
Transfer Rule Learning over Large Knowledge Graphs

ABSTRACT
Logical rules have been widely used for expressing schema knowl-
edge in various practical applications. It is infeasible to handcraft
rules from large knowledge graphs (KGs) and thus many meth-
ods have been proposed for learning rules automatically from KGs.
However, it is largely ignored how to extract rules in a (target) KG
from rules that already exist in some other (source) KGs. In this pa-
per, we propose a framework for KG rule learning based on transfer
learning. A major challenge for establishing such a framework is
that a suitable alignment mechanism is required for mapping cer-
tain subgraph structures between predicates in the source KG and
the target KG. Hence, our framework provides a new method for
predicate mapping based on graph-structural similarity. The pro-
posed framework can be used as a standalone rule learner but more
importantly, it paves a new way for enhancing the state-of-the-art
rule learners for large KGs. Extensive experiments are conducted
to evaluate the new approach to rule learning, which shows that
rules in smaller KGs can be effectively transferred to a large KG.
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1 INTRODUCTION
Knowledge graphs (KGs) offer a flexible and powerful way to rep-
resent background knowledge, by organising objects of interest as
entities and interconnecting them through various relations (a.k.a.
predicates) [14]. A KG can be represented as a set of triples of the
form (subject, predicate, object), where subject and object are entities
associated by the predicate, such as (M. Jordan, bornIn,New York)
saying M. Jordan was born in New York. Numerous KGs have been
constructed in academia and industry, such as YAGO [28], DBpe-
dia [1], Wikidata [32], and NELL [5], which have been adopted
as essential components for intelligent Web search, recommender
systems, and question answering.

Due to the large scales of KGs and diversity of knowledge con-
tained in them, reasoning over KGs is a challenging task. Rules can
represent higher-order patterns of KGs, and have been widely used
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Figure 1: Structural patterns and predicate mappings for rule
transfer.

for expressing schema knowledge in various practical reasoning
systems. Especially, rules can be used to derive new information in
a KG, which is useful for building and expanding KGs, including
providing solutions to explainable link prediction [8, 10, 19, 22]. For
example, a rule of the form

0.8 : 𝑏𝑜𝑟𝑛𝐼𝑛(𝑥,𝑦) ∧ 𝑖𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦 (𝑦, 𝑧) → ℎ𝑎𝑠𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 (𝑥, 𝑧) (1)

says a person 𝑥 born in a city 𝑦 of a country 𝑧 is likely to be a
national of 𝑧 (with a confidence degree of 0.8). If we know that M.
Jordan was born in New York, which is a city in the United States,
then we can derive that M. Jordan is a national of the United States
(with a relatively high confidence).

It is infeasible to handcraft rules from large KGs and thus many
methods have been proposed for automatically learning rules from
KGs [7, 8, 10, 19, 22, 23, 25, 33]. A basic idea in these methods is to
exhaustively search useful structural patterns over the entire KG,
which is computationally expensive. We call such methods standard
rule learners, i.e., a rule learner that does not use transfer learning.
However, it is largely ignored how to extract rules in a (target) KG
from rules that already exist in some other (source) KGs. That is,
to transfer existing rules from a source KG K ′ to a (usually large)
target KG K by setting up an alignment between the predicates of
K ′ andK . Yet this idea may not work if the alignment betweenK ′

and K fails to capture certain subgraph structures in the KGs.
Consider the source and target KGs (respectively, on the left

and right) in Figure 1. Based on the meanings of these entities and
predicates, we could have an alignment of the predicates in the KGs
as indicated by the arrows between the two rules. As a result, the
rule (1) could be transferred to a rule

ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛(𝑥,𝑦) ∧ 𝑖𝑛𝑁𝑎𝑡𝑖𝑜𝑛(𝑦, 𝑧) → 𝑖𝑠𝐶𝑖𝑡𝑖𝑧𝑒𝑛(𝑥, 𝑧),

which is clearly unintuitive. For example, Jazz originated in Louisiana
and Louisiana is in the USA, then the rule would derive that Jazz
is a citizen of the USA. This example shows that a semantic-based
predicate alignment does not always work in rule transfer and thus
a suitable framework for transfer rule learning is required.

Yet, to our best knowledge, transfer rule learning over KGs has
not received much attention, with few exceptions [21, 29]. These
approaches use existing KG-embedding models to capture subgraph
structures in KGs to transfer rules of source KGs to the target KG.
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However, such KG-embedding models often focus on entities and
can easily be impacted by the (often significantly) different entity
distributions between the source and target KGs. On the other hand,
to transfer rules, capturing the structural patterns of how predicates
correlate to each other (i.e., connected via entities) is more crucial.
For example, in Figure 1, predicates 𝑏𝑜𝑟𝑛𝐼𝑛 and ℎ𝑎𝑠𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 in
the source KG are correlated, whereas ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛 and 𝑖𝑠𝐶𝑖𝑡𝑖𝑧𝑒𝑛 in
the target KG are not.

In this paper, we first propose a novel predicate mapping method
to capture certain subgraph structural information that is essential
for rule transfer. Our method is based on a new predicate-centric
graph representation and a graph embedding model GDV [12].
While KG embeddings have been extensively studied to capture
structural features of KGs, we note that existing KG embeddings
are centred around individual entities and fail to naturally meet the
requirement of characterising predicate correlations. To remedy
this shortcoming, for each predicate 𝑝 , we construct a new graph
called predicate-correlation graph𝐺𝑝 from the given KG. The basic
idea is to represent predicates related to 𝑝 as vertices and their
correlations as edges in 𝐺𝑝 . Such graphs capture critical structural
features for rule transfer and are invariant to entity distributions.
Then, the embedding of 𝑝 is defined as the GDV matrix of 𝐺𝑝 . In
this way, the required graph-structural similarity is captured.

We develop a transfer rule learner TRuLer (TransferRuleLearner)
based on the new predicate mapping. In several different settings,
we evaluate it with state-of-the-art rule learners including an ex-
isting transfer rule learners. Our experiments show that TRuLer is
capable of learning a significant amount of rules in a reasonable
timeframe, making it a strong competitor to standard rule learners
such as AMIE3 [16]. The quality of transferred rules is also high and
can be used to complement the state-of-the-art rule learners. We
also show that TRuLer can effectively transfer rules with varying
sources and across different domains.

