.

Next, we differentiate the CDF to obtain the probability density function (PDF):

fX(x) =
d

dx
FX(x) =

d

dx
(1− e−x) = e−x, for x ≥ 0.

The PDF fX(x) = e−x is the PDF of an exponential distribution with parameter 1. Therefore,
X ∼ Exp(1).

Lemma 2. Let ri be independent and uniformly distributed over the interval [0, 1] for i =

1, 2, . . . , T . Define S = − 1
T

∑T
i=1 ln(1 − ri). Then S follows a Gamma distribution with shape

parameter T and scale parameter 1
T , i.e., S ∼ Gamma(T, 1

T ).

Proof. From Lemma 1, we know that if r is uniformly distributed over [0, 1], then X = − ln(1 −
r) ∼ Exp(1).

Given that ri ∼ Uniform(0, 1), it follows that ui = − ln(1− ri) ∼ Exp(1) for each i.

Now, consider the sum of T such independent exponential random variables:

Y =

T∑
i=1

ui

Since the sum of T independent Exp(1) random variables follows a Gamma distribution with shape
parameter T and scale parameter 1, we have:

Y ∼ Gamma(T, 1)

Next, consider the scaled variable:

S =
Y

T

Since Y ∼ Gamma(T, 1), scaling Y by 1/T (which is equivalent to dividing by T ) gives us a new
Gamma distributed random variable with the same shape parameter T and a scale parameter of 1/T .
Therefore:

S ∼ Gamma
(
T,

1

T

)
Thus, we have shown that S = − 1

T

∑T
i=1 ln(1 − ri) follows a Gamma distribution with shape

parameter T and scale parameter 1
T .

Lemma 3. Given X ∼ Gamma(T, 1
T ), with shape parameter T and scale parameter 1

T , we can
state:

With probability 1− δ,

X ≤
log δ
T − 1

1/e− 1
.
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Proof. We use the Chernoff bound to derive this result.

First, recall the moment generating function (MGF) of X ∼ Gamma(T, 1
T ):

MX(t) = E[etX ] =

(
1− t

T

)−T

,

for t < T .

Using the Chernoff bound, for any t > 0, we have:

P(X ≥ a) = P(etX ≥ eta) ≤ E[etX ]

eta
=

MX(t)

eta
.

Substituting the MGF, we get:

P(X ≥ a) ≤
(
1− t

T

)−T

eta
.

To optimize this bound, we need to minimize the right-hand side with respect to t. Therefore, we
have:

log

((
1− t

T

)−T

eta

)
= −T log

(
1− t

T

)
− ta.

Differentiate with respect to t and set the derivative to zero to find the optimal t:

d

dt

(
−T log

(
1− t

T

)
− ta

)
= 0

−T ·
(
− 1

T
· 1

1− t
T

)
− a = 0

1

1− t
T

− a = 0

1− 1

a
=

t

T

t = T

(
1− 1

a

)
.

Substituting t = T
(
1− 1

a

)
back into the Chernoff bound, we have:

P(X ≥ a) ≤ exp

(
−T log

(
1−

(
1− 1

a

))
− T

(
1− 1

a

)
a

)
.

Simplifying further:

P(X ≥ a) ≤ exp

(
−T log

(
1

a

)
− T (a− 1)

)
.

For a > 0, we can simplify the expression:

P(X ≥ a) ≤ exp (T log(a)− T (a− 1))

≤ exp
(
T
a

e
− T (a− 1)

)
= exp

(
T (

a

e
− a+ 1)

)
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Setting this bound to δ, we get:

exp
(
T (

a

e
− a+ 1)

)
= δ.

Taking the natural logarithm:

T (
a

e
− a+ 1) = log δ,

a =
log δ
T − 1

1/e− 1
,

Therefore, with probability 1− δ:

X ≤
log δ
T − 1

1/e− 1
.

Lemma 4. Given random variables u1, u2, . . . , uK where K > 0, such that with probability 1− δ:

ui ≤
log δ
T − 1

1/e− 1
,

it follows that:

Pr
(
max

i
ui ≤ s

)
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

.

Proof. Given the condition:

Pr

(
ui ≤

log δ
T − 1

1/e− 1

)
≥ 1− δ,

we denote:

b =
log δ
T − 1

1/e− 1
.

We aim to express this condition in terms of s and derive a bound for:

Pr
(
max

i
ui ≤ s

)
.

First, consider:
Pr (ui ≤ b) ≥ 1− δ.

