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ABSTRACT

As large language models (LLMs) become increasingly deployed across vari-
ous industries, concerns regarding their reliability, particularly due to halluci-
nations—outputs that are factually inaccurate or irrelevant to user input—have
grown. Our research investigates the relationship between the training process
and the emergence of hallucinations to address a key gap in existing research that
focuses primarily on post hoc detection and mitigation strategies. Using models
from the Pythia suite (70M–12B parameters) and several hallucination detection
metrics, we analyze hallucination trends throughout training and explore LLM
internal dynamics. We introduce SEnsitive Neuron Dropout (SeND), a novel
training protocol designed to mitigate hallucinations by reducing variance during
training. SeND achieves this by deterministically dropping neurons with signifi-
cant variability on a dataset, referred to as Sensitive Neurons. In addition, we de-
velop an unsupervised hallucination detection metric, Efficient EigenScore (EES),
which approximates the traditional EigenScore in 2x speed. This efficient metric is
integrated into our protocol, allowing SeND to be both computationally scalable
and effective at reducing hallucinations. Our empirical evaluation demonstrates
that our approach improves LLM reliability at test time by up to 40% compared
to normal training while also providing an efficient method to improve factual ac-
curacy when adapting LLMs to domains such as Wikipedia and Medical datasets.

1 INTRODUCTION

1.1 MOTIVATION

In the era of increasingly advanced Large Language Models (LLMs), their widespread use across
industries has raised concerns about reliability and safety, particularly due to errors and misuse. A
key issue is hallucinations, where LLMs produce content misaligned with facts or user input (Huang
et al., 2023a). Our research focuses on a specific type of hallucinations: confabulations, where LLMs
generate inconsistent responses to inputs, switching between correct and incorrect information.

Previous research has largely focused on identifying and addressing hallucinations in large language
models (LLMs), but the impact of the training process on hallucinations remains under-explored
(Huang et al., 2023a; Rawte et al., 2023; Ye et al., 2023; Hong et al., 2024; Xu et al., 2024; Chen
et al., 2024; Li et al., 2024; Gao et al., 2024b). This paper addresses this gap by investigating
how the iterative learning process in LLMs leads to significant variance in hallucination behavior
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during training. This variability indicates that the model’s factual confidence fluctuates, making it
challenging to pinpoint a checkpoint at which the model has confidently learned facts.

As LLMs are deployed in high-risk industries, ensuring their reliability is crucial for user safety.
However, this is not always achieved, leading to serious consequences, such as an Air Canada law-
suit over an LLM-generated incorrect policy (Garcia, 2024). Addressing such issues requires a
deeper understanding of how hallucinations arise during training, enabling more reliable and effi-
cient mitigation strategies beyond post-processing methods.

To explore these hallucination trends, we analyze models from 70 million to 12 billion parameters
within Pythia suite (Biderman et al., 2023), assessing them across various training checkpoints and
tasks. Our goal is to validate the oscillatory behavior observed in prior studies (Li et al., 2024)
through evaluation metrics from HuggingFace and EleutherAI (Hong et al., 2024; Gao et al., 2024a),
and to explore the correlation between model size, training progression, and hallucination patterns.

In response to the identified variance, we introduce a novel training protocol called Sensitive Neu-
ron Dropout (SeND). SeND is designed to emphasize confident learning of facts, and in turn reduce
the likelihood of confabulations, rather than solely minimizing the stochastic gradient descent (SGD)
loss (e.g., cross-entropy). By selectively dropping Sensitive Neurons—those that exhibit significant
fluctuations in contextual embeddings throughout training—SeND acts as a regularization technique
that reduces hallucination variance and enhances the model’s factual certainty. This provides a more
reliable criterion for determining training termination, ensuring models not only achieve loss conver-
gence but also display stable factual confidence. To maintain efficiency as model size and inference
count increase, we propose the Efficient EigenScore (EES), an approximation metric for hallu-
cination detection. EES replaces EigenScore (Chen et al., 2024), the primary metric used in our
experiments, offering a scalable solution with high correlation to the original EigenScore.

Our contributions to the field can be summarized as follows, emphasizing that SeND enhances the
training process but does not replace post-hoc solutions, which may still be required after training:1

1. Empirical verification of the oscillatory nature of hallucinations in LLMs training
across various model scales and detection metrics.

2. Sensitive Neuron Dropout (SeND), a training-time method designed to reduce hallucina-
tion variance and increase model factual confidence during training.

3. Efficient EigenScore (EES), an efficient hallucination detection metric used to keep SeND
efficient, achieving up to 2x speedup with minimal effects on accuracy.

