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Abstract

Knowledge distillation is used in an attempt to transfer model invariances related1

to specific symmetry transformations of the data. To this end, a model that exhibits2

such an invariance at the structural level is distilled into a simpler model that3

does not. The efficacy of knowledge distillation in transferring model invariances4

is empirically evaluated using four pairs of such networks, each pertaining to a5

different data invariance. Six metrics are reported; these determine how helpful the6

knowledge distillation is in general for the learning process and also specifically7

for learning the targeted invariance. It is observed that knowledge distillation8

fails at transferring invariances in the considered model pairs. Moreover, data9

augmentation shows a better performance at instilling invariances into a network.10

1 Introduction11

Large neural networks are able to learn data representations that generalize well. Thus, deep learning12

has been an essential element in overcoming many difficult tasks in a wide range of fields, from13

natural language processing [Vaswani et al., 2023, Devlin et al., 2019, Brown et al., 2020] to medicine14

[Waring et al., 2020], biology [Jumper et al., 2021], physics [Qu and Gouskos, 2020, Pata et al.,15

2023, Woźniak et al., 2023], and further beyond [Alzubaidi et al., 2021]. The development of recent16

techniques [Ioffe and Szegedy, 2015, He et al., 2019, Bronstein et al., 2021] enables the training17

of large models with thousands of layers on powerful GPU or TPU clusters. Nevertheless, the18

computational complexity and size of such models make their deployment in real-time applications19

an extremely difficult challenge. Conversely, smaller networks lack the inductive biases to find the20

same representations as their larger counterparts from training data alone. However, the former may21

have the capacity to represent the solutions found by the latter [LeCun et al., 1989, Ba and Caruana,22

2014, Frankle and Carbin, 2019, Urban et al., 2017]. This work focuses on investigating this claim for23

the specific case of symmetry invariances. In essence, a small network could be capable of invariance24

with respect to a certain symmetry in the data, although it is not able to learn this invariance by25

training directly on the data itself. Thus, we consider knowledge distillation.26

The seminal work of Buciluǎ et al. [2006] originally showed that the knowledge acquired by a27

large ensemble of models can be transferred to a relatively small model through a process called28

model compression. Furthermore, the paper by Hinton et al. [2015] expands on the idea of model29

compression, establishing Knowledge Distillation (KD) as a more general paradigm through which30

a smaller, so called student model learns to generalise in the same way as a much larger, heavily31

regularised teacher model. Thus, training with KD allows for deploying a model that performs better32

than its conventionally trained counterpart, while simultaneously achieving faster inference times and33

using less computational resources than a large model. Then, it follows that if a large teacher model34

exhibits invariances with respect to certain symmetries in the data which help with generalisation,35

then they would be transferred to the student model.36
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Contribution Within the KD framework, we consider a teacher with an invariance embedded in37

its structure, e.g., the Deep Sets (DS) [Zaheer et al., 2018] architecture and permutation invariance.38

Further, we consider a simpler student architecture lacking the invariance exhibited by teacher, e.g., a39

Multi Layer Perceptron (MLP). We then attempt to teach the invariance of the teacher to the student40

by training the latter using KD. The students are evaluated with respect to a set of metrics that tests41

how well they learned to generalise and specifically how well they learned the teacher invariance.42

Our results give a clearer understanding of what knowledge can actually be distilled in KD.43

2 Related Work44

Stanton et al. [2021] makes a first investigation into the KD paradigm by decoupling student generali-45

sation ability from teacher-student output agreement, i.e., fidelity. Furthermore, additional attempts46

at understanding KD have been initiated in recent times: some general [Ojha et al., 2023] and some47

pertaining to a specific type of models [Liu et al., 2023]. However, what knowledge is distilled in a48

high fidelity KD training remains esoteric even after these studies: it is not well understood whether49

the student learns specific teacher properties or whether KD simply has a dominant regularising effect.50

