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ABSTRACT

Federated optimization, an emerging paradigm which finds wide real-world ap-
plications such as federated learning, enables multiple clients (e.g., edge devices)
to collaboratively optimize a global function. The clients do not share their local
datasets and typically only share their local gradients. However, the gradient in-
formation is not available in many applications of federated optimization, which
hence gives rise to the paradigm of federated zeroth-order optimization (ZOO).
Existing federated ZOO algorithms typically suffer from the limitations of query
and communication round inefficiency, which can be attributed to (a) their reliance
on a substantial number of function queries for gradient estimation and (b) the
significant disparity between their realized local updates and the intended global
updates. To this end, we (a) introduce trajectory-informed gradient surrogates
which is able to use the history of function queries during optimization for accurate
and query-efficient gradient estimation, and (b) develop the technique of adaptive
gradient correction using these gradient surrogates to mitigate the aforementioned
disparity. With these, we propose the federated zeroth-order optimization using
trajectory-informed surrogate gradients (FZooS) algorithm for query- and commu-
nication round-efficient federated ZOO. FZooS achieves theoretical improvements
over the existing approaches, which is supported by our real-world experiments on
federated black-box adversarial attack and non-differentiable metric optimization.

1 INTRODUCTION

Due to the growing computational power of edge devices and increasing privacy concerns, recent
years have witnessed a surging interest in federated optimization, which finds real-world applications
such as federated learning (McMahan et al., 2017a). Federated optimization allows the agents to
retain their local datasets but share their locally computed gradients. However, in many important
applications of federated optimization such as federated black-box adversarial attack (Fang et al.,
2022), the gradient information is not available. This gives rise to the paradigm of federated zeroth-
order optimization (ZOO), in which the global function to be optimized is an aggregation of the
local functions that are distributed on edge devices (i.e., clients) and are only accessible via function
queries (Fang et al., 2022). To tackle federated ZOO, existing algorithms (Fang et al., 2022) follow
the framework of using finite difference (FD) for local gradient estimation and hence resorting to
federated first-order optimization (FOO) algorithms (e.g., FedAvg (McMahan et al., 2017b)) for
optimization.1 Nevertheless, these algorithms usually suffer from both query and communication
round inefficiency for local and global functions that are not only expensive-to-evaluate but also
heterogeneous. This impedes their practical applicability, especially in the scenarios with restricted
query times and communication rounds. However, little attention has been dedicated to achieving
query- and communication round-efficient federated ZOO algorithms in the literature.

To address this problem, it is imperative to firstly identify the challenges faced by existing federated
ZOO algorithms which are responsible for their query and communication round inefficiency (Sec. 3).
Federated ZOO requires multiple communication rounds for central server aggregation; between
consecutive communication rounds, every client performs several iterations of local optimization

1So, existing federated FOO algorithms (e.g., FedProx (Li et al., 2020a), SCAFFOLD (Karimireddy et al.,
2020a) and etc.) can be easily adapted to this framework (refer to Sec. 3). We refer to this simple integration of
FD methods and federated FOO algorithms as the existing federated ZOO algorithms throughout this paper.
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using their estimated gradients which are usually approximated via additional function queries
(e.g., based on FD). Firstly, we show (Sec. 3) that the query inefficiency of existing federated ZOO
algorithms arises from their employment of FD for local gradient estimation, which often requires
an excessive number of additional function queries. Therefore, addressing the challenge of query
efficiency in federated ZOO calls for a gradient estimation method that requires minimal (ideally zero)
additional function queries. Secondly, we show (Sec. 3) that the communication round inefficiency
of these existing algorithms results from the disparity between their realized local updates and the
intended global updates, which is typically caused by client heterogeneity. Hence, resolving the
challenge of communication round efficiency requires developing a high-quality gradient correction
technique to mitigate such a disparity.

To this end, we propose the federated zeroth-order optimization using trajectory-informed surrogate
gradients (FZooS) algorithm to address the aforementioned challenges, and hence to achieve query-
and communication round-efficient federated ZOO. Firstly, we introduce the recent derived Gaus-
sian process (Shu et al., 2023), which only requires the optimization trajectory (i.e., the history of
function queries during optimization) for gradient estimation, as the local gradient surrogates for the
clients, thereby realizing query-efficient gradient estimation in federated ZOO (Sec. 4.1). Secondly,
based on these local gradient surrogates, we use random Fourier features (RFF) approximation
(Rahimi and Recht, 2007) to produce a transferable global gradient surrogate (without transferring
raw observations), which is an accurate estimate of the gradient of the global function (Sec. 4.2.1).
Using these surrogates, we develop the technique of adaptive gradient correction using adaptive gra-
dient correction vector and length to mitigate the disparity between our local updates and the intended
global updates, and consequently to improve the communication round efficiency of federated ZOO
(Sec. 4.2.2).

We verify that our FZooS has addressed the aforementioned challenges via both theoretical analysis
and empirical experiments. We firstly theoretically bound the disparity between our realized local
updates in FZooS and the intended global updates in the federated ZOO problems with heterogeneous
clients. It shows that our local update is superior to those employed by the previous works because it
achieves both a better query efficiency and smaller disparity error (Sec. 5.1). Based on this, we then
prove the convergence of our FZooS and show that FZooS also enjoys an improved communication
round efficiency over the existing algorithms (Sec. 5.2). Lastly, we use extensive experiments, such
as synthetic experiments, federated black-box adversarial attack and federated non-differentiable
metric optimization, to show that our FZooS consistently outperforms the existing federated ZOO
algorithms in terms of both query efficiency and communication round efficiency (Sec. 6).

2 PROBLEM SETUP AND NOTATIONS

In the federated zeroth-order optimization (ZOO) setting (Fang et al., 2022), we aim to minimize
a global function F defined on the domain X ≜ [0, 1]d, which is the arithmetic average of N local
functions {f1, · · · , fN} distributed on N different clients with |fi(x)| ≤ 1 for any x ∈ X and
i ∈ [N ] without sharing these local functions:

min
x∈X

F (x) ≜
1

N

∑
i∈[N ]fi(x). (1)

A central server is typically introduced to periodically aggregate the updated inputs sent from the
distributed clients after their several iterations of local optimization. Of note, in this federated
ZOO setting, the gradients of the local functions are either not accessible or too computationally
expensive to obtain. Consequently, the gradients can not be directly employed for optimization,
which is our main difference from the standard federated first-order optimization (FOO) setting
(Konečnỳ et al., 2015; Wang et al., 2021; Reddi et al., 2021). Instead, given an input x ∈ X , agent
i is only allowed to observe a noisy output yi(x) ≜ fi(x) + ζ of the local function fi, in which
ζ ∼ N (0, σ2). Moreover, we focus on federated ZOO with heterogeneous clients, i.e., the local
functions {fi}Ni=1 differ from the global function F . Besides, we adopt a common assumption on
{fi}Ni=1: We assume that every local function fi is sampled from a Gaussian process (GP), i.e.,
fi ∼ GP(µ(·), k(·, ·)) (Shu et al., 2023), in which k is a shift-invariant kernel and is assumed to have
∥∂z∂z′k(z, z′)|z=z′=x∥ ≤ κ, ∥∂zk(z,x′)|z=x∥ ≤ L (∀x,x′ ∈ X ) for some κ > 0 and L > 0.
This encompasses commonly used kernels such as the squared exponential kernel (Rasmussen and
Williams, 2006). Unless specified otherwise, we use ∥ · ∥ to denote the norm ∥ · ∥2 and [Z] to denote
the set {1, · · · , Z}. We will use i ∈ [N ] to denote the formulas related to client i in this paper.
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3 FRAMEWORK AND CHALLENGES FOR FEDERATED ZOO

Here we firstly summarize the framework to solve the federated ZOO problem (Sec. 3.1), and then
identify the challenges which existing algorithms following this framework fail to address (Sec. 3.2).

3.1 OPTIMIZATION FRAMEWORK

To solve (1), a general optimization framework is to estimate the gradients of {fi}Ni=1 using only
function queries and then employ the standard federated FOO algorithms for the optimization, as in
Algo. 1. Specifically, in round r, every client performs T iterations of local gradient decent updates
in parallel (line 2-5 of Algo. 1), in which ĝ(i)r,t−1 ∈ Rd denotes the estimated gradient by client i for
the local update in iteration t of round r. After that, each client sends its locally updated input x(i)

r,T

to server (line 6 of Algo. 1). After receiving the updated inputs from all clients (i.e., {x(i)
r,T }Ni=1), the

server aggregates them (e.g., via arithmetic average) to produce a globally updated input xr, and then
sends it back to the clients for the optimization in the next round (line 7-8 of Algo. 1).

The aforementioned ĝ(i)r,t−1 used in the literature can be summarized into the following general form:
ĝ
(i)
r,t−1 ≜ g(i)r,t−1 + γ

(i)
r,t−1

(
gr−1(x

′)− g(i)r−1(x
′′)
)

(2)

where g(i)r,t−1 ∈ Rd is an estimate of ∇fi(x(i)
r,t−1) and is usually obtained using the finite difference

(FD) methods (refer to Sec. 3.2). In addition, the gradient correction vector gr−1(x
′)− g(i)r−1(x

′′) ∈
Rd is usually obtained from the previous round r − 1. This aims to make the resulting ĝ(i)r,t−1 better
aligned with ∇F (x(i)

r,t−1), such that the local update on each client (i.e., line 5 of Algo. 1) can better
approximate the intended global update along the direction of∇F (x(i)

r,t−1). It is especially important
in the presence of client heterogeneity, i.e., {∇fi}Ni=1 differ from ∇F . Intuitively, to accomplish
this alignment, gr−1(x

′) and g(i)r−1(x
′′) should be good estimates of∇F (x(i)

r,t−1) and ∇fi(x(i)
r,t−1),

respectively, which we theoretically justify in Sec. 3.2. Of note, the form of gr−1(x
′)− g(i)r−1(x

′′)
for gradient correction usually aims to ensure that the estimation biases from gr−1(x

′) and g(i)r−1(x
′′)

could cancel out (Johnson and Zhang, 2013). Finally, γ(i)r,t−1 ∈ [0, 1] denotes the gradient correction
length, which can be adjusted to trade off the utilization of the gradient correction vector (Sec. 3.2).

Remarkably, (2) subsumes the forms of gradient updates employed in many existing federated
ZOO algorithms, and hence Algo. 1 can reduce to the corresponding optimization algorithms (more
details in Appx. D). E.g., when γ(i)r,t−1 = 0 and g(i)r,t−1 is obtained using FD, Algo. 1 becomes
the FedZO algorithm (Fang et al., 2022); when γ(i)r,t−1=1, gr−1(x

′)= 1
NT

∑N,T
i,t=1 g

(i)
r−1,t−1, and

g(i)r−1(x
′′) = 1

T

∑T
t=1 g

(i)
r−1,t−1, (2) reduces to the gradient update in (Karimireddy et al., 2020a) and

hence Algo. 1 becomes the SCAFFOLD (Type II) algorithm in the federated ZOO setting; let the
gradient correction vector gr−1(x

′)− g(i)r−1(x
′′) in (2) be x(i)

r,t−1 − xr, Algo. 1 is then equivalent to
FedProx (Li et al., 2020a) in the federated ZOO setting.

3.2 EXISTING CHALLENGES

Existing federated ZOO algorithms aiming to solve the problem in Sec. 2 typically fail to address the
challenges of query efficiency and communication round efficiency, which we discuss in detail below.

Challenge of Query Efficiency. Similar to standard ZOO algorithms (Nesterov and Spokoiny,
2017; Cheng et al., 2021), existing federated ZOO algorithms (e.g., (Fang et al., 2022)) also commonly
apply the FD methods (Berahas et al., 2022) for gradient estimation. Specifically, given a parameter
λ > 0 and directions {uq}Qq=1, the gradient of the function fi on client i at x can be estimated as

∇fi(x) ≈∆(i)(x) ≜
1

Q

∑
q∈[Q]

yi(x+ λuq)− yi(x)
λ

uq . (3)

That is, for existing federated ZOO algorithms, g(i)r,t−1 = ∆(i)(x(i)
r,t−1) in (2). As implied in (3),

Q additional function queries are required for the gradient estimation at every local updated input
x(i)
r,t−1. This therefore results in NTQ× more function queries than the standard federated FOO

algorithms (Li et al., 2020a; Karimireddy et al., 2020a) in every communication round, which is
unsatisfying in practice especially when {fi}Ni=1 are prohibitively costly to evaluate. So, tackling the
challenge of query efficiency in federated ZOO requires designing query-efficient gradient estimators.
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Algorithm 1: The General Optimization
Framework for Federated ZOO
Input: Initial x0, rounds R, learning rate

η, iterations T for each round,
number of clients N

1 for each round r ∈ [R] do
// Client-Side Update

2 for each client i ∈ [N ] in parallel do
3 x(i)

r,0 ← xr−1

4 for each iteration t ∈ [T ] do
5 x(i)

r,t ← x(i)
r,t−1 − η ĝ(i)r,t−1

6 Send x(i)
r,T to receive xr back

// Server-Side Update
7 xr ← 1

N

∑
i∈[N ] x

(i)
r,T

8 Send xr back to each client

Algorithm 2: FZooS
Input: Input of Algo. 1, length γ, M features

1 for each round r ∈ [R] do
// Client-Side Update

2 for each client i ∈ [N ] in parallel do
3 x(i)

r,0 ← xr−1,∇µ̂r−1 based on wr−1

4 for each iteration t ∈ [T ] do
5 ∇µ(i)

r,t−1 conditioned on D(i)
r,t−1

6 x(i)
r,t ← x(i)

r,t−1 − η ĝ(i)r,t−1 with (8)
7 Send x(i)

r,T to receive xr, query around xr

8 Approx. ∇µ(i)
r,T via RFF to get w(i)

r,T

9 Send w(i)
r,T to receive wr back

// Server-Side Update
10 xr← 1

N

∑
i∈[N ] x

(i)
r,T , wr← 1

N

∑
i∈[N ]w

(i)
r,T

11 Send xr back first and then wr to each client

Challenge of Communication Round Efficiency. When ĝ(i)r,t−1 = ∇F (x(i)
r,t−1) in (2), Algo. 1 is

then able to attain the convergence of centralized FOO algorithms, which is known to be better than
the one in the federated setting (Karimireddy et al., 2020a). Therefore, intuitively, the convergence or
the communication round efficiency (i.e., the number of communication rounds R required to achieve
an ϵ convergence error) of Algo. 1 depends on the disparity between (2) and ∇F (x(i)

r,t−1). Define
the gradient disparity Ξ(i)

r,t ≜ ∥ĝ(i)r,t−1 −∇F (x(i)
r,t−1)∥2, we propose the following Prop. 1 (proof in

Appx. C.1) to show the condition for the best-performing (2) and thus to justify the challenge in
communication round efficiency that existing federated ZOO algorithms typically fail to address well.

Proposition 1. Let g(i)r−1(x
′′) ̸= gr−1(x

′), the minimum of Ξ(i)
r,t w.r.t γ(i)r,t−1 is achieved when

γ(i)r,t−1 = γ
(i)∗
r,t−1 ≜

(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)∥∥∥gr−1(x

′)− g(i)r−1(x
′′)
∥∥∥−2

.

When γ(i)∗r,t−1 = 1, Ξ(i)
r,t = 0 iff we have gr−1(x

′)− g(i)r−1(x
′′) = ∇F (x(i)

r,t−1)− g(i)r,t−1.

Prop. 1 shows that to achieve a small gradient disparity, γ(i)r,t−1 should be adaptive w.r.t. the alignment
between the gradient correction vector gr−1(x

′) − g(i)r−1(x
′′) and the drift ∇F (x(i)

r,t−1) − g(i)r,t−1.
We have shown (Appx. C.1) that a better alignment between the gradient correction vector and the
drift leads to a smaller gradient disparity, Prop. 1 further shows that a zero gradient disparity (i.e.,
Ξ(i)
r,t = 0 for any r ∈ [R], t ∈ [T ]) can be reached when these two are perfectly aligned. To achieve

such an alignment, i.e., to make gr−1(x
′) = ∇F (x(i)

r,t−1) and g(i)r−1(x
′′) = g(i)r,t−1 hold more likely,

it requires not only (a) accurate gradient surrogates gr−1 and g(i)r−1 to accurately represent ∇F and
∇fi, respectively, but also (b) adaptive x′,x′′ to avoid the discrepancy between x(i)

r,t−1 and x′,x′′.

Consequently, resolving the challenge of communication round efficiency in federated ZOO mainly
requires (A) accurate local and global surrogates (i.e., g(i)r−1 and gr−1) for the gradient correction
in (2), and (B) adaptive gradient correction in (2) with both adaptive x′,x′′ and adaptive γ(i)r,t−1.
However, existing federated ZOO algorithms usually fail to address them well: Firstly, these al-
gorithms rely on the FD methods for gradient estimation, which usually lead to poor estimation
quality and consequently inaccurate gradient correction vectors in (2) when the query budget is very
limited. Secondly, although x(i)

r,t−1 changes during local updates, existing algorithms typically rely
on gr−1, g

(i)
r−1 evaluated at a fixed input xr−1 = x′ = x′′ to estimate ∇F or ∇fi (e.g., (Li et al.,

2020a; Karimireddy et al., 2020a)), leading to large discrepancies between x(i)
r,t−1 and x′,x′′. Thirdly,

existing algorithms use a fixed gradient correction length (e.g., γ(i)r,t−1 = 0 in (Fang et al., 2022)
and γ(i)r,t−1 = 1 in (Karimireddy et al., 2020a)), which is likely to result in misspecified gradient
correction length.

4 FZooS ALGORITHM

To address the aforementioned challenges, we propose our federated zeroth-order optimization using
trajectory-informed surrogate gradients (FZooS) algorithm in Algo. 2, which improves the query
and communication round efficiency of existing algorithms thanks to our two major contributions,
correspondingly. Firstly, we introduce the trajectory-informed derived Gaussian Process in (Shu et al.,
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2023) as local gradient surrogates for query-efficient gradient estimations (Sec. 4.1). Secondly, we
use random Fourier features (RFF) approximation (Rahimi and Recht, 2007) to attain a transferable
global gradient surrogate that can accurately estimate the gradient of the global function (Sec. 4.2.1);
based on these surrogates, we then develop the technique of adaptive gradient correction with both
adaptive gradient correction vector and length for communication round-efficient federated ZOO by
mitigating the disparity between our local updates and the intended global updates (Sec. 4.2.2).