We need to find a function of s that relates δ to s. Suppose s ≥ b. Then:

Pr (ui ≤ s) ≥ Pr (ui ≤ b) ≥ 1− δ.

We aim to find the probability that all ui are less than or equal to s:

Pr
(
max

i
ui ≤ s

)
= Pr (u1 ≤ s, u2 ≤ s, . . . , uK ≤ s) .

Assuming the ui are independent, we can write:

Pr (u1 ≤ s, u2 ≤ s, . . . , uK ≤ s) =

K∏
i=1

Pr (ui ≤ s) .
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Since:
Pr (ui ≤ s) ≥ 1− δ,

we have:
Pr
(
max

i
ui ≤ s

)
≥ (1− δ)K .

Now, we need to express δ in terms of s. Recall the expression for b:

b =
log δ
T − 1

1/e− 1
.

Solving for log δ, we get:

b(1/e− 1) =
log δ

T
− 1,

b(1/e− 1) + 1 =
log δ

T
,

T (b(1/e− 1) + 1) = log δ,

δ = exp (T (b(1/e− 1) + 1)) .

Now, substitute b = s:

δ = exp

(
T

(
s

(
1

e
− 1

)
+ 1

))
.

Hence:

Pr
(
max

i
ui ≤ s

)
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

.

This completes the proof of the lemma.

Lemma 5. Given a random variable X , such that with probability 1− δ:

X ≤
log δ
rT − 1

1/e− 1
,

it follows that:

Pr (X ≤ s) ≥ 1− exp

(
rT

(
s

(
1

e
− 1

)
+ 1

))
.

Proof. Given the condition:

Pr

(
X ≤

log δ
rT − 1

1/e− 1

)
≥ 1− δ,

we denote:

b =
log δ
rT − 1

1/e− 1
.

We aim to express δ as a function of s and find the probability bound for X ≤ s.

Rearranging the expression for b:

b =
log δ
rT − 1

1/e− 1
,

we solve for log δ:

b

(
1

e
− 1

)
=

log δ

rT
− 1,

b

(
1

e
− 1

)
+ 1 =

log δ

rT
,

rT

(
b

(
1

e
− 1

)
+ 1

)
= log δ,
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Figure 7: Insertion attack results. The figure shows the impact of varying insertion ratios (10% to
90%) on the metrics Accu-I, Accu-O, and FPR for different watermarking methods (FKE, DWI,
HDWI).

δ = exp

(
rT

(
b

(
1

e
− 1

)
+ 1

))
.

Next, we relate b to s. Suppose s ≥ b, then:

Pr (X ≤ s) ≥ Pr (X ≤ b) ≥ 1− δ.

Substitute b with s:
b = s.

Now we have:

δ = exp

(
rT

(
s

(
1

e
− 1

)
+ 1

))
.

Thus:
Pr (X ≤ s) ≥ 1− δ,

where δ = exp
(
rT
(
s
(
1
e − 1

)
+ 1
))

.

Therefore:

Pr (X ≤ s) ≥ 1− exp

(
rT

(
s

(
1

e
− 1

)
+ 1

))
.

This completes the proof of the lemma.

Lemma 6. When K ≥ ln(1−exp(rT (s( 1
e−1)+1)))

ln(1−exp(T (s( 1
e−1)+1)))

, it follows that:

1− exp

(
rT

(
s

(
1

e
− 1

)
+ 1

))
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

.

Proof.

1− exp

(
rT

(
s

(
1

e
− 1

)
+ 1

))
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

ln

(
1− exp

(
rT

(
s

(
1

e
− 1

)
+ 1

)))
≥ K ln

(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))
K ≥

ln
(
1− exp

(
rT
(
s
(
1
e − 1

)
+ 1
)))

ln
(
1− exp

(
T
(
s
(
1
e − 1

)
+ 1
)))

This completes the proof.
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Figure 8: Deletion attack results. The figure illustrates the effect of varying deletion ratios (10%
to 90%) on the metrics Accu-I, Accu-O, and FPR for different watermarking methods (FKE, DWI,
HDWI).
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Figure 9: Paraphrase attack results. The figure compares the performance of watermarking methods
(FKE, DWI, HDWI) on original and paraphrased text, showing metrics Accu-I, Accu-O, and FPR
for a watermarked ratio r = 0.5 .