Hence, our study fits this literature gap.51

3 Models and Methods52

3.1 Knowledge Distillation53

There are different ways to distill knowledge from a teacher to a student model. For our experiments,54

we employed offline output-based KD [Hinton et al., 2015]. The output of neural networks is55

typically class probabilities, obtained by applying a softmax function to the network’s output logits.56

Incorporating temperature in the softmax function is a technique used to make the output probability57

distribution of the network smoother. The student model minimizes both the conventional task-specific58

loss and a distillation loss; the former quantifies the difference between the softened probability59

distributions of the teacher and student models. The task-specific loss ensures that the student can60

perform the primary task accurately, while the distillation loss encourages the student to replicate61

the teacher’s probability distribution, thus learning to generalise in the same way. The conventional62

distillation loss function introduced in Hinton et al. [2015] is63

LKD = (1− α)H(ytrue,Ps) + αH(Pτ
t ,P

τ
s ), (1)

where H refers to the cross-entropy, α ∈ [0, 1] is a tunable parameter, ytrue are the truth labels, Ps is64

the student softmax output, and Pτ
t(s) are the teacher (student) softmax outputs with temperature τ .65

Following Stanton et al. [2021], we set α = 1 to avoid confounding from the true labels and arrive at66

the loss function for the distillation process:67

Ls := τ2KL(Pτ
t ||Pτ

s ) (2)

where KL denotes the Kullback-Leiber divergence measure. Conducting knowledge distillation on a68

teacher-student pair with identical architectures is known as self-distillation [Furlanello et al., 2018].69

3.2 Data, Teachers, and Students70

First, the MNIST [Deng, 2012] data set is used with ResNet18 from Chaman and Dokmanic [2021] as71

the teacher, which is translation invariant. Two teachers are trained, denoted as ResNet and ResNet’,72

for 10 and 2 epochs, respectively. The student is an MLP with 4 hidden layers, each with 204873

neurons, and ReLU activations: this configuration ensures that the MLP is likely to have the capacity74

to model the ResNet18 invariance, but is smaller. Thus, with this setup we evaluate whether, to some75

degree, the translationally invariant behaviour of the ResNet18 is distilled.76

Then, the ModelNet40 [Wu et al., 2015] data is used, with standard scaling and downsampled to77

1000 points. A Dynamic Graph Convolutional Network (DGCNN) with a translation invariant edge78

function [Wang et al., 2019] is chosen as the teacher. Two different DGCNN teachers are trained,79

DGN and DGN’, the first with the hyperparameters of Wang et al. [2019] and the second with only80

two edge convolutional layers instead of four. We use two students for each DGCNN: a permutation81

invariant DS, dsinv, and a permutation equivariant DS, dsequiv, identical Zaheer et al. [2018] App. H.82

Thus, we evaluate what degree of translation invariance is distilled from the DGCNN to the DS.83
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The last set of invariance distillation experiments is performed on physics data [Pierini et al., 2020].84

For details on this data, see Moreno et al. [2020]; the data is processed as in Odagiu et al. [2024]85

and downsampled to the 16 most energetic particles. The teacher in this case is an invariant DS,86

dsinv, and the student is an MLP, with hyperparameters as in Odagiu et al. [2024]. A second teacher87

dsinv’ is also trained, with one less layer in the first MLP compared to the original dsinv model.88

The efficacy of transferring permutation invariance is evaluated by distilling the dsinv to the MLP.89

3.3 General Experiment Design90

We perform a set of four experiments for each data set. First, the student model is trained indepen-91

dently on the data using the loss pertaining to the given task, without KD. Then, a new instantiation92

of the same architecture is trained through self-distillation using the loss shown earlier in Eq. 2.93

Second, the student is reset and trained on data that is transformed with respect to a symmetry94

exhibited by the teacher; self-distillation is performed again on a new student model instantiation.95

Third, the teacher is trained independently on the data and distilled into a new student using Eq. 2.96

