Under review as a conference paper at ICLR 2025

ALIGNMENT BETWEEN THE DECISION-MAKING
LoGIiCc oF LLMs AND HUMAN COGNITION: A CASE
STUDY ON LEGAL LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a method to evaluate the alignment between the decision-
making logic of Large Language Models (LLMs) and human cognition in a case
study on legal LLMs. Unlike traditional evaluations on language generation re-
sults, we propose to evaluate the correctness of the detailed decision-making logic
of an LLM behind its seemingly correct outputs, which represents the core chal-
lenge for an LLM to earn human trust. To this end, we quantify the interactions
encoded by the LLM as primitive decision-making logic, because recent theo-
retical achievements (Li & Zhang| [2023; Ren et al.l 2024 have proven several
mathematical guarantees of the faithfulness of the interaction-based explanation.
We design a set of metrics to evaluate the detailed decision-making logic of LLMs.
Experiments show that even when the language generation results appear correct,
a significant portion of the internal inference logic contains notable issues[ﬂ

1 INTRODUCTION

The trustworthiness and safety of Large Language Models (LLMs) present significant challenges for
their deployment in high-stake tasks (OpenAl, 2023; Wei et al.|[2023). Previous evaluation methods
mainly evaluated the correctness of language generation results, in terms of value alignment and
hallucination problems (Bang et al., 2023} J1 et al., 2023bja; |Shen et al., [2023)).

In this study, we hope to go beyond the long-tail evaluation of the generation results, and focus on the
correctness of the detailed decision-making logic used by the LLM behind the language generation
result. We focus on the legal LLM as a case study, and the legal LLM may use significantly in-
correct information to make judgment, even when the generation result is correct. The alignment of
decision-making logic between the AI model and human cognition is crucial for alleviating the com-
mon fear of Al models. The alignment of internal logic via communication is the reason why people
naturally trust each other. Particularly, in high-stakes tasks such as autonomous driving (Grigorescu
et al.| 2020), the lack of alignment between Al models and human users makes people would rather
delegate work to humans and tolerate potential errors, than trust highly accurate AI models.

Therefore, this paper aims to explore the possibility of aligning the decision-making logic for the
confidence score of the LLM’s judgment with human cognition. To this end, exploring the mathe-
matical feasibility of faithfully explaining the output score of a neural network as a few interpretable
logical patterns has become a new emerging theoretical problem in explainable Al, and about 20
papers have been published in three years (see related work in Appendix [A). Typically, [Li & Zhang
(2023); Ren et al.| (2024) have proved the universal-matching property and sparsity propoerty, and
mathematically guaranteed that a DNN usually only encodes a small number of interactions between
input variables, and these interactions act as primitive decision-making logic, which well predicts
the confidence of the network prediction on various input variations.

As Figure[I| shows, an interaction measures the nonlinear relationship between input tokens of an
input legal case encoded by the LLM. For instance, given an input sentence such as “Andy threatened
Bob and took his smartphone,” the LLM may trigger an interaction between a set of input tokens S' =

"The names used in the legal cases follow an alphabetical convention, e.g., Andy, Bob, Charlie, etc., which
do not represent any bias against actual individuals.
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Reliable + Unreliable
Lna(SIx) = 1.28 Lnd(SIX) = 0.54 Lina(SIx) = 1.03 Lnd(S¥) = 1.42
{took, smartphone} {threatened, angrily} {angrily} {struck}

Reliable
Ling(SI) = 1.11 Lor(SIX) = 0.43 Iana(SIx) = -0.81 Lana(SIx) = 0.67 35%
{threatened} {took, angrily} {June 1} {struck, threatened} 65%

Unreliable
Lna(SIX) = 1.05 Ior(SIx) = -0.73 Lana(SIx) = -0.41
{June 1, angrily} {struck, angrily}

{threatened, took, smartphone}

Relevant tokens
Irrelevant tokens
Forbidden tokens

On June 1, Andy angrily threatened Bob and took his smartphone.

Input legal case x On June 2, Bob's enemy, Charlie, struck Bob on the head.

Figure 1: AND-OR interactions that explain the decision-making logic of a legal LLM. The surro-
gate logical model well estimates the confidence of the LLM making the judgment “Robbery” for
Andy, h(“Robbery”|x) = v(“Robbery”|x), no matter how we randomly mask the input x.

{threatened, took, smartphone} C N, and the interaction makes a numerical effect I(S) that boosts
the confidence of inferring the judgment of “robbery.” Besides, Zhou et al.|(2024) demonstrated that
the complexity of interactions directly determined the generalization power of a DNN.

Despite above achievements, previous studies have pointed out that the next breakthrough point is
to examine the correctness of the detailed decision-making logic used by the LLM, which have not
been explored yet (Deng et al.,2024bj; L1 & Zhang, [2023}|Cheng et al.,|2024; Ren et al., 2024} (Chen
et al., [2024; Zhou et al.||2024).

In this paper, we extract all interactions that determine a legal LLM’s confidence score of the true
judgment, and we evaluate the alignment between the extracted interactions and human cognition of
the legal case. To this end, we categorize all input tokens involved in the interactions into three types,
i.e., the relevant, irrelevant, and forbidderﬂtokens, based on the ground-truth relevance to the judg-
ment. This enables us to distinguish reliable interaction effects and unreliable interaction effects.
For example, as Figure [I] shows, the legal LLM makes the judgment of “robbery” on Andy who
takes Bob’s smartphone under threat. In this way, AND interactions involving “threatened,” ‘took,”
and “smartphone” are supposed to be the correct reason for the judgment, thereby being identified
as reliable interaction effects. In comparison, the OR interaction between “June 1” and “angrily”
incorrectly attributes the judgment of “robbery” to the unreliable sentimental token “angrily.” It is
because we should use the real action “threatened” to make the judgment, rather than the sentimen-
tal token “angrily.” The unreliable interaction also includes the AND interaction between “struck”
and “threatened,” which incorrectly attributes the judgment on Andy to the forbidden token “struck,”
i.e., an action not taken by Andy.

In this way, we design new metrics based on these interactions to quantify the ratio of reliable
interaction effects and that of unreliable ones used by the LLLM to generate the target judgement, so
as to evaluate the alignment between the LLM’s logic and human cognition.

The contributions of this paper can be summarized as follows. We propose to utilize interaction-
based explanations to evaluate the correctness of decision-making logic encoded by a LLM. We
design new metrics to quantify reliable and unreliable interaction effects w.rt. their alignment with
human cognition of the judgment. Experiments on both English legal LLM and Chinese legal LLM
show that both LLMs used a significant number of incorrect interactions for inference, although
these LLMs all exhibited high accuracy in judgment prediction.

2 ALIGNMENT BETWEEN THE LLLM AND HUMAN COGNITION

2.1 PRELIMIARIES: INTERACTIONS

Although there is no widely-accepted definition of concepts, which is an interdisciplinary issue
across cognitive science, neuroscience, artificial intelligence, and mathematics, the theory of inter-
actions has shown promise in explaining the primitive inference patterns encoded by the DNN. A

The forbidden tokens are usually informative tokens but should not be used for judgments, e.g., tokens of
criminal actions that are not taken by the defendant.
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series of properties (Li & Zhang| [2023; |Ren et al.,|2023a;|2024) have been proposed as mathematical
guarantees for the faithfulness of the interaction-based explanations.

Definition of AND-OR interactions. Given an input sample x = [z1, X2, - , 2,|T with n input
variables indexed by N = {1,2,...,n}, where each input variable can represent a token, a word,
or a phrase/short sentence. Then, let v(x) € R denote the scalar confidence of generating the
target output. For example, the target output can be set to a sequence of m ground-truth tokens
[y1, Y2, ,Ym] generated by the LLM. In this way, the scalar confidence of language generation
v(x) can be defined as follows.

o _ Yprevious
v(x) &3 log LW = vl Yo ) M

previous

= T 1-ply=yelx, YI)

where YPeVous &1 0 o y_1]T represents the sequence of the previous (¢ — 1) tokens before
generating the t-th token. p(y = y;|x, Y} ") denotes the probability of generating the ¢-th token,
given the input sentence x and the previous (¢ — 1) tokens. In particular, YY" = [].

To explain the inference patterns behind the confidence score v(x), [Ren et al.|(2024)); |Shen et al.
(2023) show that an LLM usually encodes a set of interactions between input variables (tokens or
phrases) to compute v(x). There are two types of interactions, i.e., the AND interaction and the
OR interaction. Each AND interaction and each OR interaction w.z.t. S C N, S # () have specific
numerical effects I,q(S|x) and I, (S|x) to the network output, respectively, which are computed as
follows.

def def

Lna(S1%) = D7 (D M ogna(xr), To(S1) = =30 (=) To(xnr) - @)

where x7 denotes the masked sampleﬂ where all embeddings of input variables in N \ T are
masked. v(xr) € R denotes the confidence score of generating the m tokens [y1, Y2, , Ym]
given the masked sample x7. v(xr) is decomposed into the component for AND interactions
Vand(X7) = 0.50(x7) + v and the component for OR interactions vy (x7) = 0.5v(x1) — Y7,
subject to Vyna(X7) + Vor(X7) = v(%X7).

Extracting AND-OR interactions. According to Equation (2)), the extraction of interactions is
implemented by learning parameters {vyr}. We follow (Zhou et all [2024) to learn parameters
{yr|T € N}, and extract the sparest (the simplest) AND-OR interaction explanation via the
LASSO-like loss, i.e., ming,.} > gcn szp[land(S[%)] + [Lor(S[x)[]. In this way, we exhaus-
tively compute interaction effects I,nq(S|x) and I, (S|x) for all (2" — 1) non-empty combinations
) #5 C N. [Ren et al|(2024) have proven that most interactions have almost zero effects
Lindior (S|x), and an LLM usually activates only 100-200 AND-OR interactions with salient
effects. These salient interactions are taken as the AND-OR logic really encoded by the LLM.