4.1 TRAJECTORY-INFORMED GRADIENT ESTIMATION FOR QUERY EFFICIENCY

Of note, we assumed that fi ∼ GP(µ(·), k(·, ·)),∀i ∈ [N ] (Sec. 2). Then, in iteration t of communica-
tion round r (Algo. 2), conditioned on the optimization trajectory D(i)

r,t−1 ≜ {(x(i)
τ , y(i)τ )}T (r−1)+t−1

τ=1

of client i,2 ∇fi follows a derived posterior Gaussian Process (Shu et al., 2023):
∇fi ∼ GP

(
∇µ(i)

r,t−1(·), ∂
(
σ
(i)
r,t−1

)2
(·, ·)

)
(4)

where the mean function ∇µ(i)
r,t−1(x) and the covariance function ∂(σ(i)

r,t−1)
2(x,x′) are defined as

∇µ(i)
r,t−1(x) ≜ ∂xk

(i)
r,t−1(x)

⊤
(
K

(i)
r,t−1 + σ2I

)−1

y
(i)
r,t−1 ,

∂
(
σ
(i)
r,t−1

)2
(x,x′) ≜ ∂x∂x′k(x,x′)− ∂xk(i)r,t−1(x)

⊤
(
K

(i)
r,t−1 + σ2I

)−1

∂x′k
(i)
r,t−1(x

′) .

(5)

Both k(i)r,t−1(x)
⊤ ≜ [k(x,x(i)

τ )]T (r−1)+t−1
τ=1 and (y(i)

r,t−1)
⊤ ≜ [y(i)τ ]T (r−1)+t−1

τ=1 are [T (r−1)+t−1]-
dimensional row vectors, and K(i)

r,t−1 ≜ [k(x(i)
τ ,x(i)

τ ′ )]
T (r−1)+t−1
τ,τ ′=1 is a [T (r − 1) + t− 1]× [T (r −

1) + t− 1]-dimensional matrix.

We propose to use the posterior mean ∇µ(i)
r,t−1(x) (5) as the local gradient surrogate for client i

since it is a prediction of the gradient ∇fi(x), and ∂(σ(i)
r,t−1)

2(x) ≜ ∂(σ(i)
r,t−1)

2(x,x) provides a
principled uncertainty measure for this gradient surrogate (Shu et al., 2023). Of note, our gradient
surrogate only requires the optimization trajectory (i.e., the history of function queries D(i)

r,t−1 till
iteration t − 1 of round r) and thus eliminates the need for additional queries required by the FD
methods adopted by existing federated ZOO (Sec. 3.2). This therefore leads to more query-efficient
gradient estimations in federated ZOO. Moreover, the aforementioned uncertainty measure can
theoretically guarantee the quality of our gradient estimation, and provide theoretical support for our
technique of using active queries to further improve the local gradient estimations (Sec. 5.1).

4.2 HIGH-QUALITY GRADIENT CORRECTION FOR COMMUNICATION ROUND EFFICIENCY

4.2.1 TRANSFERABLE GLOBAL GRADIENT SURROGATE

Of note, our local gradient surrogates from Sec. 4.1 can produce not only query-efficient but also
accurate gradient estimations (Shu et al., 2023). So, these local surrogates can be used to construct an
accurate global gradient surrogate, which then satisfies requirement (A) for communication round-
efficient federated ZOO from Sec. 3.2: accurate local and global gradient surrogates. Unfortunately,
due to the non-parametric nature of Gaussian processes, (4) cannot be transferred to the server without
sending the raw observations. To this end, we introduce the idea of random Fourier features (RFF)
approximation from (Rahimi and Recht, 2007) to approximate the mean of (4) and then transfer this
approximated mean to server for the construction of high-quality global gradient surrogate.

We firstly approximate the mean of (4) on each client i ∈ [N ] to ease its transfer between the clients
and the server. Since k(·, ·) is assumed to be shift-invariant, it can be approximated by a finite number
of random features (Rahimi and Recht, 2007). That is, we have that k(x,x′) ≈ ϕ(x)⊤ϕ(x′) where
pre-defined function ϕ : Rd 7→ RM producesM random features and its parameters are shared across
all clients and the server (Appx. B). By incorporating this approximation into (5), the local gradient
surrogates on each client i at the end of every round r (i.e.,∇µ(i)

r,T (x)) can then be approximated as

∇µ̂(i)
r,T (x) ≜ ∇ϕ(x)

⊤Φ
(i)
r,T

(
K̂

(i)
r,T + σ2I

)−1

y
(i)
r,T (6)

where ∇ϕ(x) is an M × d-dimensional matrix, Φ(i)
r,T ≜ [ϕ(x(i)

τ )]rTτ=1 is an M × rT -dimensional
matrix, and K̂(i)

r,T ≜ [ϕ(x(i)
τ )⊤ϕ(x(i)

τ ′ )]rTτ,τ ′=1 is an rT × rT -dimensional matrix. Define an M -
dimensional column vectorw(i)

r,T ≜ Φ(i)
r,T (K̂

(i)
r,T +σ2I)−1y(i)

r,T , (6) can be rewritten as∇µ̂(i)
r,t−1(x) =

2We slightly abuse notation and use (x(i)
τ , y(i)

τ ) to denote a historical query till iteration t− 1 of round r.

5



Under review as a conference paper at ICLR 2024

∇ϕ(x)⊤w(i)
r,T (line 8 of Algo. 2). So, each client only needs to calculate and send the M -dimensional

vector w(i)
r,T to the server for constructing the global gradient surrogate (line 9 of Algo. 2).

After receiving {w(i)
r,T }Ni=1 from all clients, the server can construct the global gradient surrogate at

the end of every round r by averaging the local gradient surrogates (6) from all clients, i.e.,

∇µ̂r(x) ≜
1

N

∑
i∈[N ]µ̂

(i)
r,T (x) = ∇ϕ(x)

⊤
( 1

N

∑
i∈[N ]w

(i)
r,T

)
. (7)

To transfer this global gradient surrogate to clients, we only need to send the M -dimensional vector
wr ≜ 1

N

∑N
i=1w

(i)
r,T back (lines 10-11 of Algo. 2). Importantly, after receivingwr from the server,

each client can calculate the global gradient surrogate at any input in the domain. Although this global
gradient surrogate incurs an additional transmission ofM -dimensional vectors compared with existing
federated ZOO algorithms (Algo. 1), it enjoys the advantage of achieving an improved gradient
correction with theoretical guarantees (Sec. 5.1), which is known to be essential for addressing
federated ZOO with heterogeneous clients (Sec. 3.2) and is thus able to outweigh its drawback of
increased transmission burden in practice. To further improve the quality of this surrogate, we can
actively query in the neighbourhood of the updated input xr on every client (line 7 of Algo. 2) as
supported in Sec. 5.1. This incurs an additional server-clients transmission because the transmission
of the gradient surrogates via w(i)

r,T needs to happen after the active queries (i.e., after the gradient
surrogates are improved), which is consistent with SCAFFOLD (Type I) (Karimireddy et al., 2020a).

4.2.2 ADAPTIVE GRADIENT CORRECTION

By exploiting our aforementioned high-quality local and global gradient surrogates, we then develop
the technique of adaptive gradient correction to meet requirement (B) for communication round-
efficient federated ZOO from Sec. 3.2. Specifically, thanks to the ability of our gradient surrogates
to estimate the gradient at any input in the domain, we can let x′ = x′′ = x(i)

r,t−1 in (2) to realize a
more accurate gradient correction vector during optimization. Moreover, we propose to employ an
adaptive gradient correction length γr,t−1 (shared across all clients) to better trade off the utilization
of our gradient correction vector during optimization.

That is, for every iteration t of round r, we propose to use the following ĝ(i)r,t−1 on each client i ∈ [N ]:

ĝ
(i)
r,t−1 = ∇µ(i)

r,t−1(x
(i)
r,t−1) + γr,t−1

(
∇µ̂r−1(x

(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

)
, (8)

(i.e., line 6 of Algo. 2) where∇µ̂(i)
r−1,T is the local gradient surrogate of client i with RFF approxima-

tion at the end of round r − 1 from (6), ∇µ̂r−1 is our global gradient surrogate from (7), and γr,t−1

is a theoretically inspired adaptive gradient correction length which we will discuss in Sec. 5.1. Of
note, the advantage of this adaptive gradient correction can be theoretically justified (Sec. 5.1).

5 THEORETICAL ANALYSIS

In this section, we present our theoretical analysis on the gradient disparity of our local gradient
update (8) in Sec. 5.1 and the convergence of our FZooS (Algo. 2) in Sec. 5.2.

5.1 GRADIENT DISPARITY ANALYSIS

We assume that 1
N

∑N
i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any x ∈ X , which is a common assumption
in the analysis of federated optimization (Reddi et al., 2021). Here a larger G indicates a larger
degree of client heterogeneity. By making use of the uncertainty measure from (5), we derive an
upper bound on the gradient disparity of our (8) in Thm. 1 below (proof in Appx. C.2).

Theorem 1. Define ρi ≜ maxx∈X ,r≥1,t≥1

∥∥∂(σ(i)
r,t)

2(x)
∥∥/∥∥∂ (σ(i)

r,t−1

)2
(x)
∥∥ and ρ ≜ 1

N

∑N
i=1 ρi,

ρ, ρi∈[ 1
1+1/σ2 , 1]. Given constant ω>0 and ϵ = O( 1

M ), the following holds with constant probability
1

N

∑
i∈[N ]

Ξ
(i)
r,t ≤ 4ωκρ(r−1)T+t−1︸ ︷︷ ︸

1

+γ2r,t−1 (8ωκρ
(r−1)T + 8Nϵ)︸ ︷︷ ︸

2

+(1− γr,t−1)
2 4G︸︷︷︸

3

.

Corollary 1. Thm. 1 implies a better-performing choice of γr,t−1, i.e., γr,t−1 = G
G+2ωκρ(r−1)T+2Nϵ

.

In the upper bound of Thm. 1, term 1 represents the error of estimating {∇fi(·)}Ni=1 using our
local gradient surrogates in Sec. 4.1, and term 2 characterizes the disparity between our gradient
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correction vector in (8) and its corresponding ground truth {∇F (·) − ∇fi(·)}Ni=1. The ϵ within
term 2 denotes the RFF approximation error for our global gradient surrogate in Sec. 4.2.1 and ϵ
decreases with a larger number M of random features. Term 3 results from the client heterogeneity
in federated ZOO. Compared with the gradient disparity of existing algorithms (provided in Appx. D),
Thm. 1 shows that our (8) enjoys a number of major advantages: (a) Our (8) is more query-efficient
since it does not require any additional function query for gradient estimation, in contrast to existing
algorithms which incur O(NQ) additional function queries in every iteration. (b) The estimation
error in our (8) (i.e., terms 1 and 2 ) can be exponentially decreasing when ρ < 1 and ϵ is small,
whereas other existing algorithms only achieve a reduction rate of O(1/Q), which implies that our
gradient estimation is significantly more accurate. Of note, ρi < 1 is likely to be satisfied as justified
in (Shu et al., 2023) and more importantly, ρ < 1 is even easier to be realized as it only needs one of
the clients to satisfy ρi < 1. (c) Our (8) mitigates the disparity caused by the fixed gradient correction
vector adopted by existing works, i.e., in contrast to FedProx and SCAFFOLD, our Thm. 1 does not
contain an additional disparity term of

∑N
i=1 ∥x(i)

r,t−1 − xr−1∥2. (d) Our (8) can trade off between
the impacts of our gradient correction vector and client heterogeneity, and can consequently urther
improve the gradient estimation when γr,t−1 is chosen intelligently while accounting for this trade-off.
Specifically, the upper bound in Thm. 1 has characterized such a trade-off: When the estimation
error of our gradient correction vector (i.e., term 2 ) is relatively small compared with the client
heterogeneity (i.e., term 3 ), a large γt−1 is preferred to reduce the impact of client heterogeneity
and hence to achieve a small gradient disparity. Furthermore, this also implies a theoretically better
choice of γr,t−1 in our Cor. 1 (refer to Appx. C.3 for a more practical choice of γr,t−1).

In addition to the theoretical insights above, Thm. 1 also offers valuable insights to enhance the
practical efficacy of our (8). Firstly, during local updates, we can actively query more function
values on each client to further decrease the uncertainty (i.e.,

∥∥∂(σ(i)
r,t)

2(x)
∥∥) of our local gradient

surrogates, which improves our (8) by decreasing term 1 in Thm. 1 with a larger exponent. Secondly,
after receiving xr from the server (i.e., at the end of every round r of our Algo. 2), we can actively
query in the neighborhood of xr on every client, in order to decrease term 2 in Thm. 1 using a larger
exponent and thus to improve the quality of gradient correction in our (8). Thirdly, we can use a large
number M of random features to achieve a small RFF approximation error ϵ in term 2 of Thm. 1.
Fourthly, we can choose an adaptive gradient correction length γr,t−1 (e.g., the γr,t−1 in Cor. 1) to
better trade off the impacts of the gradient correction and client heterogeneity.

5.2 CONVERGENCE ANALYSIS

We prove the convergence of our FZooS (measured by the number of communication rounds to
achieve ϵ convergence error) under different assumptions, in addition to assuming that F is β-smooth.

Theorem 2. DefineD0 ≜ ∥x0 − x∗∥2 andD1 ≜ F (x0)−F (x∗), to achieve an ϵ convergence error
for our FZooS (Algo. 2) with a constant probability when ρ < 1, the number M of random features
and the number R of communication rounds need to satisfy the following,

(i) If F is strongly convex and η ≤ 1
10βT , M = O

(
NG
ϵ2

)
and R = O

(
1
ηT ln D0

ϵ + ln
√
G
ϵ

)
.

(ii) If F is convex and η ≤ 1
10βT , M = O

(
NG
ϵ2 + d2NG

ϵ4

)
and R = O

(
D0

ηTϵ +
√
G+

4√
d2G

ϵ

)
.

(iii) If F is non-convex and η ≤ 7
100βT , M = O

(
NG
ϵ2

)
and R = O

(
D1

ηTϵ +
√
G
ϵ

)
.

The proof is in Appx. C.5.3 Thm. 2 suggests that the learning rate η in FZooS should be proportionally
reduced w.r.t. the number T of local updates, which is in fact consistent with the results in federated
FOO (Karimireddy et al., 2020a). Thm. 2 also shows that when client heterogeneity (i.e., measured
by G) increases, both the number M of random features and the number R of communication rounds
in our FZooS should be increased in order to achieve the same convergence error, which is also
empirically verified in our Sec. 6 and Appx. F. Moreover, Thm. 2 has revealed that given a constant
learning rate η that satisfies the conditions in Thm. 2 under various T , a larger T usually improves the
communication round efficiency (i.e., R) of our FZooS (see Appx. F). More importantly, compared
with the convergence of other existing algorithms (provided in Appx. D), FZooS enjoys an improved

3The poor convergence of our FZooS under convex F (vs. the one under non-convex F ) results from the
drawback of the commonly applied proof technique for convex F rather than the algorithm itself. This has been
widely recognized in the literature (Harvey et al., 2019; Liu et al., 2023).
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Figure 1: Comparison of the communication round and query efficiency between our FZooS
and other existing baselines on the federated synthetic functions with varying client heterogeneity
(controlled by C ≥ 0), where a larger C implies larger client heterogeneity. The x-axes of the
first and last three plots are the number of rounds and total queries required by these algorithms.
SCAFFOLD (1) and (2) stand for SCAFFOLD (Type I) and SCAFFOLD (Type II) algorithms,
respectively.

communication round efficiency, which can be attributed to the advantages of our (8) as discussed in
Sec. 5.1 (see Appx. D for a detailed comparison).

6 EXPERIMENTS

In this section, we demonstrate that our FZooS outperforms existing federated ZOO algorithms using
synthetic experiments (Sec. 6.1), as well as real-world experiments on federated black-box adversarial
attack (Sec. 6.2) and federated non-differentiable metric optimization (6.3).

6.1 SYNTHETIC EXPERIMENTS

We firstly employ federated synthetic functions to illustrate the superiority of our proposed FZooS
over a number of existing federated ZOO baselines such as FedZO, FedProx, and SCAFFOLD in
the federated ZOO setting (see Appx. D for their specific forms). We refer to Appx. E.1 for the
details of these synthetic functions and the experimental setting applied here. Fig. 1 provides the
results with d = 300, N = 5, and varying C to control the client heterogeneity (more results in
Appx. F.1). It shows that our FZooS considerably outperforms the other baselines in terms of both
communication round and query efficiency, which can be attributed to the superiority of our (8). When
C is increased, a larger number of communication rounds and total queries is required to achieve the
same convergence error, which empirically verifies our Thm. 2. Interestingly, SCAFFOLD (Type II)
consistently outperforms SCAFFOLD (Type I) while Type II in fact is an approximation of Type
I in (Karimireddy et al., 2020a). This is likely because SCAFFOLD (Type II) achieves improved
gradient correction by implicitly increasing the number of additional function queries for a smaller
approximation error of ∇F (refer to Appx. D). This thus indicates the necessity of achieving an
accurate approximation of ∇F for federated ZOO with heterogeneous clients, which is achieved
by our FZooS. Meanwhile, when client heterogeneity is small (i.e., C ≤ 5.0), both FedProx and
SCAFFOLD (Type I) perform worse than FedZO which does not apply any gradient correction.
This is likely because the impact of the inaccurate gradient correction applied in these two algorithms
outweighs that of client heterogeneity as justified in our Appx. D. This corroborates the importance
of developing improved gradient correction for federated ZOO of varying client heterogeneity.