2 RELATEDWORK
In this section, we discuss existing works that are closely related to
the paper.

2.1 Rule Learning
Existing rule learning approaches for large KGs mostly fall into
three major groups, path-based [7, 19, 23], ILP-based [8, 10], and
neural-based [9, 22, 24, 25, 33]. Path-based approaches learn rules
that resemble paths in KGs. Paths in KGs are considered important
features for KG predictions, for instance, the PRA algorithm [17]
predicts whether two entities are connected by a predicate by ex-
ploring paths between them through a randomwalk. AnyBURL [19]
explores paths in KGs to generate rules. As examining all paths
in large KGs is infeasible, AnyBURL adopts an anytime algorithm
(i.e., it needs to be configured when to stop) and often can only
explore a (small) portion of potential paths in a reasonable time.
Based on Inductive Logic Programming (ILP) research, AMIE and its
extensions [10, 16] traverses the rule space through rule refinement
and applies several heuristics to reduce the search space. While
it can perform an exhaustive search over small or medium-sized
KGs and produce high-quality rules, such a search is quite expen-
sive for large-scale KGs. Hence, methods are proposed to generate

candidate rules through neural networks. In particular, RLvLR [22]
generates candidate rules through latent representations (called
embeddings) produced by neural networks and uses a KG sampling
method to reduce the computation cost for embeddings. It is the
first embedding-based rule learner that can scale over large KGs
Wikidata and DBpedia. Some recent works also focus on rule-based
link prediction using neural networks [9, 24, 25, 33]. For example,
RNNLogic [24] treats logical rules as latent variables for training
rule generators and inference predictors, and RLogic [9] recursively
splits rule paths into atomic models and proposes a rule-scoring
function based on predicate representation to filter rules. Many of
these approaches cannot handle large KGs due to the expensive
training of neural networks.

Transfer rule learning over KGs has been recently studied [21,
29], which utilises embeddings tomap predicates between (multiple)
source KGs and the target KG. Due to the high cost of computing
the embeddings and mappings, they are only suitable for relatively
small KGs and their accuracy is not high. In this paper, we aim to
tackle these challenges by proposing a novel transfer rule learner
that is scalable and has competitive accuracy to major KG rule
learners.

2.2 Predicate Alignment
KG alignment aims to discover entities (or predicates) with different
names in two different KGs that essentially refer to the same objects
(resp., relationships). Most ontology alignment techniques rely on
a large number of alignment seeds to guide the alignment process,
known as supervised ontology alignment methods [2, 15, 30, 36].
Recently, unsupervised ontology alignment methods have become
increasingly popular, such as [18, 20, 27, 31]. For example, SEU [18]
uses word vectors and character vectors of entity or relationship
names to align them, relying entirely on the lexical-semantic infor-
mation of the ontology. FGWEA [31] combines ontology semantics
and KG structural features, and aligns them using the fused Gromov
Wasserstein (FGW) distance. These approaches focus on seman-
tic similarities (i.e., similar meaning) of the predicates, but cannot
fully capture graph-structural similarities which are critical for
rule learning. Unlike these approaches, we use predicate embed-
dings to effectively capture and efficiently measure graph-structural
similarities to map predicates between KGs.

3 PRELIMINARIES
In this section, we briefly introduce some basics of knowledge
graphs and rule learning, as well as fixing some notations to be
used later.

3.1 Knowledge Graphs and Rules
A knowledge graph (KG) is a directed multi-relational graph, often
expressed as a set of triples of the form (𝑒, 𝑝, 𝑒 ′), where 𝑒, 𝑒 ′ are
entities and 𝑝 is a predicate. Let E and P be respectively the sets
of entities and predicates in the KG K . Following the tradition in
knowledge bases, we denote a triple a triple (𝑒, 𝑝, 𝑒 ′) as 𝑝 (𝑒, 𝑒 ′),
and also refer to it as a fact in the KG. For a predicate 𝑝 , 𝑝− denotes
its inverse, i.e., triple 𝑝− (𝑒 ′, 𝑒) is equivalent to 𝑝 (𝑒, 𝑒 ′). Let P∗ =

P ∪ {𝑝− | 𝑝 ∈ P}.
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There has been much interest in learning first-order Horn rules
from KGs [8, 10, 22, 23]. A first-order Horn rule is of the form

𝐵1 ∧ 𝐵2 ∧ · · · ∧ 𝐵𝑛 → 𝐻, (2)

where 𝐻 (resp., each 𝐵𝑖 for 1 ≤ 𝑖 ≤ 𝑛) is of the form 𝑝 (𝑡, 𝑡 ′) with
𝑝 ∈ P (resp., 𝑝 ′(𝑡, 𝑡 ′) with 𝑝 ′ ∈ P∗) and each of the 𝑡, 𝑡 ′ is a variable
or an entity. 𝐻 is the head of the rule and the set {𝐵1, 𝐵2, · · · , 𝐵𝑛}
is the body of the rule. The length of the rule is 𝑛.

The plausibility of candidate rules is commonly assessed using
themetrics support, standard confidence, and head coverage [8, 22], or
their variants [10]. To assess the plausibility of candidate rules, for
a rule 𝑟 of the form (2) with its head being 𝑝 (𝑡, 𝑡 ′), 𝑖𝑛𝑠𝐻 (𝑟 ) consists
of all the pairs of entities 𝑒, 𝑒 ′ ∈ E such that 𝑝 (𝑒, 𝑒 ′) occurs in the
KG. Similarly, 𝑖𝑛𝑠𝐵 (𝑟 ) consists of all the pairs of entities 𝑒, 𝑒 ′ ∈ E
such that there is a way to substitute the variables in 𝑟 mapping 𝑡, 𝑡 ′
to 𝑒, 𝑒 ′ and that all the substituted body atoms of 𝑟 occur in the KG.
Then, the support of 𝑟 is defined as |𝑖𝑛𝑠𝐻 (𝑟 ) ∩ 𝑖𝑛𝑠𝐵 (𝑟 ) | [10]. That is,
the support of 𝑟 is defined as the number of entity pairs that satisfy
both the head and the body of 𝑟 . The standard confidence (SC) and
head coverage (HC) of 𝑟 are defined as follows

𝑠𝑐 (𝑟 ) = |𝑖𝑛𝑠𝐻 (𝑟 ) ∩ 𝑖𝑛𝑠𝐵 (𝑟 ) |
|𝑖𝑛𝑠𝐵 (𝑟 ) |

and ℎ𝑐 (𝑟 ) = |𝑖𝑛𝑠𝐻 (𝑟 ) ∩ 𝑖𝑛𝑠𝐵 (𝑟 ) |
|𝑖𝑛𝑠𝐻 (𝑟 ) |

Hence, SC is the normalisation of support through the number of
entity pairs that satisfy the body, while HC is the normalisation of
support through the number of entity pairs that satisfy the head.
The higher the values are the more plausible the rule is.