Algorithm[T]in the appendix shows the pseudo-code of extracting AND-OR interactions.

Why do AND-OR interactions faithfully explain the logic encoded by the LLM? Lots of theo-
retical achievements ranging from (Harsanyi, |1963)) to (Li & Zhang| 2023} Ren et al.,2023a}; [2024)
have proven several properties to guarantee that the AND-OR interactions faithfully represent the
AND-OR logic encoded by the LLM. According to Theorem let h(-) denote a surrogate logical
model constructed based on non-zero interactions. As Figure[6|shows, it is proven that this surrogate
logical model h(+) can accurately fit the confidence scores of the LLM v(-) on all 2™ masked samples
{xr|T C N}, ie, VT C N,v(xr) = h(xr), no matter how we randomly mask the input sample x
in 2" different masking states 7' C N. This property is termed universal-matching property.

Theorem 1 (Universal matching property, proof in AppendixB) Given an input sample x, the
network output score v(xr) € R on each masked sample {xp|T C N} can be well matched by a
surrogate logical model h(xr) on each masked sample {xr|T C N}. The surrogate logical model
h(xr) uses the sum of AND interactions and OR interactions to accurately fit the network output

3To obtain the masked sample x7, we mask the embedding of each input variable i € N \ T with the
baseline value b; to represent its masked state. Please see Appendix[@for details.
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score v(X).
VT C N,v(x7) = h(xT).

hixr) =v(xg) + Y 1

X triggers X triggers

)+ Lana (S|xT) + 1( )+ Lo (S|xT)

AND relation .S OR relation .S
SCN,S#0 3)
= v(xp) + ng,s o Tana(Slxr) + ngv,smm Ioe(S|x7)
Vand (XT) Vor(XT)

Specifically, each non-zero AND interaction I,,q(S|x) represents the AND relationship between
all variables in S. For instance, consider an input sentence “the company is a legal person” in
a language generation task. The co-appearance of two words S = {legal, person} C N forms a
specialized legal concept and contributes a numerical effect I,,4(S|x) to push the LLM’s output
w.r.t. the legal entity. Exclusively inputting either word in .S will not make such an effect.

Analogously, each non-zero OR interaction I,;(S|x) indicates the OR relationship between all vari-
ables in S. For example, let us consider an input sentence “he robbed and assaulted a passerby”. The
presence of either word in S = {robbed, assaulted} activates the OR relationship and contributes an
effect I,,(S|x) to push the LLM towards a guilty verdict.

Besides the universal-matching property in Theorem I] the sparsity property of interactions is also
proven (Ren et al.| 2024). Le., most AND-OR interactions have almost zero effects, i.e., I(S|x) ~
0, which can be regarded as negligible noise patterns. Only a small set of interactions, denoted
by Q@ = {S C N : |[I(S|x)| > 7}, where 7 is a scalar threshold, have considerable effects.
Therefore, Lemmall|shows that the surrogate logical model A(+) on all 2" masked samples {x7|T" C
N} usually can be approximated by a small set of salient AND interactions 22" and salient OR
interactions Q°, s.z., [Q3], |Q°"| < 27,

Lemma 1 (Sparsity property, proof in Appendix[C) The surrogate logical model h(xr) on each
randomly masked sample x7, T C N mainly uses the sum of a small number of salient AND inter-
actions and salient OR interactions to approximate the network output score v(Xr).

X7 triggers

v(xr) =h(xr)~v(xg)+Y 1( s N relagion S)-Iand(S|xT)+Z 1( )-Ioe(S|x7) (4)
SeQuand Seqer

X7 triggers
OR relation S

The above universal-matching property and sparsity property theoretically guarantee the faith-
fulness of the interaction-based explanation.

2.2 RELEVANT TOKENS, IRRELEVANT TOKENS, AND FORBIDDEN TOKENS

According to above achievements, we can take a small set of salient AND-OR interactions as the
faithful explanation for the decision-making logic used by the legal LLM. Thus, in this subsec-
tion, we annotate the relevant, irrelevant, and forbidden tokens in the input legal case, in order
to accurately identify the reliable and unreliable interactions encoded by the LLM (see Figure [I).
Specifically, the set of all input variables N is partitioned into three mutually disjoint subsets, i.e.,
the set of relevant tokens R, the set of irrelevant tokens Z, and the set of forbidden tokens F, subject
to RUZUF = N,withRNZ =0, RNF =0, and Z N F = (), according to human cognition.

Relevant tokens refer to tokens that are closely related to or serve as the direct reason for the
judgment, according to human cognition. For instance, given an input legal case “on June I,
during a conflict on the street, Andy stabbed Bob with a knife, causing Bob’s death, D the legal
LLM provides judgment “murder” for Andy. In this case, the input variables can be set as N =
{[on June 1], [during a conflict], [on the street|, [Andy stabbed Bob with a knife|, [causing Bob’s
death]}. R = {[Andy stabbed Bob with a knife|, [causing Bob’s death|} are the direct reason for the
judgment, thereby being annotated as relevant tokens, where all tokens in the brackets [] are taken
as a single input variable.

Irrelevant tokens refer to tokens that are not strongly related to or are not the direct reason for the
judgment, according to human cognition. For instance, in the above input legal case, the set of irrel-
evant tokens are annotated as Z = {[on June 1|, [during a conflict], [on the street]}. For example,
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the input variable like “during a conflict’ may in-
fluence Andy’s behavior “Andy stabbed Bob with
a knife,” but it is the input variable “Andy stabbed
Bob with a knife” that directly contributes to the
legal judgment of “murder,” rather than the input
variable “during a conflict.”
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Forbidden tokens are usually common tokens Figure 2: Sparsity of interactions. We show

widely used in legal cases, but the. use of forbi.d- the strength of different AND-OR interactions
den tokens may lead to significant incorrect logic. |I(S|x)| extracted from different samples in a

For instance, in a legal case involving multiple descending order. Only about 0.5% interac-
individuals, such as “Andy assaulted Bob on the tions had salient effects.

head, causing minor injuries. Charlie stabbed

Bob with a knife, causing Bob’s death,’ T the legal LLM assigns the judgment of “assault” to
Andy. Let the set of all input variables be N = {[Andy assaulted Bob on the head), [causing
minor injuries), [Charlie stabbed Bob with a knife |, [causing Bob’s death|}. ~ Although the input
variables “Charlie stabbed Bob with a knife” and “causing Bob’s death” are naturally all repre-
sent crucial facts for judgement, they should not influence the judgment for Andy, because these
words describe the actions of Charlie, not actions of Andy. Therefore, these input variables are
categorized as forbidden tokens, F = {[Charlie stabbed Bob with a knife|, [causing Bob’s death]}.

2.3 RELIABLE AND UNRELIABLE INTERACTION EFFECTS

The categorization of relevant, irrelevant, and forbidden tokens enables us to disentangle the reliable
and unreliable decision-making logic used by a legal LLM. As introduced in Section we use
interactions as the decision-making logic encoded by a legal LLM. Thus, in this subsection, we
decompose the overall interaction effects in Equation (2) into reliable and unreliable interaction
effects. Reliable interaction effects are interaction effects that align with human cognition, which
usually contain relevant tokens and exclude forbidden tokens. In contrast, unreliable interaction
effects are interaction effects that do not match human cognition, which are attributed to irrelevant
or forbidden tokens.

Visualization of AND-OR interactions. Before defining reliable and unreliable interaction ef-
fects, let us first visualize the AND-OR interactions extracted from two legal LLMs, SaulLM-7B-
Instruct (Colombo et al., 2024) and BAI-Law-13B (Institutel 2023). SaulLM-7B-Instruct was an
English legal LLM, trained on a corpus of over 30 billion English legal tokens. BAI-Law-13B was
a Chinese legal LLM, fine-tuned on Chinese legal corpora. We evaluated the legal LLMs on the
CAIL2018 dataset (Xiao et al., 2018}5], just like how (Feng et al.,|2022; Fei et al., 2023) did. Fig-
ure2]shows the sparsity of interactions extracted from the legal LLMs. Interaction strength |7(S|x)|
of all AND-OR interactions extracted from all legal cases were shown in a descending order. We
found that most of the interactions had negligible effect.

Figure [I) further provides an example of using AND-OR interactions to explain the decision-making
logic of a legal LLM. The legal LLM correctly attributes the judgment of “robbery” to interactions
involving the tokens “fook.,” “smartphone,” and “threatened.” However, the legal LLM also uses the
irrelevant tokens (“angrily” and “June 1”), and the forbidden tokens (“struck” and “on the head”)
to compute the confidence score of the judgment of “robbery,” which obviously represents incorrect
decision-making logic.

In this way, we define reliable and unreliable interaction effects for AND and OR interactions,
respectively, as follows.