1.2 RELATED WORK

The majority of research on hallucinations in language models has focused on detecting and mit-
igating this phenomenon rather than explaining its underlying causes. Recent techniques can be
categorized into two main approaches: those that rely on output text or model probabilities at in-
ference time (Manakul et al., 2023; Joshi et al., 2017; Li et al., 2023) and those that utilize internal
representations or hidden layers of the model (Su et al., 2024; Chen et al., 2024; Kossen et al., 2024).
While the former has demonstrated effectiveness, the latter offers deeper insights but often comes
with computational trade-offs. Additionally, methods like Reinforcement Learning with Human
Feedback (RLHF) have gained traction for enhancing model reliability (Yu et al., 2024). However,
many of these post-hoc solutions enhance factual accuracy by layering algorithms atop pre-trained
models, which can be inefficient. Our work addresses this gap by focusing on the internal dynamics
of the model that contribute to hallucinations.

We use several metrics for evaluation, including Halueval (Li et al., 2023), FactScore (Min et al.,
2023), SelfCheckGPT (Manakul et al., 2023), and XSum (Narayan et al., 2018), to validate our
findings across different tasks. Given that the internal dynamics of the model have proven to be
reliable candidates for assessing certainty and hallucination likelihood, we leverage methodologies
such as EigenScore (Chen et al., 2024) and Semantic Entropy (Kossen et al., 2024), which detect
hallucination risk by analyzing the variability in multiple high-temperature outputs. In our exper-

1For the code and datasets used, refer to our GitHub repository at: https://anonymous.4open.
science/r/SeND-Pythia/README.md.
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iments, we use the EigenScore metric alongside the HELM dataset created by Su et al. (2024) to
detect hallucinations during training and in the development of SeND.

Regularization techniques have been introduced to fix the issue of variability, notably random neuron
dropout, used to reduce the variance and ensure that no neuron is overpowering others (Srivastava
et al., 2014; Baldi & Sadowski, 2013). Work such as that done by Santra et al. (2020); Ba & Frey
(2013) aims to modify random neuron dropout to change the way neurons are dropped to a more
deterministic, precise manner. This has allowed the authors to drop unimportant connections in a
deep neural network to ensure that class discriminative information is propagated through the model
correctly (Santra et al., 2020). Inspired by this, our aim is to target hallucinatory neurons in our
models to ensure that factual information is propagated through.

A significant drawback of state-of-the-art detection techniques, particularly those relying on internal
model dynamics, is their efficiency. Existing methods often necessitate multiple inferences and em-
bedding generations, making the spectral analysis of embedding matrices computationally intensive
and increasingly impractical as models and datasets grow (Chen et al., 2024; Su et al., 2024). To
address these challenges, we propose the use of spectral theory for efficient approximation. This ap-
proach enables scalable hallucination detection while maintaining performance. By utilizing tools
such as the Density of States (DOS) and the kernel polynomial method (KPM) for approximating
EigenScore (Huang et al., 2023b; Lin et al., 2014), we aim to enhance the efficiency of our analysis
in the context of confabulations, which we will demonstrate empirically with EES and SeND.

2 INTERNAL TRAINING DYNAMICS

The training epochs of a transformer model can be vital in understanding the dynamics of how
the model learns, particularly when trained on an unsupervised loss with stochastic gradient. Our
analysis of training dynamics through multiple epochs in Appendix A shows that reducing stochastic
gradient loss does not necessarily correspond to reducing hallucinations, verifying the results Li et al.
(2024) showed for the oscillatory behaviour of LLMs in hallucination during training. Specifically,
we found that increasing model size provides diminishing returns with respect to summarization in
Figure 4b and has nearly no effect on self-consistency shown in Figure 4a. Most importantly, Figure
4a highlights the oscillatory hallucination behaviour throughout training.This highlights the need for
further investigation into the relationship between optimization and factual accuracy in LLMs.

Following our investigation of the oscillatory behaviour in training, we look into the internal states of
the Pythia 1B model to see what information we are able to extract. In doing so, we define a series
of terms and formulas in order to understand the internal processes during the training of LLMs.
This information is later used in sections 2.3 and 3 to assist us in deriving methods for improving
the variance in the hallucinatory behaviour of models during training.

2.1 SENSITIVE NEURONS

To start our analysis of the internal states, we convert the activation matrix of the model into a
sentence embedding vector 2.1 which turns an Rn,m activation matrix into a sentence embedding
vector ak for input k with dimension Rn. Given its demonstrated success in hallucination detection
by Su et al. (2024), we employ this sentence embedding extraction approach.

Definition 2.1 (Sentence Embedding Vector). The Sentence Embedding Vector is a way to convert
the large Rn,m activation matrix into a smaller, easier to manage vector with dimension Rn.

ek =
1

2
((

1

m

m∑
i=1

Hi
N−1) +Hm

N−1) (1)

Where ek is the activation of one input k, m is the number of tokens in the sequence, and N − 1
is the subtraction to get the penultimate layer index. The penultimate layer of the LLM, being the
layer closest to the output probabilities, is our primary focus for hallucination analysis due to its rich
information about output certainty.