6.2 FEDERATED BLACK-BOX ADVERSARIAL ATTACK

Following the practice of (Fang et al., 2022), we then examine the advantages of our FZooS in the task
of federated black-box adversarial attack. Here we aim to find a small perturbation x to be added to
an input image z such that the perturbed image z+x will be wrongly classified by the majority of the
private ML models on various clients through only the function queries of these models. Specifically,
we randomly select 15 images from CIFAR-10 (Krizhevsky et al., 2009) and then attempt to find
one single perturbation ( d = 32 × 32 ) for every image to make the averaged output of N = 10
deep neural networks trained using private datasets on different clients misclassify the image using
federated ZOO algorithms (refer to Appx. E.2 for more details). Fig. 2 illustrates the success rates on
these 15 images achieved by various federated ZOO algorithms during optimization (more results
in Appx. F.2). Remarkably, our FZooS again achieves consistently improved communication round
efficiency over the other baselines under varying client heterogeneity. Thanks to this improved
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Figure 2: Comparison of the success rate in federated black-box adversarial attack achieved by
FZooS and other existing federated ZOO algorithms on CIFAR-10 under varying client heterogeneity
(controlled by P ∈ [0, 1], a larger P implies smaller client heterogeneity). The x and y-axis are the
number of rounds/queries and the corresponding success rate (higher is better).
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Figure 3: Comparison of the non-differentiable metric optimization between FZooS and other existing
federated ZOO algorithms under varying client heterogeneity (controlled by P ∈ [0, 1], a larger P
implies smaller client heterogeneity). The y-axis is (1− precision)× 100% and each curve is the
mean ± standard error from five independent runs.

communication round efficiency and the ability of (8) to avoid a large number of additional function
queries in every communication round, FZooS also achieves a substantial improvement in query
efficiency. Overall, these results support the superiority of FZooS over the other existing approaches
in real-world federated ZOO problems in terms of both communication round and query efficiency.

6.3 FEDERATED NON-DIFFERENTIABLE METRIC OPTIMIZATION

Inspired by (Shu et al., 2023), we lastly demonstrate the superior performance of our FZooS in
the task of federated non-differentiable metric optimization, which has received a surging interest
recently (Hiranandani et al., 2021; Huang et al., 2021). Specifically, we employ federated ZOO
algorithms to fine-tune a fully trained MLP model (d = 2189) to optimize a non-differentiable metric
such as precision and recall, using the Covertype dataset (Dua and Graff, 2017) distributed on N = 7
clients (refer to Appx. E.3 for more details). This is similar to the widely applied federated learning
setting (McMahan et al., 2017a) whereas the gradient information here is unavailable due to the
non-differentiability of these metrics. Fig. 3 reports the comparison among various federated ZOO
algorithms under varying client heterogeneity (more results in Appx. F.3). The results show that in
the task of federated non-differentiable metric optimization with varying client heterogeneity, our
FZooS is still able to consistently outperform the other existing federated ZOO algorithms in terms of
both communication round and query efficiency, which therefore further substantiates the superiority
of our FZooS in optimizing high-dimensional non-differentiable functions in the federated setting.

7 CONCLUSION AND DISCUSSION

In this paper, we first identify the challenges of query and communication round inefficiency faced
by federated ZOO algorithms in the presence of client heterogeneity (Sec. 3) and then introduce our
FZooS algorithm to address these challenges (Sec. 4). We employ both theoretical justifications
(Sec. 5) and empirical demonstrations (Sec. 6) to show that FZooS is indeed able to address these
challenges and consequently to achieve considerably improved query and communication round
efficiency over the existing federated ZOO algorithms. Of note, the limitation of our FZooS lies in one
major aspect: As discussed in Sec. 4.2.1, FZooS incurs an additional transmission of M -dimensional
vectors for every communication round compared with existing algorithms, which therefore results in
a trade-off between communication overhead and communication rounds. However, in the scenario
when communication rounds are more important to be reduced (e.g., to reduce the total queries of
expensive-to-evaluate local function on every client), our FZooS will be more advanced.
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REPRODUCIBILITY STATEMENT

In regards to our theoretical results, we have explicated underlying assumptions in the main paper
and comprehensive proofs in Appx. C. As for our empirical findings, we have divulged our thorough
experimental configurations in Appx. E and furnished our software codes in the supplementary
resources, specifically the zip file.
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Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv:1511.03575, 2015.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
optimization. arXiv:2107.06917, 2021.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
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APPENDIX A RELATED WORK

Federated Learning and Federated First-Order Optimization. Federated learning (FL) has
become a paradigm of applying multiple edge devices (i.e., clients) to collaboratively train a global
model without sharing the private data on these edge devices (McMahan et al., 2017a). We refer
to the surveys (Li et al., 2020b; Kairouz et al., 2021) for more comprehensive reviews of FL. Such
a paradigm then gives rise to recent interest in federated optimization or more precisely federated
first-order optimization (FOO) (Wang et al., 2021) to broaden its real-world application. Since the
first federated FOO algorithm FedAvg proposed in (McMahan et al., 2017b), a number of techniques
have been developed to further improve its performance in different aspects, e.g., federated FOO with
momentum (Wang et al., 2020) and adaptive learning rates (Reddi et al., 2021; Yuan and Ma, 2020;
Jin et al., 2022) for convergence speedup, federated FOO with local posterior sampling for de-biased
client updates (Al-Shedivat et al., 2021), and federated FOO with regularized functions (Li et al.,
2020a; 2019) and control variates (Karimireddy et al., 2020a;b) for the challenge of heterogeneous
clients, in which the global function to be optimized differs from the local functions on clients.

Federated Zeroth-Order Optimization. Despite the success of federated FOO algorithms, some
important applications, e.g., federated black-box adversarial attack in (Fang et al., 2022), suggests
the development of federated zeroth-order (ZOO) algorithms for the federated optimization where
gradient information is not available. Nevertheless, very limited efforts have been devoted to the de-
velopment of federated zeroth-order (ZOO) algorithms especially when the clients are heterogeneous.
To the best of our knowledge, Fang et al. (2022) are the first to consider federated ZOO, in which
they simply combine FedAvg with existing FD methods as their FedZO algorithm. Similar to the
FedAvg algorithm in federated FOO, the FedZO algorithm also likely performs poorly in the hetero-
geneous setting. This thus encourages the design of federated ZOO algorithms for heterogeneous
federated ZOO problems. Following the practice of FedZO, existing federated FOO algorithms for
heterogeneous clients, e.g., (Li et al., 2020a; Karimireddy et al., 2020a), can be simply adapted to the
corresponding federated ZOO algorithms for this kind of problem. However, these algorithms shall
be query- and communication round-inefficient in practice, which therefore raises the question of
how to improve query efficiency and the communication round efficiency of these algorithms. To
answer this question, we first identify the challenges of such an improvement and then develop a
federated ZOO algorithm to overcome these challenges in this paper.

APPENDIX B RANDOM FOURIER FEATURES

According to (Rahimi and Recht, 2007), the random Fourier features can usually be represented as

a M -dimensional row vector ϕ(x)⊤ =
[

2√
M

cos(vjx+ bj)
]M
j=1

where every vj is independently

randomly sampled from a distribution p(v) and every bj is independently randomly sampled from
the uniform distribution over [0, 2π]. Particularly, for the squared exponential kernel k(x,x′) =

exp
(
−∥x− x′∥2 /(2l2)

)
in which l is the length scale, p(v) = N (0, 1

l2 I). In FZooS, we typically
adopt the squared exponential kernel for the optimization. Importantly, before the start of our FZooS,
{vj}Mj=1 and {bj}Mj=1 need to be sampled and shared across all clients as well as server (as mentioned
in Sec. 4.2.1), which however will only happen once for whole optimization process.
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APPENDIX C THEORETICAL ANALYSES

C.1 PROOF OF PROPOSITION 1

Based on the definition of Ξ(i)
r,t in Sec. 3.2, we have that

Ξ(i)
r,t =

∥∥∥ĝ(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥2
=
∥∥∥g(i)r,t−1 + γ

(i)
r,t−1

(
gr−1(x

′)− g(i)r−1(x
′′)
)
−∇F (x(i)

r,t−1)
∥∥∥2

=
∥∥∥g(i)r,t−1 −∇F (x

(i)
r,t−1)

∥∥∥2 − 2γ
(i)
r,t−1

(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)
+(

γ
(i)
r,t−1

)2 ∥∥∥gr−1(x
′)− g(i)r−1(x

′′)
∥∥∥2 ,

(9)
which is a quadratic function w.r.t. γ(i)r,t−1. It is easy to show that when

γ
(i)
r,t−1 = γ

(i)∗
r,t−1 ≜

(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)

∥∥∥gr−1(x′)− g(i)r−1(x
′′)
∥∥∥ , (10)

Ξ
(i)
r,t can achieve its global minimum w.r.t. γ(i)r,t−1 as

Ξ(i)
r,t =

∥∥∥g(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥2 −
∥∥∥∥(∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)∥∥∥∥2∥∥∥gr−1(x′)− g(i)r−1(x

′′)
∥∥∥2 .

(11)
This therefore finishes the proof of the fist-part result in Prop. 1. Interestingly, (11) implies that given
the γ(i)r,t−1 in (10), a better alignment between the gradient correction vector gr−1(x

′)− g(i)r−1(x
′′)

and the shift∇F (x(i)
r,t−1)− g

(i)
r,t−1 leads to a smaller gradient disparity Ξ

(i)
r,t.

Given the γ(i)∗r,t−1 = 1 in (10), when gr−1(x
′) − g(i)r−1(x

′′) = ∇F (x(i)
r,t−1) − g

(i)
r,t−1, we can easily

verify that Ξ(i)
r,t in (10) has Ξ(i)

r,t = 0. On the contrary, when Ξ
(i)
r,t = 0, we have that

∥∥∥g(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥ =

∥∥∥∥(∇F (x(i)
r,t−1)− g

(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)∥∥∥∥∥∥∥gr−1(x′)− g(i)r−1(x

′′)
∥∥∥ , (12)

which implies that∇F (x(i)
r,t−1)− g

(i)
r,t−1 and gr−1(x

′)− g(i)r−1(x
′′) are linear dependent according

to the Cauchy-Schwarz inequality. Since γ(i)∗r,t−1 = 1, we further have∥∥∥∇F (x(i)
r,t−1)− g

(i)
r,t−1

∥∥∥ =
∥∥∥gr−1(x

′)− g(i)r−1(x
′′)
∥∥∥ . (13)

These two results, i.e., (12) and (13) thus imply that∇F (x(i)
r,t−1)− g

(i)
r,t−1 = gr−1(x

′)− g(i)r−1(x
′′),

which therefore concludes our proof.
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C.2 PROOF OF THEOREM 1

C.2.1 GRADIENT ESTIMATION ERROR USING UNCERTAINTY

We introduce the following lemma that is adapted from (Shu et al., 2023) to bound the estimation
error of our local gradient surrogates using the uncertainty measure in our (5).

Lemma C.1. Let δ ∈ (0, 1) and ω ≜ d+ 2(
√
d+ 1) ln(1/δ). For any x ∈ X , i ∈ [N ], r ≥ 1 and

t ≥ 1, the following holds with probability of at least 1− δ,∥∥∥∇µ(i)
r,t(x)−∇fi(x)

∥∥∥2 ≤ ω ∥∥∥∥∂ (σ(i)
r,t

)2
(x)

∥∥∥∥ .
C.2.2 RFF APPROXIMATION ERROR FOR GLOBAL GRADIENT SURROGATE

Lemma C.2 (Laurent and Massart (2000)). If x1, · · · , xk are independent standard normal random
variables, for y =

∑k
i=1 x2i and any ϵ,

P(y− k ≥ 2
√
kϵ+ 2ϵ) ≤ exp(−ϵ) .

Following the general idea in (Rahimi and Recht, 2007), we present the following Lemma C.3 to
bound the difference of our approximated kernel using random features and the ground truth kernel k,
as well as the difference between their partial derivatives first. To ease our presentation, we let the
kernel k be defined by an infinite dimensional vector ψ(x), which is defined by the corresponding
infinite number of features for k, throughout this section. That is, k(x,x′) = ψ(x)⊤ψ(x′) for any
x,x′ ∈ X .

Lemma C.3. Let δ ∈ (0, 1). Assume that E
[
∥v∥2

]
≤ V , for any x,x′ ∈ X , the following holds

with probability of at least 1− δ,∣∣ϕ(x)⊤ϕ(x′)−ψ(x)⊤ψ(x′)
∣∣ ≤√8 ln(2/δ)/M ,∥∥∇ϕ(x)⊤ϕ(x′)−∇ψ(x)⊤ψ(x′)
∥∥ ≤√4V/(Mδ)

where M is the number of random Fourier features.

Proof. Recall thatϕ(x)⊤ϕ(x′) = 1/M
∑M

j=1 2 cos(v
⊤
j x+bj) cos(v

⊤
j x

′+bj) as shown in Appx. B.
Then, according to (Rahimi and Recht, 2007), for any j ∈ [M ],

E
[
2 cos(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)
]
= ψ(x)⊤ψ(x′) ,

E
[
ϕ(x)⊤ϕ(x′)

]
= ψ(x)⊤ψ(x′) .

(14)

Since 2 cos(v⊤j x + bj) cos(v
⊤
j x

′ + bj) ∈ [−2, 2] and both {v1, · · · ,vM} and {b1, · · · , bM} are
randomly independently sampled, according to Hoeffding’s inequality, the following inequality holds
for any ϵ > 0

P
(∣∣ϕ(x)⊤ϕ(x′)−ψ(x)⊤ψ(x′)

∣∣ ≥ ϵ) ≤ 2 exp

(
−Mϵ2

8

)
. (15)

Choose δ = 2 exp(Mϵ2), the following holds with a probability of at least 1− δ,

∣∣ϕ(x)⊤ϕ(x′)−ψ(x)⊤ψ(x′)
∣∣ ≤√8 ln(2/δ)

M
. (16)

Moreover, based on the interchangeability of derivative and expectation, we then have the following
results derived from (14)

E
[
−2 sin(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)v
⊤
j

]
= ∇ψ(x)⊤ψ(x′) ,

E
[
∇ϕ(x)⊤ϕ(x′)

]
= ∇ψ(x)⊤ψ(x′) .

(17)
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Since both {v1, · · · ,vM} and {b1, · · · , bM} are randomly independently sampled, we then can
bound the variance E

[∥∥∇ϕ(x)⊤ϕ(x′)−∇ψ(x)⊤ψ(x′)
∥∥2] as below

E
[∥∥∇ϕ(x)⊤ϕ(x′)−∇ψ(x)⊤ψ(x′)

∥∥2]
(a)
=E


∥∥∥∥∥∥ 1

M

M∑
j=1

(
−2 sin(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)vj −∇ψ(x)⊤ψ(x′)
)∥∥∥∥∥∥

2


(b)
=

1

M2
E

 M∑
j=1

∥∥−2 sin(v⊤j x+ bj) cos(v
⊤
j x

′ + bj)vj −∇ψ(x)⊤ψ(x′)
∥∥2

(c)
=

1

M2

M∑
j=1

(
E
[∥∥−2 sin(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)vj
∥∥2]− E

[∥∥∇ψ(x)⊤ψ(x′)
∥∥2])

(d)

≤ 1

M2

M∑
j=1

E
[∥∥−2 sin(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)vj
∥∥2]

(e)

≤ 4

M2

M∑
j=1

E
[
∥vj∥2

]
(f)

≤ 4V

M

(18)

where (b) is from the independence among {v1, · · · ,vM} and {b1, · · · , bM} for variance derivation
and (c) is based on the definition of variance. In addition, (e) is due to the fact that sin(v⊤j x +

bj), cos(v
⊤
j x

′ + bj) ∈ [−1, 1] and (f) is because of the assumption that E
[
∥v∥2

]
≤ V .

Therefore, according to Chebyshev’s inequality, we have the following inequalities for any ϵ > 0

P
(∥∥∇ϕ(x)⊤ϕ(x′)−∇ψ(x)⊤ψ(x′)

∥∥ > ϵ
)
≤

E
[∥∥∇ϕ(x)⊤ϕ(x′)−∇ψ(x)⊤ψ(x′)

∥∥2]
ϵ2

≤ 4V

Mϵ2
.

(19)

Choose ϵ =
√
4V/(Mδ), the following holds for a probability of at least 1− δ,

∥∥∇ϕ(x)⊤ϕ(x′)−∇ψ(x)⊤ψ(x′)
∥∥ ≤√ 4V

Mδ
, (20)

which finally completes the proof.

Lemma C.4. For any x,x′ ∈ X and i ∈ [N ], assume that E
[
∥v∥2

]
≤ V ,

∥∥∇ψ(x)⊤ψ(x′)
∥∥ ≤ L

and |fi(x)| ≤ 1, then the following holds with a constant probability for all r ∈ [R],

∥∥∥∇µ̂(i)
r,T (x)−∇µ

(i)
r,T (x)

∥∥∥2 ≤ O( 1

M

)
.
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Proof. Based on the definition in (5) and (6), we have that:∥∥∥∇µ̂(i)
r,T (x)−∇µ

(i)
r,T (x)

∥∥∥
(a)
=

∥∥∥∥∇ϕ(x)⊤Φ(i)
r,t−1

(
K̂

(i)
r,T + σ2I

)−1

y
(i)
r,T −∇ψ(x)

⊤Ψ
(i)
r,T

(
K

(i)
r,T + σ2I

)−1

y
(i)
r,T

∥∥∥∥
(b)

≤
∥∥∥∥∇ϕ(x)⊤Φ(i)

r,T

(
K̂

(i)
r,T + σ2I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K

(i)
r,T + σ2I

)−1
∥∥∥∥∥∥∥y(i)

r,T

∥∥∥
(c)
=

∥∥∥∥∇ϕ(x)⊤Φ(i)
r,T

(
K̂

(i)
r,T + σ2I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K̂

(i)
r,T + σ2I

)−1
∥∥∥∥︸ ︷︷ ︸

1

∥∥∥y(i)
r,T

∥∥∥+
∥∥∥∥∇ψ(x)⊤Ψ(i)

r,T

(
K̂

(i)
r,T + σ2I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K

(i)
r,T + σ2I

)−1
∥∥∥∥︸ ︷︷ ︸

2

∥∥∥y(i)
r,T

∥∥∥

(21)

where (b) and (c) are from the Cauchy–Schwarz inequality and the triangle inequality, respectively.