For AND interactions. Because the AND interaction I,nq(S|x) is activated only when all input
variables (tokens or phrases) in S are present in the input legal case, the reliable interaction effect
for AND interaction I'®i®¢(S|x) w.xt. S must include relevant tokens in R, i.e., S 'R # (), and
completely exclude forbidden tokens in F, i.e., S N F = (). Otherwise, if S contains any forbidden
tokens in F, or if S does not contains any relevant tokens in R, then the AND interaction Ipq(S|x)
represents an incorrect logic for judgment. In this way, the reliable and unreliable AND interaction
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effects w.r.t. S can be computed as follows.

if SNF=0,SNR#( then ICHPle(G|x) = I4(S|x), [Lmeliable(g|x) =0 )
= ()7

otherwise, Ihitble(g|x) Jumeliable (Gx) — g (S|x)
For OR interactions. The OR interaction I, (S|x) affects the LLM’s output when any input vari-
able (token or phrase) in S appears in the input legal case. Therefore, we can define the reliable
effect I™@¢(S|x) as the numerical component in I, (S|x) allocated to relevant input variables in
SNR. To this end, just like in (Deng et al.l[2024b), we uniformly allocate the OR interaction effects
to all input variables in S. The reliable and unreliable interactions effects are those allocated to
relevant variables, and those allocated to irrelevant and forbidden variables, respectively.

_|SNR]
E

SN

VS C N, S # 0, I (S|x) |S]

(S50, T (5 0) — (1 )~Ior<5|x> ©)

2.4 EVALUATION METRICS

In this subsection, we design a set of metrics to evaluate the alignment quality between the interac-
tions encoded by the LLM and human cognition.

Ratio of reliable interaction effects. Definition [Tl introduces the ratio of reliable interaction effects
that align with human cognition to all salient interaction effects. Here, we focus on the small number
of salient interactions in 2™ and °, rather than conduct evaluation on interactions effects of all
2™ subsets S C N. This is because salient interactions can be taken as primitive decision-making
logic of an LLM, while all other interactions have negligible effects and represent noise patterns.

Definition 1 (Ratio of reliable interactiqn effects) Given an LLM, the ratio of reliable interaction
effects to all salient interaction effects s js computed as follows.

grtiavle _ 2oama Tana ™ (S[%)| + P g [T5(Sx)| 7

2t Hana(S[3)] 4 2o [Lor (S[) |

A larger value of s*i2 ¢ [0, 1] indicates that a higher proportion of interaction effects align with
human cognition.

Interaction distribution over different orders. [Zhou et al.| (2024) have found that the low-order
interactions usually exhibit stronger generalization powelﬂ than high-order interactions. Ie., low-
order interactions learned from training samples are more likely to be transferred to (appear in)
testing samples. Please see Appendix |E| for the definition and quantification of the generalization
power of interactions over different orders. Specifically, the order is defined as the number of input
variables in S, ie., order(S) = |S|. In general, high-order interactions (complex interactions)
between a large number of input variables are usually less generalizable@ than low-order (simple)
interactions.

Therefore, we utilize the distribution of interactions over different orders as another metric, which
evaluates the generalization power of the decision-making logic used by the LLM. Specifically, we
use Salient™ (0) = 2 ope fand,or} 2oseaor,|s|=0 MaX(0, Lop(S[x)) to quantify the overall strength of posi-
tive salient interactions, and use Salient™ (0) = > ¢ fund,or} 2oseam,|s|=o MIN(0, Lop(S|x)) to quantify
the overall strength of negative salient interactions. A well-trained legal LLM tends to model low-
order interactions, while an over-fitted LLM (potentially due to insufficient data or inadequate data
cleaning) usually relies more on high-order interactions.

Ratio of reliable interaction effects of each order. We categorize all salient interaction effects by
their orders, so that for all salient interactions of each o-th order, we can compute the ratio of reliable
interaction effects.

“The generalization power of an interaction is defined as the transferability of this interaction from training
samples to test samples. Specifically, if an interaction pattern S C N frequently occurs in the training set, but
rarely appears in the test set, then the interaction pattern .S exhibits low generalization power. Conversely, if an
interaction pattern S consistently appears in both the training and test sets, it demonstrates high generalization
power. Please see Appendix E] for details.
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Definition 2 (Ratio of reliable interaction effects of each order) The ratio of reliable interaction

.. . . . s liable,+ __
effects to all positive salient interaction effects of the o-th order is measured by sy %7 =

Reliable™ (0) .. . . . . . . .
Salient™ (0) 1" Similarly, the ratio of reliable interaction effects to all negative salient inter-
action effects of the o-th order is measured by s®i°le— — AReliable_(0)| Reliable™ (0) =

_ o |Salient— (o) |+€”
D ope (andor} 2o seam,|§]—o MaX(0, I (S|x)) represents the overall strength of positive reliable in-
teractions of the o-th order, and Reliable™ (0) = 32, tuna.ory 2o scam,|s)—o Min(0, Iy (S|x)) repre-
sents the overall strength of negative reliable interactions of the o-th order. € is a small constant to
avoid dividing 0.

According to the findings in (Zhou et al. |2024), low-order interactions generally represent stable
patterns that are frequently used across a large number of legal cases. Thus, if a considerable ratio
of low-order interactions contain unreliable effects, it suggests that training data may have a clear
bias, which makes the LLM stably learns unreliable interactions. In comparison, since high-order
interactions typically exhibit poor generalization power, unreliable effects in high-order interactions
are usually attributed to the memorization of hard/outlier samples. Consequently, low-order unreli-
able interactions are are mainly owing to stable bias in the training data, while high-order unreliable
interactions often indicates that the LLM learns outlier features.

3 EXPERIMENT

In this section, we conducted experiments to evaluate the alignment quality between the decision-
making logic of the legal LLM and human cognition. In this way, we identified potential represen-
tation flaws behind the seemingly correct language generation results of legal LLMs.

We applied two off-the-shelf legal LLMs, SaulLM-7B-Instruct (Colombo et al.}2024)) and BAI-Law-
13B (Institute, 2023)), which were trained for legal judgment prediction on English legal corpora and
Chinese legal corpora, respectively. Appendix [F]shows the accuracy of these LLMs. Given an input
legal case, the LLM predicted the judgment result based on the fact descriptions of the legal case.
We explained judgments made on legal cases in the CAIL2018 dataset (Xiao et al., 2018)), which
contained 2.6 million Chinese legal cases, for both legal LLMsﬂ Figure E] shows the universal-
matching property of the extracted interactions, i.e., when we randomly masked input variables in
the legal case, we could always use the interactions to accurately match the real confidence scores
of the judgment estimated by the LLM.

To simplify the explanation and avoid ambiguity, we only explained the decision-making logic on le-
gal cases, which were correctly judged by the LLM. For each input legal case, we manually selected
some informative tokens or phrases as input variables. Some tokens or phrases were annotated as
relevant tokens in R, while others were identified as irrelevant tokens in Z. It was ensured that the
removal of all input variables would substantially change the legal judgment result.

We extracted AND-OR interactions that determined the confidence score v(x) of generating judg-
ment results with a sequence of tokens, according to Equation (I)). To accurately identify and analyze
potential representation flaws from these interactions, in this paper, we mainly focused on potential
representation flaws w.xt. legal judgments in the following three types, i.e., (1) judgments influ-
enced by unreliable sentimental tokens, (2) judgments affected by incorrect entity matching, and (3)
judgments biased by discrimination in occupation.

Problem 1: making judgments based on unreliable sentimental tokens. We observed that
although legal LLMs achieved relatively high accuracy in predicting judgment results (see Ap-
pendix , a considerable number of interactions contributing to the confidence score v(x) were
attributed to semantically irrelevant or unreliable sentimental tokens. The legal LLM was supposed
to focus more on real criminal actions, than unreliable sentimental tokens behind the actions, when
criminal actions had been given. We believed these indicated potential representation flaws behind

3To ensure a fair comparison, we conducted experiments using the same dataset across both legal LLM:s.
For the BAI-Law-13B model, which was a Chinese legal LLM, we directly analyzed the Chinese legal cases
from the CAIL2018 dataset. For the SaulLM-7B-Instruct model, which was an English legal LLM, we trans-
lated these Chinese legal cases into English and performed the analysis on the translated cases, to enable fair
comparisons. Please see Appendix@for details.



Under review as a conference paper at ICLR 2025

the seemingly correct legal judgments produced by legal LLMs. To evaluate the impact of unreliable
sentimental tokens on both the SaulLM-7B-Instruct and BAI-Law-13B models, we annotated tokens
that served as the direct reason for the judgment as relevant tokens in R, and those that were not
the direct reason for the judgment as irrelevant tokens in Z, e.g., semantically irrelevant tokens and
unreliable sentimental tokens behind real criminal actions.

Figure [3]shows the legal case, which showed Andy had a conflict with Bob and attacked Bob, com-
mitting an assault. In this case, tokens like “began to,” “causing,” and sentiment-driven tokens such
as “dissatisfaction” in T were irrelevant to the judgment result, according to human cognition, be-
cause unreliable sentimental tokens only served as explanations for criminal actions. Thus, once
an actual action had been taken, the unreliable sentimental tokens were supposed to make minimal
conditional contributions to the legal judgment result. The judgment should be based exclusively on
tokens such as “fight chaotically,” “threw a punch,” and “fall into a coma,” which were annotated
as relevant tokens in R. We found that some decision-making logic encoded by the SaulLM-7B-
Instruct model aligned well with human cognition, i.e., identifying reliable interactions containing
relevant tokens as the most salient interactions. However, this model also modeled lots of unreliable
interactions as salient interactions, such as interactions containing irrelevant tokens “dissatisfaction”
and “anger,” which revealed potential flaws in its decision-making logic.