Next, we define the Net Change Formula 2.2 as a way to extract information from the model indica-
tive of oscillatory behaviour between checkpoints from the sentence embedding vector.
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Definition 2.2 (Net Change Formula). Let eti denote the embedding of data point x at neuron i of
the contextual embedding after checkpoint/epoch t. Then we define the net change formula as

∆eti = |eti − et−1
i | (2)

With these definitions, we can now describe the crux of our investigation: Sensitive Neurons. These
Sensitive Neurons give us key parts of the model that we will prove contribute to the hallucination
of LLM models. They can be used to adapt training procedures for lowering hallucination variation
during training and better overall confidence at inference time. In essence, Sensitive Neurons are
embedding indices in the sentence embedding from definition 2.1 that experience drastic changes
between checkpoints/epochs of the training, something we believe is related to the oscillatory be-
haviour in hallucination performance. When finding the most Sensitive Neurons, we typically want
to select the top K% neurons for a specific data point’s representation. In our investigation we set
K = 20.
Definition 2.3 (Sensitive Neurons). Indices of the contextual embedding for data point x which
exhibit the highest net change across the last C checkpoints of training, indicating overall high
variability during this period. This is calculated by

Vi = V ar(ei)

T∑
t=T−C+1

∆eti (3)

where Vi is the total variability during the last C checkpoints and the most Sensitive Neurons are

s = arg max
1≤i≤N

{Vi | Vi ≥ percentile(V, 100− k)} (4)

where N is the embedding vector size and k is the desired percentile threshold.

The above definition of Sensitive Neurons is then applied to LLM hallucinations through analyses of
the EigenScores. In their paper, Chen et al. (2024) define a new metric for detecting confabulations,
a subclass of hallucinations. They do this by calculating an EigenScore 2.4 based on determinant
calculations from multiple outputs of an LLM with a high-temperature setting (temperature set to
0.5) to encourage the LLM to produce a variety of different outputs. They propose that if an LLM
is set to hallucinate on that output, the generated texts will show higher semantic variability and
produce a higher EigenScore. This method achieves SOTA performance and is unsupervised as
it only relies on the representations learned by the model. In the forthcoming sections, we will
analyze the correlation between the EigenScore of data points during training checkpoints and the
most Sensitive Neurons associated with them.
Definition 2.4 (EigenScore). The EigenScore of data point x indicates the degree of hallucination
on input x by the average logarithm of the eigenvalues on the covariance matrix of the multiple
output generations (typically 10 in our experiments).

ES = E(Y | x, θ) = 1

K

K∑
i=1

log(λi) (5)

where λ = {λ1, . . . , λK} denotes the eigenvalues of the regularized covariance matrix Σ+α · I. we
advise referring to Chen et al. (2024) for a more detailed analysis of this formula.

2.2 SENSITIVE NEURON IMPACT ON EIGENSCORES

To assess the correlation between Sensitive Neurons and other neurons in the embedding matrix
of 10 generated outputs at a specific checkpoint, we conduct experiments aimed to determine if the
presence of Sensitive Neurons indicates higher uncertainty and a greater likelihood of hallucinations.

We evaluate the Sensitive Neuron effect on the HELM dataset (Su et al., 2024), which includes out-
puts and internal states from six open-source LLMs based on inference over 50,000 Wikipedia arti-
cles, with human annotators labeling passages as factual or hallucinatory. This dataset was selected
as Wikipedia is one of the main fact sources people refer to, and to reduce the spread of misinforma-
tion, LLMs should be robust to this type of information. To assess the impact of Sensitive Neurons
on hallucination, we adapt the EigenScore method by applying it to sentence embeddings from the
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penultimate layer of EleutherAI’s Pythia 1B model, focusing on checkpoints between 133,000 and
143,000 training steps, where embeddings are more stable. We perform sensitive neuron dropout,
removing the top 10% of Sensitive Neurons at each checkpoint, and compare the results to a baseline
where 10% of neurons are randomly dropped. Additionally, we analyze the impact on hallucination-
prone inputs versus non-hallucination-prone inputs to determine if Sensitive Neurons play a critical
role during hallucination, without negatively affecting correct outputs.

2.2.1 WHAT IS THE EFFECT OF SENSITIVE NEURONS ON HALLUCINATION METRICS?

Since a reduction in the EigenScore metric can be used as a proxy to show the reduction in likeli-
hood of hallucination, we keep using this metric in our investigations. We are able to show through
our comparison of the baseline random neuron dropout and Sensitive Neuron dropout that Sensitive
Neurons significantly reduce the EigenScore metric and in turn, reduce the possibility of a confabu-
lation (Figure 1a). Not only do we observe this in hallucinatory outputs, we also observe a smaller
reduction in EigenScore when applying this technique to correctly answered queries (Figure 1b).
This result indicates that our methodology has a significant effect on the uncertainty shown by an
LLM. We observe that looking at the internal states of the model is an effective way to eliminate
confabulating text generation in various model sizes.

