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Abstract
Diffusion-based manifold learning methods have
proven useful in representation learning and di-
mensionality reduction of modern high dimen-
sional, high throughput, noisy datasets. Such
datasets are especially present in fields like bi-
ology and physics. While it is thought that these
methods preserve underlying manifold structure
of data by learning a proxy for geodesic distances,
no specific theoretical links have been established.
Here, we establish such a link via results in Rie-
mannian geometry explicitly connecting heat dif-
fusion to manifold distances. In this process, we
also formulate a more general heat kernel based
manifold embedding method that we call heat
geodesic embeddings. This novel perspective
makes clearer the choices available in manifold
learning and denoising. Results show that our
method outperforms existing state of the art in
preserving ground truth manifold distances, and
preserving cluster structure in toy datasets. We
also showcase our method on single cell RNA-
sequencing datasets with both continuum and clus-
ter structure, where our method enables interpola-
tion of withheld timepoints of data.

1. Introduction
The advent of high throughput and high dimensional data
in various fields of science have made dimensionality re-
duction and visualization techniques an indispensable part
of exploratory analysis. Diffusion-based manifold learning
methods, based on the data diffusion operator, first defined
in (Coifman & Lafon, 2006), have proven especially useful
due to their ability to handle noise and density variations
while preserving structure. As a result, diffusion-based di-
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mensionality reduction methods, such as PHATE (Moon
et al., 2019), T-PHATE (Busch et al., 2023), and diffusion
maps (Coifman & Lafon, 2006), have emerged as meth-
ods for analyzing high throughput noisy data in various
situations. While these methods are surmised to learn man-
ifold geodesic distances, no specific theoretical links have
been established. Here, we establish such a link by using
Varadhan’s formula (Varadhan, 1967) and a parabolic Har-
nack inequality (Saloff-Coste, 2010), which relate manifold
distances to heat diffusion directly. This lens gives new
insight into existing dimensionality reduction methods, in-
cluding when they preserve geodesics, and suggests a new
method for dimensionality reduction to explicitly preserve
geodesics, which we call heat geodesic embeddings1.

Our contributions are as follows: (1) We define the heat-
geodesic dissimilarity based on Varadhan’s formula. (2)
Based on this dissimilarity, we present a versatile geodesic-
preserving method for dimensionality reduction which we
call heat geodesic embedding. (3) We establish a rela-
tionship between diffusion-based distances and the heat-
geodesic dissimilarity. (4) We establish connections be-
tween our method and popular dimensionality reduction
techniques such as PHATE and t-SNE, shedding light on
their geodesic preservation and denoising properties based
on modifications of the computed dissimilarity and distance
preservation losses. (5) We empirically demonstrate the
advantages of Heat Geodesic Embedding in preserving man-
ifold geodesic distances in several experiments showcasing
more faithful manifold distances in the embedding space, as
well as our ability to interpolate data within the manifold.

Figure 1. Embeddings of the Swiss roll (top) and Tree (bottom)
datasets for different manifold learning methods. Our HeatGeo
method correctly unrolls the Swiss roll while t-SNE and UMAP
create undesirable artificial clusters.

1https://github.com/KrishnaswamyLab/
HeatGeo
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2. Preliminaries
First, we introduce fundamental notions that form the ba-
sis of our manifold learning methods: Varadhan’s for-
mula (Varadhan, 1967) on a manifold, diffusion processes
on graphs, efficient heat kernel approximations, and multi-
dimensional scaling (Kruskal, 1964).

Varadhan’s formula Varadhan’s formula is a powerful
tool in differential geometry that establishes a connection
between the heat kernel and the shortest path (geodesic)
distance on a Riemannian manifold. Its versatility has led to
widespread applications in machine learning (Crane et al.,
2013; Solomon et al., 2015; Sun et al., 2009). Let (M, g) be
a closed Riemannian manifold, and ∆ the Laplace-Beltrami
operator on M . The heat kernel ht(x, y) on M is the mini-
mal positive fundamental solution of the heat equation ∂u

∂t =
∆u with initial condition h0(x, y) = δx(y). In Euclidean
space the heat kernel is ht(x, y) = (4πt)−n/2 e−d(x,y)2/4t

so that −4t log ht(x, y) = 2nt log(4πt) + d2(x, y) and we
observe the following limiting behavior:

lim
t→0
−4t log ht(x, y) = d2(x, y). (1)

Varadhan (Varadhan, 1967) proved that eq. 1 (now Varad-
han’s formula) holds more generally on complete Rieman-
nian manifolds M , where d(x, y) is the geodesic distance
onM , and the convergence is uniform over compact subsets
of M .

Graph construction and diffusion Our construction
starts by creating a graph from a point cloud dataset X .
We use a kernel function κ : Rd × Rd → R+, such that
the (weighted) adjacency matrix is Wij := κ(xi, xj) for all
xi, xj ∈ X . The graph Laplacian L := Q −W (where
Qii =

∑
j Wij) is an operator acting on signals on G such

that it mimics the negative of the Laplace operator. The
Laplacian is symmetric positive semi-definite, and has an
eigen-decomposition L = ΨΛΨT . Throughout the pre-
sentation, we assume that Qii > 0 for all i ∈ [n]. The
Laplacian allows us to define the heat equation on G, with
respect to an initial signal f0 ∈ Rn on G:

∂

∂t
f(t) +Lf(t) = 0, s.t. f(0) = f0 t ∈ R+. (2)

The solution of the above differential equation is obtained
with the matrix exponential f(t) = e−tLf0, and we define
the heat kernel on the graph as Ht := e−tL. The matrix
Ht is a diffusion matrix that characterizes how a signal
propagate through the graph according to the heat equations.

Multidimensional scaling Given a dissimilarity func-
tion d between data points, multidimensional scaling
(MDS) (Kruskal, 1964) finds an embedding ϕ such that the

difference between the given dissimilarity and the Euclidean
distance in the embedded space is minimal across all data
points. Formally, for a given function d : Rd × Rd → R+,
MDS minimizes the following objective:

L(X) =

(∑
ij

(
d(xi, xj)−∥ϕ(xi)−ϕ(xj)∥2

)2)1/2

. (3)

3. Heat-Geodesic Embedding
In this section, we present our Heat Geodesic Embedding
which is summarized in Alg. 1. We consider the discrete
case, where we have a set of n points {xi}ni=1 =: X in a
high dimensional Euclidean space xi ∈ Rd. From this point
cloud, we want to define a map ϕ : Rd → Rk that embeds
the observation in a lower dimensional space. An important
property of our embedding is that we preserve manifold
geodesic distances in a low dimensional space.

Heat-geodesic Dissimilarity Inspired by Varadhan’s for-
mula and the Harnack inequalities, we defined a heat-
geodesic dissimilarity based on heat diffusion on graphs.
From observations (datapoints) in Rn, we define an undi-
rected graph G, and compute its heat kernel Ht = e−tL,
where L is the combinatorial or symmetrically normalized
graph Laplacian (the heat kernel is thus symmetric).
Definition 3.1. For a diffusion time t > 0 and tunable
parameter σ > 0, we define the heat-geodesic dissimilarity
between xi, xj ∈X as

dt(xi, xj) := [−4t log(Ht)ij − σ4t log(Vt)ij ]
1/2

where Ht is the heat kernel on the graph G, and (Vt)ij :=
2[(Ht)ii + (Ht)jj ]

−1.

Here the log is applied elementwise, and the term
−4t log(Ht)ij corresponds to the geodesic approximation
when t → 0 as in Varadhan’s formula. In practice one
uses a fixed diffusion time t > 0 (we present in appendix
how to automatically select t), so we add a symmetric vol-
ume correction term as in the Harnack inequality, ensur-
ing that dt(xi, xj) is symmetric. From Sec. 2, we have
ht(x, x) ≃ V (x,

√
t)−1, and we use the diagonal of Ht to

approximate the inverse of the volume. With this volume
correction term and σ = 1, the dissimilarity is such that
dt(xi, xi) = 0 for all t > 0. When σ = 0 or the manifold
has uniform volume growth (as in the constant curvature
setting) we show that the heat-geodesic dissimilarity is order
preserving:
Proposition 3.2. When σ = 0 or the manifold has uniform
volume growth we need only consider the −4t log(Ht)ij
terms. The assumption of pointwise monotonicity of the heat
kernel entails that |x − y| > |x − z| implies Ht(x, y) <
Ht(x, z). We are able to conclude that−4t logHt(x, y) >
−4t logHt(x, z) and thus dt(x, y) > dt(x, z).
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Denoising Distances with Triplet Computations We
note that both diffusion maps and PHATE compute a triplet
distance between datapoints, i.e., rather than using the direct
diffusion probability between datapoints, they use the dis-
tance between corresponding rows of a diffusion operator.
For a reference dissimilarity like the heat-geodesic, it is de-
fined as DT(xi, xj) := ∥dt(xi, ·)− dt(xj , ·)∥2. For linear
perturbations of the form dt(xi, xj) + ϵ, where ϵ ∈ R, the
effect of ϵ on DT(xi, xj) is less severe than on dt(xi, xj).

Proposition 3.3. Denote the perturbed triplet distance by
D̃T(xi, xj) = ||d̃t(xi, ·)− d̃t(xj , ·)||2 where d̃t(xi, xj) :=
dt(xi, xj)+ϵ and d̃t(xi, xk) := dt(xi, xk) for k ̸= j. Then
the triplet distance DT is robust to perturbations , i.e., for
all ϵ > 0,(

D̃T(xi, xj)

DT(xi, xj)

)2

≤
(
dt(xi, xj) + ϵ

dt(xi, xj)

)2

.

Heat-geodesic embedding To define a lower dimensional
embedding of a point cloud X , we construct a matrix from
the heat-geodesic dissimilarity, and then use MDS to create
the embedding. Our embedding defines a map ϕ that mini-
mizes

(
dt(xi, xj)−∥ϕ(xi)−ϕ(xj)∥2

)2
, for all xi, xj ∈X .

Hence, it preserves the heat-geodesic dissimilarity as the
loss decreases to zero. In Alg. 1, we present the main steps
of our algorithm using the heat-geodesic dissimilarity.