In comparison, we evaluated the above legal case on the BAI-Law-13B model, as shown in Figure[3]
The SaulLM-7B-Instruct model exhibited a reliable interaction ratio of s = 71.5%, while
the BAI-Law-13B model encoded a lower ratio of reliable interaction effects, s™lieble — §1.2%.
The BAI-Law-13B model encoded about 10% less reliable interactions, and used gimreliable —
1 — sreliable — 38 8% unreliable interaction effects to compute the confidence score v(x). For
example, reliable interactions encoded by the BAI-Law-13B model included the AND interaction
S = {“threw a punch’}, which contributed the highest interaction effect 0.34. The unreliable in-
teractions included the AND interaction S = {“anger”}, which contributed 0.03. The unreliable
sentimental token should not be used to determine the judgment, when the action “tirew a punch”
caused by “anger” had been given as a more direct reason. Additional examples of making judg-
ments based on unreliable sentimental tokens are provided in Appendix [G.1]

Problem 2: making judgments based on incorrect entity matching. Despite the high accuracy
of legal LLMs in predicting judgment results, we found that a considerable ratio of the confidence
score v(x) was mistakenly attributed to interactions on criminal actions made by incorrect entities.
In other words, the LLM mistakenly used the criminal action of a person (entity) to make judgment
on another unrelated person (entity). To evaluate the impact of such incorrect entity matching on
both the SaulLM-7B-Instruct and BAI-Law-13B models, we annotated tokens for criminal actions
of unrelated entities as the forbidden tokens in F. These forbidden tokens should not influence the
judgment for the unrelated entity.

Figure || illustrates the test of the SaulLM-7B-Instruct model on the legal case, which showed Andy
bit Charlie, committing an assault, and then Bob hit Charlie with a shovel, leading to murder. Be-
cause tokens such as “hit,)” “with a shovel,” “injuring,” and “death” described Bob’s actions and
consequences without a direct relationship with Andy. Thus, these tokens were annotated as for-
bidden tokens in F. However, we observed that although the SaulLM-7B-Instruct model had used
sreliable — 91 59% reliable interactions between relevant tokens, such as “bir” and “slightly injured.”
it also modeled a significant number of unreliable interactions containing forbidden tokens “dearh”
and “with a shovel” However, if we removed these two forbidden tokens for criminal actions of
Bob, then the confidence of the judgment of Andy would be significantly affected. This was an
obvious representation flaw of the SaulLM-7B-Instruct model.

In comparison, given the same legal case, the BAI-LAW-13B model encoded a ratio of s™iable —
22.6% reliable interaction effects, which was a bit higher than a ratio of s™i2’l¢ — 21 5% reliable
interactions effects encoded by the SaulLM-7B-Instruct model. In this case, both models primarily
relied on unreliable interactions, including forbidden tokens that related to Bob’s criminal actions,
to make judgment on Andy. For example, the SaulLM-7B-Instruct model used the AND interaction
w.r.t. the unrelated action S = {“with a shovel”} to contribute 0.93, and the BAI-Law-13B model
used the AND interaction S = {“dearh”} to contribute —0.43. This suggested that both legal LLMs
handled judgment-related tokens in a local manner, without accurately matching criminal actions
with entities. Additional examples of making judgments based on incorrect entity matching are
provided in Appendix [G.2}
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Problem 3: discrimination in occupation may affect judgments. We found that the legal LLM
usually used interactions on the occupation information to compute the confidence score v(x). This
would lead to a significant occupation bias. More interestingly, we discovered that when we replaced
the current occupation with another occupation, the interaction containing the occupation token
would be significant changed. This indicates a common bias problem, because similar bias may also
happen on other attributes (e.g., age, gender, education level, and marital status).

Figure[5|shows the test of the SaulLM-7B-Instruct model on the legal case, in which Andy, ihe victim
with varying occupations, was robbed of his belongings by two suspicious men. First, we found that
the SaulLM-7B-Instruct model encoded interactions with the occupation tokens “a judge,” which
boosted the confidence of the judgment “robbery.”” More interestingly, if we substituted the occupa-
tion tokens “a judge” to “a volunteer,” the interaction between the occupation “a volunteer,” “a day’s
work,” and “belongings” decreased from 0.22 to 0.06. This was an important factor that changed the
judgment from “robbery” to “not mentioned.” However, if we replaced “a judge” with law-related
occupations, such as “a lawyer” and “a policeman,” the judgment remained “robbery.” Besides, the
occupation “a programmer” changed the judgment to “n0r mentioned.” Please see Appendix [G.3|for
numerical effects of all these occupations. This suggested that the legal LLM sometimes had con-
siderable occupation bias. In comparison, we evaluated the same legal case on the BAI-Law-13B
model, as shown in Appendix[G.3] Compared to the SaulLM-7B-Instruct model that encoded a ratio
sreliable — 81 49%-84.0% of reliable interaction effects w.r.t. different occupations, the BAI-Law-
13B model encoded a ratio s*i3e = 78 .9%-87.1% of reliable interaction effects. This indicated
that both legal LLMs tended to use specific occupational tokens for judgment, instead of correctly
analyzing the decision-making logic behind legal judgements. Additional examples of judgments
biased by the occupation are provided in Appendix

Representation quality of legal LLMs. Figures[3|and ] compare the interaction effects of different
orders extracted from the SaulLM-7B-Instruct model and the BAI-Law-13B model. We observed
that, in both the legal case influenced by unreliable sentimental tokens, and the legal case affected
by incorrect entity matching, the BAI-Law-13B model encoded higher order interactions than the
SaulLM-7B-Instruct model. This indicated that feature representations of the BAI-Law-13B model
was more complex and less generalizable than than those of the SaulLM-7B-Instruct model. In
addition, in the legal case that judgments affected by incorrect entity matching, the BAI-Law-13B
model encoded a significant number of interactions with negative effects. This suggested that many
interactions encoded by the BAI-Law-13B model showed conflicting effects, which was also a sign
of over-fitting of the LLM. Tables [T] and [2] in the appendix further show the average ratios of the
reliable interaction effects ™3l and s™liable.~ for each order o on both LLMs. Experimental
results show that while the BAI-Law-13B model encoded more low-order reliable interaction effects,
it also encoded more high-order unreliable interaction effects than the SaulLM-7B-Instruct model.

4 CONCLUSION

In this paper, we have proposed a method to evaluate the correctness of the detailed decision-making
logic of an LLM. The sparsity property and the universal matching property of interactions provide
direct mathematical supports for the faithfulness of the interaction-based explanation. Thus, in this
paper, we have designed two new metrics to quantify reliable and unreliable interaction effects,
according to their alignment with human cognition. Experiments showed that the legal LLMs often
relied on a considerable number of problematic interactions to make judgments, even when the
judgement prediction was correct. The evaluation of the alignment between the decision-making
logic of LLMs and human cognition also contributes to other real applications. For example, it may
assist in debugging the hallucination problems, and identifying potential bias behind the language
generation results of LLMs.

Limitations. Our analysis does not assess the correctness of the numerical scores for interactions, as
these scores are often determined by many factors. Positive interactions typically indicate logics that
contribute positively to the judgments, while negative interactions may also be intended for other
possible correct judgments. Besides, the evaluation based on relevant, irrelavant, and forbidden
tokens is only one of the conditions for reliable interactions, and reliable interactions may not always
be correct. Nevertheless, this paper presents a precedent for evaluating the correctness of decision-
making logic of LLMs.
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Figure 3: Visualization of judgments influenced by unreliable sentimental tokens. (a) A number of
irrelevant tokens were annotated in the legal case, including unreliable sentimental tokens. Criminal
actions were annotated as relevant tokens. We also translated the legal case to English as the input
of the SaulLM-7B-Instruct model. (b) Judgements predicted by the two legal LLMs, which were
both correct according to laws of the two countries. (c,d) We quantified the reliable and unreliable
interaction effects of different orders.
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Figure 4: Visualization of judgments affected by incorrect entity matching. (a) A number of irrele-
vant tokens were annotated in the legal case, including the time and actions that were not the direct
reason for the judgment. Criminal actions of the defendant were annotated as relevant tokens. Crim-
inal actions of the unrelated person were annotated as forbidden tokens. (b) Judgements predicted
by the two legal LLMs, which were both correct according to laws of the two countries. (c,d) We
measured the reliable and unreliable interaction effects of different orders.
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Figure 5: Visualization of judgments biased by discrimination in occupation. (a) A number of
irrelevant tokens were annotated in the legal case, including the occupation, time and actions that
are not the direct reason for the judgment. Criminal actions of the defendant were annotated as
relevant tokens. (b) The SaulLM-7B-Instruct model predicted the judgment based on the legal case
with different occupations, respectively. (c,d) We measured the reliable and unreliable interaction
effects of different orders. When the occupation was set to “a judge,” the LLM used 81% reliable
interaction effects. In comparison, when the occupation was set to “a volunteer,” the LLM encoded
84% reliable interaction effects.
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A RELATED WORK

Factuality and hallucination problems. Factuality in LLMs refers to whether the language gen-
eralization results of LLMs align with the verificable facts. This includes the ability of LLMs to
avoid producing misleading or incorrect information (i.e., factual hallucination), and to effectively
generate factually accurate results. For instance, several studies have evaluated the correctness of
LLM-generated answers to specific questions (Lin et al., 2021} |OpenAl [2023; [Wang et al., [2024).
Other works have standardized fact consistency tasks into binary labels, evaluating whether there
were factual conflicts within the input text (Honovich et al., [2022)). Min et al.| (2023) further de-
composed language generation results into “atomic” facts, and calculated the proportion of these
facts that aligned with a given knowledge source. Additionally, Manakul et al.| (2023) introduced
a sampling-based method to verify whether LLMs generated factually consistent results, based on
the assumption that if an LLM had knowledge of a concept, then the sampled generation results
contained consistent factual information.