A.6 INSERTION AND DELETION ATTACK

Following Fernandez et al. (2023), we also perform insertion and deletion attacks, randomly insert-
ing or deleting tokens from the generated text to assess whether such modifications can effectively
remove the watermark. We vary the insertion/deletion ratios in the range [10%, · · · , 90%]. For in-
stance, if the insertion ratio is 10%, this indicates that we insert tokens amounting to 10% of the
total sequence length. Similarly, a deletion ratio of 10% means removing 10% of the tokens from
the generated sequence. The experimental results are presented in Figure 7 and Figure 8 respec-
tively. The results indicate the following observations: (1) As the insertion/deletion ratio increases,
all scores decrease. This is expected, as modifying more tokens introduces additional noise, making
it increasingly difficult to classify the tokens. (2) Our proposed DWI and HDWI methods perform
nearly identically to the original FKE method, demonstrating that our approach retains the same
robustness capabilities as the original methods.

A.7 PARAPHRASE ATTACK

We conduct a paraphrase attack to evaluate the robustness of the proposed methods. We set a wa-
termarked ratio r = 0.5 to test whether the models can differentiate watermarked text. We use
Parrot Paraphraser2, a toolkit designed to rephrase sentences generated with watermarks, and we
use the same detection tool to detect the watermark and key information. The results are shown
in Figure 9. We can observe that (1) our proposed DWI and HDWI models outperform the FKE
method, (2) although accuracy decreases after the paraphrase attack, it remains above 0.5, indi-
cating that the methods can still recognize watermarked text and associated keys, and (3) the FPR
decreases after the attack because the models are more likely to classify text as unwatermarked. This
outcome is expected because, after the paraphrase attack, some previously watermarked text can no
longer be detected.

2https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
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Figure 10: Runtime analysis. The left plot shows the generation time, while the right plot shows the
detection time for various watermarking models (NoWatermark, FKE, DWI, HDWI) as a function
of key capacity ( K ranging from 0 to 2000).
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Figure 11: Sequence Length Analysis. The figure presents the impact of sequence length (ranging
from 20 to 1000) on metrics (Accu-I, Accu-O, FPR, and Predicted Positive Rate) for the HDWI
model with a watermark ratio r = 0.5.

A.8 RUNTIME ANALYSIS

To evaluate the computational cost of the watermarking models, we conducted a runtime analysis
experiment by testing the runtime for the same 100 samples across different models, including the
“NoWatermark” generation. The results, shown in Appendix A.8, reveal that (1) in the generation
phase, the runtime for watermarking models is slightly higher than for non-watermarked generation,
as additional time is required for hashing and key encoding, (2) the runtime for all models during
the generation phase is independent of the key capacity, since the watermark encoding process only
runs once and does not depend on the size of the key capacity, and (3) in the detection phase,
the runtime for all watermarking models increases linearly with the key capacity, as the detection
process involves multiple iterations over possible keys to identify the best matching key.

A.9 SEQUENCE LENGTH ANALYSIS

To evaluate how performance is influenced by the length of generated sequences, we conducted
a sequence length analysis experiment using the HDWI model with a watermark ratio r = 0.5.
The experiment tested sequence lengths ranging from 20 to 1000, and the results are presented
in Figure 11. The following observations can be made: (1) as the sequence length increases, the
accuracy scores improve, as longer sequences allow for clearer embedding of the watermark into the
generated text, (2) as the sequence length grows, the FPR metric also increases; however, this does
not necessarily indicate worsening false recognition problems. When the text length is short, the
model rarely recognizes any sequence as watermarked, leading to accuracy scores close to 0.5 and
FPR close to 0. As the sequence length increases, the predicted positive rate rises, resulting in more
false positives, and (3) based on the experiment, the models begin to recognize watermarked text
effectively when the token length exceeds 50, and they achieve good performance when the token
length exceeds 200.
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Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.883 0.834 0.175 0.934
PKE 0.797 0.679 0.20 0.931
MultiBit 0.893 0.655 0.0825 0.922
DWI 0.963 0.744 0.0459 0.932
HDWI 0.923 0.73 0.0517 0.923
MR 0.902 0.739 0.0769 0.923
SR 0.963 0.773 0.0428 0.923

Table 5: BioASQ dataset results.

Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.955 0.95 0.0877 0.901
PKE 0.873 0.80 0.0657 0.905
MultiBit 0.941 0.732 0.175 0.89
DWI 0.955 0.831 0.118 0.905
HDWI 0.973 0.863 0.00952 0.892
MR 0.946 0.846 0.0275 0.892
SR 0.943 0.832 0.0906 0.892

Table 6: LegalQA dataset results.