Algorithm 1 Heat Geodesic Embedding
1: Input: N × d dataset matrix X , denoising parameter
ρ ∈ [0, 1], regularization σ > 0, output dimension k.

2: Returns: N × k embedding matrix E.
3: Ht ← pK(L, t) Heat approximation
4: D ← −4t logHt + tσV log is applied elementwise
5: D ← (1− ρ)D + ρDT Triplet interpolation step
6: Return E ← MetricMDS(D, ∥ · ∥2, k)

Relation to PHATE The potential distance in PHATE
(Sec. B) is defined by comparing the transition probabilities
of two t-steps random walks initialized from different ver-
tices. The transition matrix P t mimics the heat propagation
on a graph. The heat-geodesic dissimilarity provides a new
interpretation of PHATE. In the following proposition, we
show how the heat-geodesic relates to the PHATE potential
distance with a linear combination of t-steps random walks.

Proposition 3.4. The PHATE potential distance with the
heat kernel PHHt

can be expressed in terms of the heat-
geodesic dissimilarity with σ = 0

PHHt = (1/4t)2∥dt(xi, ·)− dt(xj , ·)∥22,

and it is equivalent to a multiscale random walk distance
with kernel

∑
k>0mt(k)P

k, where mt(k) := tke−t/k!.

4. Results
In this section, we show the versatility of our method, show-
casing its performance in terms of clustering and preserving
the structure of continuous manifolds. We use the following
methods in our experiments: our Heat Geodesic Embedding,
diffusion maps (Coifman & Lafon, 2006), PHATE (Moon
et al., 2019), shortest-path which estimates the geodesic
distance by computing the shortest path between two nodes
in a graph built on the point clouds, t-SNE (Van der Maaten
& Hinton, 2008), and UMAP (McInnes et al., 2018). De-
tails about each of these methods, and results for different
parameters (graph type, heat approximation, etc.) are given
in Appendix E.

Table 1. Pearson and Spearman correlation between the inferred
and ground truth distance matrices on the Swiss roll and Tree
datasets (higher is better). Best models on average are bolded.

Swiss roll Tree

Method Pearson Spearman Pearson Spearman

Diffusion Map 0.476± 0.226 0.478± 0.138 0.656± 0.054 0.653± 0.057
PHATE 0.457± 0.01 0.404± 0.024 0.766± 0.023 0.743± 0.028
Shortest Path 0.497± 0.144 0.558± 0.134 0.780± 0.009 0.757± 0.019
HeatGeo (ours) 0.702± 0.086 0.700± 0.073 0.822± 0.008 0.807± 0.016

Distance matrix comparison We start by evaluating the
ability of the different methods to recover the ground truth
distance matrix of a point cloud. For this task, we use point
clouds from the Swiss roll and Tree datasets, for which
the ground truth geodesic distance is known. In Fig. 1, we
present embeddings of both datasets. Our method recov-
ers the underlying geometry, while other methods create
artificial clusters or have too much denoising. We compare
the methods according to the Pearson and Spearman corre-
lations of the estimated distance matrices with respect to
ground truth. Results are displayed in Tab. 1. We observe
that Heat Geodesic Embedding typically outperforms pre-
vious methods in terms of the correlation with the ground
truth distance matrix.

Temporal data representation. We aim at representing
data points from population observed at consecutive points
in time. We use single cell gene expression datasets col-
lected across different time points, including the Embryoid
Body (EB), IPSC (Moon et al., 2019), and two from the 2022
NeurIPS multimodal single-cell integration challenge (Cite
& Multi). We first embed the entire dataset and obfuscate
all samples from a particular time point (e.g., t = 2). We
then estimate the distribution of the missing time point by
using displacement interpolation (Villani & Villani, 2009)
between the adjacent time points (e.g., t = 1 and t = 3).
We report the Earth Mover Distance (EMD) between the
predicted distribution and true distribution. A low EMD
suggests that the obfuscated embeddings are naturally lo-
cated between the previous and later time points, and that
the generated embedding captures the temporal evolution
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of the data adequately. Results are presented in Tab. 2.
Heat Geodesic Embedding outperforms other methods on
the EB, Multi, and IPSC datasets and is competitive with
other approaches on Cite. We show a graphical depiction of
the different embeddings for the embryoid (EB) dataset in
Fig. 2.

Figure 2. Embeddings of 2000 differentiating cells from embryoid
body (Moon et al., 2019) over 28 days. UMAP and t-SNE do not
capture the continuous manifold representing the cells’ evolution.

Table 2. EMD between a linear interpolation of two consecutive
time points t − 1, t + 1, and the time points t. Best models on
average are bolded (lower is better).

Method Cite EB Multi IPSC

UMAP 0.791 ± 0.045 0.942 ± 0.053 1.418 ± 0.042 0.866 ± 0.058
t-SNE 0.905 ± 0.034 0.964 ± 0.032 1.208 ± 0.087 1.006 ± 0.026
PHATE 1.032 ± 0.037 1.088 ± 0.012 1.254 ± 0.042 0.955 ± 0.033
Diffusion Maps 0.989 ± 0.080 0.965 ± 0.077 1.227 ± 0.086 0.821 ± 0.039
HeatGeo (ours) 0.890 ± 0.046 0.733 ± 0.036 0.958 ± 0.044 0.365 ± 0.056

5. Conclusion
The ability to visualize complex high-dimensional data in
an interpretable and rigorous way is a crucial tool of scien-
tific discovery. In this work, we took a step in that direc-
tion by proposing a general framework for understanding
diffusion-based dimensionality reduction methods through
the lens of Riemannian geometry. This allowed us to define
a novel embedding based on the heat geodesic dissimilarity—
a more direct measure of manifold distance. Theoretically,
we showed that our methods brings greater versatility than
previous approaches and can help gaining insight into pop-
ular manifold learning methods such as diffusion maps,
PHATE, and SNE. Experimentally, we demonstrated that
it also results in better geodesic distance preservation and
excels both at clustering and preserving the structure of a
continuous manifold. This contrasts with previous methods
that are typically only effective at a single of these tasks.
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A. Theory and algorithm details
A.1. Kernel preserving embeddings

In this section, we attempt to create a generalized framework for dimensionality reduction methods. These methods often
have been viewed as disparate or competing but here we show that many of them are related to one another given the right
template for methodology comparison. In order to do this, we introduce a general definition suited for distance-preserving
dimensionality reduction methods. With this definition, we can cast many dimensionality reduction methods within the
same framework, and easily compare them. We recall that the observations in the ambient space are denoted x, and those in
the embedded space are denoted y. The definition relies on kernel functions Hx

t , Hy
t defined respectively on the ambient

and embedded spaces and on transformations T x, T y applied to the kernels. We recall that a divergence f : R×R→ R+ is
such that f(a, b) = 0 if and only if a = b and f(a, a+ δ) is a positive semi-definite quadratic form for infinitesimal δ.
Definition A.1. We define a kernel features preserving embedding as an embedding which minimizes a loss L between a
transformation T x of the ambient space kernel Hx

t and its embedded space counterpart

L := f(T x(Hx
t ), T

y(Hy
t′)), (4)

where f is any C2 divergence on R≥0.
Example A.2. We formulate MDS as a kernel feature-preserving embedding. Suppose we want to preserve the Euclidean
distance, we have Hx

t (xi, xj) = ∥xi − xj∥2, Hy
t (yi, yj) = ∥yi − yj∥2, f(a, b) = ∥a− b∥2, and T x = T y = I .

In the following, we present popular dimensionality reduction methods that are kernel features preserving embeddings. With
this definition, we can distinguish between methods that a preserve a kernel via affinities or distances. For the methods
considered in this work, Hx

t is an affinity kernel, but its construction varies from one method to another. In PHATE and
Diffusion maps, Hx

t is a random walk P , while in Heat Geodesic Embedding we use the heat kernel Ht. t-SNE defines Hx
t

as a symmetrized random walk matrix from a Gaussian kernel, while UMAP uses an unnormalized version. Methods such
as PHATE and diffusion maps define a new distance matrix from a kernel in the ambient space and preserve these distances
in the embedded space. Other methods like t-SNE and UMAP define similarities from a kernel and aim to preserve these
similarities in the ambient space and embedded space via an entropy-based loss. We note the Kullback–Leibler divergence
DKL(a, b) =

∑
ij aij log[aij/bij ].

Proposition A.3. The embeddings methods HeatGeo, PHATE, Diffusion Maps, SNE, t-SNE, and UMAP are kernel
feature-preserving embeddings.

Proof. We assume that the affinity kernel in the ambient space Hx
t , is given, to complete the proof we need to define

f,Hy
t , T

x, T y for all methods.

We start with the distance preserving embeddings; HeatGeo, PHATE, and Diffusion Maps. For these methods, the kernel in
the embed space is simply Hy

t (yi, yj) = ∥yi − yj∥2, without transformation, i.e. T y = I . Since they preserve a distance,
the loss is f(T x(Hx

t ), T
y(Hy

t′)) = ∥Hx
t −H

y
t′∥2.

In the Heat Geodesic Embedding we apply a transformation on Hx
t = Ht to define a dissimilarity, hence T x(Hx

t ) =
−t logHx

t (for σ = 0), where log is applied elementwise.

In PHATE, the potential distance is equivalent to (T x(Hx
t ))ij = ∥ − log(Hx

t )i + log(Hx
t )j∥2. In Diffusion Maps, the

diffusion distance is (T x(Hx
t ))ij = ∥(Hx

t )i − (Hx
t )j∥2.

SNE, t-SNE, and UMAP preserve affinities from a kernel. For these three methods, the loss is a divergence between
distributions, namely f = DKL. They vary by defining different affinity kernel and transformation in the embedded space.
SNE uses the unnormalized kernel Hy

t (yi, yj) = exp(−(1/t)∥yi − yj∥22), with T x = T y = I . Whereas, t-SNE uses
(Hy

1 )ij = (1 + ∥yi − yj∥2)−1, and T x = T y = I . UMAP define a pointwise transformation in the embedded space with
(Hy

1 )ij = (1 + ∥yi − yj∥2)−1, (T y(Hy
t ))ij = (Hy

1 )ij/(1− (Hy
1 )ij), and T x = I .