We bound term 1 , term 2 and
∥∥∥y(i)

r,T

∥∥∥ above separately. Firstly, the following holds with probability
of at least 1− rTδ′

1
(a)
=

∥∥∥∥∇ϕ(x)⊤Φ(i)
r,T

(
K̂

(i)
r,T + σ2I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K̂

(i)
r,T + σ2I

)−1
∥∥∥∥

(b)

≤
∥∥∥∇ϕ(x)⊤Φ(i)

r,T −∇ψ(x)
⊤Ψ

(i)
r,T

∥∥∥∥∥∥∥(K̂(i)
r,T + σ2I

)−1
∥∥∥∥

(c)

≤

√√√√ rT∑
τ=1

∥∥∥∇ϕ(x)⊤ϕ(x(i)
τ )−∇ψ(x)⊤ψ(x(i)

τ )
∥∥∥2 ∥∥∥∥(K̂(i)

r,T + σ2I
)−1

∥∥∥∥
(d)

≤ 1

σ2

√
4rTV

Mδ′

(22)

Where (b) comes from the Cauchy–Schwarz inequality and (c) follows from the fact that for any
matrix A with n rows and each row identified as ai we have ∥A∥ ≤ ∥A∥F ≜

√∑n
i=1 ∥ai∥2. Finally,

(d) is due to the fact that K̂(i)
r,T is positive semi-definite and therefore K̂

(i)
r,T + σ2I ≽ σ2I as well as

the results in Lemma C.3.

Secondly, the following holds with probability of at least 1− r2T 2δ′′,

2
(a)
=

∥∥∥∥∇ψ(x)⊤Ψ(i)
r,T

(
K̂

(i)
r,T + σ2I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K

(i)
r,T + σ2I

)−1
∥∥∥∥

(b)

≤
∥∥∥∇ψ(x)⊤Ψ(i)

r,t−1

∥∥∥ ∥∥∥∥(K̂(i)
r,T + σ2I

)−1

−
(
K

(i)
r,T + σ2I

)−1
∥∥∥∥

(c)
=
∥∥∥∇ψ(x)⊤Ψ(i)

r,T

∥∥∥∥∥∥∥(K(i)
r,T − K̂

(i)
r,T

)(
K̂

(i)
r,T + σ2I

)−1 (
K

(i)
r,T + σ2I

)−1
∥∥∥∥

(d)

≤

√√√√ rT∑
τ=1

∥∥∥∇ψ(x)⊤ψ(x(i)
τ )
∥∥∥2 ∥∥∥K(i)

r,T − K̂
(i)
r,T

∥∥∥ ∥∥∥∥(K̂(i)
r,T + σ2I

)−1
∥∥∥∥∥∥∥∥(K(i)

r,T + σ2I
)−1

∥∥∥∥
(e)

≤ L

σ4

√
rT

√√√√ rT∑
τ,τ ′=1

∥∥∥ψ(x(i)
τ )⊤ψ(x

(i)
τ ′ )− ϕ(x(i)

τ )⊤ϕ(x
(i)
τ ′ )
∥∥∥2

(f)

≤ L (rT )
3/2

σ4

√
8 ln(2/δ′′)

M
(23)
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where (b) is from the Cauchy–Schwarz inequality. Besides, (c) and (e) come from the aforementioned
inequality ∥A∥ ≤ ∥A∥F. In addition, (f) is based on the assumption that

∥∥∇ψ(x)⊤ψ(x′)
∥∥ ≤ L,

∥A∥ ≤ ∥A∥F, K̂(i)
r,T + σ2I ≽ σ2I and K

(i)
r,T + σ2I ≽ σ2I.

Thirdly, the following holds with probability of at least 1− rTδ′′′,

∥∥∥y(i)
r,T

∥∥∥ (a)
=

√√√√ rT∑
τ=1

(fi(xτ ) + ζτ )
2

(b)

≤

√√√√ rT∑
τ=1

2f2i (xτ ) + 2ζ2τ

(c)

≤

√√√√2rT + 2σ2

rT∑
τ=1

(
ζτ
σ

)2

(d)

≤
√
2rT + 2σ2

(
rT + 2

√
rT ln(1/δ′′′) + 2 ln(1/δ′′′)

)

(24)

where ζτ denote the observation noise associated with the input xτ . Besides, (c) is from the assump-
tion that ζτ ∼ N (0, σ2) for any τ in Sec. 2 and |fi(x)| ≤ 1 for any x ∈ X . Finally, (d) comes from
our Lemma C.2.

By introducing (22), (23) and (24) with δ′ = δ
3rT , δ′′ = δ

3r2T 2 and δ′′′ = δ
3rT into (21), the following

then holds with probability of at least 1− δ,∥∥∥∇µ̂(i)
r,T (x)−∇µ

(i)
r,T (x)

∥∥∥
≤

(
rT

σ2

√
12V

Mδ
+

4L (rT )
3/2

σ4

√
ln(6rT/δ)

M

)√
2rT + 2σ2

(
rT + 2

√
rT ln(3rT/δ) + 2 ln(3rT/δ)

)
=O

(
rT
√
rT√
M

+
r2T 2

√
ln(rT )√
M

)
.

(25)

Of note, it is easy to show that when (25) holds for r = R, it must hold for any r ≤ R. Therefore,
the following finally holds with a constant probability for all r ∈ [R],∥∥∥∇µ̂(i)

r,T (x)−∇µ
(i)
r,T (x)

∥∥∥2 ≤ O( 1

M

)
, (26)

which concludes our proof.

Remark. Note that the assumption E
[
∥v∥2

]
≤ V implies that the distribution p(v) in Appx. B

has a bounded mean and covariance since E
[
∥v∥2

]
= ∥E [v]∥2 + E

[
∥v − E [v]∥2

]
. This is usually

valid for the widely applied kernels (e.g., the squared exponential kernel in Appx. B) in practice.

Remarkably, (25) with r = R has demonstrated that a larger number M of random features is
preferred to maintain the approximation quality of ∇µ̂(i)

R,T (x) ≈ ∇µ
(i)
R,T when the number R of

communication rounds and the number T of local iterations increase. This in fact aligns with the
intuition that a larger hypothesis space (defined by the M random features) should be used when the
target function (defined by the existing RT function queries) becomes more complex. However, for
any communication round r + 1 ∈ [R] in our FZooS, the approximation of ∇µ(i)

r,T using ∇µ̂(i)
r,T (x)

needs to be accurate only at the local updated inputs {x(i)
r+1,t−1}t∈[T ],i∈[N ] with a relatively small T

(i.e., T ≤ 20), which consequently usually does not requires an extremely large M to realize a good
approximation quality in practice. This has actually been supported by the empirical results in our
Sec. 6 and Appx. F.
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C.2.3 FINAL GRADIENT DISPARITY ANALYSIS USING UNCERTAINTY

We introduce the following Lemma C.5 and Lemma C.6 from (Shu et al., 2023) to ease our proof of
Thm. 1:

Lemma C.5. Let {v1, . . . ,vτ} be any τ vectors in Rd. Then the following holds for any a > 0:

∥vi∥ ∥vj∥ ≤
a

2
∥vi∥2 +

1

2a
∥vj∥2 , (27)

∥vi + vj∥2 ≤ (1 + a) ∥vi∥2 +
(
1 +

1

a

)
∥vj∥2 , (28)∥∥∥∥∥

τ∑
i=1

vi

∥∥∥∥∥
2

≤ τ
τ∑

i=1

∥vi∥2 . (29)

Proof. For (27), we have that

a

2
∥vi∥2 +

1

2a
∥vj∥2 ≥ 2

√
a

2
∥vi∥2 ·

1

2a
∥vj∥2 = ∥vi∥ ∥vj∥ . (30)

For (28), we have that

(1 + a) ∥vi∥2 +
(
1 +

1

a

)
∥vj∥2 = ∥vi∥2 + ∥vj∥2 +

(
a ∥vi∥2 +

1

a
∥vj∥2

)
≥ ∥vi∥2 + ∥vj∥2 + 2

√
a ∥vi∥2 ·

1

a
∥vj∥2

= ∥vi + vj∥2 .

(31)

For (29), we can directly employ the convexity of function h(x) = ∥x∥2 and Jensen’s inequality:

∥∥∥∥∥1τ
τ∑

i=1

vi

∥∥∥∥∥
2

≤ 1

τ

τ∑
i=1

∥vi∥2 . (32)

By multiplying the inequality above with τ2, we conclude the proof.

Lemma C.6. Define ρi ≜ maxx∈X ,r≥1,t≥1

∥∥∥∥∂ (σ(i)
r,t

)2
(x)

∥∥∥∥/∥∥∥∥∂ (σ(i)
r,t−1

)2
(x)

∥∥∥∥, we have that

ρi ∈
[
1/(1 + 1/σ2), 1

]
, and that for any x ∈ X , r ≥ 1, t ≥ 1 the following holds,

∥∥∥∥∂ (σ(i)
r,t

)2
(x)

∥∥∥∥ ≤ κρ(r−1)T+t
i .
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Let δ ∈ (0, 1), ϵ = O( 1
M ) and ω = d + 2(

√
d + 1) ln(2NRT/δ), the following inequalities then

hold with a probability of at least 1− δ:

∥∥∥∥∥∥ 1

N

N∑
j=1,j ̸=i

(
∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

)∥∥∥∥∥∥
2

(a)

≤ N − 1

N2

N∑
j=1,j ̸=i

∥∥∥∇µ̂(j)
r−1,T (x

(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥2
(b)
=
N − 1

N2

N∑
j=1,j ̸=i

∥∥∥∇µ̂(j)
r−1,T (x

(i)
r,t−1)−∇µ

(j)
r−1,T (x

(i)
r,t−1) +∇µ

(j)
r−1,T (x

(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥2
(c)

≤N − 1

N2

N∑
j=1,j ̸=i

(
N

N − 1

∥∥∥∇µ(j)
r−1,T (x

(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥2 +N
∥∥∥∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇µ

(j)
r−1,T (x

(i)
r,t−1)

∥∥∥2)
(d)

≤ ω

N

N∑
j=1,j ̸=i

∥∥∥∥∂ (σ(j)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+ (N − 1)2

N
ϵ ,

(33)
in which (a) is from (29) and (c) is from (28) with a = 1

N−1 . In addition, (d) comes from Lemma C.1
and Lemma C.4.

(N − 1)2

N2

∥∥∥∇fi(x(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥2
(a)
=

(N − 1)2

N2

∥∥∥∇fi(x(i)
r,t−1)−∇µ

(i)
r−1,T (x

(i)
r,t−1) +∇µ

(i)
r−1,T (x

(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥2
(b)

≤ (N − 1)2

N2

(
N

N − 1

∥∥∥∇fi(x(i)
r,t−1)−∇µ

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥2 +N
∥∥∥∇µ(i)

r−1,T (x
(i)
r,t−1)∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥2)
(c)

≤
(
ω(N − 1)

N

∥∥∥∥∂ (σ(i)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+ (N − 1)2

N
ϵ

)
,

(34)
in which (c) is from (28) with a = 1

N−1 . In addition, (d) comes from Lemma C.1 and Lemma C.4.
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By exploiting the inequalities above, we have

1

N

N∑
i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑
i=1

∥∥∥∇µ(i)
r,t−1(x

(i)
r,t−1) + γr,t−1

(
∇µ̂r−1(x

(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

)
−∇F (x(i)

r,t−1)
∥∥∥2

(b)
=

1

N

N∑
i=1

∥∥∥∥∥∥∇µ(i)
r,t−1(x

(i)
r,t−1)−∇fi(x

(i)
r,t−1) + γr,t−1

 1

N

N∑
j=1,j ̸=i

(
∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

)+

γr,t−1(N − 1)

N

(
∇fi(x(i)

r,t−1)−∇µ̂
(i)
r−1,T (x

(i)
r,t−1)

)
+ (1− γr,t−1)

(
∇fi(x(i)

r,t−1)−∇F (x
(i)
r,t−1)

)∥∥∥∥2
(c)

≤ 1

N

N∑
i=1

4
∥∥∥∇µ(i)

r,t−1(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + 4γ2r,t−1

∥∥∥∥∥∥ 1

N

N∑
j=1,j ̸=i

(
∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

)∥∥∥∥∥∥
2

+

4γ2r,t−1(N − 1)2

N2

∥∥∥∇fi(x(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥2 + 4(1− γr,t−1)
2
∥∥∥∇fi(x(i)

r,t−1)−∇F (x
(i)
r,t−1)

∥∥∥2)
(d)

≤ 4ω

N

N∑
i=1

∥∥∥∂ (σ(i)
r,t−1

)
(x

(i)
r,t−1)

∥∥∥+ 4γ2r,t−1

 ω

N2

N∑
i=1

N∑
j=1,j ̸=i

∥∥∥∥∂ (σ(j)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+ (N − 1)2

N
ϵ

+

4γ2r,t−1

(
ω(N − 1)

N2

N∑
i=1

∥∥∥∥∂ (σ(i)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+ (N − 1)2

N
ϵ

)
+ 4(1− γr,t−1)

2G

(35)
where (c) is from the (29). In addition, (d) is from Lemma C.1, (33) and (34).

By introducing the results in Lemma C.6 into (35), we have

1

N

N∑
i=1

Ξ
(i)
r,t

(a)

≤ 4ω

N

N∑
i=1

κρ
(r−1)T+t−1
i + 4γ2r,t−1

(
2ω(N − 1)

N2

N∑
i=1

κρ
(r−1)T
i +

2(N − 1)2

N
ϵ

)
+ 4(1− γr,t−1)

2G

(b)

≤ 4ω

N

N∑
i=1

κρ
(r−1)T+t−1
i + 4γ2r,t−1

(
2ω

N

N∑
i=1

κρ
(r−1)T
i + 2Nϵ

)
+ 4(1− γr,t−1)

2G

(c)

≤ 4ωκρ(r−1)T+t−1 + 4γ2r,t−1

(
2ωκρ(r−1)T + 2Nϵ

)
+ 4(1− γr,t−1)

2G

(36)
where (c) is from Jansen’s inequality with ρ ≜ 1

N

∑N
i=1 ρi. This finally concludes our proof.

Remark. Of note, the upper bound in our Thm. 1 is a quadratic function w.r.t. the gradient correction
length γr,t−1. As a consequence, it is easy to verify that in order to minimize the upper bound in our
Thm. 1 (i.e., to achieve a better-performing (8)) w.r.t. γr,t−1, γr,t−1 needs to be chosen as

γr,t−1 =
G

G+ 2ωρ(r−1)T + 2Nϵ
, (37)

as shown in our Cor. 1. This better-performing γr,t−1 therefore implies that (a) an adaptive γr,t−1 is
indeed able to theoretically reduce the gradient disparity, which therefore aligns with the conclusion
from our Prop. 1 and (b) when the estimation error of our gradient correction vector (characterized by
2ωρrT + 2Nϵ) in (8) is smaller than the client heterogeneity (characterized by G), a large γt−1 is
suggested to be applied in order to minimize the gradient disparity 1

N

∑N
i=1 Ξ

(i)
r,t, as shown in our

Sec. 5.1.
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By introducing this γr,t−1 into the upper bound in Thm. 1, we have

1

N

N∑
i=1

Ξ
(i)
r,t

(a)

≤ 4ωκρ(r−1)T+t−1 + 4γ2r,t−1

(
2ωκρ(r−1)T + 2Nϵ

)
+ 4(1− γr,t−1)

2G

(b)
= 4ωκρ(r−1)T+t−1 +

4G
(
2ωκρ(r−1)T + 2Nϵ

)
G+

(
2ωρ(r−1)T + 2Nϵ

)
(c)

≤ 4ωκρ(r−1)T+t−1 + 2
√
2G(ωκρ(r−1)T +Nϵ)

(d)

≤ 4ωκρ(r−1)T+t−1 + 2
√
2ωκρ(r−1)TG+ 2

√
2NGϵ

(38)

where (c) is from the inequality of G + 2ωρ(r−1)T + 2Nϵ ≥ 2
√
G(2ωρ(r−1)T + 2Nϵ) (i.e., the

relationship between the geometric mean and arithmetic mean of G and 2ωρ(r−1)T + 2Nϵ) and (d)

is from the fact that (
√
2ωκρ(r−1)TG +

√
2NGϵ)2 > 2ωκρ(r−1)TG + 2NGϵ. Interestingly, (38)

enjoys two major aspects. (a) In contrast to the algorithm where γr,t−1 = 0 (e.g., FedZO), the impact
of client heterogeneity (i.e., G) is able to be reduced in our FZooS through decreasing the estimation
error of our gradient surrogates (i.e., ωκρ(r−1)T ) and the RFF approximation error (i.e., ϵ) for our
global gradient surrogates. (b) In contrast to the federated ZOO algorithms where γr,t−1 = 1 (e.g.,
SCAFFOLD), the impact of the large estimation error of our gradient surrogates (i.e., ωκρ(r−1)T )
is also able to be mitigated in our FZooS through a small client heterogeneity (i.e., G) in practice.
As a result, these advantages will intuitively make our FZooS produce more robust optimization
performance under different scenarios in practice, as supported by our Sec. 6 and Appx. F.
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C.3 GRADIENT ESTIMATION ANALYSIS BASED ON EUCLIDEAN DISTANCE

Of note, for every iteration t of round r, our global gradient surrogate in Sec. 4.2.1 is obtained based
on the optimization trajectory D(i)

r−1,T = {(x(i)
τ , y

(i)
τ )}T (r−1)

τ=1 and is not capable of being updated
immediately although t− 1 new function queries are given at this time. This is because the update of
our global gradient surrogate only occurs when clients and server can communicate with each other,
i.e., at the end of each round. Intuitively, this will result in the phenomenon that the quality of our
global gradient surrogate and hence the quality of our (8) decays w.r.t. the iterations of local updates,
as empirically supported in Appx. F.1. This is likely because the Euclidean distance between the input
to be evaluated in our global gradient surrogate and the queried inputs from the optimization trajectory
becomes larger and consequently the optimization trajectory becomes less informative. Unfortunately,
such a quality decay within the local updates fails to be captured in Thm. 1 and hence may result in
an impractical choice of γr,t−1 in Cor. 1. To this end, we develop another uncertainty analysis of our
global gradient surrogate that is based on Euclidean distance to capture such a phenomenon in this
section, which finally gives us a more practical choice of gradient correction length.

We first introduce the following lemma to ease our proof in this section.

Lemma C.7. For any matrix A, A⊤A and AA⊤ share the same non-zero eigenvalues.

Proof. Let λ be any non-zero eigenvalue of A⊤A, for some x ̸= 0, we have

A⊤Ax = λx . (39)

By multiplying A on both sides above, we have

AA⊤ (Ax) = λ (Ax) , (40)

which implies that λ is also the eigenvalue of AA⊤ with Ax being the eigenvector. Following the
same proof, it is easy to show that any non-zero eigenvalue of AA⊤ remains the eigenvalue of A⊤A,
which therefore concludes the proof.