(a) Model Size (b) Output Type

Figure 1: Comparison of sensitive neuron dropout on inference of Eleuther AI’s Pythia various
model sizes with random neuron dropout. (a) Average sensitive neuron dropout with standard devi-
ation plotted as scale of the model increases. (b) Average sensitive neuron dropout for hallucinatory
inputs and non-hallucinatory inputs. Input size for each test is 80 I.I.D. texts. Sensitive neuron
dropping presents a clear, significant reduction in EigenScore compared to that of random neuron
dropping across model sizes. Hallucinatory generations experience a larger drop in EigenScore,
meaning that our protocol scales with likelihood of hallucination.

2.3 EFFICIENT EIGENSCORE APPROXIMATION

To address the computational complexity of EigenScore calculations, particularly as LLM hidden
layer sizes increase, we develop an approximation method. This approximation, detailed in Algo-
rithm 2, leverages the properties of Spectral Density or Density of States (DOS) to estimate Eigen-
Score without explicitly constructing the covariance matrix. While this approximation provides a
general overview of EigenScore trends, it is important to note that the output scales differ: Eigen-
Score ranges from [0,∞), whereas the approximation, referred to as Efficient EigenScore (EES),
outputs values between [−1, 1]. Since the spectrum of the matrix is altered to make EES computable
and operates on its own scale, EES can be seen as a standalone metric for hallucination detection.

The computation of the Efficient EigenScore (EES) is based on two fundamental concepts: Cheby-
shev Polynomials and Density of States (DOS). A detailed introduction to these concepts is provided
in Appendix sections C.1 and C.2. Below, we outline a brief sketch of the derivation of EES. Since
Chen et al. (2024) use the covariance matrix of the embedding matrix of 10 generated sequences by
the model in their methods, we represent it with H and use it in our derivation.

Lemma 1. Let f = log. Then, for a covariance matrix H with eigenvalues λi, we have

trace(log(H)) =

N∑
i=1

log(λi), (6)
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where λi are the eigenvalues of H .

Proposition 1. Using the property of the density of states (DOS), we have:∫
log(λ)µ(λ) dλ = log

(
N∏
i=1

λi

)
, (7)

which follows from Lemma 1 since
∑N

i=1 log(λi) = log
(∏N

i=1 λi

)
.

Note that from Proposition 1, the integral is equal to N.EigenScore(H) or in our application, given
C the integral equals K.EigenScore(C), K being the number of model generations.

Our objective is to simplify the integral and approximate its value, avoiding the direct computation
of the covariance matrix. This approach is intended to mitigate the computational complexity and
associated costs of explicitly handling the covariance matrix. Further utilizing Chebyshev Polyno-
mials, DOS, and KPM (as introduced in Appendix C.2), we can simplify the integral mentioned in
Equation 7 to

∑M
m=0 dmcm, where dm term in DOS is approximated using Stochastic Trace Estima-

tion and cm m’th Chebyshev Polynomial coefficient. Appendices C.3 and C.4 provide the derivation
of this equation. Note that the simplified integral is ultimately used to approximate the EigenScore
of the matrix which is ultimately equivalent to 1

K

∑M
m=0 dmcm. Performance of EES approxima-

tion is closely correlated with that of the original EigenScore and can be seen to closely track the
progress of EigenScore through training of Pythia 1B on the HELM dataset in Figure 7.

2.4 HOW DOES EFFICIENT EIGENSCORE APPROXIMATION SCALE COMPARED TO REGULAR
EIGENSCORE?

The efficiency of EES compared to regular EigenScore is evaluated for scaling matrix sizes, which
is critical for applying our training protocol on LLMs (Section 3). We conduct a grid search over
matrix size (Figure 2) and moments used in EES calculation (Figure 6). As shown in Figure 2, EES
demonstrates a significant computational advantage, reducing computation time by nearly half for
matrix sizes of R1e8, with EES taking around 4 seconds versus 7 seconds for EigenScore. Thus,
EES offers substantial computational efficiency as model and matrix sizes increase.

Figure 2: Efficient EigenScore approximation scaling investigation. The figure shows the differ-
ence in computation time between regular EigenScore calculation and EES with a moments value
of 20. The x-axis represents the product of the matrix’s rows and columns, and the y-axis shows the
computation time. As matrix size increases, EES consistently reduces computation time, making it
a practical choice for large LLMs.

3 SENSITIVE NEURON DROPOUT (SEND)

Building on the findings from Section 2.2, and aiming to reduce variance in the factual uncertainty
of LLMs during training, this section introduces SeND, an efficient and transferable framework for
training LLMs. SeND integrates the EES method discussed in Section 2.3 to enhance computational
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efficiency while addressing variance in sensitive neuron behavior. By identifying sensitive neurons,
which contribute to the oscillatory behavior of hallucinations during training, SeND deterministi-
cally drops these neurons based on a small subset of the training data. This approach ensures an
increase in the model’s factual certainty by the end of training as explained in Algorithm 1.