Fourth, a different teacher model, denoted as teacher’, is trained independently on the data and97

distilled into a new student. This last experiment is performed to control for confounding in the98

fidelity measure, as initially established by Stanton et al. [2021] and detailed in Sec. 3.4. The trainings99

wherein Eq. 2 is used are repeated for T ∈ {1, 4, 8, 16}. Finally, we also attempt to teach the chosen100

invariances to the respective students via training on an augmented data set and compare with KD.101

3.4 Evaluation102

For consistency, the generalisation ability of our models is measured by using the same metrics103

as Stanton et al. [2021]: the top-1 accuracy, the negative log-likelihood (NLL), and the expected104

calibration error (ECEL). The NLL is used alongside the accuracy comprehensively assess the105

model’s predictions, while ECEL is used to assess alignment of predicted and observed probabilities.106

Aside from using the metrics above to evaluate the generalisation ability of the student, the distillation107

process is validated by employing two additional metrics: the top-1 student-teacher agreement108

and the KL divergence between their softmaxed output distributions, like in [Stanton et al., 2021].109

Interpreting the fidelity metrics requires additional care. Consider a student that has high fidelity: it is110

unclear if this student agrees with the teacher on most samples because it simply generalises well or111

because it actually learned to generalise in the same way as the teacher. Alternatively, it is unclear if112

the student learned the teacher’s solution or it learned just a better solution than its independently113

trained counterpart due to regularisation imposed through the process of knowledge distillation itself.114

To control for this confounding, we repeat the distillation process (t, s) as described in Sec. 3.2 with115

a different teacher t′ but the same student architecture, called s′. If (t, s) and (t, s′) have the same116

fidelity, then it means that s has a high fidelity because it generalises well, rather than the reverse.117

Additionally, the invariance under certain symmetries is evaluated for all of the models resulting from118

the experiments described in Sec. 3.2 using IM of network n as119

IM(D, n) :=
1

|D|
∑
D

|Pn(xi)−Pn(x
′
i)|, (3)

where (x’i, yi) is created from (xi, yi) by a symmetry transformation of xi. D is the set containing120

all pairs {(xi, yi),(x’i, yi)}. IM(D, s) is 0 if n is exactly invariant for the considered transformation.121

4 Results and Conclusions122

The results are presented in Fig. 1. Notice that for each distillation experiment (row), the respective123

students fail at learning the invariance of the teacher. As shown in column 4 of Fig. 1, distillation124

from teacher to student leads to comparable invariance as obtained by performing self-distillation.125

This is true for high-fidelity students, as shown in columns 5 and 6.126

Although generalisation ability of students improves, the invariance of the teacher is not transferred127

to the student to any significant degree. Moreover, the student models that perform the best in the128

invariance metric are the ones that are trained on transformed data. Thus, for learning invariances, we129

observe that KD does not provide anything beyond what can be achieved by training on augmented130

data, while the latter is also simpler and less computationally expensive.131
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Figure 1: Summary of the attempts to transfer invariances using knowledge distillation. Each row
corresponds to a distillation experiment, from top to bottom: distilling a DGCNN to an invariant
DeepSets on ModelNet data, distilling a DGCNN to an equivariant DeepSets on ModelNet data,
distilling an invariant DeepSets to an MLP, and distilling a ResNet to an MLP. The temperature
axis refers to the temperature used in the distillation process described in Sec. 3.1. For the ResNet
distillation, setting the temperature to 1 resulted in the MLP not learning at all and hence, we omit this
point from the plots. Columns represent the validation metrics introduced within Sec. 3.4. The dashed
lines represent the performance on the independently trained student or teacher models; adding “trans”
or “perm” to these labels means the student was trained on a data set augmented with respect to
its symmetry. Solid lines show the KD performance and represent the results of the experiments
described in Sec. 3.3. The legend labels with “self” after the model name refer to self-distillation;
if “trans” or “perm” is appended, the self-distillation teacher model is trained on augumented data.
Furthermore, the legend entries with an apostrophe on the teacher and double arrow, for example
ResNet’ < − > MLP, pertain to the (t′, s) fidelity assessment from Sec. 3.4. The uncertainties on the
results are computed by k-folding the data with k = 5.
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