We then introduce another estimation error analysis (different from the one presented in Appx. C.2)
of our global gradient surrogate as follows where we slightly abuse the notation and use x(i)

τ ∈ D(i)
r,T

to denote that x(i)
τ is from the optimization trajectory D(i)

r,T .

Proposition C.1. Let the shift-invariant kernel k(x,x′) = k(∥x− x′∥2) where k(·) is assumed to
be non-increasing and function h(ι) = ι∇k(ι)2 is assumed to be convex, the following then holds
with a probability of at least 1− δ for any x ∈ X ,

∥∇µr(x)−∇F (x)∥2 ≤ ωκ−
4ωι2r∇k(ιr)2

k(0)d+ σ2d/(rT )

where ω = d+ 2(
√
d+ 1) ln(1/δ), ιr ≜ 1

rNT

∑N
i=1

∑
x

(i)
τ ∈D(i)

r,T

∥∥∥x− x(i)
τ

∥∥∥2, and k(0) = k(x,x).

Proof. Recall that the uncertainty measure function (see (5)) of our local gradient surrogate on client
i for iteration T of round r will be

∂
(
σ
(i)
r,T

)2
(x) = ∂z∂z′k(z, z′)− ∂zk(i)r,T (z)

⊤
(
K

(i)
r,T + σ2I

)−1

∂z′k
(i)
r,T (z

′)
∣∣∣
z=z′=x

(a)

≼ κI−
(
λmax(K

(i)
r,T ) + σ2

)−1

∂zk
(i)
r,T (z)

⊤∂z′k
(i)
r,T (z

′)
∣∣∣
z=z′=x

(b)

≼ κI−
∂zk

(i)
r,T (z)

⊤∂z′k
(i)
r,T (z

′)
∣∣
z=z′=x

rT max
x,x′∈D(i)

r,T

k(x,x′) + σ2

(41)

where (a) is based on the assumption on ∂z∂z′k(z, z′) in our Sec. 2 and the definition of maxi-
mum eigenvalue. In addition, (b) comes from λmax(K

(i)
r,T ) ≤ rT max

x,x′∈D(i)
r,T

k(x,x′) (i.e., the

Gershgorin theorem).
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Based on the assumption that k(x,x′) = k(∥x− x′∥2) and k(·) is non-increasing, we have
max

x,x′∈D(i)
r,T

k(x,x′) ≤ k(x,x) = k(0) . (42)

Moreover, define ι ≜ ∥z − z′∥2, the partial derivative of kernel k(·, ·) will be
∂zk(z, z

′) = 2 (z − z′)∇k(ι)
∂z′k(z, z′) = 2 (z′ − z)∇k(ι) .

(43)

Therefore, the each element in the rT × rT matrix ∂zk
(i)
r,T (z)∂z′k

(i)
r,T (z

′)⊤
∣∣
z=z′=x

that is induced

by the input pair (x(i)
τ ,x

(i)
τ ′ ) with x(i)

τ ,x
(i)
τ ′ ∈ D(i)

r,T and τ, τ ′ ∈ [rT ] will be:

4
(
x− x(i)

τ

)⊤ (
x− x(i)

τ ′

)
∇k(ι(i)τ )∇k(ι(i)τ ′ ) (44)

where ι(i)τ ≜
∥∥∥x− x(i)

τ

∥∥∥2 , ι(i)τ ′ ≜
∥∥∥x− x(i)

τ ′

∥∥∥2. Based on these results, the trace norm ∥·∥tr of

∂zk
(i)
r,T (z)∂z′k

(i)
r,T (z

′)⊤
∣∣
z=z′=x

will be∥∥∥∂zk(i)r,T (z)∂z′k
(i)
r,T (z

′)⊤
∣∣
z=z′=x

∥∥∥
tr
=

rT∑
τ=1

4 ∥x− xτ∥2∇k(ιτ )2

=

rT∑
τ=1

4ιτ∇k(ιτ )2 .

(45)

By further assuming that the function h(ι) = ι∇k(ι)2 is convex, we then have∥∥∥∂zk(i)r,T (z)
⊤∂z′k

(i)
r,T (z

′)
∣∣
z=z′=x

∥∥∥ (a)

≥ 1

d

∥∥∥∂zk(i)r,T (z)
⊤∂z′k

(i)
r,T (z

′)
∣∣
z=z′=x

∥∥∥
tr

(b)
=

1

d

∥∥∥∂zk(i)r,T (z)∂z′k
(i)
r,T (z

′)⊤
∣∣
z=z′=x

∥∥∥
tr

(c)
=

1

d

rT∑
τ=1

4ι(i)τ ∇k(ι(i)τ )2

(d)

≥ 4rT

d
ι(i)r ∇k(ι(i)r )2

(46)

where (a) comes from the fact the maximum eigenvalue of a matrix is always larger or equal to its
averaged eigenvalues and (b) is based on Lemma C.7. In addition, (c) is obtained from (45) while (d)

results from the definition of ι(i)r ≜ 1
rT

∑
x

(i)
τ ∈D(i)

r,T

∥∥∥x− x(i)
τ

∥∥∥2 as well as the Jansen’s inequality

for the convex function h(·).
Finally, by introducing the results above, i.e., (42) and (46), into (41), we have∥∥∥∥∂ (σ(i)

r,T

)2
(x)

∥∥∥∥ ≤ κ− 4ι
(i)
r ∇k(ι(i)r )2

k(0)d+ σ2d/(rT )
. (47)

Define ιr ≜ 1
N

∑N
i=1 ι

(i)
r , we then have

∥∇µr(x)−∇F (x)∥2
(a)
=

∥∥∥∥∥ 1

N

N∑
i=1

(
∇µ(i)

r,T (x)−∇fi(x)
)∥∥∥∥∥

2

(b)

≤ 1

N

N∑
i=1

∥∥∥∇µ(i)
r,T (x)−∇fi(x)

∥∥∥2
(c)

≤ 1

N

N∑
i=1

ωκ− 4ωι
(i)
r ∇k(ι(i)r )2

k(0)d+ σ2d/(rT )

(d)

≤ ωκ− 4ωιr∇k(ιr)2

k(0)d+ σ2d/(rT )

(48)
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where (b) is from the Cauchy-Schwarz inequality, (c) derives from Lemma C.1, and (d) results from
the Jansen’s inequality for convex function h(·). which finally concludes the proof.

Remark. Of note, the assumption that k(x,x′) = k(∥x− x′∥2) where k(·) is non-increasing and
function h(ι) = ι∇k(ι)2 is convex can be satisfied by the widely applied squared exponential kernel
k(x,x′) = exp

(
−∥x− x′∥2 /(2l2)

)
, which has also been applied in our FZooS. To justify the

validity of these assumptions on the squared exponential kernel, we first show that this kernel can
be represented as k(ι) = exp

(
−ι/(2l2)

)
, which is non-increasing w.r.t. its input ι, and h(ι) =

ι exp
(
−ι/l2

)
/(4l4) is convex when ι ≥ 2l2.

Remarkably, Prop. C.1 reveals that the quality of the gradient estimation at an input x ∈ X when
using our global gradient surrogate without RFF approximation is highly related to the averaged
Euclidean distance between x and xτ ∈

⋃N
i=1D

(i)
r,T (i.e., ιr in Prop. C.1). Specifically, when the

input x to be evaluated in our global gradient surrogate leads to a larger value of ιr∇k(ιr)2, the
upper bound in our Prop. C.1 demonstrates that the gradient estimation error of our global gradient
surrogate tends to be more accurate. Note that when the kernel is the squared exponential kernel,
we have that h(ι) = ι∇k(ι)2 = ι exp

(
−ι/l2

)
/(4l4) decreases w.r.t. ι and that a smaller averaged

Euclidean distance between x and xτ ∈
⋃N

i=1D
(i)
r,T likely enjoys a smaller gradient estimation error.

This is intuitively aligned with the common practice that xτ ∈
⋃N

i=1D
(i)
r,T is more informative when

it achieves a smaller averaged Euclidean distance with x. Intuitively, when the iteration t of local
updates is increased, the input xr,t−1 to be evaluated in our global gradient surrogate likely achieves
a larger distance with the history of function queries

⋃N
i=1D

(i)
r,T and consequently the quality of

our global gradient surrogate likely decays, which finally aligns with the phenomenon that we have
mentioned at the beginning of this section.

More Practical Choice of γr,t−1. Finally, by introducing Prop. C.1 into the analysis in Appx. C.2,
we achieve the following better-performing choice of gradient correction length γr,t−1:
Corollary C.1. Based on our Prop. C.1, a better-performing choice choice of γr,t−1 should be

γr,t−1 =
G

G+ 2
(
ωκ− 4ωιr∇k(ιr)2

k(0)d+σ2d/(rT ) +Nϵ
) .

Cor. C.1 implies that γr,t−1 should decay w.r.t the iteration t of local updates if ιr∇k(ιr)2 decreases

w.r.t. t. Particularly, when k(x,x′) = exp
(
−∥x− x′∥2 /(2l2)

)
and ιr∇k(ιr)2 decreases at a rate

of O( 1t ) for the iteration t of local updates, we then have that better-performing choice of γr,t−1 in
Prop. C.1 has the form of γr,t−1 = G

G+C0−C1/t
for some constant C0 ≥ C1 > 0. Since we usually

have no prior knowledge of client heterogeneity G as well as the constants C0, C1, we commonly
apply the approximated form of γr,t−1 = 1/t, which will be widely applied in our experiments as
shown in our Appx. E.
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C.4 CONVERGENCE OF ALGO. 1

We first introduce the following lemmas that are inspired by the results in (Karimireddy et al., 2020a).
Lemma C.8. For any α-strongly convex and β-smooth function f , and any x,y, z in the domain of
f , we have

∇f(x)⊤ (y − z) ≤ f(y)− f(z)− α∥y − z∥2/4 + β∥z − x∥2

Proof. Since f is both α-strongly convex and β-smooth, we have that

f(z)− f(x) ≤ ∇f(x)⊤ (z − x) + β

2
∥z − x∥2

f(y)− f(x) ≥ ∇f(x)⊤ (y − x) + α

2
∥y − x∥2 .

(49)

Note that when α = 0, the inequalities above still hold. By aggregating the results above, we have

f(z)− f(y) = f(z)− f(x) + f(x)− f(y)

≤ ∇f(x)⊤ (z − x) +∇f(x)⊤ (x− y) + β

2
∥z − x∥2 − α

2
∥y − x∥2

≤ ∇f(x)⊤ (z − y) + β

2
∥z − x∥2 − α

4
∥y − z∥2 + α

2
∥x− z∥2

= ∇f(x)⊤ (z − y) + β + α

2
∥z − x∥2 − α

4
∥y − z∥2

(50)

where the second inequality comes from α ∥y − x∥2 /2 ≥ α ∥y − z∥2 /4−α ∥x− z∥2 /2 (triangle
inequality). When α > 0, since β > α, we have

f(z)− f(y) ≤ ∇f(x)⊤ (z − y) + β ∥z − x∥2 − α

4
∥y − z∥2 . (51)

By rearranging the inequality above, we can directly derive the result in Lemma C.8 with α > 0.
Even when α = 0, since ∥z − x∥2 ≥ 0, we have

f(z)− f(y) ≤ ∇f(x)⊤ (z − y) + β

2
∥z − x∥2

≤ ∇f(x)⊤ (z − y) + β ∥z − x∥2 .
(52)

By rearranging the inequality above, we show that the result in Lemma C.8 also holds for α = 0.

Lemma C.9. For any β-smooth function f , inputs x,y in the domain of f , the following holds for
any η > 0

∥x− η∇f(x)− y + η∇f(y)∥2 ≤ (1 + ηβ)2∥x− y∥2 .

Proof. Since f is β-smooth, we have

∥x− η∇f(x)− y + η∇f(y)∥2 ≤
(
1 +

1

a

)
∥x− y∥2 + (1 + a) η2 ∥∇f(x)−∇f(y)∥2

≤
(
1 +

1

a
+ (1 + a) η2β2

)
∥x− y∥2

(53)

where the first inequality derives from Lemma C.5 and the second inequality comes from the
smoothness of f . By choosing a = 1/(ηβ), we conclude our proof.

Remark. Lemma C.9 only requires the smoothness of function f . When f is both β-smooth and
α-strongly convex (α > 0), we will have a tighter bound as below when η < α/β2 (see proof below),

∥x− η∇f(x)− y + η∇f(y)∥2 ≤ (1− ηα)∥x− y∥2 , (54)

which can lead to a better convergence (by achieving a smaller constant term) compared with the
inequality (62) we will prove later. However, for simplicity and consistency under various assumptions
on the function to be optimized, we only use Lemma C.9 for the convergence analysis of our Thm. 2
in the main paper.
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Proof. Based on the strong convexity of f , for any inputs x,y in the domain of f , we have

f(y)− f(x) ≥ ∇f(x)⊤(y − x) + α

2
∥y − x∥2 ,

f(x)− f(y) ≥ ∇f(y)⊤(x− y) + α

2
∥y − x∥2 .

(55)

By summing up these inequalities, we have

(∇f(y)−∇f(x))⊤ (y − x) ≥ α ∥y − x∥2 . (56)

Finally, we have

∥x− η∇f(x)− y + η∇f(y)∥2

(a)
= ∥x− y∥2 + η2 ∥∇f(x)−∇f(y)∥2 − 2η (∇f(x)−∇f(y))⊤ (x− y)
(b)

≤ ∥x− y∥2 + η2β2 ∥x− y∥2 − 2ηα ∥x− y∥2

(c)
=
(
1 + η2β2 − 2ηα

)
∥x− y∥2

(57)

where (b) comes from the smoothness of f and (56). Since α > 0, by introducing η ≤ α/β2 into
(57), we can complete our proof.

Lemma C.10. Let f be β-smooth and x∗ = argmin f(x), then for any input x in the domain of f ,
the following holds

∥∇f(x)∥2 ≤ 2β (f(x)− f(x∗))

Proof. Since f is β-smooth, we have the following inequality for any x, y in the domain of f

f(y) ≤ f(x) +∇f(x)⊤(y − x) + β

2
∥y − x∥2 . (58)

By setting y = x−∇f(x)/β, we have

f(x∗) ≤ f(x− 1

β
∇f(x))

≤ f(x) +∇f(x)⊤
(
x− 1

β
∇f(x)− x

)
+
β

2

∥∥∥∥x− 1

β
∇f(x)− x

∥∥∥∥2
= f(x)− 1

2β
∥∇f(x)∥2 .

(59)

We finally conclude our proof by rearranging the inequality above.

We then bound the drift between x(i)
r,t and xr for every iteration t of any round r as below, which is

the key difference between the convergence of general federated ZOO and centralized optimization.

Lemma C.11. Assume that F is β-smooth. Then the updated input x(i)
r,t at any iteration t ≥ 1 of

round r ≥ 1 on client i in Algo. 1 has the following bounded drift with η ≤ 1
βT

∥∥∥x(i)
r+1,t − xr

∥∥∥2 ≤ 2η2T

t∑
τ=1

St−τΞ
(i)
r+1,τ + 22η2T 2 ∥∇F (xr)∥2

where S ≜ (T + 1)2/(T (T − 1)).
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Proof. Since x(i)
r+1,t = x

(i)
r+1,t−1 − ηĝ

(i)
r+1,t−1, we have the following inequalities when T > 1∥∥∥x(i)

r+1,t − xr

∥∥∥2
(a)
=
∥∥∥x(i)

r+1,t−1 − ηĝ
(i)
r+1,t−1 − xr

∥∥∥2
(b)
=
∥∥∥x(i)

r+1,t−1 − η∇F (x
(i)
r+1,t−1) + η∇F (xr)− xr + η

(
∇F (x(i)

r+1,t−1)− ĝ
(i)
r+1,t−1 −∇F (xr)

)∥∥∥2
(c)

≤ T

T − 1

∥∥∥x(i)
r+1,t−1 − η∇F (x

(i)
r+1,t−1) + η∇F (xr)− xr

∥∥∥2
+ η2T

∥∥∥∇F (x(i)
r+1,t−1)− ĝ

(i)
r+1,t−1 −∇F (xr)

∥∥∥2
(d)

≤ T

T − 1

∥∥∥x(i)
r+1,t−1 − η∇F (x

(i)
r+1,t−1) + η∇F (xr)− xr

∥∥∥2
+ 2η2T

[∥∥∥∇F (x(i)
r+1,t−1)− ĝ

(i)
r+1,t−1

∥∥∥2 + ∥∇F (xr)∥2
]

(60)
where (c) and (d) come from the (28) in Lemma C.5 by setting a = 1/(T−1) and a = 1, respectively.
Since F is β-smooth, we can introduce Lemma C.9 into (60) to obtain the following result given the
constant S ≜ (T + 1)2/(T (T − 1))∥∥∥x(i)

r+1,t − xr

∥∥∥2
(a)

≤ T (1 + ηβ)2

T − 1

∥∥∥x(i)
r+1,t−1 − xr

∥∥∥2 + 2η2T

[∥∥∥∇F (x(i)
r+1,t−1)− ĝ

(i)
r+1,t−1

∥∥∥2 + ∥∇F (xr)∥2
]

(b)
=2η2T

t−1∑
τ=0

(
T (1 + ηβ)2

T − 1

)t−τ−1 ∥∥∥∇F (x(i)
r+1,τ )− ĝ

(i)
r+1,τ

∥∥∥2 + 2η2T ∥∇F (xr)∥2
t−1∑
τ=0

(
(1 + ηβ)2T

T − 1

)τ

(c)

≤2η2T

t−1∑
τ=0

(
(T + 1)2

T (T − 1)

)t−τ−1 ∥∥∥∇F (x(i)
r+1,τ )− ĝ

(i)
r+1,τ

∥∥∥2 + 2η2T ∥∇F (xr)∥2
t−1∑
τ=0

(
(T + 1)2

T (T − 1)

)τ

(d)

≤2η2T

t−1∑
τ=0

St−τ−1
∥∥∥∇F (x(i)

r+1,τ )− ĝ
(i)
r+1,τ

∥∥∥2 + 22η2T 2 ∥∇F (xr)∥2

(e)
=2η2T

t∑
τ=1

St−τΞ
(i)
r+1,τ + 22η2T 2 ∥∇F (xr)∥2

(61)
where (b) comes from the summation of geometric series and (c) is from the fact that η ≤ 1/(βT ).
In addition, (d) results from the definition of S as well as the following results

t−1∑
τ=0

(
(T + 1)2

T (T − 1)

)τ

≤
T−1∑
τ=0

(
(T + 1)2

T (T − 1)

)τ

=

(
(T + 1)2/[T (T − 1)]

)T − 1

(T + 1)2/[T (T − 1)]− 1

=
T (T − 1)

3T + 1

((
1 +

3T + 1

T (T − 1)

)T

− 1

)

<
T (T − 1)

3T + 1

(
exp

(
3T + 1

T

)
− 1

)
<
T

3

(
exp

(
7

2

)
− 1

)
< 11T .