Algorithm 1 Sensitive Neuron Dropout

Require: ϵ denotes the acceptable range for loss convergence and δ denotes acceptable range for
confabulation (EES) convergence

1: Initialize dataset with α% training Yt and (100− α)% tracking Ys

2: while Loss > ϵ and EES > δ do ▷ Refer to Algorithm 2 for EES
3: for t in T do ▷ T denotes the number of epochs per sensitive neuron calculation
4: Train LLM for one epoch over Yt

5: Record penultimate layer representations Rt of LLM over Ys

6: end for
7: for t ∈ T − 1 do
8: Calculate variability Vt between Rt to Rt+1 ▷ Refer to Equation 3
9: end for

10: Take average Variability Vavg = 1
Ns

∑Ns

i=0 Vi

11: s = K most sensitive neurons ∈ Vavg ▷ Refer to Equation 4
12: Drop neurons s for next T epochs
13: end while

3.1 SEND EXPERIMENT SETUP

To evaluate SeND, we use Eleuther AI’s Pythia 1B model, continuing its training on specific datasets
rather than restarting pretraining to maintain efficiency. We continue the training of the fully trained
model on two datasets: HELM, consisting of Wikipedia text (Su et al., 2024), and MedHALT, a
medical dataset emulating real-world entrance exam questions (Pal et al., 2023). Due to the impor-
tance of factual accuracy in the medical domain, MedHALT was chosen to assess SeND’s impact
on hallucination mitigation in an additional field where hallucinations are highly impactful. Both
datasets were tested in two sizes: 200 and 2,000 points (referred to as 2k). SeND implements the
EigenScore reduction technique from Section 2.2 and detects Sensitive Neurons using a 3-epoch
window on a specialized hallucination tracking dataset. Sensitive Neurons in the penultimate layer
are identified based on their variability across epochs and are deterministically dropped for the sub-
sequent 3 training epochs. This dropout process is repeated at each 3-epoch interval until the training
loss converges, effectively mitigating hallucination tendencies and refining the model.

3.2 PERFORMANCE OF SEND ON PYTHIA 1B

The results of running Pythia 1B on HELM and MedHALT 200 are illustrated in Figure 3. To vali-
date that the EES method accurately approximates the EigenScore metric; we compare the model’s
progress during training (up to loss convergence) and assess whether the resulting graphs are similar.
These results are detailed in Appendix C.7. Upon confirming that EES provides a reliable approx-
imation of the EigenScore, we proceed to compare the performance of Pythia 1B trained using
standard training without dropout to that of Pythia 1B trained with SeND on HELM and MedHALT
2k (Figure 3). A baseline of no dropout was used for comparison as experiments showed that imple-
menting random dropout resulted in worse performance. In the case of training on HELM with the
regular protocol, we observe results consistent with previous findings: while the model successfully
reduces loss, it fails to optimize for hallucination, as evidenced by the increasing EES metric (green
line in Figure 3a). Conversely, training with SeND reveals a consistent trajectory toward reducing
both EES and loss, as depicted by the blue line.

To assess the effectiveness of SeND in comparison to other state-of-the-art factuality metrics, we
employ the FactScore metric from Min et al. (2023), which quantifies the factual accuracy of content
generated by large language models (LLMs). The fact-checking is conducted using the HELM
dataset where a higher FactScore indicates improved factual precision. When evaluated on 100 data
points from the HELM dataset, the 1B SeND model achieves a FactScore of 0.07, whereas the 1B
Normal Training model attains 0.05, demonstrating a 40% improvement in factual accuracy, even
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during test time. This highlights the efficacy of SeND in enhancing the factual certainty of the
model. Note that SeND is not a replacement for post-hoc methods such as RAG (Gao et al., 2024b),
but rather to complement them.

(a) HELM (b) MedHALT 2k

Figure 3: Regular finetuning vs. SeND on two datasets. (a) presents the results of training Pythia
1B on HELM with regular finetuning and SeND. (b) uses the same training setup as (a), but the
LLM is trained on MedHALT 2k. In both plots, performance is reported as the average EES over 5
runs on the validation set. Models are trained until loss convergence. Training with SeND shows a
more controlled reduction in EES compared to regular finetuning, suggesting that SeND optimizes
for hallucinations as well as loss, with less overall confidence variability during training.

The robustness of this training protocol is essential as we aim for it to be applied across many
different fields. In light of this, we present the results of finetuning on MedHALT 2k with and
without SeND in Figure 3b. We observe a similar trend in 3b as shown in Figure 3a, where standard
finetuning increases the EES score throughout training, showing that the model is not taking into
account hallucinations and factuality during its training. In Figure 3b, there is an improvement in
the trajectory of EES as training continues, showing that our model is in fact able to incorporate
factuality as a metric to account for during training of the model. The small difference observed
between the training protocol behaviours could be due to MedHALT 2k data never being seen before
the finetuning phase whereas HELM data has been seen. In this case, it may be beneficial to delay
the onset of SeND, as high variability between checkpoints on new training instances is expected.