Link prediction is the task that given an entity 𝑒 ∈ E and a prop-
erty 𝑝 ∈ P∗, to predict entities 𝑒 ′ such that 𝑝 (𝑒, 𝑒 ′) is plausible.
Unlike embedding-based approaches that rank the possible enti-
ties 𝑒 ′ via scoring functions, a rule-based approach tries to derive
plausible facts 𝑝 (𝑒, 𝑒 ′) by applying the learned rules to the existing
facts in the KG. The ranking of the derived fact is obtained from
the confidence degrees of the rules deriving it.

4 OUR APPROACH
In this section, we present a new transfer rule learning model
TRuLer (Transfer Rule Learner). The basic idea is to adapt (or
transfer) the rules from the source domain to form rules of the
target domain. Our model consists of four major components:
(1) predicate-correlation graph (PCG) construction, where we con-
struct graphs centred around predicates based on their structural
features, (2) predicate embedding, where embeddings of predicates
are generated from PCGs, (3) predicate mapping, where we align
predicates in the source and target KGs according to predicate em-
beddings, and (4) rule transfer and validation, where we transfer
rules from the source KG to the target KG and validate the trans-
ferred rules.

Figure 2 shows an overview of our approach. Consider a source
KG S with a collection of source rules RS , and a target KG T
(with an empty set of rules). RS can be crafted by the user for the
source KG S or learned from an off-the-shelf rule learner, such
as AnyBURL [19]. To transfer the source rules to the target, we
construct a mapping M from the set of predicates in S, denoted
P, to the set of predicates in T , denoted Q. This is achieved by
constructing a predicate-correlation graph (PCG) for each predicate
and using graph embeddings to align predicates between P and Q.

Figure 2: An overview of our approach.

However, existing models of embedding for KGs do not naturally
meet this requirement and thus, we introduce a new embedding
based on graph degree vectors (GDV) [12]. Then we will be able to
transfer rules from the source domain to the target domain.

The technical details in each of the modules will be explained in
the rest of this section.

4.1 Local Predicate-Correlation Graphs
As discussed previously, in the setting of transfer rule learning
we need a predicate mapping that preserves certain graph pat-
terns between the source and target KGs. Such a structural pat-
tern aims to provide a template for candidate rules. Most existing
methods of ontology/KG alignment and mapping are designed to
establish relationships between lexically or semantically similar
predicates [20, 27] but are not suitable for mapping predicates with
similar local graph structures. For example, they can map the pred-
icate country in a KG to the predicate nation in another KG as they
are synonyms, yet such a mapping is not necessarily useful for rule
transfer as the two predicates may occur in very different graph
structures. On the other hand, as Figure 3 shows, the predicates
country and release_medium, although semantically very different,
may play similar structural roles in their respective KGs and thus
occur in rules of similar shapes.

Consider a rule

𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑟 (𝑥, 𝑥1) ∧𝑚𝑎𝑛𝑢𝑓 𝑎𝑐𝑡𝑢𝑟𝑒𝑟 (𝑥2, 𝑥1)
∧ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑥2, 𝑦) → 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑥,𝑦). (3)

which says if 𝑥 is the designer of product 𝑥1, 𝑥2 is the manufacturer
of 𝑥1, and 𝑥2 is in country 𝑦, then 𝑥 is in the same country 𝑦. The
graph patterns captured by the rule include, for instance, predicates
designer and manufacturer being correlated via instances of 𝑥1 and
designer and country being correlated via instances of 𝑥 .

To capture such correlations between predicates, inspired by [6],
we define two predicates 𝑝1 and 𝑝2 in KG K to be correlated if they
satisfy one of the six conditions for some entities 𝑒1, 𝑒2 and 𝑒3 in
K :

• tail-head (TH): 𝑝1 (𝑒1, 𝑒2) and 𝑝2 (𝑒2, 𝑒3) are inK with 𝑒1 ≠ 𝑒3;
• head-tail (HT): 𝑝1 (𝑒1, 𝑒2) and 𝑝2 (𝑒3, 𝑒1) are inK with 𝑒1 ≠ 𝑒3;
• head-head (HH): 𝑝1 (𝑒1, 𝑒2) and 𝑝2 (𝑒1, 𝑒3) are inK with 𝑒2 ≠
𝑒3;

• tail-tail (TT): 𝑝1 (𝑒1, 𝑒2) and 𝑝2 (𝑒3, 𝑒2) are in K with 𝑒1 ≠ 𝑒3;
• loop (LP): 𝑝1 (𝑒1, 𝑒2) and 𝑝2 (𝑒2, 𝑒1) are in K ;
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Figure 3: An example of structural similarity captured by PCGs.

• parallel (PL): 𝑝1 (𝑒1, 𝑒2) and 𝑝2 (𝑒1, 𝑒2) are in K .

We say that 𝑝1 is an 𝜖-neighbour of 𝑝2 for 𝜖 ∈ {𝑇𝐻,𝐻𝑇,𝐻𝐻,𝑇𝑇 , 𝐿𝑃 ,
𝑃𝐿}, and the support of such a relationship is the number of different
pairs of the corresponding facts defined as above. The predicate-
correlation graph (PCG) of a KG K is defined as a directed graph
whose vertices consist of all the predicates in the KG, and there is
an edge from 𝑝1 to 𝑝2 with the label {𝜖 : 𝑛𝜖 } if 𝑝1 is an 𝜖-neighbour
of 𝑝2 with a support 𝑛𝜖 . Note that support values are not considered
in [6] but are useful in our case.

A global PCG for the whole KG is usually too large to be effi-
ciently constructed. Hence, we introduce the notion of local PCGs.
That is, for a predicate 𝑝 , we extract a module of the KG that cap-
tures the correlation information on 𝑝 , using the sampling method
in [22], and then build the local PCG 𝐺𝑝 as a module of the given
KG, called the PCG for 𝑝 . For example, Figure 3 shows the mod-
ules for predicates country and release_medium together with the
corresponding PCGs.