(62)
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Finally, (e) results from the definition of Ξ(i)
r+1,t ≜

∥∥∥ĝr+1,t−1 −∇F (x(i)
r+1,t−1)

∥∥∥2 in our Sec. 3.2.

We finally present the convergence of Algo. 1 in the following theorem for the general federated ZOO
framework, which then can be easily applied to prove the convergence of our FZooS in Appx. C.5
and the convergence of existing federated ZOO algorithms in Appx. D.

Theorem C.1. Define Ξ(i)
r,t ≜

∑T
t=1

∥∥∥ĝ(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥2, S ≜ (T+1)2/(T (T−1)), and x∗ ≜

argminF (x). Algo. 1 then has the following convergence when F is under different assumptions:

(i) When F is β-smooth and α-strongly convex, by defining pr ≜ (1−αηT/4)R−r∑R
r=0(1−αηT/4)R−r and choosing

a constant learning rate η ≤ 1
10βT ,

min
r∈[R+1)

F (xr)− F (x∗) ≤ 2α exp

(
−αηTR

4

)
∥x0 − x∗∥2

+

R∑
r=0

N∑
i=1

T∑
t=1

pr

(
η

NT

t∑
τ=1

St−τΞ
(i)
r+1,τ +

8(ηT + 1/α)

αNT
Ξ
(i)
r+1,t

)
.

(ii) When F is β-smooth and convex, by choosing a constant learning rate η ≤ 1
10βT ,

min
r∈[R+1)

F (xr)− F (x∗) ≤ 2 ∥x0 − x∗∥2

ηRT
+

1

R

R∑
r=0

N∑
i=1

T∑
t=1

(
η

NT

t∑
τ=1

St−τΞ
(i)
r+1,τ

+
8η

N
Ξ
(i)
r+1,t +

4
√
d

NT

√
Ξ
(i)
r+1,t

)
.

(iii) When F is only β-smooth, by choosing a constant learning rate η ≤ 7
100βT ,

min
r∈[R+1)

∥∇F (xr)∥2 ≤
13(F (x0)− F (x∗))

ηRT
+

13

ηRT

R∑
r=0

N∑
i=1

T∑
t=1

(
(0.14η + 1/(2βT ))

N
Ξ
(i)
r+1,t

+
1.02η2β

N

t∑
τ=1

St−τΞ
(i)
r+1,τ

)
.

Proof. Recall that the global update on server in Algo. 1 is given as

xr+1 =
1

N

N∑
i=1

x
(i)
r+1 =

1

N

N∑
i=1

(
x(i)
r − η

T∑
t=1

ĝ
(i)
r+1,t−1

)
= xr −

η

N

N∑
i=1

T∑
t=1

ĝ
(i)
r+1,t−1 . (63)

Therefore, we have

∥xr+1 − x∗∥2 =

∥∥∥∥∥xr −
η

N

N∑
i=1

T∑
t=1

ĝ
(i)
r+1,t−1 − x∗

∥∥∥∥∥
2

= ∥xr − x∗∥2−2 (xr − x∗)
⊤ η

N

N∑
i=1

T∑
t=1

ĝ
(i)
r+1,t−1︸ ︷︷ ︸

1

+

∥∥∥∥∥ ηN
N∑
i=1

T∑
t=1

ĝ
(i)
r+1,t−1

∥∥∥∥∥
2

︸ ︷︷ ︸
2

.

(64)
We then bound 1 and 2 based on the different assumptions on F separately.
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Strongly Convex F . Since F is β-smooth and α-strongly convex, we have

1
(a)
= 2 (x∗ − xr)

⊤ η

N

N∑
i=1

T∑
t=1

(
ĝ
(i)
r+1,t−1 −∇F (x

(i)
r+1,t−1)

)
+ 2 (x∗ − xr)

⊤ η

N

N∑
i=1

T∑
t=1

∇F (x(i)
r+1,t−1)

(b)

≤ 2 ∥x∗ − xr∥
η

N

N∑
i=1

T∑
t=1

∥∥∥ĝ(i)r+1,t−1 −∇F (x
(i)
r+1,t−1)

∥∥∥
+

2η

N

N∑
i=1

T∑
t=1

[
F (x∗)− F (xr)−

α

4
∥xr − x∗∥2 + β

∥∥∥x(i)
r,t−1 − xr

∥∥∥2]
(c)

≤ 2η

N
∥x∗ − xr∥

N∑
i=1

T∑
t=1

√
Ξ
(i)
r+1,t + 2ηT

[
F (x∗)− F (xr)

]
− αηT

2
∥xr − x∗∥2

+
4η3Tβ

N

N∑
i=1

T∑
t=1

t∑
τ=1

St−τΞ
(i)
r+1,τ + 44η3T 3β ∥∇F (xr)∥2

(d)

≤ −αηT
4
∥x∗ − xr∥2 + 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2 +

N∑
i=1

T∑
t=1

(
4η3Tβ

N

t∑
τ=1

St−τΞ
(i)
r+1,τ +

4η

αN
Ξ
(i)
r+1,t

)
.

(65)
where (b) is from Lemma C.8 by setting y = x∗, z = xr and x = x

(i)
r,t−1 in Lemma C.8. In

addition, (c) comes from the definition of Ξ(i)
r+1,t ≜

∥∥∥ĝr+1,t−1 −∇F (x(i)
r+1,t−1)

∥∥∥2 in our Sec. 3.2
and Lemma C.11. Finally, (d) comes from the following results

2η

N
∥x∗ − xr∥

N∑
i=1

T∑
t=1

√
Ξ
(i)
r+1,t =

2η

N

N∑
i=1

T∑
t=1

∥x∗ − xr∥
√

Ξ
(i)
r+1,t

≤ η

N

N∑
i=1

T∑
t=1

(
α

4
∥x∗ − xr∥2 +

4

α
Ξ
(i)
r+1,t

)

=
αηT

4
∥x∗ − xr∥2 +

4η

αN

N∑
i=1

T∑
t=1

Ξ
(i)
r+1,t .

(66)

We then bound term 2 in (64) as below

2
(a)
=

∥∥∥∥∥ ηN
N∑
i=1

T∑
t=1

ĝ
(i)
r+1,t−1

∥∥∥∥∥
2

(b)
=

∥∥∥∥∥ ηN
N∑
i=1

T∑
t=1

(
ĝ
(i)
r+1,t−1 −∇F (x

(i)
r+1,t−1) +∇F (x

(i)
r+1,t−1)−∇F (xr)

)
+ ηT∇F (xr)

∥∥∥∥∥
2

(c)

≤ 2η2T

N

N∑
i=1

T∑
t=1

(
2
∥∥∥ĝ(i)r+1,t−1 −∇F (x

(i)
r+1,t−1)

∥∥∥2 + 2
∥∥∥∇F (x(i)

r+1,t−1)−∇F (xr)
∥∥∥2)+

2η2T 2 ∥∇F (xr)∥2

(d)

≤ 4η2T

N

N∑
i=1

T∑
t=1

Ξ
(i)
r+1,t +

4η2Tβ2

N

N∑
i=1

T∑
t=1

∥∥∥x(i)
r+1,t−1 − xr

∥∥∥2 + 2η2T 2 ∥∇F (xr)∥2

(e)

≤
N∑
i=1

T∑
t=1

(
8η4T 2β2

N

t∑
τ=1

St−τΞ
(i)
r+1,τ +

4η2T

N
Ξ
(i)
r+1,t

)
+
(
88η4T 4β2 + 2η2T 2

)
∥∇F (xr)∥2

(67)
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where (c) is obtained by applying Lemma C.5 multiple times and (d) is from the smoothness of F .
Besides, (e) comes from our Lemma C.11 and the fact that η ≤ 1/(βT ).

By combining (65) and (67), we have

∥xR+1 − x∗∥2

(a)

≤
(
1− αηT

4

)
∥xR − x∗∥2 + 2ηT

[
F (x∗)− F (xR)

]
+ 2η2T 2

(
44η2T 2β2 + 22ηTβ + 1

)
∥∇F (xR)∥2

+

N∑
i=1

T∑
t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑
τ=1

St−τΞ
(i)
R+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
R+1,t

)
(b)

≤
(
1− αηT

4

)
∥xR − x∗∥2 + 2ηT

(
1− 2ηTβ

(
44η2T 2β2 + 22ηTβ + 1

)) [
F (x∗)− F (xR)

]
+

N∑
i=1

T∑
t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑
τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)
(c)
=

(
1− αηT

4

)R+1

∥x0 − x∗∥2 +
R∑

r=0

(
1− αηT

4

)R−r

H
[
F (x∗)− F (xr)

]
+

R∑
r=0

(
1− αηT

4

)R−r N∑
i=1

T∑
t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑
τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)
(68)

where (b) is from Lemma C.10 and (c) is from H ≜ 2ηT
(
1− 2ηTβ

(
44η2T 2β2 + 22ηTβ + 1

))
as well as the repeated application of (b).

Define pr ≜ (1−αηT/4)R−r∑R
r=0(1−αηT/4)R−r . Note that when choose the learning rate η that satisfies η ≤ 1

10βT ,

we have H ≥ 0.544 ηT . Based on this and ∥xR+1 − x∗∥2 ≥ 0 for (68), we further have

min
r∈[R+1)

F (xr)− F (x∗)
(a)

≤
R∑

r=0

pr
[
F (xr)− F (x∗)

]
(b)

≤ (1− αηT/4)R+1 ∥x0 − x∗∥2

H
∑R

r=0 (1− αηT/4)
r

+
1

H

R∑
r=0

N∑
i=1

T∑
t=1

pr

(
η2

2N

t∑
τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)
(c)

≤ αηT

H
exp

(
−αηTR

4

)
∥x0 − x∗∥2

+
1

H

R∑
r=0

N∑
i=1

T∑
t=1

pr

(
η2

2N

t∑
τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)
(d)

≤ 2α exp

(
−αηTR

4

)
∥x0 − x∗∥2

+

R∑
r=0

N∑
i=1

T∑
t=1

pr

(
η

NT

t∑
τ=1

St−τΞ
(i)
r+1,τ +

8(ηT + 1/α)

αNT
Ξ
(i)
r+1,t

)
(69)
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where (b) is from the rearrangement of (68) and the fact that η ≤ 1
10βT . Besides, (c) comes from the

inequality 1− x ≤ exp(−x) as well as the following results when R+ 1 ≥ 4 ln(3/4)/(αηT )

R∑
r=0

(
1− αηT

4

)r

=
1− (1− αηT/4)R+1

1− (1− αηT/4)

≥ 4 [1− exp(−αηT (R+ 1)/4)]

αηT

≥ 1

αηT
.

(70)

Finally, (d) is due to the fact that H ≥ 0.544 ηT .

Convex F . When α = 0, following the derivation in (65), we have

1
(a)

≤ 2η

N
∥x∗ − xr∥

N∑
i=1

T∑
t=1

√
Ξ
(i)
r+1,t + 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2

+
4η3Tβ

N

N∑
i=1

T∑
t=1

t∑
τ=1

St−τΞ
(i)
r+1,τ

(b)

≤ 2η
√
d

N

N∑
i=1

T∑
t=1

√
Ξ
(i)
r+1,t + 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2

+
4η3Tβ

N

N∑
i=1

T∑
t=1

t∑
τ=1

St−τΞ
(i)
r+1,τ

(c)
= 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2

+

N∑
i=1

T∑
t=1

(
4η3Tβ

N

t∑
τ=1

St−τΞ
(i)
r+1,τ +

2η
√
d

N

√
Ξ
(i)
r+1,t

)

(71)

where the (b) comes from the diameter of X , i.e., ∥x− x′∥ ≤
√
d for any x,x′ ∈ X = [0, 1]d.

For term 2 in (64), similar to (67), we also have

2 ≤
N∑
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T∑
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8η4T 2β2
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)
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)
∥∇F (xr)∥2 .

(72)

By combining (71) and (72), we have

∥xR+1 − x∗∥2

(a)

≤ ∥xR − x∗∥2 + 2ηT
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(
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+
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)
(b)
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H
[
F (x∗)− F (xr)

]
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T∑
t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑
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)
(73)

where (a) is from Lemma C.10 and (b) is from H ≜ 2ηT
(
1− 2ηTβ

(
44η2T 2β2 + 22ηTβ + 1

))
as well as the repeated application of (a).
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Note that when choose the learning rate η that satisfies η ≤ 1
10βT , we have H ≥ 0.544 ηT . Based on

this and ∥xR+1 − x∗∥2 ≥ 0 for (73), we further have

min
r∈[R+1)

F (xr)− F (x∗)
(a)

≤ 1

R
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[
F (xr)− F (x∗)

]
(b)
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RH
+

1

RH

R∑
r=0

N∑
i=1

T∑
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4
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(74)

where (c) is due to the fact that H ≥ 0.544 ηT .

Non-Convex F . When F is only β-smooth, we have

F (xr+1)− F (xr)

(a)

≤∇F (xr)
⊤ (xr+1 − xr) +

β

2
∥xr+1 − xr∥2

(b)
= − η

N
∇F (xr)

⊤
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∥∥∥∥∥
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≤
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+
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)
(75)

where (a) comes from the smoothness of F and (b) is from the one-round update (63) for input x. In
addition, (c) derives from (67) and (e) results from (27) in Lemma C.5 by setting a = ηβT in (27).
Finally, (f) comes from Lemma C.11.
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Define H ≜ ηT − 44η4T 4β3 − 13η2T 2β and choose η ≤ 7
100βT , we have that H > 0.08ηT . Based

on this, we further have

min
r∈[R+1)

∥∇F (xr)∥2
(a)

≤ 1

R
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∥∇F (xr)∥2

(b)

≤ 1

RH
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[
F (xr)− F (xr+1)

]
+
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N∑
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+
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)
(c)

≤ 13(F (x0)− F (x∗))

ηRT
+
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ηRT

R∑
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N∑
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T∑
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(
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N
Ξ
(i)
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+
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N

t∑
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St−τΞ
(i)
r+1,τ

)
(76)

where (c) is due to the fact that H ≥ 0.08 ηT .

Remark. Of note, Thm. C.1 has presented the convergence of the general optimization framework
for federated ZOO problems (i.e., Algo. 1). So, it can be easily adapted to provide the convergence for
those algorithms that follow this optimization framework (e.g., our Thm. 2 and the results in Appx. D).
This advancement demonstrates superiority over existing federated optimization approaches, such as
FedZO, FedProx, and SCAFFOLD, in terms of universality. Notably, these prior works primarily
focus on providing convergence guarantees exclusively for their specific algorithmic designs.
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C.5 PROOF OF THEOREM 2

To establish the proof for Thm. 2, we introduce the upper bound of gradient disparity 1
N

∑N
i=1 Ξ

(i)
r,t

derived from our Thm. 1, into Thm. C.1. This is in fact facilitated by leveraging the gradient correction
length in our Cor. 1 to improve the bound in our Thm. 1 (refer to the remark of Appx. C.2). To begin
with, we first derive a set of inequalities below based on our (38) since they are frequently required in
the results of Thm. C.1. It is important to note that for the sake of simplicity in our proof, we present
the validity of these inequalities with a constant probability, without explicitly providing the exact
form of this probability.
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t∑
τ=1

St−τΞ
(i)
r+1,τ

(a)
=

1

R

R∑
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=
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√
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)
(77)

where (b), (c), (d) are from the summation of geometric series. In addition, (e) comes from the fact
that S ≜ (T+1)2

T (T−1) (i.e., S ≤ 4.5), ST−1
S−1 ≤ 11T in (62), S

S−1 = (T+1)2

3T+1 = O (T ) and ϵ = O
(

1
M

)
.
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where (c), (d) are from the summation of geometric series.
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(79)

where (a) is from Cauchy–Schwarz inequality and (b) is from the inequality of
∑

j cj ≤
(∑

j

√
cj

)2
for any cj > 0. Besides, (c), (d) are from the summation of geometric series.

Subsequently, we proceed to establish the proof for the results in Thm. 2 that are conditioned on
different assumptions of F by systematically demonstrating each case individually as follows.

Strongly Convex F . Define c ≜ 1− αηT/4. 4 When R + 1 ≥ 4 ln(3/4)/(αηT ), we then have
that pr ≤ αηTcR−r according to (70), which finally yields the following result
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(80)

where (a) follows from the derivation in (77) and (b) is due to the fact that pr ≤ αηTcR−r as well
as the summation of geometric series. Besides, (c) comes from cR+1 > ρ(R+1)T/2 > ρ(R+1)T and
c > ρT/2 > ρT when we choose c properly in the proof of (69) as well as ϵ = O

(
1
M

)
. Finally, (d)

results from the fact that η ≤ 1
10βT and α < β.

4Note that according to (66), we can always find a
√
ρ < c < 1 such that (69) still holds with only different

constant terms. As a result, cR+1 > ρ(R+1)T/2 > ρ(R+1)T and c > ρT/2 > ρT .
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Following from the derivation above, we also have
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(81)

Finally, by introducing (80) and (81) into Thm. C.1, we have

min
r∈[R+1)
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where (b) is due to the fact that η ≤ 1
10βT . Let each item above achieve an ϵ/4 error, we then realize

the result in our Thm. 2 when F is α-strongly convex and β-smooth.