4 CONCLUSION & FUTURE WORK

In this paper, we presented a protocol to refine the current training methods of LLMs based on exper-
iments showing oscillatory behaviour with respect to hallucinations throughout training (Figure 4).
To do this we used the internal states of LLMs, specifically the penultimate layer activations during
inference on a specialized dataset. We present an initial method of reducing hallucinations based on
the principles of EigenScore metrics introduced by Chen et al. (2024). We showed empirically that
our Sensitive Neuron detection method significantly reduces the EigenScore on inference of LLMs
throughout various stages of training (Figure 1). Following the success of the Sensitive Neuron
method, we moved on to the application of a hallucination reduction method on training. We show
through finetuning that we are able to fix the oscillatory behaviour initially seen throughout training
and reduce the EES of finetuned models as shown in Figure 3 by modifying the internal mechanics
of training with SEnsitive Neuron Dropout. At test time, in conjunction with Retrival Augmented
Generation, we achieve a 40% increase in FactScore performance, verifying that SeND provides a
substantial improvement to current training protocols.

In the future, we would like to scale our method to larger datasets and larger models as we faced
compute power restrictions with larger LLMs. Proving the performance of SeND on larger open
source models such as Meta’s Llama 3.1 (Dubey et al., 2024) will give organizations creating state
of the art LLMs the evidence they need to implement SeND into their training protocol and launch
safer models. We also expect SeND to perform even better on larger LLMs since we are introducing
a regularization technique to reduce variance during training. Applying this to larger LLMs with an
innate higher variance could see SeND having a larger impact on the model.
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A OSCILLATORY BEHAVIOUR VALIDATION

A.1 METHODS

In our study, we utilize Eleuther AI’s Pythia and LMEval tools (Biderman et al., 2023; Gao et al.,
2024a), to examine the development and evolution of LLMs throughout the training process. Pythia
comprises a suite of 16 LLMs, all trained on public data in the same sequential order, with sizes
ranging from 70 million to 12 billion parameters, 8 of which we use for our experiments. We used 20
equally spaced training checkpoints from the start to the finish for our analysis. We chose Pythia as it
is based on GPT-Neo X (Black et al., 2022), which shares a similar foundational architecture to other
state-of-the-art language models. Pythia’s comprehensive package of models makes it particularly
suitable for our analysis, allowing us to conduct a thorough examination of the development and
evolution of LLMs throughout the training process.

These models are evaluated at each checkpoint on a variety of hallucination/fact-checking metrics.
To do this, we leverage the HuggingFace Hallucination Leaderboard (Hong et al., 2024), which
offers comprehensive benchmarks for our experiments. There are two main components to our
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(a) Self-Consistency (b) Summarization

Figure 4: Visualization of Oscillatory Behavior Across Varying LLM Sizes. Hallucination met-
rics are evaluated at equidistant checkpoints of the Pythia models, with sizes 70M, 160M, 410M, 1B,
1.4B, 2.8B, 6.9B, 12B. Part (a) presents the performance of the Pythia models under the SelfCheck-
GPT metric. Average performance is indicated by solid lines, while the shaded regions represent the
standard deviation. Higher SelfCheckGPT score indicates a higher probability of self-contradiction.
Part (b) depicts the same experimental setup, but hallucination measured on the XSum v2 dataset,
where Rouge1 is used as the performance metric. A higher Rouge1 score suggests a better alignment
of the generated text to that of the reference summary. For all model sizes, we observe a pronounced
trend of high variance and oscillatory behavior in hallucination rates, highlighting the model’s un-
certainty and need for a robust mitigation strategy to stabilize performance.

evaluations: Summarization and Self-consistency. For summarization, models are evaluated under
the XSum dataset Narayan et al. (2018) where the model is given a dataset of BBC news articles
and must give summaries of each article. A higher Rouge1 score on XSum means the data is
aligning better with the provided reference summary. SelfCheckGPT (Manakul et al., 2023) is used
to see if the model is uncertain with respect to a dataset of prompts for self-consistency. When the
SelfCheckGPT score is high, it means the model is more likely to contradict itself on the given input
and therefore, more likely to hallucinate.

A.2 HOW DO THE ESTABLISHED ITERATIVE TRAINING PROCESSES INFLUENCE LLM
HALLUCINATIONS?

The analysis of hallucination oscillations, as shown in Figure 4, indicates a consistent pattern across
different models: oscillations persist throughout training from the initial to the final checkpoint. This
finding highlights the uncertainty of halting training solely based on the convergence of training loss
to its minimum to minimize hallucination. For example, in the evaluation plot of XSUM with the
12B model (4b), the optimal value for the hallucination metric occurs at the much before training
termination. This evidence challenges the notion that optimizing solely for unsupervised loss in
SGD guarantees learning the most accurate representation of the data. This observation is seen
more drastically in 4a, where model size has even less effect on the performance of SelfCheckGPT.
Instead, we observe exaggerated oscillatory behaviour within self-consistency, meaning that model
size is even less effective at tackling the issue of confabulations. One potential solution to mitigate
this issue could involve incorporating a regularization term into the unsupervised loss based on a
hallucination detection metric discussed in Section 3.