Besides obtaining PCGs from (modules of) KGs, we can also
construct PCGs directly from a collection of rules. The advantage
of this rule-based construction for local PCGs is that rules from the
source can be transferred to the target without accessing specific
triples. This is useful in some scenarios. For instance, due to con-
fidentiality concerns, certain facts in a KG may not be accessible.
For a predicate 𝑝 , suppose R𝑝 consists of rules with 𝑝 occurring in
their heads. Note that in each rule, the predicates are correlated to
each other in a similar way as in KGs, being connected via variables
instead of entities. Consider rule (3), the support of the TT corre-
lation between designer and manufacturer can be approximated as
|𝑖𝑛𝑠𝐵 (𝑟 ) |, whereas that for the HH correlation between designer
and country can be |𝑖𝑛𝑠𝐻 (𝑟 ) ∩ 𝑖𝑛𝑠𝐵 (𝑟 ) |.

The PCG of predicate 𝑝 obtained from R𝑝 , also denoted 𝐺𝑝 ,
can be defined in a similar way as for a KG, by replacing the en-
tities 𝑒1, 𝑒2, 𝑒3 in the definition with variables 𝑥1, 𝑥2, 𝑥3. For each
𝜖-neighbour 𝑝1 of 𝑝2, the support is

∑
𝑟 ∈R𝑝

∑
1≤𝑖≤𝑛𝜖𝑟 𝑒𝑖 , where 𝑛

𝜖
𝑟

is the number of 𝜖-correlation between 𝑝1 and 𝑝2 in 𝑟 and 𝑒𝑖 is
the support, defined as 𝑒𝑖 = |𝑖𝑛𝑠𝐵 (𝑟 ) | if both 𝑝1 and 𝑝2 occur
in the body of 𝑟 , and otherwise if one of them is in the head,
𝑒𝑖 = |𝑖𝑛𝑠𝐻 (𝑟 ) ∩ 𝑖𝑛𝑠𝐵 (𝑟 ) |. The PCG R𝑝 of 𝑝 can be seen as an ap-
proximation of that obtained from the KG. Such an approximation

is useful as it directly reflects the graph pattern information repre-
sented in the rules to be transferred and its computation is often
much more efficient compared to that from the (modules of) KG.

4.2 Predicate Embedding
To develop a suitable mechanism for transferring rules from a
source to the target, we need an embedding method that can charac-
terise certain topological properties of predicate-correlation graphs.
Such an embedding method needs to be different from existing KG
embedding methods in the following aspects. First, existing KG
embedding methods need to embed each entity in the KG, and the
predicate embeddings are obtained from entity embeddings (via
loss functions defined from KG triples). For rule transfer, we only
need to embed predicates and their embeddings should capture
how their graph-structural features, i.e., how they correlate with
other predicates. Also, while KGs often have a huge number of
entities, the numbers of predicates are often much smaller. Hence,
predicate-correlation graphs are often significantly smaller than
the original KGs. Moreover, the number of predicates occurring in a
rule is bounded by the rule length. To transfer rules of a maximum
length 𝑙 , our embeddings need to capture topological similarities
between sub-graphs (in predicate-correlation graphs) with maxi-
mum 𝑙 vertices. Finally, unlike other graph embeddings, our graph
embedding pays less attention to the vertex degrees but focuses on
the topological positions of vertices in the sub-graphs.

Based on these considerations, our embedding method is based
on the framework of graphlet degree vectors (GDVs) [12, 34], where
vertex features are modelled by all the graphlets where the vertex
occurs. In a large graph 𝐺 , for a subset 𝑉 of the vertices in 𝐺 , a
graphlet induced by 𝑉 is a subgraph of 𝐺 whose vertices are 𝑉
and whose edges are all those in 𝐺 with both endpoints being in 𝑉 .
For example, the subgraph with 3 vertices designer , manufacturer ,
and country in Figure 3 form a graphlet. As existing rule learners
typically learn rules with lengths smaller than or equal to 5, GDV
graphlets with at most 5 vertices are sufficient to capture the graph
patterns we need. Within a graphlet, orbits are different topological
positions that a vertex can occur in the graphlet. For example, for a
graphlet with 2 vertices, there is only one orbit, indexed as orbit-
0, as the topological positions of both vertices are identical; for a
graphlet with 3 vertices forming a chain, there are two orbits, one
on the endpoint, indexed orbit-1, and one in the middle, indexed
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orbit-2; and for a triangle-shaped graph with 3 vertices, there is
only one orbit indexed orbit-3.

To learn rules with lengths smaller than or equal to 5, we consider
graphlets with up to 5 vertices. There are 29 topologically different
graphlets with at most 5 vertices, and totally 73 possible orbits
in these graphlets. As a result, the GDV of a vertex in a graph is
represented as a vector of 73 dimensions, where the 𝑖-th dimension
records the number of graphlets in which the vertex is found in
orbit-𝑖 . For example, for a triangle-shaped graph with 3 vertices,
each vertex appears in orbit-3 only once (i.e., one graphlet which
is the whole graph), so the fourth component of its GDV vector
is 1. Also, each vertex is connected to the other two vertices, so
it appears in orbit-0 twice (i.e., in two graphlets), and the first
component of its GDV vector is 2. So each vertex has a GDV of the
form [2, 0, 0, 1, 0, . . . , 0].

For each PCG 𝐺 , we can obtain a GDV embedding G ∈ R𝑛×𝑑
by stacking the vertex vectors, from the simplified graph of 𝐺
by omitting the labels of the edges in 𝐺 , where 𝑛 is the number
of vertices in 𝐺 and 𝑑 is the dimension of a GDV. The labels of
the edges are stored in a tensor 𝛼 and processed later. Let G[𝑖, 𝑗]
(1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑑) denote the value indexed by 𝑖 and 𝑗 in G.
Due to the (potentially) significant difference between the sizes of
the source and the target PCGs, the GDV embeddings generated
from them need to be normalized as follows,

Ĝ[𝑖, 𝑗] = G[𝑖, 𝑗] −min(G[·, 𝑗])
max(G[·, 𝑗]) −min(G[·, 𝑗]) . (4)

Let g𝑖 be the 𝑖-th row of Ĝ, and it encodes the topological infor-
mation of the 𝑖-th vertex 𝑣𝑖 in 𝐺 , without labels of the edges. To
capture the labels of the edges, 𝛼𝑖, 𝑗,𝜖 (1 ≤ 𝑖, 𝑗 ≤ 𝑛) denotes the
support for the 𝜖-neighbour 𝑣 𝑗 of vertex 𝑣𝑖 in 𝐺 .