Convex F . By introducing (77), (78) and (79) into Thm. C.1, we have
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where (b) is due to the fact that η ≤ 1
10βT . Let each item above achieve an ϵ/4 error, we then realize

the result in our Thm. 2 when F is convex and β-smooth.
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Non-Convex F . By introducing (77) and (78) into Thm. C.1, we have
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∥∇F (xr)∥2

(a)

≤ 13(F (x0)− F (x∗))

ηRT
+

13

ηRT

R∑
r=0

N∑
i=1

T∑
t=1

(
(0.14η + 1/(2βT ))

N
Ξ
(i)
r+1,t

+
1.02η2β

N

t∑
τ=1

St−τΞ
(i)
r+1,τ

)
(b)

≤O

(
D1

ηRT
+

1

T

(
T
√
G+ 1

R
+ T

√
NG

M

)
+

1

βT 2

(
T 2(
√
G+ 1)

R
+ T 2

√
NG

M

))
(c)
=O

(
D1

ηRT
+

√
G

R
+

√
NG

M

)
(84)

where (b) is due to the fact that η ≤ 7
100βT . Let each item above achieve an ϵ/3 error, we then realize

the result in our Thm. 2 when F is non-convex and β-smooth. This hence finally concludes our proof
of Thm. 2.
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APPENDIX D THEORETICAL RESULTS FOR EXISTING FEDERATED ZOO
ALGORITHMS

D.1 GRADIENT ESTIMATION IN EXISTING FEDERATED ZOO ALGORITHMS

We first introduce the following lemma from the Thm. 2.6 in (Berahas et al., 2022) to bound the
gradient estimation error of the standard FD method, which usually serves as the foundation of
existing federated ZOO baselines, e.g., (Fang et al., 2022).

Lemma D.1. Let δ ∈ (0, 1). Assume that function f is β-smooth in its domain and uq ∼ N (0, I) in
(3), then the following holds with a probability of at least 1− δ,

∥∆(x)−∇f(x)∥ ≤ βλ
√
d+

ϵ
√
d

λ
+

√
3n

δQ

(
3 ∥∇f(x)∥2 + β2λ2

4
(d+ 2)(d+ 4) +

4ϵ2

λ2

)

where supx∈X |y(x)− f(x)| ≤ ϵ.

Remark. In our setting (see Sec. 2), we in fact have the following result with a probability of at least
1− δ by applying the Chernoff bound on the Gaussian observation noise ζ:

ϵ =
√
2 ln(2/δ)σ , (85)

which is regarded as a constant in our following proofs. By additionally assuming that the gradient of
f be bounded (i.e., ∥∇f(x)∥ ≤ c for any x in the domain of f and some c > 0), we have

∥∆(x)−∇f(x)∥ ≤ Λ+O
(

1√
Q

)
(86)

where the constant Λ is defined as Λ ≜ βλ
√
d+ ϵ

√
d

λ . Note that this additional constant term in (86)
can not be avoided, which thus is another pitfall of the FD method in addition to its query inefficiency
as discussed in our Sec. 3.2.

Based on the results above, we can get the following upper bounds for the gradient estimation methods
in the existing federated ZOO algorithms. Note that, we usually keep the constant before O

(
1
Q

)
to deliver a more detailed comparison among different federated ZOO algorithms throughout this
section.

FedZO Algorithm. For FedZO (Fang et al., 2022), it applies the following gradient estimation for
every local update in Algo. 1:

ĝ
(i)
r,t−1 = ∆(i)(x

(i)
r,t−1) . (87)

That is, γ(i)r,t−1 = 0 and g(i)r,t−1 = ∆(i)(x
(i)
r,t−1) in (2). We provide the following gradient disparity

bound for such a gradient estimation method when it is applied in Algo. 1.

Proposition D.1. Assume that 1
N

∑N
i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any x ∈ X and fi is β-
smooth with bounded gradient for any i ∈ [N ]. When applying (87) in Algo. 1, the following then
holds with a constant probability for some Λ > 0,

1

N

N∑
i=1

Ξ
(i)
r,t ≤ 4Λ2 + 2G+ 4O

(
1

Q

)
.
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Proof.

1

N

N∑
i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇F (x

(i)
r,t−1)

∥∥∥2
(b)
=

1

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1) +∇fi(x

(i)
r,t−1)−∇F (x

(i)
r,t−1)

∥∥∥2
(c)

≤ 1

N

N∑
i=1

2

(∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + ∥∥∥∇fi(x(i)
r,t−1)−∇F (x

(i)
r,t−1)

∥∥∥2)
(d)

≤ 4Λ2 + 2G+ 4O
(

1

Q

)
(88)

where (c) comes from Lemma C.5 and (d) is based on Lemma C.5 as well as the result in (86).

FedProx Algorithm. For FedProx in the federated ZOO setting (i.e., by simply combining Fed-
Prox from (Li et al., 2020a) with the standard FD method in (3)), it has the gradient estimation form
as follows:

ĝ
(i)
r,t−1 = ∆(i)(x

(i)
r,t−1) + γ(x

(i)
r,t−1 − xr−1) (89)

where γ is a constant. That is, γ(i)r,t−1 = γ, g(i)r,t−1 = ∆(i)(x
(i)
r,t−1) and gr−1(x

′) − g(i)r−1(x
′′) =

x
(i)
r,t−1−xr−1 in (2). We provide the following gradient disparity bound for such a gradient estimation

method when it is applied in Algo. 1.

Proposition D.2. Assume that 1
N

∑N
i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any x ∈ X and fi is β-
smooth with bounded gradient for any i ∈ [N ]. When applying (89) in Algo. 1, the following then
holds with a constant probability for some Λ > 0,

1

N

N∑
i=1

Ξ
(i)
r,t ≤ 6Λ2 + 3G+

3γ2

N

N∑
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2 + 6O
(

1

Q

)
.

Proof.

1

N

N∑
i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1) + γ

(
x
(i)
r,t−1 − xr−1

)
−∇F (x(i)

r,t−1)
∥∥∥2

(b)
=

1

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1) +∇fi(x

(i)
r,t−1)−∇F (x

(i)
r,t−1) + γ

(
x
(i)
r,t−1 − xr−1

)∥∥∥2
(c)

≤ 1

N

N∑
i=1

3

(∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + ∥∥∥∇fi(x(i)
r,t−1)−∇F (x

(i)
r,t−1)

∥∥∥2)

+
3γ2

N

N∑
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2
(d)

≤ 6Λ2 + 3G+
3γ2

N

N∑
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2 + 6O
(

1

Q

)
.

(90)
Similarly, (c) is from Lemma C.5 and (d) is based on Lemma C.5 as well as the result in (86).

SCAFFOLD (Type I) Algorithm. For SCAFFOLD using its Type I gradient correction in the
federated ZOO setting (i.e., by simply combining SCAFFOLD (Type I) from (Karimireddy et al.,
2020a) with the standard FD method in (3)), it has the gradient estimation form as follows:

ĝ
(i)
r,t−1 = ∆(i)(x

(i)
r,t−1) +

1

N

N∑
j=1

∆(j)(xr−1)−∆(i)(xr−1) . (91)
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That is, γ(i)r,t−1 = 1, g(i)r,t−1 = ∆(i)(x
(i)
r,t−1) and gr−1(x

′) − g(i)r−1(x
′′) = 1

N

∑N
j=1 ∆

(j)(xr−1) −
∆(i)(xr−1) in (2). Of note, similar to our FZooS where an additional transmission is required
when we actively query in the neighborhood of xr in line 7 of Algo. 2, SCAFFOLD (Type I) also
needs another server-client transmission of 1

N

∑N
j=1 ∆

(j)(xr−1) for gradient correction. We provide
the following gradient disparity bound for such a gradient estimation method when it is applied in
Algo. 1.

Proposition D.3. Assume that fi is β-smooth with bounded gradient for any i ∈ [N ]. When applying
(91) in Algo. 1, the following then holds with a constant probability for some Λ > 0,

1

N

N∑
i=1

Ξ
(i)
r,t ≤ 18Λ2 +

6β2

N

N∑
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2 + 18O
(

1

Q

)
.

Proof.

1

N

N∑
i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑
i=1

∥∥∥∥∥∥∆(i)(x
(i)
r,t−1) +

 1

N

N∑
j=1

∆(j)(xr−1)−∆(i)(xr−1)

−∇F (x(i)
r,t−1)

∥∥∥∥∥∥
2

(b)
=

1

N

N∑
i=1

∥∥∥∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1) +

1

N

N∑
j=1,j ̸=i

(
∆(j)(xr−1)−∇fj(x(i)

r,t−1)
)

+
N − 1

N

(
∇fi(x(i)

r,t−1)−∆(i)(xr−1)
)∥∥∥∥2

(c)

≤ 3

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + 3

N3

N∑
i=1

∥∥∥∥∥∥
N∑

j=1,j ̸=i

(
∆(j)(xr−1)−∇fj(x(i)

r,t−1)
)∥∥∥∥∥∥

2

+
3(N − 1)2

N3

N∑
i=1

∥∥∥∇fi(x(i)
r,t−1)−∆(i)(xr−1)

∥∥∥2
(d)

≤ 3

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + 3(N − 1)

N3

N∑
i=1

N∑
j=1,j ̸=i

∥∥∥∆(j)(xr−1)−∇fj(x(i)
r,t−1)

∥∥∥2
+

3(N − 1)2

N3

N∑
i=1

∥∥∥∇fi(x(i)
r,t−1)−∆(i)(xr−1)

∥∥∥2
(e)

≤ 3

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + 6(N − 1)

N2

N∑
j=1

∥∥∥∆(j)(x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥2
+

6β2(N − 1)2

N2

N∑
j=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2
(f)

≤ 9

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + 6β2
N∑
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2
(g)

≤ 18Λ2 + 6β2
N∑
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2 + 18O
(

1

Q

)
(92)

Similarly, (c), (d) are from Lemma C.5 and (e) is because of the smoothness of F as well as (28)
with a = 1

N−1 . Finally, (g) follows from the results in (86) as well as the result in Lemma C.5.

SCAFFOLD (Type II) Algorithm. For SCAFFOLD using its Type II gradient correction in the
federated ZOO setting (i.e., by simply combining SCAFFOLD (Type II) from (Karimireddy et al.,
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2020a) with the standard FD method in (3)), it has the gradient estimation form as follows:

ĝ
(i)
r,t−1 = ∆(i)(x

(i)
r,t−1) +

1

NT

N∑
j=1

T∑
τ=1

∆(j)(x
(j)
r−1,τ−1)−

1

T

T∑
τ=1

∆(i)(x
(i)
r−1,τ−1) . (93)

That is, gr−1(x
′) − g(i)r−1(x

′′) = 1
NT

∑N
j=1

∑T
τ=1 ∆

(j)(x
(j)
r−1,τ−1) − 1

T

∑T
τ=1 ∆

(i)(x
(i)
r−1,τ−1),

g
(i)
r,t−1 = ∆(i)(x

(i)
r,t−1) and γ(i)r,t−1 = 1 in (2). Interestingly, SCAFFOLD (Type II) servers as

an approximation of SCAFFOLD (Type I), which in fact does not require another server-client
transmission for gradient correction as discussed in (Karimireddy et al., 2020a). This is because
1

NT

∑N
j=1

∑T
τ=1 ∆

(j)(x
(j)
r−1,τ−1) can be computed before the aggregation of {x(i)

r−1,T }Ni=1 on server.
We provide the following gradient disparity bound for such a gradient estimation method when it is
applied in Algo. 1.

Proposition D.4. Assume that fi is c-continuous and β-smooth for any i ∈ [N ] and the randomly
sampled {uq}Qq=1 in (3) are shared across all iterations and rounds. When applying (93) in Algo. 1,
the following then holds with a constant probability for some Λ, a > 0,

1

N

N∑
i=1

Ξ
(i)
r,t ≤ 18Λ2 +

24ac2

λ2T

N∑
i=1

T∑
τ=1

∥∥∥x(i)
r,t−1 − x

(i)
r−1,τ−1

∥∥∥2 + 6O
(

1

Q

)
+ 12O

(
1

TQ

)
.

Proof. We slightly abuse notation and use ∆
(i)
T (x

(i)
r,t−1) to denote the FD method in (3) using TQ

function queries for the gradient estimation at input x(i)
r,t−1 on client i. Based on this notation, we
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then have

1

N

N∑
i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑
i=1

∥∥∥∥∥∥∆(i)(x
(i)
r,t−1) +

 1

NT

N∑
j=1

T∑
τ=1

∆(j)(x
(j)
r−1,τ−1)−

1

T

T∑
τ=1

∆(i)(x
(i)
r−1,τ−1)

−∇F (x(i)
r,t−1)

∥∥∥∥∥∥
2

(b)
=

1

N

N∑
i=1

∥∥∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1) +

N − 1

N

(
∇fi(x(i)

r,t−1)−
1

T

T∑
τ=1

∆(i)(x
(i)
r−1,τ−1)

)

+
1

NT

N∑
j=1,j ̸=i

T∑
τ=1

(
∆(j)(x

(j)
r−1,τ−1)−∇fj(x

(j)
r,t−1)

)∥∥∥∥∥∥
2

(c)

≤ 3

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2
+

3(N − 1)2

N3

N∑
i=1

∥∥∥∥∥(∇fi(x(i)
r,t−1 −∆

(i)
T (x

(i)
r,t−1)

)
+

(
∆

(i)
T (x

(i)
r,t−1)−

1

T

T∑
τ=1

∆(i)(x
(i)
r−1,τ−1)

)∥∥∥∥∥
2

+
3

N3

N∑
i=1

∥∥∥∥∥∥
N∑

j=1,j ̸=1

[(
∇fj(x(j)

r,t−1)−∆
(j)
T (x

(j)
r,t−1)

)
+

(
∆

(j)
T (x

(j)
r,t−1)−

1

T

T∑
τ=1

∆(j)(x
(j)
r−1,τ−1)

)]∥∥∥∥∥∥
2

(d)

≤ 3

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2
+

3(N − 1)2

N3

N∑
i=1

((
1 +

1

N − 1

)∥∥∥∇fi(x(i)
r,t−1 −∆

(i)
T (x

(i)
r,t−1)

∥∥∥2
+N

∥∥∥∥∥∆(i)
T (x

(i)
r,t−1)−

1

T

T∑
τ=1

∆(i)(x
(i)
r−1,τ−1)

∥∥∥∥∥
2)

+
3(N − 1)

N3

N∑
i=1

N∑
j=1,j ̸=1

((
1 +

1

N − 1

)∥∥∥∇fj(x(j)
r,t−1)−∆

(j)
T (x

(j)
r,t−1)

∥∥∥2

+N

∥∥∥∥∥∆(j)
T (x

(j)
r,t−1)−

1

T

T∑
τ=1

∆(j)(x
(j)
r−1,τ−1)

∥∥∥∥∥
2)

(94)
Similarly, (c) are from (29) in Lemma C.5 and (d) is because of (28) in Lemma C.5 with a = N

N−1 .
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We then bound
∥∥∥∆(i)

T (x
(i)
r,t−1)− 1

T

∑T
τ=1 ∆

(i)(x
(i)
r−1,τ−1)

∥∥∥2 as below

∥∥∥∥∥∆(i)
T (x

(i)
r,t−1)−

1

T

T∑
τ=1

∆(i)(x
(i)
r−1,τ−1)

∥∥∥∥∥
2

(a)

≤ 1

T

T∑
τ=1

∥∥∥∆(i)(x
(i)
r,t−1)−∆(i)(x

(i)
r−1,τ−1)

∥∥∥2
(b)
=

1

T

T∑
τ=1

∥∥∥∥∥ 1Q
Q∑

q=1

(
yi(x

(i)
r−1,τ−1 + λuq)− yi(x(i)

r,t−1 + λuq) + yi(x
(i)
r,t−1)− yi(x

(i)
r−1,τ−1)

) uq

λ

∥∥∥∥∥
2

(c)

≤ 1

λ2TQ

T∑
τ=1

Q∑
q=1

∣∣∣yi(x(i)
r−1,τ−1 + λuq)− yi(x(i)

r,t−1 + λuq) + yi(x
(i)
r,t−1)− yi(x

(i)
r−1,τ−1)

∥∥∥2 ∥uq|2

(d)
=

1

λ2TQ

T∑
τ=1

Q∑
q=1

2
∣∣∣fi(x(i)

r−1,τ−1 + λuq)− fi(x(i)
r,t−1 + λuq) + fi(x

(i)
r,t−1)− fi(x

(i)
r−1,τ−1)

∣∣∣2 ∥uq∥2

+
1

λ2TQ

Q∑
q=1

2
∣∣∣ζ(i)r−1,τ−1 − ζ

(i)
r,t−1 + ζ

(i)′

r−1,τ−1 − ζ
(i)′

r,t−1

∣∣∣2 ∥uq∥2

(e)

≤ 1

λ2TQ

T∑
τ=1

Q∑
q=1

4

(∣∣∣fi(x(i)
r−1,τ−1 + λuq)− fi(x(i)

r,t−1 + λuq)
∣∣∣2 + ∣∣∣fi(x(i)

r,t−1)− fi(x
(i)
r−1,τ−1)

∣∣∣2) ∥uq∥2

+
1

λ2TQ

Q∑
q=1

8ϵ2 ∥uq∥2

(f)

≤ 8

λ2T

T∑
τ=1

(
c2
∥∥∥x(i)

r,t−1 − x
(i)
r−1,τ−1

∥∥∥2 + ϵ2
)(

1

Q

Q∑
q=1

∥uq∥2
)

(g)

≤ 8a

λ2T

T∑
τ=1

(
c2
∥∥∥x(i)

r,t−1 − x
(i)
r−1,τ−1

∥∥∥2 + ϵ2
)

(95)
where (a), (d), (e) are due to (29) in Lemma C.5. Note that (d) is valid because {uq}Qq=1 in (3) is
assumed to be shared across all iterations and rounds. In addition, (c) is from the Cauchy–Schwarz
inequality and (f) is based on the continuity of F , i.e., ∥F (x)− F (x′)∥ ≤ c for any x,x′ ∈ X .
Finally, (g) is from Lemma C.2 and a ≜ d+ 2

√
dQ−1 ln(1/δ) + 2Q−1 ln(1/δ).

Finally, by introducing (95) into (94), we have

1

N

N∑
i=1

Ξ
(i)
r,t

(a)

≤ 3

N

N∑
i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥2 + 6(N − 1)

N2

N∑
i=1

∥∥∥∇fi(x(i)
r,t−1)−∆

(i)
T (x

(i)
r,τ−1)

∥∥∥2
+

24a(N − 1)2

λ2TN2

N∑
i=1

T∑
τ=1

(
c2
∥∥∥x(i)

r,t−1 − x
(i)
r−1,τ−1

∥∥∥2 + ϵ2
)

+
24a(N − 1)

λ2TN2

N∑
j=1,j ̸=1

T∑
τ=1

(
c2
∥∥∥x(j)

r,t−1 − x
(j)
r−1,τ−1

∥∥∥2 + ϵ2
)

(b)

≤18Λ2 +
24ac2

λ2T

N∑
i=1

T∑
τ=1

∥∥∥x(i)
r,t−1 − x

(i)
r−1,τ−1

∥∥∥2 + 6O
(

1

Q

)
+ 12O

(
1

TQ

)
(96)

Finally, (b) follows from the results in (86) as well as the result in Lemma C.5, which finally concludes
our proof.
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Comparison and Discussion. By comparing the upper bounds in Prop. D.1, D.2, D.3, and D.4
above with the one in our Thm. 1, we can summarize certain interesting insights as follows, which, to
the best of our knowledge, has never been formally presented in the literature of federated ZOO.