A.3 HOW DOES MODEL COMPLEXITY AFFECT THE EMERGENCE OF HALLUCINATIONS
THROUGHOUT TRAINING?

An analysis of hallucination detection metrics reveals a diminishing rate of improvement with in-
creased model scaling, particularly up to the 12B parameter size (Figure 4b). This suggests that
beyond a certain point, even though there is improvement in the hallucinations, larger models do not
significantly reduce hallucinations, indicating that scaling alone is not sufficient for building robust
models. Instead, more refined approaches are needed to address the underlying variability in model
behavior. For the following experiments, we focus on the Pythia 1B model.
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B ADDITIONAL EXPERIMENTS

B.1 DRASTIC EMBEDDING CHANGES LEADING TO SENSITIVE NEURONS

Looking at internal states of the model allows getting a deeper understanding of the dynamics that
could be leading to the oscillatory behaviour seen in Figure 4. To do this, we record the net change
(Definition 2.2) between checkpoints of the penultimate layer where one checkpoint would be the
correct answer and the next would hallucinate. This net change with respect to various different
input texts is plotted in Figure 5. It can be observed that there were specific embedding activations
that experienced drastically more change relative to the rest of the embeddings. This is the main
source of motivation to further define Sensitive Neurons (Definition 2.3).

Figure 5: Net change of sentence embeddings between checkpoints 125,000 and 143,000. Each
different colour is a different input text. As depicted, there are specific neurons that go through
drastic changes between the two checkpoints of the training regardless of the input.

C EFFICIENT EIGENSCORE (EES) DERIVATION

C.1 BACKGROUND: CHEBYSHEV POLYNOMIALS

Chebyshev polynomials are a sequence of orthogonal polynomials in the interval [−1, 1] – orthog-
onality property shown in equation 8 – that are widely used in numerical analysis, approximation
theory, and other areas of applied mathematics. In this work, we are mainly concerned with the
Chebyshev polynomials of the first kind with the recurrence relation shown in equation 9. Note that
this recurrence could also be applied to matrices. Any function f defined in the interval [−1, 1] can
be approximated with the Chebyshev expansion as shown in 10.

∫ 1

−1

2

(1 + δ0n)π
√
1− x2

Tm(x)Tn(x) dx = δmn,

where δmn =

{
1 if m = n,

0 if m ̸= n,

(8)

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2x · Tn(x)− Tn−1(x), for n ≥ 1.

(9)
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f(x) =

∞∑
n=0

cnTn(x), (10)

where cn =
2

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx for n > 0, (11)

c0 =
1

π

∫ 1

−1

f(x)√
1− x2

dx. (12)

C.2 BACKGROUND: DOS AND KPM

Let H be a symmetric matrix H ∈ RN×N with an eigendecomposition H = QΛQT , where Λ =
diag(λ1, · · · , λN ) and Q = [q1, · · · , qN ] is orthogonal. The spectral density induced by H is the
generalized function:

µ(λ) =
1

N

N∑
i=1

δ(λ− λi), (13)

where δ is the Dirac delta function. For any analytic test function f , the integral of f with respect to
µ is: ∫

f(λ)µ(λ) dλ = trace(f(H)). (14)

Dong et al. (2019) introduced KPM as a numerical technique to approximate DOS. KPM approxi-
mates DOS by expanding it in terms of chebyshev polynomials. Requiring the matrix’s spectrum to
be supported in the interval [−1, 1], KPM approximates DOS with the following formula, λ being
the eigen value of the matrix H and dm approximated by Stochastic Trace Estimation:

µ≈(λ) =

∞∑
m=1

dmT ∗
m(λ), (15)

where dm =
1

N
trace(Tm(H)), (16)

and dm ≈
1

N

1

Nz

Nz∑
j=1

zTj Tm(H)zj , (17)

and T ∗
m(x) =

2

(1 + δ0m)π
√
1− x2

Tm(x). (18)

In the application for hallucination detection, we can use equation 14 to derive a formula for the
EigenScore approximation using the properties of Chebyshev polynomials and DOS.

C.3 STOCHASTIC TRACE ESTIMATION ON EMBEDDING MATRIX

We are interested in computing the dm term of DOS relying solely on the embedding matrix E
therefore we need to rewrite dm as follows:

dm =
1

K

1

Nz

∞∑
j=0

zTj Tm(ETE)zj (19)

where Tm can be computed using the Chebyshev polynomials of matrix C = ETE.

15



Accepted to the SafeGenAI Workshop at NeurIPS 2024

T0(E
TE)zj = Izj = zj ,

T1(E
TE)zj = ETEzj ,

Tm+1(E
TE)zj = 2ETETm(ETE)zj − Tm−1(E

TE)zj

Each term can be computed with a matrix-vector multiplication.