Inspired by R-GCN [26], we aggregate the encoding of neigh-
bours to form the embedding of each vertex. Let h0

𝑖
= g𝑖 , and

h𝑘𝑖 = h𝑘−1𝑖 + 𝜎
(∑︁
𝜖

∑︁
𝑗 ∈𝑁𝑖,𝜖

𝛼𝑖, 𝑗,𝜖∑
𝑗 ∈N𝑖,𝜖

𝛼𝑖, 𝑗,𝜖
· h𝑘−1𝑗

)
(5)

where N𝑖,𝜖 consists of the 𝜖-neighbours of vertex 𝑖 in 𝐺 and 𝜎
is an element-wise activation function. While various activation
functions can be used here, we use ReLU in our model for its high
computational efficiency.

We define p𝑖 = h0
𝑖
⊕h1

𝑖
⊕· · ·⊕h𝐾

𝑖
be the embedding of predicate 𝑝𝑖 ,

where ⊕ is vector concatenation and 𝐾 is the number of iterations.
The similarity between two predicates 𝑝 and 𝑞 can be measured by

𝑠𝑖𝑚(𝑝, 𝑞) = 𝑒𝑥𝑝 [− ∥p − q∥22] . (6)

4.3 Predicate Mapping and Rule Transfer
For predicate mapping, a naive method that calculates the similarity
between each pair of predicates in respectively the source and target
KGs is rather time-consuming and inefficient. For computation
efficiency, we adapt the embedding-based graph alignment module
of REGAL [11] to align the source and target predicates. Unlike
REGAL, which uses simple vertex degrees for graph embeddings
and cannot reflect the required structural similarity, we use our
predicate embeddings instead. Following REGAL, our predicate
alignment method uses a special data structure called k-d tree and
an efficient nearest neighbour algorithm. We store the embedding

of each predicate in the source KG S in the k-d tree, and then
traverse the predicates in the target T and evaluate the similarity
between their embeddings in the k-d tree.

The predicate alignment computes a mappingM between P and
Q, where each predicate 𝑝 ∈ P is mapped to at least one predicate
𝑞 ∈ Q based on the similarity score 𝑠𝑖𝑚(𝑝, 𝑞). If 𝑝 is mapped to 𝑞
inM, it is denoted (𝑝, 𝑞) ∈ M. It is possible for source predicates
to be mapped to a few “popular” target predicates, which would
lead to a large number of repetitive rules after the transfer. Hence,
we use a mechanism to ensure the target predicates are evenly
distributed in the mappingM.

Given a collection of source rulesRS and a target KGT , the rules
in RS can be transferred to T via the mapping M. For example,
from each source rule of the form 𝑝1 (𝑥1, 𝑦1) ∧ 𝑝2 (𝑥2, 𝑦2) ∧ · · · ∧
𝑝𝑛 (𝑥𝑛, 𝑦𝑛) → 𝑝 (𝑥,𝑦), we can obtain a candidate rule in the target
domain 𝑞1 (𝑥1, 𝑦1) ∧ 𝑞2 (𝑥2, 𝑦2) ∧ · · · ∧ 𝑞𝑛 (𝑥𝑛, 𝑦𝑛) → 𝑞(𝑥,𝑦) with
(𝑝, 𝑞) ∈ M and (𝑝𝑖 , 𝑞𝑖 ) ∈ M for 1 ≤ 𝑖 ≤ 𝑛. The candidate rules
obtained from rule transfer can still contain noises and thus will be
validated on the target KG through their SC and HC scores.

This method is specified in Algorithm 1.

Algorithm 1 Transfer Rule Learning
Input: A set of source rules RS and a set of predicates P, a target

KG T with a set of predicates Q
Output: A set of rules RT on Q
1: for all 𝑝 ∈ P do
2: 𝐺𝑝 := PCG(R𝑝 )
3: p := embedding(𝐺𝑝 )
4: end for
5: for all 𝑞 ∈ Q do
6: K𝑞 := sampling(T , 𝑞);
7: 𝐺𝑞 := PCG(K𝑞)
8: q := embedding(𝐺𝑞)
9: end for
10: M := mapping({p}𝑝∈P , {q}𝑞∈Q )
11: 𝑅T := transfer(RS,M)
12: 𝑅T := validate(RT )
13: return RT

In Algorithm 1, lines 1 – 9, a rule-oriented embedding is gener-
ated for each source predicate and each target predicate, through
sampling and PCG construction. Then, in line 10, the mapping is
constructed. Finally, in lines 11 – 12, the source rules are transferred
to the target via the mappings, and the candidate rules are validated
by their SC and HC over the target KG.

5 EXPERIMENTS
We conducted extensive experiments to evaluate TRuLer under
various settings and compare it with existing transfer rule learners
and standard rule learners. In particular, we evaluate the scalabil-
ity of TRuLer, i.e., whether our transfer rule learning can handle
large-scale KGs as existing rule learners like AMIE3, as well as the
quality of rules learned by TRuLer. Our experiments are designed
to validate the following claims:
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A. TRuLer demonstrates superior scalability compared to the
existing transfer rule learner TRL and many standard rule
learners.

B. The accuracy of TRuLer for link prediction is competitive
compared to existing rule learners, and transferred rules
can be used to complement state-of-the-art rule learners to
further enhance their link prediction accuracy.

C. TRuLer’s performance is robust with varying source rules
and on different domains.

5.1 Datasets and Baselines
The source rules are obtained from FB15K [3] (for validating Claims
A and B), NELL [5] and WN18 [4] (for C), which are all medium-
sized KGs that can be easily handled by most existing rule learn-
ers. For target KGs, we use three large-scale general-purpose KGs
YAGO2s [28], Wikidata [32], and DBpedia 3.8 [1] (for A and B),
which are considered challenging for existing rule learners [22]. To
verify the effectiveness of our rule transfer approach over KGs of
different domains, we also use DRKG [13] and ProteinKG25 [35]
as target KGs (for C). DRKG is a comprehensive biological KG that
integrates data from six existing databases including DrugBank,
Hetionet, GNBR, String, IntAct, and DGIdb. ProteinKG25 is a large-
scale KG dataset with aligned descriptions and protein sequences
respectively to terms in the GO ontology and protein entities.

The statistics of the datasets are given in Table 1, in which
the numbers of entities (#Entity), predicates (#Predicate), training
triples (#Train), and test triples (#Test) are recorded.

Table 1: Statistics of datasets.

Dataset #Entity #Predicate #Train #Test
FB15K 15K 1345 592K -
NELL 509K 833 760K
WN18 41K 18 146K
YAGO2s 2.2M 37 3.7M 206K
Wikidata 3.1M 430 7.6M 420K
DBpedia 3.8 3.1M 650 9.9M 552K
DRKG 97K 107 5.3M 294K
ProteinKG25 612K 65 8.6M 481K

As we want to evaluate the quality of learned rules via link
prediction, we divide the target KGs into 90% train, 5% test, and
5% validate sets. Note that a KG here is large and thus a test set or
validate set consisting of 5% of the dataset is already large enough.
For instance, the link prediction queries that can be generated from
the test set of DBpedia are around 552K. Rules are learned on the
train set to perform link prediction on the test set.