A.10 EXPERIMENTS WITH MORE DATASETS

To demonstrate the applicability of our model across different scenarios, we conducted experiments
on two domain-specific datasets: a biomedical question dataset, BioASQ (Krithara et al., 2023), and
a legal dataset, LegalQA3. We evaluated our models on these datasets, and the results are presented
in Table 5 and Table 6. The findings show that (1) the performance trends on these domain-specific
datasets are generally consistent with those in the main experiment, with our proposed methods
achieving superior results compared to other models, and (2) the similarity scores in both datasets
are as high as 0.9, indicating that the watermarking method minimally alters the output text, even in
highly specific domains.

A.11 EXPERIMENTS WITH INDICATION RATIO PARAMETER rd

The indication ratio parameter rd controls the ratio between tokens used to encode the indicator
variable and those used to encode key information. We conduct an experiment to evaluate how
different values of rd affect the results, as shown in Figure 12. The findings are summarized as
follows:

(1) As rd increases, both DWI and HDWI exhibit an improvement in the Accu-I score. This demon-
strates that using more tokens to encode the indicator variable enhances the accuracy of detecting
whether the text is watermarked, thereby validating the correctness of our proposed method and
theoretical analysis. (2) With an increase in rd, the Accu-O score initially increases and then de-
creases. At smaller values of rd, the performance improves as more tokens are available to detect
whether the text is watermarked. However, when rd becomes too large, it impairs the detection
of key information, leading to a decline in overall performance. (3) DWI performs worse in both
Accu-I and Accu-O when rd is small. This occurs because DWI does not reuse key information
to detect whether the text is watermarked, giving HDWI an advantage at smaller rd values. This
further underscores the effectiveness of the HDWI method. (4) As rd increases, the FPR decreases.
Allocating more tokens to encode the indicator variable helps alleviate the false positive problem,
improving overall robustness.

A.12 MULTI-BIT ERROR BOUND ANALYSIS

Yoo et al. (2023b); Wang et al. (2024) extended Kirchenbauer et al. (2023a)’s method to support
multi-bit encoding. Their approach detects if a text is watermarked by use of a binomial statistic
(Yoo et al., 2023b). However, since the statistic is based on the maximal value of multiple binomial
variables, it should no longer be considered a measure of a binomial distribution, but instead an
approximate Gumbel distribution (Kotz & Nadarajah, 2000; Haan & Ferreira, 2006).

As the parameter for the Gumbel distribution is challenging to compute, we directly derive a novel
bound for the composed extreme variable. Our analysis reveals that this method continues to suffer
from the false recognition problem.

We follow the notation in Yoo et al. (2023b), and use [r] to denote the sequence of length r, [r] =
[1, 2, · · · , r]. Given a generated sequence [x1, · · · , xT ], Yoo et al. (2023b) first uses a hash key to
compute the position pt of the message m for the t-th token, denoted as ρt = m[pt], where pt ∈ [b]
and ρt ∈ [r]. Here, b is the message length, and r indicates the number of bits each position encodes.

3https://huggingface.co/datasets/dzunggg/legal-qa-v1
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Figure 12: Experiment results with varying indication ratio parameter rd. Higher rd corresponds to
more tokens allocated for encoding the indicator variable.

Finally, the vocabulary V is divided into r blocks [V1, · · · , Vr], and δ is added to the logits of all
tokens in the ρt-th partition Vρt

.

When determining if a text is watermarked, the method calculates the maximal count in each vo-
cabulary block for each position pt normalized by the total count allocated to that position. For the
pt-th position, the random variable Cpt ∈ [0, 1] can be denoted as:

Cpt = max
ρ∈[r]

{∑T
t=1 1(xt ∈ Vρ) · 1(pt = ρ)∑T

t=1 1(pt = ρ)

}
.

Following Yoo et al. (2023b), we approximate the distribution for each block ρ using a binomial
distribution. The total count for each block is approximated as T

b . Therefore, we have:

Cpt
= max

(
X1

T/b
, · · · , Xr

T/b

)
, where Xρ ∼ Binomial

(
T

b
,
1

r

)
.

Yoo et al. (2023b) claims that if the text is unwatermarked, Cpt
≈ 1

r . Based on this, the detection
method tests if Cpt exceeds a predefined threshold, classifying the text as watermarked if this is the
case. However, Yoo et al. (2023b)’s approach approximates the distribution of Cpt

with a binomial
distribution. Since Cpt is the maximum of i.i.d. distributions, it is, in fact, a Gumbel distribution.
As a result, even when the text is not watermarked, Cpt

is still likely to exceed 1
r , leading to excess

false positives.