C.4 EES INTEGRAL CALCULATION

Given the orthogonality of the Chebyshev polynomials, we can simplify the integral mentioned
in proposition 1. To approximate the EigenScore, we will expand log(λ) in terms of Chebyshev
polynomials and use their orthogonality to simplify the integral.

Expanding and Integrating

To approximate the integral:

1

K

∫
log(λ)µ(λ) dλ (20)

Substitute the Chebyshev Expansion for DOS:

µ(λ) ≈
M∑

m=0

dmT ∗
m(λ) (21)

where:

T ∗
m(λ) = w(λ)Tm(λ) =

2

π
√
1− λ2(1 + δ0m)

Tm(λ)

Distribute log(λ) in the integral:

1

K

∫
log(λ)

(
M∑

m=0

dmT ∗
m(λ)

)
dλ =

1

K

M∑
m=0

dm

∫
log(λ)T ∗

m(λ) dλ (22)

Evaluate the Integral Using Orthogonality:

To simplify the integral, ∫
log(λ)T ∗

m(λ) dλ (23)

First, express log(λ) as a series of Chebyshev polynomials:

log(λ) =

∞∑
m=0

cmTm(λ) (24)

Then:

∫ 1

0

log(λ)T ∗
m(λ) dλ =

∫ 1

0

( ∞∑
m=0

cmTm(λ)

)
Tm(λ) dλ (25)

(26)
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Note: The lower bound of the integral is 0 as the matrix is defined in the spectrum [0, 1].

Using the orthogonality, we get:

cm =

∫ 1

0

log(λ)T ∗
m(λ) dλ (27)

So the integral simplifies to:

1

K

M∑
m=0

dmcm (28)

C.5 EFFICIENT EIGENSCORE ALGORITHM

Here we present a step by step guide on how to integrate the above derivations into a computation
algorithm for the approximation of EigenScore.

Algorithm 2 Efficient EigenScore (EES) Computation Algorithm

Require: Embedding matrix E ∈ Rdmodel×K , number of Chebyshev terms M , number of stochastic
trace estimation samples Nz

Ensure: Approximated EigenScore EES
1: Standardize and Scale the Embedding Matrix E:
2: Emean = 1

K

∑K
i=1 E[:, i] ▷ Compute mean of E

3: Estd =
√

1
K

∑K
i=1(E[:, i]− Emean)2 ▷ Compute standard deviation of E

4: Enormalized = E−Emean
Estd

▷ Standardize E

5: σmax = Power Method(Enormalized) ▷ Compute the largest singular value using the power
method

6: Enormalized ← Enormalized
σmax

▷ Scale E by σmax

7: Initialize:
8: dm = 0 ∀m ∈ {0, 1, . . . ,M} ▷ Initialize dm coefficients
9: cm = 0 ∀m ∈ {0, 1, . . . ,M} ▷ Initialize cm coefficients

10: Compute DOS coefficients dm:
11: for m = 0 to M do
12: Sample zj ∼ N (0, I) ▷ Sample random vectors for stochastic trace estimation
13: Compute Chebyshev polynomial using the recurrence relation
14: end for
15: Compute Chebyshev coefficients cm:
16: for m = 0 to M do
17: cm ←

∫ 1

0
log(λ)T ∗

m(λ) dλ ▷ Using Equation 27 and Gaussian Quadrature for
approximation

18: end for
19: Compute EigenScore:
20: EES← 1

K

∑M
m=0 dmcm ▷ Approximate EigenScore using DOS coefficients

21: return EES ▷ Return the approximated EigenScore

C.6 EFFICIENT EIGENSCORE MOMENTS

Figure 6 presents the effect of using different moment values as the number of matrix rows increases
with respect to time. This is an important hyperparameter to tune as increasing the number of
moments on EES correlates to having a more accurate and representative approximation of the
EigenScore. We observe that as moments in EES increase, the time to calculate EES increases.
From this result, we conclude that selecting a moment value of under 50 would provide a balanced
trade-off between accuracy and calculation time.
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Figure 6:
Effect of changing number of moments on EES calculation time (seconds). More moments gives
more accurate approximation but higher computation time.

Figure 7: Performance of SeND on Pythia 1B wih HELM dataset computed with both EES and
regular EigenScore. EES is able to closely track the true EigenScore performance metric, showing
that it is a good approximator.

C.7 EIGENSCORE AND EES TRAINING TRAJECTORIES

To demonstrate that our EigenScore approximation method, EES, is a good metric, we record the
progress of Pythia 1B finetuning on the HELM dataset using both EigenScore and EES hallucination
performance metrics (Figure 7). Albeit a different scale and window, the trajectories, magnitude and
shape of the graphs are nearly identical while EES takes only 4 minutes to calculate and Eigen-
Score takes approximately 8, an astounding 2x increase in compute speed. These results show that
our metric closely resembles the target metric while greatly reducing the required computational
resources.
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