To our best knowledge, two preliminary approaches TRL [21] and
TL-ERMSD [29] to rule transfer learning are reported in the litera-
ture. As we were unable to access the latter, TRL is the only transfer
rule learner that can be compared. Besides TRL, we also compare
our TRuLer with standard rule learners AMIE+ [10], AMIE3 [16],
AnyBURL [19], RNNLogic [24], RLogic [9], and RLvLR [22].

The experiments were conducted on a server with Intel Xeon
CPU E5-4603 at 2.00GHz (four threads) and with 55GB of RAM,
running CentOS 7.9.2009.

5.2 Scalability of Rule Transfer
To evaluate the scalability of TRuLer, we transfer rules learned
by existing rule learners on FB15K and compare the numbers and
coverage of transferred rules with rules directly learned by the
same rule learner on the target KG.

RNNLogic [24] and RLogic [9] are not developed to handle large
KGs. Therefore, we will compare TRuLer with them in the next
section to directly evaluate the performance of the rules generated
by these two methods in the link prediction task. As systematic
rule searches may take over a week to complete rule learning, we
set a 24-hour limit for each rule learner. For TRuLer, the total time
includes PCG construction, predicate mapping, rule transfer, and
rule validation times. As PCG construction and predicate mapping
together only took less than a minute, we recorded both the rule
transfer time and the total time in the form of X/Y. For TRL, the rule
transfer is intertwined with the rule validation for each predicate,
and we could not separate the rule transfer time from the total time
for TRL.

The experimental results are shown in Table 2. Following the
commonly used thresholds in the literature, we set SC ≥ 0.1 and
HC ≥ 0.01. We record the percentages of predicates covered by the
learned rules (%P), i.e., the percentages of predicates that occur in
the heads of learned rules, and the numbers of rules (#R). All the
times are in hours.

We can see that in a reasonable time frame (less than 5 hours in
most of the cases), TRuLer can learn a significant number of rules
with a good coverage of predicates (above 60% in most of the cases)
in the target KGs, whereas other rule learners struggle to learn a
similar number of rules with a similar predicate coverage in one
day. In particular, TRuLer significantly outperforms transfer rule
learner TRL.

While the performance of TRuLer depends on the amount and
quality of source rules, its performance is rather robust regarding
time efficiency and rule learning capability. For example, the rules
learned by TRuLer on Wikidata and DBpedia 3.8 are impacted by
the source rules produced by AMIE+ (compared to those by RLvLR
and AnyBURL), TRuLer was able to learn a comparable amount
of rules within 3 hours as AMIE+ in a day on those KGs. AMIE3
performs well on DBpedia 3.8 and Wikidata, but the number of
rules learned per hour is still slightly lower than that of TRuLer.

Also, while the numbers of rules learned by RLvLR on Wikidata
and DBpedia 3.8 are comparable to TRuLer, their predicate coverage
is significantly lower. This means RLvLR learnedmore rules for each
predicate but also took too long on individual predicates, which
makes it infeasible to finish learning for all predicates.

5.3 Examples of Learned Rules
Moreover, we examine a few examples of predicate mapping and
transferred rules. Table 3 shows the original and transferred rules
with their standard confidence, with predicates arranged in the
same order to show their correspondence in the mappings.

The rules transferred are all cross-domain and fall into several
interesting patterns. Also, the rules are intuitive or at least make
some sense. For instance, the rule

playsFor (𝑥,𝑦) → isAffiliatedTo(𝑥,𝑦)
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Table 2: Scalability of TRuLer compared with other (transfer) rule learners.

Approach Source Rules YAGO2s Wikidata DBpedia 3.8
From #R %P #R Time (h) %P #R Time (h) %P #R Time (h)

AMIE+ - - 32.4 35 24 12.8 63 24 6.9 69 24
AMIE3 - - 10.8 4 24 51.4 1052 24 56.2 1870 24
RLvLR - - 70.3 176 24 2.8 759 24 1.1 428 24
TRL AMIE+ 66K 5.4 2 24 0.5 3 24 0.2 1 24
TRL RLvLR 79K 13.5 9 24 1.2 44 24 0.2 1 24
TRL AnyBURL 200K 8.1 4 24 0.9 20 24 0.2 1 24
TRuLer (Ours) 83.8 34 1.7/1.8 5.1 47 1.5/3.0 3.0 29 1.0/3.0
TRuLer (Ours) 100 250 4.7/4.7 85.1 502 0.8/2.3 67.5 629 0.4/2.4
TRuLer (Ours) 100 316 6.5/6.5 68.1 700 2.6/4.1 43.8 444 1.2/3.2

Table 3: Example rules learned by TRuLer.

Source: FB15K Target: YAGO2s
𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑_𝑖𝑛_𝑚𝑒𝑟𝑔𝑒𝑟 (𝑥, 𝑦) → 𝑎𝑠𝑠𝑒𝑡𝑠_𝑜𝑤𝑛𝑒𝑑 (𝑥, 𝑦) 0.14 𝑝𝑙𝑎𝑦𝑠𝐹𝑜𝑟 (𝑥, 𝑦) → 𝑖𝑠𝐴𝑓 𝑓 𝑖𝑙𝑖𝑎𝑡𝑒𝑑𝑇𝑜 (𝑥, 𝑦) 0.99
𝑏𝑎𝑠𝑘𝑒𝑡𝑏𝑎𝑙𝑙_𝑟𝑜𝑠𝑡𝑒𝑟 (𝑥, 𝑧) ∧ 𝑟𝑜𝑠𝑡𝑒𝑟 (𝑤,𝑧) 0.52 𝑖𝑠𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑𝐼𝑛 (𝑥, 𝑧) ∧ 𝑖𝑠𝐾𝑛𝑜𝑤𝑛𝐹𝑜𝑟 (𝑤,𝑧) 0.33∧𝑠𝑝𝑜𝑟𝑡𝑠_𝑟𝑜𝑠𝑡𝑒𝑟 (𝑤, 𝑦) → 𝑠𝑝𝑜𝑟𝑡𝑠_𝑟𝑜𝑠𝑡𝑒𝑟 (𝑥, 𝑦) ∧𝑖𝑠𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑂𝑓 (𝑤, 𝑦) → 𝑖𝑠𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑂𝑓 (𝑥, 𝑦)
𝑝ℎ𝑜𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 (𝑥, 𝑧) ∧ 𝑡𝑖𝑚𝑒_𝑧𝑜𝑛𝑒𝑠 (𝑤,𝑧) 0.41 𝑤𝑜𝑟𝑘𝑠𝐴𝑡 (𝑥, 𝑧) ∧ 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂𝑓 (𝑤,𝑧) 0.23∧𝑟𝑒𝑛𝑡50_3(𝑤, 𝑦) → 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑_𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 (𝑥, 𝑦) ∧𝑙𝑖𝑣𝑒𝑠𝐼𝑛 (𝑤, 𝑦) → 𝑖𝑠𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑂𝑓 (𝑥, 𝑦)