To further demonstrate this issue, we provide a theoretical analysis of how the random variable Cpt

grows as the key capacity increases. Given the difficulty of computing the parameters of the Gumbel
distribution, we further analyze its tail bounds to examine how the parameter b affects Cpt

. We first
present the following theorem:

Theorem 4. Let Cpt
= max

(
X1

T/b ,
X2

T/b , · · · ,
Xr

T/b

)
, where Xρ ∼ Binomial

(
T
b ,

1
r

)
for all ρ ∈ [r].

Then, the probability that Cpt exceeds a threshold y is bounded by:

Pr(Cpt
≥ y) ≤ r · exp

(
−
2T
(
y − 1

r

)2
b

)
.

Proof. For each block ρ ∈ [r], the normalized count is Xρ

T/b , where Xρ ∼ Binomial
(
T
b ,

1
r

)
. The

expectation of Xρ

T/b is:

E
[
Xρ

T/b

]
=

E[Xρ]

T/b
=

1

r
.

We aim to bound the probability Pr
(

Xρ

T/b ≥ y
)

. This is equivalent to:

Pr

(
Xρ

T/b
≥ y

)
= Pr

(
Xρ ≥ y · T

b

)
.

Using Hoeffding’s inequality for Xρ, we have:

Pr

(
Xρ ≥ y · T

b

)
≤ exp

(
−
2
(
y · T

b − µ
)2

T/b

)
,
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where µ = E[Xρ] =
T
b · 1

r .

Substitute µ into the inequality:

Pr

(
Xρ ≥ y · T

b

)
≤ exp

(
−
2
(
y · T

b − T
b · 1

r

)2
T/b

)
.

Simplify the argument of the exponential:

Pr

(
Xρ

T/b
≥ y

)
≤ exp

(
−
2T
(
y − 1

r

)2
b

)
.

Now, for the maximum Cpt
= max

(
X1

T/b ,
X2

T/b , · · · ,
Xr

T/b

)
, we use the union bound:

Pr(Cpt
≥ y) ≤

r∑
ρ=1

Pr

(
Xρ

T/b
≥ y

)
.

Since the bound for each ρ is identical, we multiply the single block bound by r:

Pr(Cpt ≥ y) ≤ r · exp

(
−
2T
(
y − 1

r

)2
b

)
.

This completes the proof.

It can be observed from Theorem 4 that as the message length b increases, the probability that Cpt
ex-

ceeds a certain threshold, Pr(Cpt ≥ y), also increases. This implies that as the key capacity grows,
the method becomes more prone to false recognition problems. One might argue that increasing r
can also increase the key capacity. However, it should be noted that as r increases significantly, the
vocabulary will be divided into r blocks, causing the ”green list” to become smaller and smaller.
This reduction in the green list size makes it increasingly difficult to contain feasible next tokens,
further complicating the watermarking process.

We further conducted a numerical experiment to demonstrate how the distribution shifts as b in-
creases. The results are presented in Figure 13. We fix r = 10, indicating that each position
contains 10 bits of information, and vary the message length b ∈ [2, 20]. Additionally, we plot the
desired binomial distribution for r = 10 using the red line, as expected in the original paper. The
results demonstrate that (1) as the message length b increases, the expectation of the random variable
Cpt

also rises. For the origional Multibit method, the expected value is 0.1, but it continues to grow
as b increases, further validating the correctness of our theoretical analysis. This shift causes the
unwatermarked text to resemble watermarked text, making it more challenging to distinguish them
using a threshold. (2) Compared with the original binomial distribution, applying the max operation
shifts the distribution to the right, resulting in a narrower distribution with reduced variance.

A.13 WINDOW SIZE PARAMETER h

We evaluate whether the window size parameter significantly impacts the generation quality, and
the results are presented in Figure 14. It can be observed that as the window size h increases, the
text quality scores remain in the range of 69 to 71. In this experiment, no substantial changes in text
quality were observed as the window size h varied.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.08 0.10 0.12 0.14 0.16 0.18 0.20
Cpt

0

10

20

30

40

50

60

70

80

De
ns

ity

Distribution of Cpt for Different b
b values

Binomial
b=2
b=3
b=4
b=5
b=6
b=7
b=8
b=9
b=10
b=11
b=12
b=13
b=14
b=15
b=16
b=17
b=18
b=19
b=20

Figure 13: Distribution of Cpt
with respect to different walues of b.

2 4 6 8
h

0.60

0.65

0.70

0.75

0.80

Si
m

FKE
DWI
HDWI

Figure 14: Text quality with respect to different window sizes h.
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