(i) The gradient disparity of existing federated ZOO algorithms consistently has an additional
constant error term (i.e., Λ2) that can not be avoided. Remarkably, no additional constant error
term occurs in the gradient disparity bound of our (8).

(ii) The gradient disparity of existing federated ZOO algorithms typically can only be reduced at a
polynomial rate of Q whereas our (8) is able to achieve an exponential rate of reduction for its
gradient disparity.

(iii) FedProx achieves an even worse gradient disparity when compared with FedZO by introducing

an additional error term 3γ2

N

∑N
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥2. This may explain its worst convergence
in Sec. 6.

(iv) SCAFFOLD (Type I) and SCAFFOLD (Type II) are typically able to mitigate the impact of
client heterogeneity (i.e., G) by enlarging the impact of the gradient estimation error that is
resulting from the FD method applied in these two algorithms. This may lead to worse practical
performance when the gradient estimation error outweighs the client heterogeneity, as shown in
our Sec. 6.

(v) Although SCAFFOLD (Type II) is proposed to approximate SCAFFOLD (Type I) in the
original paper (Karimireddy et al., 2020a), SCAFFOLD (Type II) in fact has the advantage of
achieving a smaller gradient estimation error for gradient correction by increasing the number
of additional function queries (i.e., the termO

(
1

TQ

)
in Prop. D.4), which is however at the cost

of a likely increased input disparity (i.e., the term 24ac2

λ2T

∑N
i=1

∑T
τ=1

∥∥∥x(i)
r,t−1 − x

(i)
r−1,τ−1

∥∥∥2 in
Prop. D.4). Interestingly, federated ZOO usually prefers gradient correction of smaller gradient
estimation errors, as suggested by the empirical results in our Sec. 6. This explains the reason
why SCAFFOLD (Type II) usually outperforms SCAFFOLD (Type I) in federated ZOO,
which differs from the scenario of federated FOO and therefore highlights the importance of an
accurate gradient correction in federated ZOO.

D.2 CONVERGENCE OF EXISTING FEDERATED ZOO ALGORITHMS

To establish the proof for the convergence of existing federated ZOO algorithms, we introduce the
upper bound of gradient disparity 1

N

∑N
i=1 Ξ

(i)
r,t derived from our Prop. D.1, D.2, D.3, and D.4, into

Thm. C.1. Particularly, to ease our proof, we mainly prove the convergence of existing federated ZOO
algorithms when F is non-convex and β-smooth. Similar to our Thm. 2, we defineD0 ≜ ∥x0 − x∗∥2

and D1 ≜ F (x0)− F (x∗), and assume that 1
N

∑N
i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any x ∈ X .
Theorem D.1. FedZO enjoys the following convergence with a constant probability for some Λ > 0
when η ≤ 7

100βT ,

min
r∈[R+1)

∥∇F (xr)∥2 ≤ O
(
D1

ηRT
+Λ2 +G+

1

Q

)
.

Proof. Following the proof in our Appx. C.5, we have

min
r∈[R+1)

∥∇F (xr)∥2 ≤
13(F (x0)− F (x∗))

ηRT
+

13

ηRT

R∑
r=0

N∑
i=1

T∑
t=1

(
(0.14η + 1/(2βT ))

N
Ξ
(i)
r+1,t

+
1.02η2β

N

t∑
τ=1

St−τΞ
(i)
r+1,τ

)

≤ O
(
D1

ηRT
+

(
Λ2 +G+

1

Q

)
+

1

β

(
Λ2 +G+

1

Q

))
= O

(
D1

ηRT
+Λ2 +G+

1

Q

)
,

(97)
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which concludes our proof.

Remark. Of note, this convergence aligns with one provided in (Fang et al., 2022), which hence
supports the validity of our Thm. C.1 and Prop. D.1.

Discussion. Of note, the key to proving the convergence of other existing federated ZOO algorithms
(i.e., FedProx and SCAFFOLD) lies in the bounded client drift (i.e., Lemma C.11) when additional
input disparity is introduced in these algorithms. This in fact takes up a lot of space as shown in their
original paper and is also out of the scope of this paper. As a consequence, we leave out the proof of
the convergence of FedProx and SCAFFOLD in federated ZOO. Fortunately, the convergence (i.e.,
Thm. C.1) for the general optimization framework Algo. 1 implies that the key difference among the
convergence of various federated ZOO algorithms in fact lies in their difference of gradient disparity.
In light of this, based on our theoretical insights about the gradient disparity in different federated
ZOO algorithms (Sec. D.1), we are still able to present the following insights into the advantages of
our FZooS intuitively from the perspective of convergence:

(i) In general, the convergence of our FZooS in Appx. C.5 avoids the constant error term that can
not be omitted in existing federated ZOO algorithms. Note that even the error term caused by
RFF approximation (see Thm. 2) is in fact able to be mitigated by using a large number M of
random features.

(ii) Compared with the convergence of FedZO in Thm. D.1, the convergence of FZooS in Appx. C.5
demonstrates that the client heterogeneity can be effectively mitigated in FZooS and the gradient
estimation term enjoys a better reduction rate (i.e., exponential rate vs. polynomial rate).

(iii) The bounded client drift in Lemma C.11 for the framework Algo. 1 implies that the additional
input disparity from the FedProx in Prop. D.2, the SCAFFOLD (Type I) in Prop. D.3 and the
SCAFFOLD (Type II) in Prop. D.4 likely leads to a larger client drift and consequently results
in worse convergence compared with our FZooS, which has been empirically supported by the
results in our Sec. 6 and Appx. F.
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APPENDIX E EXPERIMENTAL SETTINGS

General Settings. The gradient correction length is set to be γ(i)r,t−1 = 1/t such that it decays with
the iteration of local updates t. We set the learning rate η = 0.01 and use Adam as the optimizer. As
we described in line 7-8 of Algo. 2 and in Sec. 4.2.1, at each local update iteration, we actively query
in the neighborhood of the input x(i)

r,t on each client. Each time we generate 100 values of x(i)
r,t + δ

where each dimension of δ′ is uniformly sampled from [−0.01, 0.01]. We select the top 5 values with
the highest uncertainty

∥∥∂(σ(i)
r,t)

2(x(i)
r,t + δ)

∥∥. We set the number of random features M = 10000
for the squared exponential kernel with a length scale of 1. Each dimension of the function input
is normalized to be within [0, 1] using the min-max normalization. The number of clients N , the
number of local updates T , and the number of rounds R vary for different experiments.

E.1 SYNTHETIC EXPERIMENTS

Let input x = [xj ]
d
j=1 ∈ [−10, 10]d, a(i) = [a

(i)
j ]dj=1, and b(i) = [b

(i)
j ]dj=1, then the quadratic

functions on each client i that has been applied in our Sec. 6.1 is in the form of

fi(x) =
1

10d

∑
j∈[d]

[(
1 + C

(
a
(i)
j −

1

N

))
x2j +

(
1 + C

(
b
(i)
j −

1

N

))
xj

]
+ 1

 (98)

where every [a
(i)
j ]Ni=1 and [b

(i)
j ]Ni=1 are independently randomly sampled from the same Dirichlet

distribution Dir(α) where α = 1
N · 1. So, given any C > 0, the final objective function remains

F (x) =
1

10d

∑
j∈[d]

[
x2j + xj

]
+ 1

 . (99)

Of note, C is the constant that controls the client shift in our federated setting. Specifically, a larger C
typically leads to larger client shifts whereas a smaller C usually enjoys smaller client shifts. We set
the number of clients to be N = 5. We set C ∈ {0.5, 5, 50} to vary the degree of heterogeneity (i.e.,
client shifts) among the local functions. The dimension of the function input is set to be d = 300. We
set the number of local updates to be T = 10 and the number of rounds to be R = 50.

E.2 FEDERATED BLACK-BOX ADVERSARIAL ATTACK

We set the number of clients N = 10 in this experiment. Before we conduct the adversarial attack,
we need to train N = 10 models on different datasets to get the heterogeneous local model functions.
To control the degree of heterogeneity among these functions, each time we sample P × 10 classes
among the 10 classes of the dataset (i.e., MNIST or CIFAR-10) and construct a dataset that only
contains data points from these P × 10 classes where P ∈ [0, 1]. Repeat the above procedures for 10
times to get 10 different datasets. Consequently, a higher P means that the degree of heterogeneity
among the local model functions is lower. As an example, when P = 1, all the local models of these
clients will be exactly the same since they are all trained on the dataset with all 10 classes data points.
For MNIST, we train a convolutional neural network (CNN) with two convolution layers followed by
two fully connected layers on each dataset. For CIFAR-10, we train a ResNet18 on each dataset.

After obtaining these 10 local model functions for the clients, we proceed to select 15 data points from
the test dataset. Specifically, we choose these data points among the ones that have been correctly
classified by all of the 10 local models. These selected data points will be used as the targets for our
attack. The goal is to find a perturbation x, such that the modified image z + x will be classified
incorrectly by the model of each client. The local function takes the perturbed image z + x as input
and outputs the difference between the logit of the true class and the highest logit among all other
classes except the true class. The condition for the attack to be successful is that the averaged output
of N = 10 models misclassify the image z + x. The success rate is the portion of images that are
successfully attacked among the selected 15 images. We set the number of local updates T = 10 and
the number of rounds to be R = 100.

47



Under review as a conference paper at ICLR 2024

5 10 15

0.00

0.25

0.50

Si
m

ila
rit

y

Client 1

5 10 15

Client 2

5 10 15
Iterations

Client 3

5 10 15

Client 4

5 10 15

Client 5

FedZO FedProx SCAFFOLD (1) SCAFFOLD (2) FZooS

Figure 4: Comparison of the cosine similarity between ĝ(i)r,t−1 and ∇F (xr,t−1) within one round
(with local iterations T = 20) among different federated ZOO algorithms, where the y-axis denotes
the cumulatively averaged similarity w.r.t. the x-axis (i.e., the iterations of local updates). Of note,
for every iteration, our (8) will actively query only 5 additional function values, which is much fewer
than the 20 additional queries in other existing algorithms based on FD methods.
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Figure 5: Comparison of the communication round and query efficiency between our FZooS and
other existing baselines on the federated synthetic functions with a varying number T of local updates.

E.3 FEDERATED NON-DIFFERENTIABLE METRIC OPTIMIZATION

Following the practice in (Shu et al., 2023), we first train a 3-layer MLP model on the training
dataset of Covertype (Dua and Graff, 2017) using the Cross-Entropy loss to obtain its fully converged
parameters θ∗. This is to simulate the federated learning (i.e., fine-tuning) of a pre-trained model with
other non-differentiable metrics. Similar to the setting in Appx. E.2, we construct N = 7 datasets by
sampling P×7 (P ∈ [0, 1]) classes from the test dataset each time. Again, the degree of heterogeneity
among the local functions of the clients is controlled by P . The higher the value of P , the more
heterogeneous local functions will be. In this experiment, we aim to find a perturbation x to the model
parameters θ∗, such that θ∗ + x will yield better performance for other non-differentiable metrics,
e.g., precision and recall, by using the distributed datasets on clients. Specifically, the local function
takes the perturbed model parameter as input and outputs the result of a non-differentiable metric
(e.g., 1− precision) that evaluates the performance of the model on the corresponding constructed
dataset. We set T = 10 and R = 50. As in (Shu et al., 2023), we conduct experiments on four
non-differentiable metrics, namely precision, recall, Jaccard score, and F1 score.

APPENDIX F MORE RESULTS

F.1 SYNTHETIC EXPERIMENTS

In this section, we first compare the gradient disparity of existing federated ZOO algorithms and
our FZooS algorithm using the quadratic functions (see Appx. E.1) with d = 300, N = 5, and
C = 5. The results are in Fig. 4, showing that our proposed adaptive gradient estimation is indeed
able to realize significantly improved estimation quality than other existing methods while requiring
fewer function queries. This consequently verified the theoretical insights of Thm. 1. Interestingly,
we notice that the quality of our (8) decreases when the number of iterations for local updates is
increased, which is likely because the performance of our gradient surrogates suffers when the input x
for gradient estimation is far away from the historical function queries (i.e., few function information
at x can be used for predictions), as theoretically supported in our Appx. C.3. This also indicates
the importance of active queries in our FZooS for consistently high-quality (8) by collecting more
function information in the neighborhood of the potential updated inputs within the local updates.
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Figure 6: Comparison of the communication round efficiency of our FZooS (a) with a varying
number M of random features and (b) without adaptive gradient correction. Of note, γr,t−1 = 1
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Figure 7: Comparison of the success rate achieved by FZooS and other existing federated ZOO
algorithms on CIFAR-10 under a varying number T of local updates.

In addition to the comparison using a quadratic function that is under varying heterogeneity through
different C in our Fig. 1, we present the comparison using a quadratic function that is under a varying
number T of local updates in Fig. 5. Remarkably, our FZooS still considerably outperforms other
baselines in terms of both communication round efficiency and query efficiency. Interestingly, Fig. 5
shows that a larger T usually improves the communication round efficiency of both our FZooS, as
theoretically supported in our Thm. 2. However, such an improvement is usually smaller than the
increasing scale of T . This also aligns with our Thm. 2 since our Thm. 2 demonstrates that the
increasing T fails to mitigate the impact of client heterogeneity. That is, term G in Thm. 2 can not be
reduced when T is increased.

We finally present the comparison of the communication round efficiency of our FZooS (a) with a
varying number M of random features and (b) without adaptive gradient correction under varying
client heterogeneity in Fig. 6. Of note, in Fig. 6, we only apply M = 1000 random features to
facilitate a clear and direct comparison. Interestingly, Fig. 6(a) demonstrates that our FZooS of a
larger number M of random features generally is preferred for an improved communication round
efficiency when the client heterogeneity (i.e., C) is increased, which thus aligns with the theoretical
insights from our Thm. 2 in Sec. 5.2. Nevertheless, when client heterogeneity is small (e.g., C ≤ 5.0),
a moderate number of random features can already produce compelling and competitive convergence.
Meanwhile, Fig. 6(b) illustrates that, in general, both our adaptive gradient correction vector and
adaptive gradient correction length are essential for our FZooS to achieve remarkable convergence in
practice. Surprisingly, our FZooS with fixed gradient correction outperforms its counterpart with
adaptive gradient correction when client heterogeneity is large (i.e., C = 50). This is likely because
a small number of random features (i.e., M = 1000) are applied when C = 50, making adaptive
gradient correction generally inaccurate for a long horizon of local updates since the quality of our
gradient surrogates decays w.r.t. the horizon (i.e., iterations) as shown in Fig. 4. This can also be
verified from Fig. 6(a). On the contrary, the fixed gradient correction is already of reasonably good
quality due to the smoothness of the global function F (i.e., its gradients are continuous), which
consequently can provide consistently good gradient correction along a long horizon of local updates
when client heterogeneity is large (i.e., C = 50).

F.2 FEDERATED BLACK-BOX ADVERSARIAL ATTACK

In addition to depicting the success rate of attacks on CIFAR-10 in Fig.2, which accounts for varying
client heterogeneity, we also present the success rate of attacks on CIFAR-10 considering a variable
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Figure 8: Comparison of the success rate in federated black-box adversarial attack achieved by
FZooS and other existing federated ZOO algorithms on MNIST under varying client heterogeneity
(controlled by P ∈ [0, 1], a larger P implies smaller client heterogeneity) and a varying number T of
local updates. The x and y-axis are the number of rounds/queries and the corresponding success rate
(higher is better).
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Figure 9: Comparison of the non-differentiable metric optimization between FZooS and other
existing federated ZOO algorithms under a varying number T of local updates. Note that the y-axis
is (1− precision)× 100% and each curve is the mean ± standard error from five independent runs.

number of local updates, as showcased in Fig.7. Furthermore, we provide an illustration of the attack
success rate on MNIST, considering both varying client heterogeneity and a variable number of local
updates, as presented in Fig. 8. Notably, our proposed algorithm consistently demonstrates enhanced
efficiency in terms of communication rounds when compared to other baselines, across different
levels of client heterogeneity and varying numbers of local updates.

F.3 FEDERATED NON-DIFFERENTIABLE METRIC OPTIMIZATION

Besides the non-differentiable metric optimization result for the precision score that is under a varying
heterogeneity through different P in Fig. 3, we also report the corresponding result under a varying
number T of local updates in Fig. 9. Moreover, we provide results for recall, F1 score, and Jaccard as
the non-differentiable metric in Fig. 10, Fig. 11, and Fig. 12 respectively. Notably, our FZooS still
consistently outperforms other baselines in terms of both communication round efficiency and query
efficiency when under the comparison of varying client heterogeneity and a varying number of local
updates with different non-differentiable metrics.
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Figure 10: Comparison of the non-differentiable metric optimization between FZooS and other
existing federated ZOO algorithms under varying client heterogeneity (controlled by P ∈ [0, 1], a
larger P implies smaller client heterogeneity) and a varying number T of local updates. Note that the
y-axis is (1 − recall) × 100% and each curve is the mean ± standard error from five independent
runs.
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Figure 11: Comparison of the non-differentiable metric optimization between FZooS and other
existing federated ZOO algorithms under varying client heterogeneity (controlled by P ∈ [0, 1], a
larger P implies smaller client heterogeneity) and a varying number T of local updates. Note that the
y-axis is (1− F1 score)× 100% and each curve is the mean ± standard error from five independent
runs.
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Figure 12: Comparison of the non-differentiable metric optimization between FZooS and other
existing federated ZOO algorithms under varying client heterogeneity (controlled by P ∈ [0, 1], a
larger P implies smaller client heterogeneity) and a varying number T of local updates. The y-axis is
(1− Jaccard score)× 100% and each curve is the mean ± standard error from five independent runs.
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