Source: FB15K Target: Wikidata
𝑝𝑟𝑜_𝑎𝑡ℎ𝑙𝑒𝑡𝑒𝑠 (𝑥, 𝑦) → 𝑠𝑝𝑜𝑟𝑡𝑠_𝑝𝑙𝑎𝑦𝑒𝑑_𝑝𝑟𝑜 𝑓 𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙𝑙𝑦 (𝑥, 𝑦) 0.99 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠_𝑜 𝑓 (𝑥, 𝑦) → 𝑝𝑎𝑟𝑡_𝑜 𝑓 (𝑥, 𝑦) 0.22
𝑐𝑒𝑙𝑒𝑏𝑟𝑖𝑡𝑦_𝑓 𝑟𝑖𝑒𝑛𝑑𝑠 (𝑥, 𝑧) ∧ 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 (𝑧, 𝑦) 0.05 𝑠ℎ𝑎𝑟𝑒𝑠_𝑏𝑜𝑟𝑑𝑒𝑟_𝑤𝑖𝑡ℎ (𝑥, 𝑧) ∧ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑧, 𝑦) 0.95→ 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 (𝑥, 𝑦) → 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑥, 𝑦)
𝑔𝑑𝑝_𝑟𝑒𝑎𝑙 (𝑥, 𝑧) ∧ 𝑔𝑛𝑖_𝑖𝑛_𝑝𝑝𝑝_𝑑𝑜𝑙𝑙𝑎𝑟𝑠 (𝑤,𝑧) 0.07 𝑠𝑝𝑜𝑢𝑠𝑒 (𝑥, 𝑧) ∧ 𝑛𝑜𝑏𝑙𝑒_𝑓 𝑎𝑚𝑖𝑙𝑦 (𝑤,𝑧) 0.17∧𝑎𝑡ℎ𝑙𝑒𝑡𝑒𝑠 (𝑤, 𝑦) → 𝑜𝑙𝑦𝑚𝑝𝑖𝑐𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑_𝑖𝑛 (𝑥, 𝑦) ∧𝑝𝑙𝑎𝑐𝑒_𝑜 𝑓 _𝑏𝑖𝑟𝑡ℎ (𝑤, 𝑦) → 𝑝𝑙𝑎𝑐𝑒_𝑜 𝑓 _𝑑𝑒𝑎𝑡ℎ (𝑥, 𝑦)

Source: FB15K Target: DBpedia
𝑎𝑤𝑎𝑟𝑑_𝑛𝑜𝑚𝑖𝑛𝑒𝑒 (𝑥, 𝑦) → 𝑎𝑤𝑎𝑟𝑑_𝑤𝑖𝑛𝑛𝑒𝑟 (𝑥, 𝑦) 0.35 𝑑𝑟𝑎𝑓 𝑡𝑇𝑒𝑎𝑚 (𝑥, 𝑦) → 𝑓 𝑜𝑟𝑚𝑒𝑟𝑇𝑒𝑎𝑚 (𝑥, 𝑦) 0.37
𝑎𝑤𝑎𝑟𝑑𝑠_𝑤𝑜𝑛 (𝑥, 𝑧) ∧ 𝑤𝑖𝑛𝑛𝑒𝑟𝑠 (𝑧, 𝑦) 0.03 𝑙𝑒𝑎𝑔𝑢𝑒 (𝑥, 𝑧) ∧ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑧, 𝑦) → 𝑏𝑖𝑟𝑡ℎ𝑃𝑙𝑎𝑐𝑒 (𝑥, 𝑦) 0.31→ 𝑎𝑤𝑎𝑟𝑑_𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (𝑥, 𝑦)
𝑒𝑝𝑖𝑠𝑜𝑑𝑒_𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑠 (𝑥, 𝑧) ∧ 𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠_𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒 (𝑧, 𝑤) 0.16 𝑝𝑟𝑖𝑚𝑒𝑀𝑖𝑛𝑖𝑠𝑡𝑒𝑟 (𝑥, 𝑧) ∧ 𝑑𝑒𝑎𝑡ℎ𝑃𝑙𝑎𝑐𝑒 (𝑧, 𝑤) 0.20∧𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠 (𝑤, 𝑦) → 𝑑𝑟𝑎𝑓 𝑡_𝑝𝑖𝑐𝑘𝑠 (𝑥, 𝑦) ∧𝑙𝑒𝑎𝑑𝑒𝑟𝑃𝑎𝑟𝑡𝑦 (𝑤, 𝑦) → 𝑝𝑎𝑟𝑡𝑦 (𝑥, 𝑦)

says if a player 𝑥 plays for a team 𝑦 then 𝑥 is affiliated to 𝑦. And
the rule

𝑠ℎ𝑎𝑟𝑒𝑠_𝑏𝑜𝑟𝑑𝑒𝑟_𝑤𝑖𝑡ℎ(𝑥, 𝑧) ∧ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑧,𝑦) → 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑥,𝑦)

says if two regions 𝑥 and 𝑧 share a border and 𝑧 is part of a country
𝑦 then 𝑥 is likely to be part of 𝑦.

5.4 Quality of Transferred Rules in Reasoning
The second set of experiments aim to evaluate the quality of learned
rules via link prediction. The evaluation of link prediction is to
show the quality of learned rules, so TRuLer is not compared with
embedding-based link prediction models.

In this set of experiments, we show that the rules learned by
TRuLer can achieve a good level of accuracy in link prediction, and
the learned rules can complement state-of-the-art rule learners to
enhance their performance in link prediction. For TRuLer, we used
the transferred rules from source rules generated by AnyBURL, due
to its outstanding link prediction accuracy reported in the literature.
As for evaluation metrics, we adopt Mean Reciprocal Rank (MRR)
and Hits@10 (H@10), which are the most widely used metrics for
link prediction. MRR is the average of the reciprocal ranks of the
desired entities and Hits@10 is the percentage of desired entities
being ranked among the top ten.