Hallucination in LLMs typically refers to generated content that is nonsensical or unfaithful to the
provided source input (Filippoval [2020; Maynez et al., 2020; Huang et al.,2023)). Hallucinations are
generally categorized into two primary types, namely intrinsic and extrinsic hallucinations (Maynez
et al., 2020; Huang et al.l 2021; |Dzir1 et al., 2021} J1 et al., 2023b)). Intrinsic hallucinations oc-
cur when the generated results contradict the source content, while extrinsic hallucinations arise
when the generated results cannot be verified from the provided source. For instance, Bang et al.
(2023)) found extrinsic hallucinations in ChatGPT’s responses, including both untruthful and fac-
tual hallucinations, whereas intrinsic hallucinations were rarely observed. OpenAlI’s latest model,
GPT-4 (OpenAl, 2023)), has further reduced the model’s tendency to hallucinate compared to prior
models such as ChatGPT.

Value alignment. Value alignment in LLMs aims to ensure LLMs behave in accordance with hu-
man intentions and values (Leike et al., 2018} Wang et al., [2023}; Ji et al., [2023a)). Recent research
has focused on improving the ability of LLMs to comprehend instructions, thereby aligning their be-
havior with human expectations. For instance, OpenAl proposed Supervised Fine-Tuning (SFT) for
LLMs, which involved using human-annotated instruction data. LL.Ms such as InstructGPT (Ouyang
et al., |2022) and ChatGPT, both of which employed this technique, have demonstrated significant
improvements in understanding human instructions. |Ouyang et al.|(2022); |OpenAl| (2023); Touvron
et al.[(2023) have incorporated the Reinforcement Learning from Human Feedback (RLHF) method
to further fine-tune LLMs, enhancing their alignment with human preferences (OpenAll [2023).

Using interactions to faithfully explain DNNs. Ren et al.| (2023a)) first proposed to quantify in-
teractions between input variables encoded by the DNN, to explain the knowledge in the DNN. |[Li
& Zhang| (2023) discovered the discriminative power of interactions between input variables. [Ren
et al.| (2024) further proved that DNN's usually only encoded a small number of interactions. Futher-
more, |[Deng et al.[ (2024a) found that different attribution scores estimated by fourteen attribution
methods, including the Grad-CAM (Selvaraju et al., 2017), Integrated Gradients (Sundararajan et al.,
2017), and Shapley value (Lundberg & Leel |2017))) methods, could all be represented as a combi-
nation of interactions. Besides, Zhang et al.| (2022) used interactions to explain the mechanism of
different methods of boosting adversarial transferability. Ren et al.| (2023b) used interactions to de-
fine the optimal baseline value for computing Shapley values. Deng et al.|(2022) found that for most
DNNs it was difficult to learn interactions with median number of input variables, and it was dis-
covered that DNNs and Bayesian neural networks were unlikely to model complex interactions with
many input variables (Ren et al.;[2023c} [Liu et al., 2024). [Zhou et al.|(2024) used the generalization
power of different interactions to explain the generalization power of DNNs.

Unlike evaluations on language generation results, we propose a method that leverages interaction-
based explanations to evaluate the correctness of decision-making logic encoded by a LLM. This
approach enables us to evaluate the alignment between the decision-making logic of LLMs and
human cognition.

B PROOF OF THEOREM

Theorem [I] (Universal matching property) Given an input sample x, the network output score
v(xr) € R on each masked sample {x7|T" C N} can be well matched by a surrogate logical model
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h(x7) on each masked sample {x7|T C N}. The surrogate logical model h(x7) uses the sum of
AND interactions and OR interactions to accurately fit the network output score v(xr).

VT C N,v(xr) = h(xr).
X triggers X triggers

hlxr) = vixp) + Z ]l(AND relation S) Lana(Slxr) + ]l(OR relation S) Lor(Slxr)
SCN,S#0 ¥

= v(xp) + ng, gz Tana(SlxT) + ZSU’SHT#@ Ie(S|x7)

Vand (XT) Vor (XT)

Let us set a surrogate logical model h(x7) = v(xr), VT C N, which utilizes the sum of AND
interactions I,nq(S|x) and OR interactions Io,(S|x) in Equation (2) to fit the network output score
v(xr), e, v(xT) = h(XT) = Vana(XT) + Vor(X7)-

To be specific, we use the sum of AND interactions [,q(S|x) to compute the component for
AND interactions Vang(Xr), i.€., Vand(X7) = > g Lana(S|x7). Then, we use the sum of OR
interactions I (S|x) to compute the component for OR interactions ver(X7), i.e., Vor(X1) =
>_scn.snro Lor(SXT). Finally, we use the sum of AND-OR interactions to fit the network output
score, i.e., v(x7) = h(x1) = Vana(XT) + Vor (X7).

(1) Universal matching property of AND interactions.

Ren et al.|(2023a) have used the Haranyi dividend (Harsanyi, [1963) I,,q4(S|x) to state the universal
matching property of AND interactions. The output of a well-trained DNN on all 2" masked samples
{x7|T C N} could be universally explained by the all interaction primitives in T C N, i.e.,
vT g N, Uand(xT) = ZSQT Iand(S‘X)-

Specifically, the AND interaction (as known as Harsanyi dividend) is defined as Iq(S|x) :=
S res(=D)ISI= Iy 4(x ) in Equation . To compute the sum of AND interactions VI' C
N, Y ger Tna(S1x) = Ygcr Y pcs(—D)I¥ 7 Hlung(xL), we first exchange the order of sum-

mation of the set L C .S C T and the set S O L. That is, we compute all linear combinations of all
sets S containing L with respect to the model outputs v,,q(X1 ), given a set of input variables L, i.e.,

Zs;LCSCT(fl)|S|7|L‘”and(XL)- Then, we compute all summations over the set L C 7.

In this way, we can compute them separately for different cases of L C .S C T'. In the following,
we consider the cases (1) L =S =T,and (2) L C S C T, L # T, respectively.

(1) When L = S = T, the linear combination of all subsets .S containing I with respect to the
model output vng(x1) is (= )71 1T w,04(x1) = vana(x1).

(2) When L C S C T, L # T, the linear combination of all subsets S containing L with respect
to the model output v,nq(xy) is ZSzLCSCT(fl)|S|"L|vand(xL). Forallsets S : T O S D L,

let us consider the linear combinations of all sets S with number | S| for the model output vana(xy,),
respectively. Letm := |S|—[L[, (0 < m < |T'|—|L]), then there are a total of C|, _ ;| combinations

of all sets S of order |S|. Thus, given L, accumulating the model outputs v,,q(xz,) corresponding

T-ILl -
to all S B L, then ZS:LQSQT(_l)‘Sl_lL"Uand(XL) = Uand(XL) : Zm:o \T\—\L|(_1) = 0.
=0

Please see the complete derivation of the following formula.

(S|x7) E § \S\ [Lly, (x
ZSQT and (Sx7) sCT LCS and (X1)
\5\ |L|
= Vand (X
ZLCT Zs LCSCT ana(XL)

7| || ©)
= Vana(X7) +ZLQT,L75T Vana (%) Z meo 7= (Z1”
LT By
= 'Uand(XT)'
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Furthermore, we can understand the above equation in a physical sense. Given a masked sample xr,
if xp triggers an AND relationship .S (the co-appearance of all input variables in .S), then S C T
Thus, we accumulate the interaction effects I,,q(S|x) of any AND relationship S triggered by x1
as follows,

X triggers
1 - Lona (S
v(xo) + Z (AND relation S) ana(Sx7)

SCN,S#0
= 00k0) D g g Tna(Ser) (10)
= ZSQT Iand<S|XT) //Iand(®|XT) = Uand(X(Z)> = ’U(X@)
= Uand(XT)-

(2) Universal matching property of OR interactions.

According to the definition of OR interactions in Equation , we will derive that VI' C
N, vo(x7) = > 5 N snrszp Lo (S1xT), 5.ty Lor(Bx7) = vor(xp) = 0.

Specifically, the OR interaction is defined as Ior(S|x) := — 3, o(—1)1917 g (x v 1) in Equa-
tion (2). To compute the sum of OR interactions VI' C N,} sy sorsg lor(S|xT) =

> SCN.SAT0 [— ZLQS(—1)'3‘_‘L|vor(xN\L)} , we first exchange the order of summation of the

set L € S C N and the set S NT # (. That is, we compute all linear combinations of all sets
S containing L with respect to the model outputs v (X 1), given a set of input variables L, i.e.,

ZSOT#@,NQSQL(_1)|SI7‘L|UOT(XN\L)' Then, we compute all summations over the set L C N.

In this way, we can compute them separately for different cases of L € S C N,SNT # (. In
the following, we consider the cases (1) L = N\T,(2) L =N,3)LNT # 0, L # N, and (4)
LNT=0,L+# N\T,respectively.

(1) When L = N\ T, the linear combination of all subsets .S containing L with respect to the model
output vor (X 1,) is ZsmT;ﬁ@,sgL(_l)lsl_‘L‘”or(XN\L) = ZSHT;&@,SQL(_1)‘5‘_|LIUOY(XT)' For
allsets S O L, SNT # () (then S # N\T,S # L), let us consider the linear combinations of all sets
S with number | S| for the model output ve, (x7), respectively. Let |S'| := |S|—|L|, (1 < S| < |T)),

then there are a total of Cllgl combinations of all sets S of order |S|. Thus, given L, accumulating

the model outputs v, (x7) corresponding to all S O L, then ZSQT#@,SQL(_1)IS‘_‘L|UOT(XN\L) =

|T| / /
Vor (X7 - Zmzl Clo (D)1 = —ve (7).

=-1
(2) When L = N (then S = N), the linear combination of all subsets S containing L with respect
to the model output vo (X 1) is ZSOT;&Q},SDL(*1)‘3‘7‘L|Uor(XN\L) = (=1)NI=INlyg(xg) =
'Uor(X(Z)) =0, (Ior(Q)lXT) = Uor(X(Z)) =0).