We summarize the choice of kernels and functions in Tab. 3

A.2. Proofs

Proposition A.4. When σ = 0 or the manifold has uniform volume growth we need only consider the −4t log(Ht)ij terms.
The assumption of pointwise monotonicity of the heat kernel entails that |x− y| > |x− z| implies Ht(x, y) <Ht(x, z).

5
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Table 3. Overview of kernel preserving methods.

Method Hy
t (yi, yj) T x(Hx

t ) T y(Hy
t ) f

PHATE ∥yi − yj∥2 ∥ − log(Hx
t )i + log(Hx

t )j∥2 Hy
t ∥ · ∥2

Heat Geodesic ∥yi − yj∥2 −t log(Hx
t )ij Hy

t ∥ · ∥2
Diffusion Maps ∥yi − yj∥2 ∥(Hx

t )i − (Hx
t )j∥2 Hy

t ∥ · ∥2
SNE exp(−( 1t )∥yi − yj∥

2
2) Hx

t Hy
t DKL

t-SNE (1 + ∥yi − yj∥2)−1 Hx
t Hy

t DKL

UMAP (1 + ∥yi − yj∥2)−1 Hx
t

(Hy
1 )ij

(1−(Hy
1 )ij)

DKL

We are able to conclude that −4t logHt(x, y) > −4t logHt(x, z) and thus dt(x, y) > dt(x, z).

Proof of Proposition 3.2. When σ = 0 or the manifold has uniform volume growth we need only consider the−4t log(Ht)ij
terms. The assumption of pointwise monotonicity of the heat kernel entails that |x − y| > |x − z| implies Ht(x, y) <
Ht(x, z). We are able to conclude that −4t logHt(x, y) > −4t logHt(x, z) and thus dt(x, y) > dt(x, z).

Proposition A.5. Denote the perturbed triplet distance by D̃T(xi, xj) = ||d̃t(xi, ·) − d̃t(xj , ·)||2 where d̃t(xi, xj) :=

dt(xi, xj) + ϵ and d̃t(xi, xk) := dt(xi, xk) for k ̸= j. Then the triplet distance DT is robust to perturbations , i.e., for all
ϵ > 0, (

D̃T(xi, xj)

DT(xi, xj)

)2

≤
(
dt(xi, xj) + ϵ

dt(xi, xj)

)2

.

Proof of Proposition 3.3. The effect of the noise on the square distance is (dt(xi, xj)+ϵ)2/d(xi, xj)2 = 1+(2ϵdt(xi, xj)+

ϵ2)/d(xi, xj)
2. Denoting the perturbed triplet distance by D̃T, we have

D̃T(xi, xj)
2

DT(xi, xj)2
=

∑
k ̸=i,j

(
dt(xi, xk)− dt(xj , xk)

)2
+ 2(dt(xi, xj) + ϵ)2

DT(xi, xj)2
= 1 +

4ϵd(xi, xj) + 2ϵ2

DT(xi, xj)2
,

and we have
4ϵd(xi, xj) + 2ϵ2

DT (xi, xj)2
≤ 2ϵdt(xi, xj) + ϵ2

dt(xi, xj)2

For ϵ > 0, this gives

ϵ ≥ 4dt(xi, xj)
3 − 2dt(xi, xj)DT (xi, xj)

2

Dt(xi, xj)2 − 2dt(xi, xj)2
= −2dt(xi, xj).

For ϵ < 0, we have

ϵ ≤ 4dt(xi, xj)
3 − 2dt(xi, xj)DT (xi, xj)

2

Dt(xi, xj)2 − 2dt(xi, xj)2
= −2dt(xi, xj).

Thus ϵ ∈ (−∞,−2dt(xi, xj))∪(0,∞). As we require the perturbation factor ϵ << dt(xi, xj), hence we choose ϵ ∈ (0,∞).

Proposition A.6. The PHATE potential distance with the heat kernel PHHt
can be expressed in terms of the heat-geodesic

dissimilarity with σ = 0
PHHt = (1/4t)2∥dt(xi, ·)− dt(xj , ·)∥22,

and it is equivalent to a multiscale random walk distance with kernel
∑

k>0mt(k)P
k, where mt(k) := tke−t/k!.

Proof of Proposition 3.4. For σ = 0, we have dt(xi, xj) = −4t log(Ht)ij , the relation between the PHATE potential and
the heat-geodesic follows from the definition

PHHt
=
∑
k

(
− logHt(xi, xk) + logHt(xj , xk)

)2
= (1/4t)2∥dt(xi, ·)− dt(xj , ·)∥22.
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Using the heat kernel Ht with the random walk Laplacian Lrw = Q−1L = In −Q−1W corresponds to a multiscale
random walk kernel. Recall that we can write Lrw in terms of the symmetric Laplacian Lrw = Q−1/2LsQ

1/2, meaning that
the two matrices are similar, hence admit the same eigenvalues Λ. We also know that Ls is diagonalizable, since we can write
Ls = Q−1/2LQ−1/2 = Q−1/2ΨΛΨTQ−1/2. In particular, we have Lrw = SΛS−1, where S := Q−1/2Ψ. The random
walk matrix can be written as P = In −Rrw, hence its eigenvalues are (In −Λ), and we can write P t = S(In −Λ)tS−1.
Similarly, the heat kernel with the random walk Laplacian can be written as Ht = Se−tΛS−1. Interestingly, we can
relate the eigenvalues of Ht and P with the Poisson distribution. Note the probability mass function of a Poisson as
mt(k) := tke−t/k!, for t ≥ 0, we have

e−t(1−µ) = e−t
∑
k≥0

(tµ)k

k!
=
∑
k≥0

mt(k)µ
k. (5)

We note that (5) is the probability generating function of a Poisson distribution with parameter t, i.e. E[µX ], where
X ∼ Poisson(t). With this relationship, we can express Ht as a linear combination of P t weighted by the Poisson
distribution. Indeed, substituting λ = 1− µ in (5) links the eigenvalues of Ht and P . We write the heat kernel as a linear
combination of random walks weighted by the Poisson distribution, we have

Ht = Se−tΛS−1 = S

∞∑
k=0

mt(k)(In − Λ)kS−1 =

∞∑
k=0

mt(k)P
k.

A.3. Algorithm details

For the knee-point detection we use the Kneedle algorithm (Satopaa et al., 2011). It identifies a knee-point as a point where
the curvature decreases maximally between points (using finite differences). We summarize the four main steps of the
algorithm for a function f(x), and we refer to (Satopaa et al., 2011) for additional details.

1. Smoothing with a spline to preserve the shape of the function.

2. Normalize the values, so the algorithm does not depend on the magnitude of the observations.

3. Computing the set of finite differences for x and y := f(x), e.g. ydi := f(xi)− xi.

4. Evaluating local maxima of the difference curve ydi
, and select the knee-point using a threshold based on the average

difference between consecutive x.

B. Related Work
We review state-of-the-art embedding methods and contextualize them with respect to Heat Geodesic Embedding. Given a
set of high-dimensional datapoints, the objective of embedding methods is to create a map that embeds the observations in a
lower dimensional space, while preserving distances or similarities. Different methods vary by their choice of distance or
dissimilarity functions, as shown below.

Diffusion maps In diffusion maps (Coifman & Lafon, 2006), an embedding in k dimensions is defined via the first
k non-trivial right eigenvectors of P t weighted by their eigenvalues. The embedding preserves the diffusion distance
DMP (xi, xj) := ∥(δiP t − δjP

t)(1/π)∥2, where δi is a vector such that (δi)j = 1 if j = i and 0 otherwise, and π is
the stationary distribution of P . Intuitively, DMP (xi, xj) considers all the t-steps paths between xi and xj . A larger
diffusion time can be seen as a low frequency graph filter, i.e. keeping only information from the low frequency transitions
such has the stationary distributions. For this reason, using diffusion with t > 1 helps denoising the relationship between
observations.

PHATE This diffusion-based method preserves the potential distance (Moon et al., 2019) PHP := ∥ − log δiP
t +

log δjP
t∥2, and justifies this approach using the log transformation to prevent nearest neighbors from dominating the

distances. An alternative approach is suggested using a square root transformation. Part of our contributions is to justify the
log transformation from a geometric point of view. The embedding is defined using multidimensional scaling, which we
present below.
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SNE, t-SNE, UMAP Well-known attraction/repulsion methods such as SNE (Hinton & Roweis, 2002), t-SNE (Van der
Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018) define an affinity matrix with entries pij in the ambient space,
and another affinity matrix with entries qij in the embedded space. To define the embedding, a loss between the two affinity
matrices is minimized. Specifically, the loss function is DKL(p||q) :=

∑
ij pij log pij/qij in SNE and t-SNE, whereas

UMAP adds DKL(1− p||1− q). While these methods preserves affinities, they do not preserve any types of distances in the
embedding.

C. Additional details and results
C.1. Fast computation of Heat diffusion

Exact computation of the (discrete) heat kernel Ht is computationally costly, requiring a full eigendecomposition in O(n3)
time. Fortunately, multiple fast approximations have been proposed, including using orthogonal polynomials or the Euler
backward methods. In this work, we use Chebyshev polynomials, as they have been shown to converge faster than other
polynomials on this problem (Huang et al., 2020).

Chebyshev polynomials are defined by the recursive relation {Tk}k∈N with T0(y) = 0, T1(y) = y and Tk(y) = 2yTk−1(y)−
Tk−2(y) for k ≥ 2. Assuming that the largest eigenvalue is less than two (which holds for the normalized Laplacian), we
approximate the heat kernel with the truncated polynomials of order K

Ht ≈ pK(L, t) :=
bt,0
2

+

K∑
k=1

bt,kTk(L− In), (6)

where the K+1 scalar coefficients {bt,i} depend on time and are evaluated with the Bessel function. Computing pK(L, t)f
requires K matrix-vector product and K + 1 Bessel function evaluation. The expensive part of the computation are the
matrix-vector products, which can be efficient if the Laplacian matrix is sparse. Interestingly, we note that the evaluation of
Tk do not depend on the diffusion time. Thus, to compute multiple approximations of the heat kernel {pK(L, t)}t∈T , only
necessitates reweighting the truncated polynomial {Tk}k∈[1,...,K] with the corresponding |T | sets of Bessel coefficients.
The overall complexity is dominated by the truncated polynomial computation which takes O(K(E + n)) time where E is
the number of non-zero values in L.