We compare the rules learned by TRuLer with those learned
by AMIE3, RLvLR, RLogic, RNNLogic, and AnyBURL, respectively.
Besides, we also combine the rules learned by TRuLer with those
from existing rule learners. As the rules learned by AMIE3 and
RLvLR have an extremely low predicate coverage on Wikidata
and DBpedia 3.8, we used link prediction queries generated with
predicates covered by all the six rule learners. That is, we compare
with rule learners on those predicates they all have learned rules
to cover: 20 predicates for YAGO2s, 18 for Wikidata, and 7 for
DBpedia 3.8. Note that while it only involves a small number of
predicates, the total number of queries for each KG is still high: 75K
for YAGO2s, 44K for Wikidata, and 11K for DBpedia 3.8. Results
are summarized in Table 4.

This experiment shows that TRuLer performs well in link predic-
tion, outperforming AMIE3, RLogic, RNNLogic, and RLvLR in most
of the cases, which shows the transferred rules are of high quality.
This shows TRuLer can effectively explore useful rule patterns for
transfer and learn rules for individual predicates with higher quality
compared to exhaustive rule learners. Moreover, the rules learned
by TRuLer can complement those directly learned by a rule learner
to improve their performance in link prediction. This shows the
transferred rules capture useful rule patterns that are missed by
state-of-the-art rule learners.
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Table 4: Comparison on link prediction.

Models
YAGO2s Wikidata DBpedia 3.8

MRR H@10 MRR H@10 MRR H@10
RLogic 0.009 0.011 0.023 0.029 0.036 0.042
RNNLogic 0.044 0.051 0.012 0.027 0.020 0.033
AMIE3 0.048 0.048 0.014 0.016 0.040 0.055
RLvLR 0.136 0.149 0.038 0.041 0.027 0.036
AnyBURL 0.138 0.167 0.070 0.093 0.051 0.085
TRuLer 0.180 0.197 0.041 0.050 0.043 0.059
TRuLer + AMIE3 0.181 0.198 0.061 0.065 0.051 0.068
TRuLer + RLVLR 0.194 0.211 0.069 0.077 0.044 0.060
TRuLer + AnyBURL 0.190 0.212 0.080 0.097 0.051 0.091

5.5 Further Analysis
We conduct another three sets of experiments to analyse the impact
of mapping methods, source rules, and domain knowledge on rule
transfer.

5.5.1 Mapping Methods. To analyse the effectiveness of our predi-
cate mapping approach, we replace the predicate mapping module
in TRuLer with ontology alignment methods. We use existing on-
tology alignment methods SEU [18] and FGWEA [31] to replace the
predicate mapping module in TRuLer, and the comparison results
are shown in Table 5.

Table 5: Comparison with ontology alignment algorithms.

Mapping Methods
YAGO2s Wikidata DBpedia 3.8
%p #R %p #R %p #R

SEU 24.3 10 47.7 260 51.7 532
FGWEA 56.8 28 23.3 107 41.1 346
Ours 100 265 86.5 671 78.9 1024

It can be seen that our mapping method significantly outper-
forms ontology alignmentmethods. This shows ourmappingmethod
preserving graph patterns is more suitable for rule transfer than
alignment methods based on lexical or semantic similarities.

5.5.2 Source Rules. To analyse the impact of source rules on rule
transfer, we use source rules obtained from various KGs, namely
subsets of FB15K of varying sizes, NELL, and WN18. We obtained
subsets of FB15K with increasing sizes, via sampling of 20, 100,
200, 500, and 1000 predicates. Then, we employ RLvLR to learn the
source rules. The experimental results are shown in Table 6.

Overall, as the number of predicates increases, the number of
rules transferred to the target KG also increases. On the other
hand, while the numbers of entities and facts also contribute to
the diversity of source rules, they have less impact on the rule
transfer, which can be seen by comparing FB15K-20 and WN18,
and FB15K-1000 and NELL.

5.5.3 Domain Knowledge. To analyse the performance of TRuLer
on cross-domain rule transfer, we transfer rules to DRKG and Pro-
teinKG25 that are quite different domain knowledge from the source
KG FB15K. The results are shown in Table 7.

Table 6: Rule transfer with varying source rules.

Source KG
YAGO2s Wikidata DBpedia 3.8
%P #R %P #R %P #R

WN18 59.5 53 10.2 54 11.2 201
FB15K-20 48.6 32 2.6 11 2.3 18
FB15K-100 89.2 88 14.0 72 11.2 100
FB15K-200 97.3 141 26.5 137 19.2 207
FB15K-500 100 224 59.3 394 50.6 552
NELL 100 255 84.7 539 67.7 987
FB15K-1000 100 261 84.2 645 73.5 981
FB15K 100 265 86.5 671 78.9 1024

Table 7: Cross-domain rule transfer.

Approach DRKG ProteinKG25
%P #R Time (h) %P #R Time (h)

AMIE3 75.7 1872 24 86.2 291 24
RLvLR 9.3 313 24 9.23 56 24
TRL 12.0 117 24 11.7 47 24
TRuLer 97.2 7997 13.33 98.5 799 20

We can see that TRuLer performs well in terms of rule quan-
tity and predicate coverage compared to direct rule learning. This
demonstrates the effectiveness of our rule pattern transfer approach,
which does not rely on a mapping of the semantics between the
source and target domains. With the richer structural information
in DRKG and ProteinKG25 compared to the previous three KGs,
more rules are learned by TRuLer with often a better predicate cov-
erage. On the other hand, rule learners like RLvLR that exhaustively
search the rule space struggle on ProteinKG25.

6 CONCLUSION
Learning first-order rules on a large-scale KG is a challenging prob-
lem. Existing rule learning methods use exhaustive search to con-
struct rules directly from the KG, while transfer rule learning has
been rarely explored. In this paper, we have proposed a scalable and
effective framework TRuLer for rule learning based on the paradigm
of transfer learning. A key component of TRuLer is a novel predi-
cate embedding method that can capture useful structural features
for rule transfer. To achieve this goal, we have introduced a pred-
icate alignment mechanism for mapping the predicates between
the source and the target KGs. Experimental evaluation shows that
TRuLer can handle large-scale KGs such as Wikidata and DBpedia,
for rule learning in terms of both quantity and quality (within a
reasonable time frame). Also, the combination of TRuLer with a
standard rule learner can improve the performance of the standard
rule learner within a large-scale KG.
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