(3) When LNT # 0,L # N, the linear combination of all subsets S containing L with re-
spect to the model output vor(Xn\1) 18 D grrp SDL(71)|S|*|L‘UOI(XN\L). For all sets S D
L.,SNT # 0, let us consider the linear combinations of all sets S with number |S| for the
model output ve (X7 ), respectively. Let us split [S| — |L]| into |S’| and |S”|, i.e.,|S| — |L| =
|S’| 4+ |S”|, where S = {ili € S,i ¢ L,i € N\T}, 8" = {ili € S,;i ¢ L,i € T}
(then 0 < |S”| < |T| —|TNLJ)and S +S”" +L = S. In this way, there are a to-

tal of C’“;lu_‘l:m 1| combinations of all sets S” of order |S”|. Thus, given L, accumulating the
model outputs v (X 7,) corresponding to all S O L, then ZSOT;é(D,SDL(_1)|S‘7‘L|UOT(XN\L) =
IT|=ITNL] 5| S/l B
Vor(XN\L) - Xsre vz Zwﬂ\:o C\T\—\TﬂL\(_l)‘ T =0,
=0

(4) When LNT = (,L # N \ T, the linear combination of all subsets S containing L with
respect to the model output vor(Xn\2) i Y 5. 5n720,55 (— 1)1 7 lvor(xa ). Similarly, Tet us
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split S| —|L]into |S'| and [S”], i.e.,|S| = |L| = |S’|+|S"|, where S" = {ili € 5,i ¢ L,i € N\T},
= {iji € S, i€ T} (then 0 < |S”| < |T]) and S’ + S” + L = S. In this way, there

are a total of C|> | combinations of all sets S of order |S”|. Thus, given L, accumulating the

7]
model outputs vor (X 1) corresponding to all S 2 L, then g4 sor (DI g (xan 1) =
T |S”| s’ S -
Uor(XN\L) ZS'CN\T\L le,,‘ -0 |T| (_1)‘ #1571 = 0,

=0

Please see the complete derivation of the following formula.

= _ _1)ISI-1L]
ngv,smT;sw Lor(Slxr) = ZSQN,SOT;&(A [ ZLQS( 1) Uor(XN\L)]

_ _1\ISI=IL]

o ZLgN ZSmT;ém,NQSQL( 1) Vor(Xn\L)

T
[S"[ 131871 Vo (XT) — Vor (X
> C'(=1) ] Yor(X7) = tor(X0),

1571=1

|T|=|TNL| " / )
B Z Z Z C\;\ o (-1 1)1 S ST “Vor(XN\L)
S'CN\T\L

LNT#0,L#AN |S"|=0

L=N\T L=N

_ Z [ Z ( g:l C\s” \S +S”>] “Vor (XN L)

LAT=0,L#N\T |S'CN\T\L \|S"|=0

= —(=1)  var(xr) —ver(x0) = Y [ > 0] “Vor(Xn\1)

LAT#0,L#N | S'CN\T\L

- 2 [Z 0]-vor<xN\L>

LNT=0,L#N\T |S'CN\T\L

= Vor (XT)

Y

Furthermore, we can understand the above equation in a physical sense. Given a masked sample x,
if x7 triggers an OR relationship S (the presence of any input variable in S), then SNT # (, S C N.
Thus, we accumulate the interaction effects /,,(S|x) of any OR relationship S triggered by x7 as

follows, )
X7 triggers
1 I (S
Z (OR relation S) or(Slxr)
SCN,S£0

12
Ior(SIXT) ( )

- ZSQN,SmT;éw
= Vor (XT )
(3) Universal matching property of AND-OR interactions.
With the universal matching property of AND interactions and the universal matching property
of OR interactions, we can easily get v(x7) = h(xr) = vaa(X7) + vVor(x7) = v(xg) +
>oscr.520 Land (S1X7) 3 -5 N 5720 Lor(S|X7), thus, we obtain the universal matching property
of AND-OR interactions.

C PROOF OF LEMMA

Lemma (Sparsity property) The surrogate logical model h(x7) on each randomly masked sample
x7,T C N mainly uses the sum of a small number of salient AND interactions and salient OR
interactions to approximate the network output score v(xr).

X7 triggers

o(xr)=h(xr)mvxe) + Y 1, O ) ana(Slxr) + ) 1(
SeQand Seqor

X7 triggers

-
OR relation S') or(S[xr)
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Ren et al.| (2024) have proven that under some common conditionsﬂ the confidence score vang(x7)
of a well-trained DNN on all 2" masked samples {x7|T C N} could be universally approximated
by a small number of AND interactions 7' € Q% with salient interaction effects Iyng(T|X), s..,
] < 2", i, VT C N, vana(x7) = X g Tand (S1%) & 2 g gequm Tana(S]%).

According to Equation (10). vuna(x7) = Y g Tua (S%) = 0(x0) + s 520 Laih micsons) -

Iand(S|XT)~ Therefore, Uand(XT) ~ U(X@) + Z H(Aﬁgrggﬁzfs) . Iand(S‘XT).
SeQand

Besides, as proven in Appendix [D] the OR interaction can be considered as a specific AND in-
teraction. Thus, the confidence score vy (x7) of a well-trained DNN on all 2" masked sam-
ples {x7|T" C N} could be universally approximated by a small number of OR interactions
T € Q° with salient interaction effects I (T|x), s.t., |Q°] < 2™. Similarly, vo(x7) =

25,520 Lok retavon 5) ~ Tor (S]er) ~ S;}(‘rﬂ(o’l‘zﬁiﬁfiq) Lor(Slxr).

In this way, the surrogate logical model h(xr) on each randomly masked sample x7,7 C N
mainly uses the sum of a small number of salient AND interactions and salient OR interactions
to approximate the network output score v(xr), i.e., v(X7) = h(XT) = Vand(XT) + Vor(xXT) =

v(%0) + 3= T(ARD reation ) * Lana (S1%7) + 3% W xglaion s ) * Lor(SPxr).
SeQuand Seqer

D OR INTERACTIONS CAN BE CONSIDERED SPECIFIC AND INTERACTIONS

The OR interaction I,,(S|x) can be considered as a specific AND interaction I,q(S|x), if we inverse
the definition of the masked state and the unmasked state of an input variable.

Given a DNN v : R” — R and an input sample x € R", if we arbitrarily mask the input sample, we
can get 2" different masked samples xg, V.S C N. Specifically, let us use baseline values b € R™
to represent the masked state of a masked sample xg, i.e.,

r;,, 1€S8
i = T 14

(XS)‘ {b“ 1 ¢ S ( )
Conversely, if we inverse the definition of the masked state and the unmasked state of an input
variable, i.e., we consider b as the input sample, and consider the original value x as the masked
state, then the masked sample bg can be defined as follows.

bi, i€S

According to the above definition of a masked sample in Equations (T4) and (T3], we can get
Xn\s = bs. To simply the analysis, if we assume that vag(X7) = vor(x7) = 0.5v(x7), then
the OR interaction I,,(S|x) in Equation (2) can be regarded as a specific AND interaction I, (S|b)
as follows.

5)

L(S1x) = = > (D) Mo (),
== ZTCS(—1)|S‘7‘T‘U0r(bT)a

=— ZTQS(_l)ls‘_‘T"Uand(bT)a
= —Lna(S|b).

(16)

E GENERALIZATION POWER OF INTERACTIONS OVER DIFFERENT ORDERS

In this section, we will give the definition and quantification of the generalization power of interac-
tions over different orders. The generalization power of an interaction is defined as the transferability

SThere are three assumptions. (1) The high order derivatives of the DNN output with respect to the input
variables are all zero. (2) The DNN works well on the masked samples, and yield higher confidence when the
input sample is less masked. (3) The confidence of the DNN does not drop significantly on the masked samples.
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—— Confidence scores of the LLM v(x7)

Surrogate logical model h(xr) . real confidence score
(xr,, ”(ng)) ) T o1 estimated by the LLM
(e, v(xr,)) et 2
--------- S 04
S
w "17 .
s confidence score
On June 1, On June 1, On June 1, = estimated by the
Andy angrily Andy angrily Andy angrily =27 surrogate logical model
threatened Bob || threatened Bob | | threatened Bob . . . . . .
and took his and took his and took his (] 25 50 75 100 125
smartphone ... || smartphone ... smartphone ... index of concepts S
| J
' (b) Experimental verification: the surrogate

n
2" masked sentences, xr logical model h(x7) well fits the

(a) Sketch map of the universal-matching property confidence scores of the LLM v(x7)

Figure 6: (a) Illustration of universal-matching property of the extracted interactions. (b) Experiment
verifies that the surrogate logical model h(xr) can accurately fit the confidence scores of the LLM
v(xr) on all 2™ masked samples {x7|T" C N}, i.e., VI C N,v(xr) = h(x7), no matter how we
randomly mask the input sample x in 2" different masking states 7' C V.

Algorithm 1 Computing AND-OR interactions

1: Input: Input legal case x, the legal LLM v(-), and the annotations of the relevant, irrelevant,
and forbidden tokens in x.
2: Output: A set of reliable interactions I™li®®le(S|x) and I™li#ble(S|x), and the ratio of reliable
interaction effects s™liable
Input the legal case x into the legal LLM, and generate the judgment (a sequence of tokens);
for S C N do
For each masked sample x g, compute the confidence score v(xg) based on Equation (1));
end for
for S C N do
Given v(xg) for all combinations S C N, compute each AND interaction I,q(S|x) and each
OR interaction o:(S|x) via ming,,} > gc n 520 Land (S[%)] + [ Lo (S|%)(];
9: end for -
10: for S € N do
11:  Compute the reliable AND interaction effect I™li®°(S|x) and the reliable OR interaction
effect Il (§|x) based on Equations (5) and .
12: end for
13: Compute the ratio of reliable interaction effects 5™ based on Equation (7);
14: return I;Ielléable(s‘x) Ireliable(s|x)’ Sreliable

> ~or

B AN AN

of this interaction from training samples to test samples. Specifically, if an interaction pattern S C N
frequently occurs in the training set, but rarely appears in the test set, then the interaction pattern
S exhibits low generalization power. Conversely, if an interaction pattern .S consistently appears in
both the training and test sets, it demonstrates high generalization power.