Another possible approximation is using the Euler backward method. It requires solving K systems of linear equations
f(t) = (In + (t/K)L)−Kf(0), which can be efficient for sparse matrices using the Cholesky decomposition (Solomon
et al., 2015). We quantify the differences between the heat kernel approximations in Appendix E.

C.2. Optimal diffusion time

Varadhan’s formula suggests a small value of diffusion time t to approximate geodesic distance on a manifold. However, in the
discrete data setting, geodesics are based on graph constructions, which in turn rely on nearest neighbors. Thus, small t can
lead to disconnected graphs. Additionally, increasing t can serve as a way of denoising the kernel (which is often computed
from noisy data) as it implements a low-pass filter over the eigenvalues, providing the additional advantage of adding noise
tolerance. By computing a sequence of heat kernels (Ht)t and evaluating their entropy H(Ht) := −

∑
ij(Ht)ij log(Ht)ij ,

we select t with the knee-point method (Satopaa et al., 2011) on the function t 7→ H(Ht). We show in Sec. 4 that our
heuristic for determining the diffusion time automatically leads to better overall results.

C.3. Weighted MDS

The loss in MDS (eq.3) is usually defined with uniform weights. Here, we optionally weight the loss by the heat kernel.
For xi, xj ∈ X , we minimize (Ht)ij(dt(xi, xj) − ∥ϕ(xi) − ϕ(xj)∥2)2. This promotes geodesic preservation of local
neighbors, since more weights are given to points with higher affinities.

Diffusion maps with the heat kernel Diffusion maps (Coifman & Lafon, 2006) define an embedding with the first k
eigenvectors (ϕi)i of P , while Laplacian eigenmaps uses the eigenvectors (ψi)i of L. In the following, we recall the links
between the two methods, and show that a rescaled Laplacian eigenmaps preserves the diffusion distance with the heat
kernel Ht.

Lemma C.1. Rescaling the Laplacian eigenmaps embedding with xi 7→ (e−2tλ1ψ1,i, . . . , e
−2tλkψk,i) preserves the
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diffusion distance DMHt
.

Relation to SNE The heat-geodesic method also relates to the Stochastic Neighbor Embedding (SNE) (Hinton & Roweis,
2002), and its variation using the Student distribution t-SNE (Linderman & Steinerberger, 2017). In SNE, the similarity
between points is encoded via transition probabilities pij .

The objective is to learn an affinity measure q, that usually depends on the embedding distances ∥yi − yj∥, such that it
minimizes DKL(p||q). Intuitively, points that have a strong affinity in the ambient space, should also have a strong affinity
in the embedded space. Even though the heat-geodesic minimization is directly on the embedding distances, we can show
an equivalent with SNE. In Appendix A, we provide additional comparisons between SNE and our method.

Proposition C.2. The Heat-Geodesic embedding with squared distances minimization weighted by the heat kernel is
equivalent to SNE with the heat kernel affinity in the ambient space, and a Gaussian kernel in the embedded space
qij = exp(−∥yi − yj∥2/t).

D. Experiments and datasets details
Our experiments compare our approach with multiple state-of-the-art baselines for synthetic datasets (for which the true
geodesic distance is known) and real-world datasets. For all models, we perform sample splitting with a 50/50 validation-test
split. The validation and test sets each consist of 5 repetitions with different random initializations. The hyper-parameters
are selected according to the performance on the validation set. We always report the results on the test set, along with the
standard deviations computed over the five repetitions. We use the following state-of-the-art methods in our experiments:
our Heat Geodesic Embedding, diffusion maps(Coifman & Lafon, 2006), PHATE (Moon et al., 2019), Heat-PHATE (a
variation of PHATE using the Heat Kernel), Rand-Geo (a variation of Heat Geodesic Embedding where we use the random
walk kernel), Shortest-path which estimates the geodesic distance by computing the shortest path between two nodes in a
graph built on the point clouds, t-SNE(Van der Maaten & Hinton, 2008), and UMAP(McInnes et al., 2018).

D.1. Datasets

We consider two synthetic datasets, the well known Swiss roll and the tree datasets. The exact geodesic distance can be
computed for these datasets. We additionally consider real-world datasets: PBMC, IPSC (Moon et al., 2019), EB (Moon
et al., 2019), and two from the from the 2022 NeurIPS multimodal single-cell integration challenge2.

D.1.1. SWISS ROLL

The Swiss roll dataset consists of data points samples on a smooth manifold inspired by shape of the famous alpine pastry.
In its simplest form, it is a 2-dimensional surface embedded in R3 given by

x = t · cos(t)
y = h

z = t · sin(t)

where t ∈ [T0, T1] and h ∈ [0,W ]. In our experiments we used T0 = 3
2π, T1 = 9

2π, and W = 5. We use two sampling
mechanisms for generating the data points : uniformly and clustered. In the first, we sample points uniformly at random in
the [T0, T1]× [0,W ] plane. In the second, we sample according to a mixture of isotropic multivariate Gaussian distributions
in the same plane with equal weights, means [(7,W/2), (12,W/2)], and standard deviations [1, 1]. In the clustered case,
data samples are given a label y according to the Gaussian mixture component from which they were sampled.

We consider variations of the Swiss roll by projecting the data samples in higher dimension using a random rotation matrix
sampled from the Haar distribution. We use three different ambient dimensions: 3, 10, and 50.

Finally, we add isotropic Gaussian noise to the data points in the ambient space with a standard deviation σ.

2https://www.kaggle.com/competitions/open-problems-multimodal/
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D.1.2. TREE

The tree dataset is created by generating K branches from a D-dimensional Brownian motion that are eventually glued
together. Each branch is sampled from a multidimensional Brownian motion dXk = 2dW(t) at times t = 0, 1, 2, ..., L− 1
for k ∈ [K]. The first branch is taken as the main branch and the remaining branches are glued to the main branch by setting
Xk = Xk +X0[ik] where ik is a random index of the main branch vector. The total number of samples is thus L ·K

In our experiments, we used L = 500, K = 5, and D = 5, 10 (i.e., two versions with different dimensions of the ambient
space).

D.2. Evaluation Metrics

We compare the performance of the different methods according to several metrics. For synthetic datasets, where ground
truth geodesic distance is available, we directly compare the estimated distance matrices and ground truth geodesic distance
matrices. For real-world datasets, we use clustering quality and continuous interpolation as evaluation metrics.

D.2.1. DISTANCE MATRIX EVALUATION

The following methods use an explicit distance matrix: diffusion maps, Heat Geodesic Embedding, Heat-Phate, Phate,
Rand-Geo and Shortest Path. For these methods, we compare their ability their ability to recover the ground truth distance
matrix several metrics. Letting D and D̂ the ground truth and inferred distance matrices respectively, and N the number of
points in the dataset, we use the following metrics.

Pearson ρ We compute the average Pearson correlation between the rows of the distance matrices, 1
N

∑N
i=1 rDi,D̂i

, where
rx,y is the Pearson correlation coefficient between vectors x and y. Di stands for the i-th row of D.

Spearman ρ We compute the average Spearman correlation between the rows of the distance matrices, 1
N

∑N
i=1 rDi,D̂i

,
where rx,y is the Spearman correlation coefficient between vectors x and y. Di stands for the i-th row of D.

Frobenius Norm We use ∥D − D̂∥F , where ∥A∥F =
√∑N

i=1

∑N
j=1|Ai,j |2

Maximum Norm We use ∥D − D̂∥∞, where ∥A∥∞ = maxi,j |Ai,j |

D.2.2. EMBEDDING EVALUATION

Some methods produce low-dimensional embeddings without using an explicit distance matrix for the data points. This
is the case for UMAP and t-SNE. To compare against these methods, we use the distance matrix obtained by considering
Euclidean distance between the low-dimensional embeddings. We used 2-dimensional embeddings in our experiments. For
diffusion maps, we obtain these embeddings by using the first two eigenvectors of the diffusion operator only. For Heat
Geodesic Embedding, Heat-PHATE, PHATE, Rand-GEO and Shortest Path, we use multidimensional scaling (MDS) on the
originally inferred distance matrix.

Clustering We evaluate the ability of Heat Geodesic Embedding to create meaningful embeddings when clusters are
present in the data. To this end, we run a k-means clustering on the two dimensional embeddings obtained with each method
and compare them against the ground truth labels. For the Tree dataset, we use the branches as clusters. For the Swiss roll
dataset, we sample data points on the manifold according to a mixture of Gaussians and use the mixture component as the
ground truth cluster label.

Interpolation To quantitatively evaluate the quality of the continuous embeddings, we first embed the entire dataset and
obfuscate all samples from a particular time point (e.g., t = 2). We then estimate the distribution of the missing time point
by using displacement interpolation (Villani & Villani, 2009) between the adjacent time points (e.g., t = 1 and t = 3). We
report the Earth Mover Distance (EMD) between the predicted distribution and true distribution. A low EMD suggests
that the obfuscated embeddings are naturally located between the previous and later time points, and that the generated
embedding captures the temporal evolution of the data adequately.
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D.3. Hyperparameters

In Table 4, we report the values of hyperparameters used to compute the different embeddings.

Hyperparameter Description Values

Heat Geodesic Embedding

k Number of neighbours in k-NN graph 5,10,15
order order of the approximation 30
t Diffusion time 0.1,1,10,50,auto
Approximation method Approximation method for Heat Kernel Euler, Chebyshev
Laplacian Type of laplacian Combinatorial
Harnack ρ Harnack Regularization 0,0.25,0.5,0.75,1,1.5

PHATE

n-PCA Number of PCA components 50,100
t Diffusion time 1,5,10,20,auto
k Number of neighbours 10

Diffusion Maps

k Number of neighbours in k-NN graph 5,10,15
t Diffusion time 1,5,10,20

Shortest Path

k Number of neighbours in k-NN graph 5,10,15

UMAP

k Number of neighbours 5,10,15
min-dist Minimum distance 0.1,0.5,0.99

t-SNE

p Perplexity 10,30,100
early exageration Early exageration parameter 12

Table 4. Hyperparameters used in our experiments

D.4. Hardware

The experiments were performed on a compute node with 16 Intel Xeon Platinum 8358 Processors and 64GB RAM.

E. Additional results
E.1. Preservation of the inherent data structure

A crucial evaluation criteria of manifold learning methods is the ability to capture the inherent structure of the data. For
instance, clusters in the data should be visible in the resulting low dimensional representation. Similarly, when the dataset
consists of samples taken at different time points, one expects to be able to characterize this temporal evolution in the low
dimensional embedding (Moon et al., 2019). We thus compare the different embedding methods according to their ability to
retain clusters and temporal evolution of the data.

Identifying clusters. We use the PBMC dataset, the Swiss roll, and the Tree dataset. The PBMC dataset consists of
single-cell gene expressions from 3000 individual peripheral blood mononuclear cells. Cells are naturally clustered by their
cell type. For the Tree dataset, we use the branches as clusters. For the Swiss roll dataset, we sample data points on the
manifold according to a mixture of Gaussians and use the mixture component as the ground truth cluster labels. For each
method, we run k-means on the two-dimensional embedding and compare the resulting cluster assignments with ground
truth. Tab. 10 reports the results in terms of homogeneity and adjusted mutual information (aMI). Heat Geodesic Embedding
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Figure 3. Embeddings on PBMC using the triplet distance with the heat-geodesic for different regularization parameter ρ.

is competitive with PHATE and outperforms t-SNE and UMAP on all metrics. Yet, we show in Appendix E that all methods
tend to perform equally well when the noise level increases. In Fig. 3, we present the PBMC embeddings of PHATE and
HeatGeo, showing that HeatGeo interpolates to PHATE for ρ→ 1.

Table 5. Clustering quality metrics for different methods. We report the homogeneity and the adjusted mutual information (aMI). Best
models on average are bolded (higher is better).

Swiss roll Tree PBMC

Method Homogeneity aMI Homogeneity aMI Homogeneity aMI

UMAP 0.810± 0.036 0.726± 0.045 0.678± 0.086 0.681± 0.086 0.177± 0.037 0.148± 0.035
t-SNE 0.748± 0.067 0.668± 0.068 0.706± 0.054 0.712± 0.055 0.605± 0.019 0.544± 0.022
PHATE 0.731± 0.035 0.652± 0.046 0.550± 0.042 0.555± 0.042 0.798± 0.012 0.785± 0.01
Diffusion Maps 0.643± 0.053 0.585± 0.051 0.341± 0.103 0.358± 0.093 0.026± 0.001 0.038± 0.001
HeatGeo (ours) 0.820± 0.008 0.740± 0.018 0.784± 0.051 0.786± 0.051 0.734± 0.009 0.768± 0.017

E.2. HeatGeo weighted

We know that weighting the MDS loss by the heat kernel corresponds to a specific parametrization of SNE, and thus promote
the identification of cluster. In Fig. 4, we show the embeddings of four Gaussian distributions in 10 dimensions (top), and
the PBMC dataset (bottom). The reference embedding is using t-SNE, as it models as it also minimizes the KL between the
ambient and embedded distributions. We see that HeatGeo weighted form cluster that are shaped like a Gaussian. This
is expected as Prop. C.2, indicates that this is equivalent to minimizing the DKL between the heat kernel and a Gaussian
affinity kernel.

E.3. Truncated distance

In Fig.5, we discretize the interval [0, 51] in 51 nodes, and we compute the heat-geodesic distance of the midpoint with
respect to the other points, effectively approximating the Euclidean distance. Using Chebyshev polynomials of degree of 20,
we see that the impact of the truncation is greater as the diffusion time increases. The backward Euler methods does not
result in a truncated distance.

E.4. Harnack inequality

For complete Riemannian manifolds that satisfy the parabolic Harnack inequality (PHI) we have ht(x, y) ≃
V −1(x,

√
t) e−d(x,y)2/t so that −t log ht(x, y) ≃ t log V (x,

√
t) + d2(x, y) (Saloff-Coste, 2010).

ht(x, x) =
1

V (x,
√
t)

(7)

V (x,
√
t) = ht(x, x)

−1 (8)

We then have,
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Figure 4. Embeddings of four Gaussian distributions in 10 dimensions (top), and the PBMC dataset (bottom). HeatGeo with weight is
equivalent to minimizing the DKL between the heat kernel and a Gaussian affinity kernel, hence produces clusters shaped similar to a
Gaussian.

Figure 5. Approximation of the squared Euclidean distance with the Heat-geodesic for the exact computation, Backward Euler approxima-
tion, and Chebyshev polynomials. For larger diffusion time, the Chebyshev approximation results in a thresholded distance. The Harnack
regularization unsures dt(x, x) = 0.
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Figure 6. Impact of the Checbyshev approximation order on the embedding of HeatGeo for the PBMC dataset.
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d2(x, y) ≃ −t log ht(x, y)− t log V (x,
√
t)

d2(x, y) ≃ −t log ht(x, y)− t log ht(x, x)−1

d2(x, y) ≃ −t log ht(x, y) + t log ht(x, x)

E.4.1. CASE STUDIES FOR SPECIFIC MANIFOLDS

The circle - S1 We now show that our expression for the Heat Geodesic Embedding-distance is monotonically increasing
with respect to the ground truth geodesic distance d ∈ R+ for a fixed diffusion time t and for any Harnack regularization in
S1. Therefore, the

Our expression for the Heat Geodesic Embedding-distance is

d̂ =
√
−4t log(ht(d)) + 4t log(ht(0))

As the square-root is monotonic, and 4t log ht(0) is constant with respect to d, we need to show that f(d) = −log(ht(d)) is
monotonically increasing.

For S1, we have

ht(d) =
∑
m∈Z

1√
4πt

e−
(d+2πm)2

4t

As log is monotonically increasing, it suffices to show that
∑

m∈Z e
− (d+2πm)2

4t is monotonically decreasing, which is the
case as for any d′ > d, ∀m ∈ Z, we have

e−
(d+2πm)2

4t > e−
(d′+2πm)2

4t .

In general, one can see that (1) the heat kernel depending only on the geodesic distance and (2) the heat kernel being
monotonically decreasing with respect to the geodesic distance are sufficient conditions for preserving ordering of pair-wise
distances with Heat Geodesic Embedding.

The sphere - Sn The above result can be applied to the higher-dimensional sphere Sn. It is known that the heat kernel on
manifold of constant curvatures is a function of the the geodesic distance (d) and time only. For Sn the heat kernel is given
by

ht(x, y) =

∞∑
l=0

e−l(l+n)−2t 2l + n− 2

n− 2
C

n
2 −1

l (cos(d))

with I the regularized incomplete beta function and C the Gegenbauer polynomials.

Furthermore, the heat kernel of the sphere is monotonically decreasing. The distance inferred from Heat Geodesic Embedding
thus preserves ordering of the pair-wise distances.
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Euclidean (R3) For the euclidean space, we have for the volume of
√
t-geodesic ball and for the heat kernel:

V√t =
4

3
πt3/2

ht(x, y) =
1

(4πt)3/2
e−

ρ2

4t .

Recalling Harnack inequality,

c1

V (x,
√
t)
e−

d(x,y)2

c2t ≤ ht(x, y) ≤
c3

V (x,
√
t)
e−

d(x,y)2

c4t

With c2 = c4 = 4, we have

c1

V (x,
√
t)
≤ 1

(4πt)3/2
≤ c3

V (x,
√
t)

In this case, the bound can be made tight, by setting

c1 = c3 =
V (x,

√
t)

(4πt)3/2

=
4
3πt

3/2

(4πt)3/2

=
1

3
√
4π

=
1

6
√
π
,

we recover the exact geodesic distance.

E.5. Quantitative results

E.5.1. DISTANCE MATRIX EVALUATION

We report the performance of the different methods in terms of the ground truth geodesic matrix reconstruction in Table. 6
for the Swiss roll dataset and in Table. 7, for the Tree dataset.

E.5.2. DISTANCE MATRIX EVALUATION VIA TWO-DIMENSIONAL EMBEDDINGS

We report the performance of the different methods in terms of the ground truth geodesic matrix reconstruction in Table 8
for the Swiss roll dataset and in Table 9, for the Tree dataset.

E.5.3. CLUSTERING QUALITY EVALUATION

On Tables 10, we report the performance on clustering quality for the synthetic datasets with different noise level.

E.6. Impact of the different hyperparameters

We investigate the impact of the different hyperparameters on the quality of the embeddings. In Figure 7, we show the
embeddings of HeatGeo for different values of diffusion time, number of neighbours, order, and Harnack regularization.

In Figures 8, 9, 10, and 11, we show the impact of different hyperparameters on the Pearson correlation between the
estimated distance matrix and ground truth distance matrix for different methods on the Swiss roll dataset.
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data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Swiss roll 0.1 Diffusion Map 0.974± 0.01 0.983± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Heat-Geo 0.992± 0.003 0.995± 0.002 0.002± 0.0 0.003± 0.0
Swiss roll 0.1 Heat-PHATE 0.99± 0.002 0.997± 0.001 0.079± 0.002 0.1± 0.003
Swiss roll 0.1 PHATE 0.621± 0.006 0.58± 0.01 0.022± 0.0 0.026± 0.0
Swiss roll 0.1 Rand-Geo 0.956± 0.003 0.993± 0.001 0.009± 0.0 0.012± 0.0
Swiss roll 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.0± 0.0 0.001± 0.0

Swiss roll 0.5 Diffusion Map 0.982± 0.003 0.987± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Heat-Geo 0.994± 0.002 0.996± 0.001 0.002± 0.0 0.004± 0.0
Swiss roll 0.5 Heat-PHATE 0.993± 0.001 0.998± 0.0 0.064± 0.001 0.083± 0.002
Swiss roll 0.5 PHATE 0.649± 0.007 0.615± 0.006 0.023± 0.0 0.028± 0.0
Swiss roll 0.5 Rand-Geo 0.969± 0.002 0.995± 0.001 0.009± 0.0 0.011± 0.0
Swiss roll 0.5 Shortest Path 0.999± 0.0 0.999± 0.0 0.001± 0.0 0.002± 0.0