Specifically, for a given classification task, [Zhou et al.[ (2024} defined the generalization power of
me-order interactions w.rt. the category c as the Jaccard similarity between the interactions observed
in the training samples and those in the test samples for each category c.

n(fm fim)
sim( 1), 1) = 1 e T an)
, ” InaX(In-aiﬁ,c’ Itest,c) ” 1
where ft(r;?n)’C = [(max([t(rg?llc, 0)7, (—min([t(r;?’c, 0))T]T € R?? is conducted from Ié;?&c to en-
sure that all elements are non-negative. Here, It(r;ﬁc = [1&;’3)0(51), I (8y), - ,I[(r:;n))C(Sd)]T €
R? represents the distribution of m-order interactions over the traiﬁing samples for category
c, where d = (' enumerates all possible m-order interactions. Specifically, It(rZ?JVC(Si) =

19



Under review as a conference paper at ICLR 2025

Table 1: Average ratio (%) of reliable interaction effects of each order on the SaulLM-7B-Instruct
model.
order 1 2 3 4 5 6 7 8 9 10

syidlet 60,19 5653  49.51 48.86 43.74 3092 4286 NAN NAN NAN
sgi®5=  NAN 6679 53.89 5867 5034 3520 5238 NAN NAN NAN

Table 2: Average ratio (%) of reliable interaction effects of each order on the BAI-Law-13B model.
order 1 2 3 4 5 6 7 8 9 10

sghvlet 5622 7124 49.02 49.17 4656 40.10 3170 2500 2222 NAN
sgi®le= 5815 71.06  69.68 63.02 49.73 3598 4286 NAN NAN NAN

ExeDyan. [ (Si|x)] denotes the average interaction effect of the set .S; across different training sam-
ples within category c.

jm)  fm)

Therefore, for each category c, a high similarity sim(/,;- ., lies ) indicates that most m-order in-

teractions from the training samples generalize well to the test samples.

Using the average similarity over different categories, i.e., similarity = [E. [sim(ft(r;?ric, ft(eﬁ)c)], Zhou
et al.| (2024) have empirically found that the low-order interactions usually exhibit stronger gen-
eralization power than high-order interactions. Specifically, Figure 4 in (Zhou et al., |2024) shows
that compared to high order interaction patterns, DNNs are more likely to extract similar low order
interaction patterns from both training and test data.

F ACCURACY OF THE LEGAL LLM

Colombo et al.| (2024) reported the accuracy of the SaulLM-7B-Instruct model, which achieved
state-of-the-art results among 7B models, within the legal domain. Specifically, they followed (Guha
et al.l 2023)) to use balanced accuracy as the metric. Balanced accuracy shows its strength for han-
dling imbalanced classification tasks. They tested the balanced accuracy on two popular bench-
marks, i.e., the LegalBench-Instruct benchmark (Guha et al., [2023) and the Massive Multitask
Language Understanding (MMLU) benchmark (Hendrycks et al.l [2021). The LegalBench-Instruct
benchmark is a supplemental iteration of LegalBench (Guha et al., 2023), designed to evaluate the
legal proficiency of LLMs. To further evaluate the performance of LLMs in legal contexts, the au-
thors incorporated legal tasks from the MMLU benchmark, focusing specifically on the international
law, professional law and jurisprudence.

Colombo et al.|(2024) compared the SaulLM-7B-Instruct model to other 7B and 13B open-source
models, including Mistral-7B (Jiang et al.} 2023)) and the Llama2 family (Touvron et al.||2023). Ta-
ble ] shows that SaulLM-7B-Instruct achieved state-of-the-art performance on the LegalBench-
Instruct benchmark, outperforming its competitors in the legal domain.

Table 3: Comparison of LLMs on the LegalBench-Instruct benchmark.

LLMs SaulLM-7B-Instruct  Mistral-7B-vl  Mistral-7B-v2  Llama2-13B-chat Llama2-7B-chat

accuracy 0.61 0.55 0.52 0.45 0.39

To further confirm the observations on the LegalBench-Instruct, (Colombo et al., 2024) conducted
additional experiments on the legal tasks from the MMLU benchmark. The SaulLM-7B-Instruct
model exhibited strong performance across all three tasks, including international law, professional
law, and jurisprudence tasks.

Besides, [Institute| (2023) has not yet reported the specific classification accuracy of the BAI-Law-
13B model, leaving its performance on certain benchmarks unclear.
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Table 4: Comparison of LLMs on the MMLU benchmark.

LLMs SaulLM-7B-Instruct  Mistral-vl  Mistral-v2
International law 0.69 0.62 0.65
Professional law 0.41 0.38 0.37
Jurisprudence 0.63 0.58 0.6
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Figure 7: More results of judgments influenced by unreliable sentimental tokens. (a) A number of
irrelevant tokens were annotated in the legal case, including unreliable sentimental tokens. Criminal
actions were annotated as relevant tokens. We also translated the legal case to English as the input of
the SaulLM-7B-Instruct model. (b) Judgements predicted by the two legal LLMs, which were both
correct according to laws of the two countries. (c,d) We quantified the reliable and unreliable inter-
action effects of different orders. The SaulLM-7B-Instruct model used 66.1% reliable interaction
effects, while the BAI-Law-13B model encoded 87.2% reliable interaction effects.
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Figure 8: More results of judgments influenced by unreliable sentimental tokens. (d) The SaulLM-
7B-Instruct model used 35.3% reliable interaction effects, while the BAI-Law-13B model encoded
48.5% reliable interaction effects.

G MORE EXPERIMENT RESULTS AND DETAILS

G.1 MORE RESULTS OF JUDGMENTS INFLUENCED BY UNRELIABLE SENTIMENTAL TOKENS

We conducted more experiments to show the judgments influenced by unreliable sentimental to-
kens in Figure [7} Figure [§] and Figure 0] respectively. We observed that a considerable number
of interactions contributing to the confidence score v(x) were attributed to semantically irrelevant
or unreliable sentimental tokens. In different legal cases, the ratio of reliable interaction effects to
all salient interactions was within the range of 32.6% to 87.1%. It means that about 13~68% of
interactions used semantically irrelevant tokens or unreliable sentimental tokens for the judgment.

G.2 MORE RESULTS OF JUDGMENTS AFFECTED BY INCORRECT ENTITY MATCHING
We conducted more experiments to show the judgments affected by incorrect entity matching in Fig-

ure [T0] Figure [T} and Figure [T2] respectively. We observed that a considerable ratio of the confi-
dence score v(x) was mistakenly attributed to interactions on criminal actions made by incorrect

21



Under review as a conference paper at ICLR 2025

(2014295 ‘r( 12/ 1, 4}% e ) Judgment Reliable Unreliable All = Reliable ~ + Unreliable
, 1L N N
. for Andy preli) = 0.81 Ire(F,G,1) = 0.87 P Refable” Unreiabie”
Sl TSR [ E{I’Eﬁ I9i(F,G,) = 0.43 1areliD,G,l) = 0.41 5 2 Salient- 2 Reliable~ | 2 Unreliable -
Theft [Tl(EH,1) = -0.32 Junreli(p) = 0.40 g1 1 1 greliable
Between September and| (SaulLM-7B- 15¢(D,G,1) = 0.21 [umreli(C F.G) = -0.38 g o o 0 =38.1%
December 2014,  Andy Instruct) " . 1 -1 -1 ‘
a crime. Bob I554(B,C.E,G 1) = -0.18 I;5§®'(C,G) = 0.33  —_, 2 2
was ) l;f,],j(C,D,l)=-015 [ureli(C E,F,G, ) = -0.33 123456780910 12345678910 123&2;3'75&'3910
by and his
‘Andy 15'(B,D,GH.L) = 0335 D) = 147 N 2
Bob's I5N(D,H,1,J) =033  unreliG) = 0.85 % ) ) ) greliable
and [INEREEEE Bobs [0 Theft jeligrGH)=024 18eli(D,G)=0.78 g =32.6%
moneyll) to himsei} (BAI-Law-13B)reli g £ G,1) = 0.20  4""(B.D.GH1J) =033 £ O o 0 ‘
1i iy unreli = _ = -1
lg?l‘(G,H,l) 0.14 Iand ](D,G) 0.33 T E VIS TN 13343678910 12345675910
15¢1(B,G,H,1,J) = 0.13  I4nTeli(A,D,G) = 0.28 rls|
\ == _Relevant Irelevant ) o o (d) Distribution of reliable and unrellable
(a) Input legal case (b) Judgment (c) Interactions interactions over different orders

Figure 9: More results of judgments influenced by unreliable sentimental tokens. (d) The SaulLM-
7B-Instruct model used 38.1% reliable interaction effects, while the BAI-Law-13B model encoded
32.6% reliable interaction effects.
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Figure 10: More results of judgments affected by incorrect entity matching. (a) A number of ir-
relevant tokens were annotated in the legal case, including the time and actions that were not the
direct reason for the judgment. Criminal actions of the defendant were annotated as relevant to-
kens. Criminal actions of the unrelated person were annotated as forbidden tokens. (b) Judgements
predicted by the two legal LLMs, which were both correct according to laws of the two countries.
(c,d) We measured the reliable and unreliable interaction effects of different orders. The SaullLM-
7B-Instruct model used 67.8% reliable interaction effects, while the BAI-Law-13B model encoded
64.1% reliable interaction effects.
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Figure 11: More results of judgments affected by incorrect entity matching. (d) The SaulLM-
7B-Instruct model used 63.7% reliable interaction effects, while the BAI-Law-13B model encoded
31.9% reliable interaction effects.

entities. In different legal cases, the ratio of reliable interaction effects to all salient interactions was
within the range of 31.9% to 67.8%. It means that about 22~68% of interactions used semanti-
cally irrelevant tokens for the judgment, or was mistakenly attributed on criminal actions made by
incorrect entities.
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Figure 12: More results of judgments affected by incorrect entity matching. (d) The SaulLM-
7B-Instruct model used 52.5% reliable interaction effects, while the BAI-Law-13B model encoded
42.2% reliable interaction effects.