Swiss roll 1.0 Diffusion Map 0.476± 0.226 0.478± 0.138 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Heat-Geo 0.702± 0.086 0.7± 0.073 0.01± 0.0 0.012± 0.0
Swiss roll 1.0 Heat-PHATE 0.623± 0.144 0.633± 0.114 0.01± 0.002 0.019± 0.004
Swiss roll 1.0 PHATE 0.457± 0.01 0.404± 0.024 0.024± 0.0 0.028± 0.0
Swiss roll 1.0 Rand-Geo 0.521± 0.042 0.608± 0.025 0.01± 0.0 0.014± 0.0
Swiss roll 1.0 Shortest Path 0.497± 0.144 0.558± 0.134 0.011± 0.001 0.015± 0.002

Swiss roll high 0.1 Diffusion Map 0.98± 0.003 0.986± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Heat-Geo 0.992± 0.003 0.996± 0.002 0.002± 0.0 0.003± 0.0
Swiss roll high 0.1 Heat-PHATE 0.991± 0.002 0.997± 0.001 0.079± 0.002 0.101± 0.004
Swiss roll high 0.1 PHATE 0.625± 0.013 0.582± 0.017 0.022± 0.0 0.026± 0.0
Swiss roll high 0.1 Rand-Geo 0.956± 0.002 0.993± 0.001 0.009± 0.0 0.012± 0.0
Swiss roll high 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.001± 0.0 0.002± 0.0

Swiss roll high 0.5 Diffusion Map 0.98± 0.002 0.985± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Heat-Geo 0.997± 0.001 0.997± 0.0 0.005± 0.0 0.007± 0.0
Swiss roll high 0.5 Heat-PHATE 0.995± 0.0 0.997± 0.0 0.041± 0.001 0.054± 0.002
Swiss roll high 0.5 PHATE 0.717± 0.004 0.707± 0.005 0.026± 0.0 0.034± 0.001
Swiss roll high 0.5 Rand-Geo 0.984± 0.0 0.996± 0.0 0.008± 0.0 0.01± 0.0
Swiss roll high 0.5 Shortest Path 0.999± 0.0 0.998± 0.0 0.006± 0.0 0.009± 0.0

Swiss roll high 1.0 Diffusion Map 0.555± 0.155 0.526± 0.081 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Heat-Geo 0.705± 0.065 0.695± 0.052 0.011± 0.0 0.012± 0.0
Swiss roll high 1.0 Heat-PHATE 0.63± 0.106 0.625± 0.074 0.011± 0.001 0.014± 0.002
Swiss roll high 1.0 PHATE 0.473± 0.026 0.419± 0.024 0.027± 0.0 0.039± 0.001
Swiss roll high 1.0 Rand-Geo 0.563± 0.05 0.644± 0.033 0.01± 0.0 0.012± 0.0
Swiss roll high 1.0 Shortest Path 0.384± 0.02 0.461± 0.017 0.011± 0.0 0.015± 0.0

Swiss roll very high 0.1 Diffusion Map 0.977± 0.005 0.984± 0.004 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Heat-Geo 0.992± 0.002 0.996± 0.001 0.002± 0.0 0.003± 0.0
Swiss roll very high 0.1 Heat-PHATE 0.991± 0.001 0.997± 0.001 0.079± 0.003 0.101± 0.003
Swiss roll very high 0.1 PHATE 0.631± 0.01 0.594± 0.011 0.023± 0.0 0.028± 0.001
Swiss roll very high 0.1 Rand-Geo 0.957± 0.002 0.994± 0.001 0.009± 0.0 0.012± 0.0
Swiss roll very high 0.1 Shortest Path 0.999± 0.0 0.999± 0.0 0.006± 0.0 0.007± 0.0

Swiss roll very high 0.5 Diffusion Map 0.978± 0.002 0.984± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Heat-Geo 0.997± 0.0 0.998± 0.0 0.008± 0.0 0.01± 0.0
Swiss roll very high 0.5 Heat-PHATE 0.996± 0.001 0.997± 0.0 0.016± 0.0 0.02± 0.001
Swiss roll very high 0.5 PHATE 0.815± 0.002 0.823± 0.004 0.032± 0.0 0.049± 0.002
Swiss roll very high 0.5 Rand-Geo 0.986± 0.0 0.996± 0.0 0.008± 0.0 0.009± 0.0
Swiss roll very high 0.5 Shortest Path 0.998± 0.0 0.998± 0.0 0.019± 0.001 0.027± 0.001

Swiss roll very high 1.0 Diffusion Map 0.324± 0.061 0.399± 0.033 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Heat-Geo 0.466± 0.007 0.506± 0.006 0.011± 0.0 0.013± 0.0
Swiss roll very high 1.0 Heat-PHATE 0.369± 0.011 0.43± 0.019 0.011± 0.0 0.014± 0.0
Swiss roll very high 1.0 PHATE 0.377± 0.011 0.425± 0.009 0.036± 0.0 0.062± 0.004
Swiss roll very high 1.0 Rand-Geo 0.398± 0.009 0.516± 0.008 0.01± 0.0 0.012± 0.0
Swiss roll very high 1.0 Shortest Path 0.367± 0.018 0.443± 0.016 0.012± 0.0 0.015± 0.0

Table 6. Comparison of the estimated distance matrices with the ground truth geodesic distance matrices on the Swiss roll dataset. Best
models on average are bolded (not necessarily significant).

17



A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction

data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Tree 1.0 Diffusion Map 0.748± 0.125 0.733± 0.111 0.113± 0.012 0.161± 0.019
Tree 1.0 Heat-Geo 0.976± 0.019 0.977± 0.02 0.092± 0.011 0.135± 0.018
Tree 1.0 Heat-PHATE 0.918± 0.032 0.885± 0.04 0.03± 0.005 0.044± 0.007
Tree 1.0 PHATE 0.671± 0.021 0.398± 0.052 0.051± 0.008 0.084± 0.017
Tree 1.0 Rand-Geo 0.926± 0.011 0.966± 0.019 0.076± 0.01 0.117± 0.018
Tree 1.0 Shortest Path 0.965± 0.026 0.963± 0.027 0.039± 0.008 0.06± 0.008

Tree 5.0 Diffusion Map 0.656± 0.054 0.653± 0.057 0.113± 0.012 0.161± 0.019
Tree 5.0 Heat-Geo 0.822± 0.008 0.807± 0.016 0.1± 0.012 0.146± 0.019
Tree 5.0 Heat-PHATE 0.765± 0.025 0.751± 0.023 0.043± 0.006 0.08± 0.01
Tree 5.0 PHATE 0.766± 0.023 0.743± 0.028 0.055± 0.007 0.093± 0.008
Tree 5.0 Rand-Geo 0.806± 0.014 0.795± 0.018 0.094± 0.011 0.139± 0.018
Tree 5.0 Shortest Path 0.78± 0.009 0.757± 0.019 0.075± 0.009 0.117± 0.014

Tree 10.0 Diffusion Map 0.538± 0.05 0.471± 0.089 0.113± 0.012 0.161± 0.019
Tree 10.0 Heat-Geo 0.62± 0.025 0.59± 0.033 0.1± 0.012 0.146± 0.019
Tree 10.0 Heat-PHATE 0.63± 0.018 0.588± 0.031 0.046± 0.005 0.083± 0.012
Tree 10.0 PHATE 0.623± 0.016 0.583± 0.029 0.07± 0.01 0.112± 0.017
Tree 10.0 Rand-Geo 0.578± 0.043 0.558± 0.053 0.095± 0.011 0.14± 0.018
Tree 10.0 Shortest Path 0.539± 0.041 0.513± 0.055 0.072± 0.01 0.118± 0.017

Tree high 1.0 Diffusion Map 0.754± 0.049 0.741± 0.057 0.267± 0.021 0.369± 0.026
Tree high 1.0 Heat-Geo 0.996± 0.001 0.999± 0.001 0.242± 0.02 0.338± 0.026
Tree high 1.0 Heat-PHATE 0.927± 0.011 0.875± 0.032 0.062± 0.003 0.084± 0.006
Tree high 1.0 PHATE 0.528± 0.085 0.141± 0.061 0.209± 0.023 0.307± 0.027
Tree high 1.0 Rand-Geo 0.85± 0.014 0.944± 0.011 0.227± 0.02 0.323± 0.025
Tree high 1.0 Shortest Path 0.998± 0.001 0.999± 0.001 0.009± 0.002 0.018± 0.005

Tree high 5.0 Diffusion Map 0.706± 0.124 0.705± 0.113 0.267± 0.021 0.369± 0.026
Tree high 5.0 Heat-Geo 0.97± 0.01 0.975± 0.009 0.253± 0.021 0.353± 0.026
Tree high 5.0 Heat-PHATE 0.932± 0.022 0.919± 0.03 0.072± 0.004 0.112± 0.008
Tree high 5.0 PHATE 0.913± 0.014 0.872± 0.034 0.19± 0.017 0.278± 0.025
Tree high 5.0 Rand-Geo 0.968± 0.01 0.971± 0.009 0.245± 0.019 0.342± 0.024
Tree high 5.0 Shortest Path 0.952± 0.016 0.95± 0.019 0.137± 0.017 0.209± 0.024

Tree high 10.0 Diffusion Map 0.598± 0.117 0.613± 0.103 0.267± 0.021 0.369± 0.026
Tree high 10.0 Heat-Geo 0.861± 0.039 0.87± 0.038 0.254± 0.021 0.353± 0.026
Tree high 10.0 Heat-PHATE 0.844± 0.05 0.838± 0.051 0.168± 0.015 0.27± 0.025
Tree high 10.0 PHATE 0.837± 0.052 0.838± 0.049 0.204± 0.018 0.301± 0.024
Tree high 10.0 Rand-Geo 0.845± 0.041 0.86± 0.038 0.248± 0.02 0.346± 0.025
Tree high 10.0 Shortest Path 0.779± 0.051 0.777± 0.054 0.159± 0.018 0.257± 0.026

Table 7. Comparison of the estimated distance matrices with the ground truth geodesic distance matrices on the Tree roll dataset. Best
models on average are bolded (not necessarily significant).
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data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Swiss roll 0.1 Diffusion Map 0.974± 0.01 0.983± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Heat-Geo 0.995± 0.003 0.996± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Heat-PHATE 0.99± 0.002 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 PHATE 0.677± 0.02 0.697± 0.014 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Rand-Geo 0.917± 0.003 0.915± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 TSNE 0.905± 0.005 0.897± 0.004 0.006± 0.0 0.008± 0.0
Swiss roll 0.1 UMAP 0.802± 0.013 0.79± 0.012 0.011± 0.0 0.016± 0.001

Swiss roll 0.5 Diffusion Map 0.982± 0.003 0.987± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Heat-Geo 0.997± 0.0 0.996± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Heat-PHATE 0.993± 0.001 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 PHATE 0.696± 0.011 0.711± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Rand-Geo 0.932± 0.002 0.932± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Shortest Path 0.999± 0.0 0.999± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 TSNE 0.899± 0.01 0.892± 0.008 0.006± 0.0 0.008± 0.0
Swiss roll 0.5 UMAP 0.838± 0.019 0.819± 0.017 0.012± 0.0 0.016± 0.001

Swiss roll 1.0 Diffusion Map 0.476± 0.226 0.478± 0.138 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Heat-Geo 0.672± 0.221 0.676± 0.193 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Heat-PHATE 0.674± 0.169 0.684± 0.134 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 PHATE 0.287± 0.03 0.349± 0.028 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Rand-Geo 0.39± 0.029 0.43± 0.022 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Shortest Path 0.467± 0.17 0.511± 0.163 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 TSNE 0.721± 0.183 0.724± 0.151 0.008± 0.002 0.014± 0.003
Swiss roll 1.0 UMAP 0.727± 0.181 0.713± 0.167 0.012± 0.001 0.018± 0.001

Swiss roll 5.0 Diffusion Map 0.157± 0.021 0.173± 0.015 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 Heat-PHATE 0.203± 0.014 0.239± 0.013 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 PHATE 0.201± 0.014 0.237± 0.013 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 Rand-Geo 0.201± 0.014 0.238± 0.012 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 Shortest Path 0.2± 0.011 0.233± 0.01 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 TSNE 0.2± 0.011 0.233± 0.01 0.012± 0.0 0.018± 0.001
Swiss roll 5.0 UMAP 0.205± 0.013 0.239± 0.012 0.015± 0.0 0.022± 0.0

Swiss roll high 0.1 Diffusion Map 0.98± 0.003 0.986± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Heat-Geo 0.996± 0.002 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Heat-PHATE 0.991± 0.002 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 PHATE 0.678± 0.027 0.698± 0.019 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Rand-Geo 0.917± 0.003 0.915± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 TSNE 0.903± 0.004 0.896± 0.003 0.006± 0.0 0.008± 0.0
Swiss roll high 0.1 UMAP 0.806± 0.014 0.794± 0.01 0.011± 0.0 0.016± 0.001

Swiss roll high 0.5 Diffusion Map 0.98± 0.002 0.985± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Heat-Geo 0.998± 0.0 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Heat-PHATE 0.995± 0.0 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 PHATE 0.754± 0.01 0.756± 0.006 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Rand-Geo 0.945± 0.001 0.945± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Shortest Path 0.999± 0.0 0.998± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 TSNE 0.905± 0.006 0.899± 0.003 0.006± 0.0 0.008± 0.0
Swiss roll high 0.5 UMAP 0.876± 0.017 0.86± 0.024 0.012± 0.0 0.017± 0.001

Swiss roll high 1.0 Diffusion Map 0.555± 0.155 0.526± 0.081 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Heat-Geo 0.643± 0.173 0.693± 0.114 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Heat-PHATE 0.609± 0.17 0.611± 0.121 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 PHATE 0.271± 0.025 0.343± 0.011 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Rand-Geo 0.41± 0.038 0.446± 0.03 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Shortest Path 0.343± 0.013 0.4± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 TSNE 0.737± 0.124 0.723± 0.099 0.008± 0.001 0.015± 0.003
Swiss roll high 1.0 UMAP 0.893± 0.055 0.889± 0.083 0.014± 0.001 0.02± 0.001

Swiss roll high 5.0 Diffusion Map 0.164± 0.016 0.174± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 Heat-PHATE 0.202± 0.01 0.236± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 PHATE 0.201± 0.01 0.234± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 Rand-Geo 0.192± 0.009 0.228± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 Shortest Path 0.187± 0.01 0.221± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 TSNE 0.182± 0.011 0.213± 0.01 0.013± 0.0 0.019± 0.001
Swiss roll high 5.0 UMAP 0.195± 0.009 0.227± 0.008 0.016± 0.0 0.024± 0.001

Swiss roll very high 0.1 Diffusion Map 0.977± 0.005 0.984± 0.004 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Heat-Geo 0.996± 0.001 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Heat-PHATE 0.991± 0.001 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 PHATE 0.683± 0.023 0.701± 0.016 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Rand-Geo 0.918± 0.002 0.917± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Shortest Path 0.999± 0.0 0.999± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 TSNE 0.905± 0.006 0.897± 0.004 0.006± 0.0 0.008± 0.0
Swiss roll very high 0.1 UMAP 0.785± 0.024 0.781± 0.017 0.011± 0.0 0.016± 0.001

Swiss roll very high 0.5 Diffusion Map 0.978± 0.002 0.984± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Heat-Geo 0.997± 0.0 0.998± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Heat-PHATE 0.996± 0.001 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 PHATE 0.827± 0.003 0.815± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Rand-Geo 0.944± 0.001 0.944± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Shortest Path 0.998± 0.0 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 TSNE 0.917± 0.009 0.917± 0.007 0.006± 0.0 0.008± 0.001
Swiss roll very high 0.5 UMAP 0.928± 0.01 0.929± 0.012 0.012± 0.0 0.017± 0.001

Swiss roll very high 1.0 Diffusion Map 0.324± 0.061 0.399± 0.033 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Heat-Geo 0.364± 0.008 0.425± 0.015 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Heat-PHATE 0.352± 0.022 0.411± 0.018 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 PHATE 0.326± 0.009 0.388± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Rand-Geo 0.357± 0.007 0.404± 0.005 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Shortest Path 0.335± 0.014 0.39± 0.011 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 TSNE 0.515± 0.014 0.522± 0.01 0.012± 0.0 0.016± 0.0
Swiss roll very high 1.0 UMAP 0.765± 0.059 0.737± 0.058 0.015± 0.0 0.021± 0.0

Swiss roll very high 5.0 Diffusion Map 0.151± 0.011 0.161± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 Heat-PHATE 0.175± 0.009 0.208± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 PHATE 0.181± 0.006 0.212± 0.006 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 Rand-Geo 0.005± 0.002 0.004± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 Shortest Path 0.145± 0.011 0.173± 0.011 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 TSNE 0.155± 0.008 0.188± 0.008 0.015± 0.0 0.022± 0.001
Swiss roll very high 5.0 UMAP 0.155± 0.003 0.183± 0.005 0.017± 0.0 0.024± 0.0

Table 8. Comparison of the estimated distance matrices with the ground truth geodesic distance matrices on the Swiss roll dataset, using a
two-dimensional embedding. Best models on average are bolded (not necessarily significant).
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data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Tree 0.1 Diffusion Map 0.748± 0.125 0.733± 0.111 0.113± 0.012 0.161± 0.019
Tree 0.1 Heat-Geo 0.943± 0.037 0.94± 0.037 0.113± 0.012 0.161± 0.019
Tree 0.1 Heat-PHATE 0.872± 0.04 0.83± 0.061 0.113± 0.012 0.161± 0.019
Tree 0.1 PHATE 0.564± 0.039 0.469± 0.052 0.113± 0.011 0.161± 0.018
Tree 0.1 Rand-Geo 0.868± 0.017 0.85± 0.019 0.113± 0.012 0.161± 0.019
Tree 0.1 Shortest Path 0.937± 0.037 0.931± 0.041 0.113± 0.012 0.161± 0.019
Tree 0.1 TSNE 0.847± 0.034 0.824± 0.045 0.082± 0.012 0.123± 0.022
Tree 0.1 UMAP 0.692± 0.058 0.671± 0.047 0.107± 0.012 0.153± 0.019

Tree 0.5 Diffusion Map 0.656± 0.054 0.653± 0.057 0.113± 0.012 0.161± 0.019
Tree 0.5 Heat-Geo 0.806± 0.019 0.787± 0.009 0.113± 0.012 0.161± 0.019
Tree 0.5 Heat-PHATE 0.746± 0.024 0.744± 0.031 0.113± 0.012 0.161± 0.019
Tree 0.5 PHATE 0.766± 0.023 0.746± 0.03 0.113± 0.011 0.161± 0.018
Tree 0.5 Rand-Geo 0.721± 0.024 0.694± 0.024 0.113± 0.012 0.161± 0.019
Tree 0.5 Shortest Path 0.765± 0.01 0.738± 0.011 0.113± 0.012 0.161± 0.019
Tree 0.5 TSNE 0.795± 0.046 0.766± 0.055 0.083± 0.012 0.128± 0.018
Tree 0.5 UMAP 0.783± 0.06 0.757± 0.054 0.11± 0.011 0.157± 0.018

Tree 1.0 Diffusion Map 0.538± 0.05 0.471± 0.089 0.113± 0.012 0.161± 0.019
Tree 1.0 Heat-Geo 0.613± 0.025 0.58± 0.036 0.113± 0.012 0.161± 0.019
Tree 1.0 Heat-PHATE 0.614± 0.02 0.571± 0.044 0.113± 0.012 0.161± 0.019
Tree 1.0 PHATE 0.615± 0.017 0.572± 0.036 0.113± 0.011 0.161± 0.018
Tree 1.0 Rand-Geo 0.487± 0.064 0.465± 0.071 0.113± 0.012 0.161± 0.019
Tree 1.0 Shortest Path 0.542± 0.047 0.514± 0.06 0.113± 0.012 0.161± 0.019
Tree 1.0 TSNE 0.583± 0.042 0.553± 0.045 0.086± 0.011 0.135± 0.017
Tree 1.0 UMAP 0.595± 0.032 0.562± 0.036 0.111± 0.011 0.158± 0.019