G.3 MORE RESULTS OF JUDGMENTS BIASED BY DISCRIMINATION IN OCCUPATION

Experiment results of judgments biased by discrimination in occupation in Section [3] Fig-
ure [T6]illustrates additional examples of how occupation influences the judgment of the legal case,
which were tested on the SaulLM-7B-Instruct model. It shows that if we replaced “a judge” with
law-related occupations, such as “a lawyer” and “a policeman.” the judgment remained “robbery.”
Besides, the occupation “a programmer” changed the judgment to “nor mentioned.” The interac-
tions containing the occupation token (i.e., “a judge”, “a lawyer”, “a policeman”, “a programmer”,
and “a volunteer”) were important factors that changed the ratio of reliable interactions from 81.4%
to 84.0%. This suggested that the legal LLM sometimes had considerable occupation bias.

Futhermore, Figure |L7| shows the test of the BAI-Law-13B model on the legal case, in which Andy,
the victim with varying occupations, was robbed of his belongings by two suspicious men. Similarly,
we found that the BAI-Law-13B model encoded interactions with the occupation tokens “a judge,”
which boosted the confidence of the judgment “robbery.” More interestingly, if we substituted the
occupation tokens “a judge” to “a policeman,” the interaction of the occupation “a policeman,” de-
creased from 0.29 to 0.11. The interactions containing the occupation token were important factors
that changed the ratio of reliable interactions from 78.9% to 87.1%. This suggested that the legal
LLM sometimes had considerable occupation bias.

More results of judgments biased by discrimination in occupation. We conducted more ex-
periments to show the judgments biased by discrimination in occupation in Figure [T3] Figure [T4]
and Figure [T3] respectively. We found that the legal LLM usually used interactions on the occupa-
tion information to compute the confidence score v(x). In different legal cases, the ratio of reliable
interaction effects to all salient interactions was within the range of 30.1% to 63.7%. In particular,
in Figure [T3] changing the occupation from “/awyer” to “programmer” results in a decrease of the
reliable interactions from 63.7% to 57.3%. The difference of interactions containing the occupation
token changes the model output from “Larceny” to “Theft.”

G.4 EXPERIMENT DETAILS OF MASKED SAMPLES

This section discusses how to obtain the masked sample x7,7" C N. Given the confidence score
of a DNN v(x) and an input sample x = [z, z3, - , Z,]T with n input variables, if we arbitrarily
mask the input sample x, we can get 2" different masked samples x7, V1" C N. Specifically, for
each input variable i € N \ T', we replace it with the baseline value b; to represent its masked state.
Let us use baseline values b = [by,ba, - -, b,]T to represent the masked state of a masked sample

XT, i.e.,
x;,, t€T
o 1
(xr)i {b i¢T (18)

For sentences in a language generation task, the masking of input variables is performed at the
embedding level. Following the approach of (Ren et al.,[2024; Shen et al.| [2023)), we masked inputs
at the embedding level by transforming sentence tokens into their corresponding embeddings. Given
an input sentence X = [r1,x2, - ,%,|T with n input tokens, the i-th token z; is mapped to its
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Figure 13: More results of judgments biased by discrimination in occupation. (a) A number of
irrelevant tokens were annotated in the legal case, including the occupation, time and actions that
are not the direct reason for the judgment. Criminal actions of the defendant were annotated as
relevant tokens. (b) The SaulLM-7B-Instruct model predicted the judgment based on the legal case
with different occupations, respectively. (c,d) We measured the reliable and unreliable interaction
effects of different orders. When the occupation was set to “lawyer,” the LLM used 63.7% reliable
interaction effects. In comparison, when the occupation was set to “programmer,” the LLM encoded
57.3% reliable interaction effects.
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Figure 14: More results of judgments biased by discrimination in occupation. (b) The SaulLM-
7B-Instruct model predicted the judgment based on the legal case with different occupations, re-
spectively. (d) When the occupation was set to “telephone service,” the LLM used 30.1% reliable
interaction effects. In comparison, when the occupation was set to “volunteer,” the LLM encoded

32.7% reliable interaction effects.
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Figure 15: More results of judgments biased by discrimination in occupation. (b) The BAI-Law-13B
model predicted the judgment based on the legal case with different occupations, respectively. (d)
When the occupation was set to “former thief,” the LLM used 41.3% reliable interaction effects. In
comparison, when the occupation was set to “miner,” the LLM encoded 40.1% reliable interaction
effects.

embedding e; € R?, where d is the dimension of the embedding layer. To obtain the masked sample
x7,if ¢ € N\ T, the embedding is replaced with the (constant) baseline value b; € RY ie., e; = b;.
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Figure 16: Visualization of judgments biased by discrimination in occupation. (a) A number of
irrelevant tokens were annotated in the legal case, including the occupation, time and actions that
are not the direct reason for the judgment. Criminal actions of the defendant were annotated as
relevant tokens. (b) The SaulLM-7B-Instruct model predicted the judgment based on the legal case
with different occupations, respectively. (c,d) We measured the reliable and unreliable interaction
effects of different orders. When the occupation was set to “a lawyer,” the LLM used 82.6% reliable
interaction effects. In comparison, when the occupation was set to “a policeman,” the LLM encoded
84.2% reliable interaction effects.

Otherwise, the embedding remains unchanged, i.e., e; = e;. Following (Ren et al., [2023b)), we
trained the (constant) baseline value b; € R¢ to extract the sparsest interactions.

G.5 EXPERIMENT DETAILS FOR USING THE SAME DATASET FOR COMPARISON

This section presents the experiment details of using the CAIL2018 dataset (Xiao et al., [2018) to
ensure a fair comparison between two legal LLMs. For the BAI-Law-13B model, a Chinese legal
LLM, we directly analyzed the Chinese legal cases from the CAIL2018 dataset. In contrast, for
the SaulLM-7B-Instruct model, an English legal LLM, we translated the Chinese legal cases into
English and performed the analysis on the translated cases, to enable fair comparisons. To simplify
the explanation and avoid ambiguity, we only explained the decision-making logic on legal cases,
which were correctly judged by the LLM.

Starting with a complete fact descriptions of the legal case from the CAIL2018 dataset, we first
condensed the case by removing descriptive details irrelevant to the judgment, retaining only the
most informative tokens, such as the time, location, people, and events. To prompt the model to
deliver its judgment, we added a structured prompt designed to extract a concise answer. The format
is as follows:

“Question: [Fact descriptions of the case]. What crime did [the defendant] commit? Briefly answer
the specific charge in one word. Answer: The specific charge is”

Here, [Fact descriptions of the case] is replaced with the details of the specific legal case, and [the
defendant] is substituted with the name of the defendant.

To identify potential representation flaws behind the seemingly correct language generation results
of legal LLMs, we introduced special tokens that were irrelevant to the judgments. For cases to
assess if judgments were influenced by unreliable sentimental tokens, we added such tokens to
describe actions in the legal case. We then observed whether a substantial portion of the interactions
contributing to the confidence score v(x) were associated with semantically irrelevant or unreliable
sentimental tokens. Similarly, in cases where we aimed to detect potential bias based on occupation,
we included irrelevant occupation-related tokens for the defendants or victims, and analyzed whether
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Figure 17: Visualization of judgments biased by discrimination in occupation. (a) A number of ir-
relevant tokens were annotated in the legal case, including the occupation, time and actions that are
not the direct reason for the judgment. Criminal actions of the defendant were annotated as relevant
tokens. (b) The BAI-Law-13B model predicted the judgment based on the legal case with different
occupations, respectively. (c,d) We measured the reliable and unreliable interaction effects of dif-
ferent orders. When the occupation was set to “a judge,” the LLM used 78.9% reliable interaction
effects. In comparison, when the occupation was set to “a policeman,” the LLM encoded 87.1%
reliable interaction effects.

the legal LLM leveraged these occupation-related tokens to compute the confidence score v(x)
in Equation (TJ).

Finally, we show the selection of input variables for extracting interactions. As discussed in Sec-
tion [2.1} given an input sample x with n input variables, we can extracted at most 21 AND-OR
interactions to compute the confidence score v(x). Consequently, the computational cost for extract-
ing interactions increases exponentially with the number of input variables. To alleviate this issue,
we followed (Ren et al.| [2024; [Shen et al.| |2023) to select a set of tokens as input variables, while
keeping the remaining tokens as a constant background in Appendix [G.4] to compute interactions
among the selected variables. Specifically, we selected 10 informative input variables (tokens or
phrases) for each legal case. These input variables were manually selected based on their informa-
tiveness for judgements. It was ensured that the removal of all input variables would substantially
change the legal judgment result.
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