Tree high 0.1 Diffusion Map 0.754± 0.049 0.741± 0.057 0.267± 0.021 0.369± 0.026
Tree high 0.1 Heat-Geo 0.956± 0.014 0.957± 0.015 0.267± 0.021 0.369± 0.026
Tree high 0.1 Heat-PHATE 0.831± 0.082 0.764± 0.115 0.267± 0.021 0.369± 0.026
Tree high 0.1 PHATE 0.484± 0.036 0.4± 0.028 0.267± 0.02 0.369± 0.025
Tree high 0.1 Rand-Geo 0.817± 0.013 0.774± 0.022 0.267± 0.021 0.369± 0.026
Tree high 0.1 Shortest Path 0.958± 0.014 0.956± 0.017 0.267± 0.021 0.369± 0.026
Tree high 0.1 TSNE 0.89± 0.039 0.866± 0.043 0.233± 0.021 0.327± 0.026
Tree high 0.1 UMAP 0.8± 0.031 0.764± 0.034 0.259± 0.021 0.36± 0.028

Tree high 0.5 Diffusion Map 0.706± 0.124 0.705± 0.113 0.267± 0.021 0.369± 0.026
Tree high 0.5 Heat-Geo 0.932± 0.022 0.928± 0.023 0.267± 0.021 0.369± 0.026
Tree high 0.5 Heat-PHATE 0.923± 0.023 0.921± 0.022 0.267± 0.021 0.369± 0.026
Tree high 0.5 PHATE 0.844± 0.048 0.79± 0.07 0.267± 0.02 0.369± 0.025
Tree high 0.5 Rand-Geo 0.875± 0.042 0.855± 0.048 0.267± 0.021 0.369± 0.026
Tree high 0.5 Shortest Path 0.917± 0.025 0.91± 0.03 0.267± 0.021 0.369± 0.026
Tree high 0.5 TSNE 0.922± 0.035 0.91± 0.045 0.237± 0.021 0.334± 0.027
Tree high 0.5 UMAP 0.823± 0.054 0.803± 0.041 0.261± 0.021 0.361± 0.026

Tree high 1.0 Diffusion Map 0.598± 0.117 0.613± 0.103 0.267± 0.021 0.369± 0.026
Tree high 1.0 Heat-Geo 0.794± 0.066 0.805± 0.049 0.267± 0.021 0.369± 0.026
Tree high 1.0 Heat-PHATE 0.826± 0.064 0.823± 0.067 0.267± 0.021 0.369± 0.026
Tree high 1.0 PHATE 0.827± 0.059 0.82± 0.062 0.267± 0.02 0.369± 0.025
Tree high 1.0 Rand-Geo 0.71± 0.043 0.686± 0.045 0.267± 0.021 0.369± 0.026
Tree high 1.0 Shortest Path 0.771± 0.064 0.753± 0.07 0.267± 0.021 0.369± 0.026
Tree high 1.0 TSNE 0.84± 0.066 0.821± 0.074 0.238± 0.02 0.335± 0.026
Tree high 1.0 UMAP 0.853± 0.051 0.839± 0.057 0.264± 0.021 0.365± 0.026

Table 9. Comparison of the estimated distance matrices with the ground truth geodesic distance matrices on the Tree dataset, using a
two-dimensional embedding. Best models on average are bolded (not necessarily significant).
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data Noise level Method Homogeneity Adjusted Rand Score Adjusted Mutual Info Score

Swiss roll 0.1 Heat-Geo 0.82± 0.008 0.668± 0.034 0.74± 0.018
Swiss roll 0.1 Phate 0.731± 0.035 0.546± 0.044 0.652± 0.046
Swiss roll 0.1 TSNE 0.748± 0.067 0.537± 0.1 0.668± 0.068
Swiss roll 0.1 UMAP 0.81± 0.036 0.611± 0.039 0.726± 0.045

Swiss roll 0.5 Heat-Geo 0.813± 0.026 0.656± 0.049 0.733± 0.022
Swiss roll 0.5 Phate 0.735± 0.048 0.543± 0.064 0.656± 0.053
Swiss roll 0.5 TSNE 0.764± 0.07 0.564± 0.097 0.684± 0.065
Swiss roll 0.5 UMAP 0.826± 0.019 0.664± 0.073 0.744± 0.032

Swiss roll 1.0 Heat-Geo 0.722± 0.051 0.548± 0.091 0.652± 0.056
Swiss roll 1.0 Phate 0.482± 0.014 0.317± 0.031 0.428± 0.021
Swiss roll 1.0 TSNE 0.757± 0.037 0.562± 0.058 0.679± 0.042
Swiss roll 1.0 UMAP 0.726± 0.041 0.51± 0.077 0.65± 0.05

Swiss roll high 0.1 Heat-Geo 0.82± 0.015 0.666± 0.033 0.739± 0.019
Swiss roll high 0.1 Phate 0.705± 0.03 0.518± 0.048 0.628± 0.04
Swiss roll high 0.1 TSNE 0.757± 0.078 0.558± 0.115 0.677± 0.08
Swiss roll high 0.1 UMAP 0.796± 0.03 0.624± 0.048 0.714± 0.037

Swiss roll high 0.5 Heat-Geo 0.805± 0.021 0.655± 0.047 0.725± 0.035
Swiss roll high 0.5 Phate 0.745± 0.04 0.562± 0.061 0.664± 0.047
Swiss roll high 0.5 TSNE 0.747± 0.075 0.538± 0.11 0.668± 0.075
Swiss roll high 0.5 UMAP 0.787± 0.041 0.573± 0.067 0.703± 0.032

Swiss roll high 1.0 Heat-Geo 0.7± 0.045 0.534± 0.057 0.644± 0.032
Swiss roll high 1.0 Phate 0.552± 0.047 0.386± 0.056 0.496± 0.04
Swiss roll high 1.0 TSNE 0.754± 0.034 0.548± 0.068 0.675± 0.036
Swiss roll high 1.0 UMAP 0.76± 0.041 0.56± 0.077 0.68± 0.05

Swiss roll very high 0.1 Heat-Geo 0.818± 0.033 0.668± 0.074 0.738± 0.039
Swiss roll very high 0.1 Phate 0.688± 0.043 0.497± 0.053 0.614± 0.053
Swiss roll very high 0.1 TSNE 0.741± 0.07 0.544± 0.101 0.662± 0.075
Swiss roll very high 0.1 UMAP 0.816± 0.042 0.65± 0.069 0.733± 0.054

Swiss roll very high 0.5 Heat-Geo 0.73± 0.045 0.605± 0.093 0.701± 0.028
Swiss roll very high 0.5 Phate 0.758± 0.034 0.55± 0.037 0.676± 0.014
Swiss roll very high 0.5 TSNE 0.77± 0.054 0.557± 0.093 0.708± 0.031
Swiss roll very high 0.5 UMAP 0.789± 0.052 0.574± 0.101 0.707± 0.061

Swiss roll very high 1.0 Heat-Geo 0.592± 0.033 0.427± 0.063 0.545± 0.031
Swiss roll very high 1.0 Phate 0.531± 0.042 0.377± 0.046 0.486± 0.045
Swiss roll very high 1.0 TSNE 0.738± 0.019 0.551± 0.039 0.662± 0.025
Swiss roll very high 1.0 UMAP 0.736± 0.057 0.542± 0.102 0.66± 0.061

Tree 0.1 Heat-Geo 0.784± 0.051 0.734± 0.07 0.786± 0.051
Tree 0.1 Phate 0.55± 0.042 0.409± 0.064 0.555± 0.042
Tree 0.1 TSNE 0.706± 0.054 0.61± 0.075 0.712± 0.055
Tree 0.1 UMAP 0.678± 0.086 0.584± 0.12 0.681± 0.086

Tree 0.5 Heat-Geo 0.545± 0.121 0.411± 0.154 0.577± 0.094
Tree 0.5 Phate 0.529± 0.111 0.404± 0.151 0.555± 0.095
Tree 0.5 TSNE 0.647± 0.049 0.591± 0.065 0.65± 0.048
Tree 0.5 UMAP 0.645± 0.051 0.565± 0.058 0.652± 0.05

Tree 1.0 Heat-Geo 0.398± 0.07 0.3± 0.077 0.42± 0.07
Tree 1.0 Phate 0.418± 0.08 0.337± 0.093 0.43± 0.075
Tree 1.0 TSNE 0.405± 0.077 0.378± 0.074 0.405± 0.077
Tree 1.0 UMAP 0.432± 0.086 0.395± 0.098 0.432± 0.085

Table 10. Clustering results on swiss roll (with distribution) and tree. Best models on average are bolded (not necessarily significant).
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Figure 7. Embeddings of Heat Geodesic Embedding for different choices of hyperparameters on the EB dataset. We evaluate the impact
of the Harnack regularization, the diffusion time, the number of neighbours in the kNN, and the order of the approximation for Euler and
Checbyshev approximations.
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Figure 8. Impact of diffusion time on the Pearson correlation between the estimated distance matrix and ground truth distance matrix for
different methods on the Swiss roll dataset.

Figure 9. Impact of Checbyshev approximation order on the Pearson correlation between the estimated distance matrix and ground truth
distance matrix for different methods on the Swiss roll dataset.
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Figure 10. Impact of number of neighbours on the Pearson correlation between the estimated distance matrix and ground truth distance
matrix for different methods on the Swiss roll dataset.
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Figure 11. Impact of Harnack regularization on the Pearson correlation between the estimated distance matrix and ground truth distance
matrix for HeatGeo on the Swiss roll dataset.

E.7. Graph construction

We compare the embeddings of the heat-geodesic distance for different graph construction. Throughout the paper we used
the graph construction from PHATE (Moon et al., 2019). In the following we present additional results depending on
the choice of kernel to construct the graph. Specifically, we use a simple nearest neighbor (kNN) graph , the graph from
UMAP (McInnes et al., 2018), and the implementation in the package Scanp for single-cell analysis. In figure, we present
the embeddings 2500 points of a tree with five branches in 10 dimensions, where the observations are perturbed with a
standard Gaussian noise. All methods used five nearest neighbors and a diffusion time of 20. In Figure 12, we show the
evolution of the Pearson correlation between estimated and ground truth distance matrices for the 10-dimensional Swiss roll
dataset for various graph constructions. We note that the results are stable across different graph construction strategies.
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Figure 12. Pearson correlation between estimated and ground truth distance matrices for the 10-dimensional Swiss roll dataset for various
graph constructions. Standard deviations are computed over the 5 test folds.
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