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Abstract

The development of large language models
(LLMs) has greatly advanced the field of mul-
timodal understanding, leading to the emergence
of large multimodal models (LMMs). In order
to enhance visual comprehension, recent stud-
ies have equipped LMMs with region-level un-
derstanding capabilities by representing object
bounding box coordinates as a series of text se-
quences (pix2seq). In this paper, we introduce
a novel paradigm for object location modeling
called the pix2emb method, where we ask the
LMM to output the location embeddings and
then decode them with different decoders. This
paradigm allows us to use different location for-
mats (such as bounding boxes and masks) in mul-
timodal conversations. Leveraging the proposed
pix2emb method, we train an LMM named NExT-
Chat and demonstrate its capability of handling
multiple tasks like visual grounding, region cap-
tioning, and grounded reasoning. Comprehen-
sive experiments show the effectiveness of our
NExT-Chat on various tasks, e.g., NExT-Chat
(87.7) vs. Shikra (86.9) on POPE-Random, NEXT-
Chat (71.3) vs. LISA (67.9) on referring expres-
sion segmentation task, and NExT-Chat (79.6) vs.
Kosmos-2 (62.3) on region caption task.

1. Introduction

Recently, large language models (LLMs) have shown
spreading influence in different areas, among which large
multimodal models (LMMs) is one of the most attractive
area. Researchers try to equip LLMs with visual perception
modules resulting in LMMs (Huang et al., 2023; Zhu et al.,
2023; Zhang et al., 2023a; Li et al., 2023c) that can describe
the visual content and answer visual questions. However,
these LMMs are limited to holistic image understanding
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Figure 1. (a) pix2seq is the pixel-to-sequence paradigm, which
converts bounding boxes into text. (b) pix2emb is the pixel-to-
embedding paradigm proposed in this paper, which tries to unify
all different location formats with embeddings.

without the ability to conduct region-level reasoning, for
example, locating the referred objects in the conversation.

Aiming at region-level understanding, some initial works
have focused solely on incorporating location data as in-
puts (Zhang et al., 2023b; Chen et al., 2023a) or outputs (Lai
et al., 2023) in LMMs. Nevertheless, these approaches fall
short of integrating both location input and output process-
ing within a unified LMM framework. The primary so-
lution (Peng et al., 2023; Wang et al., 2023a; Chen et al.,
2023b) for unifying both the location input and output is
the pix2seq paradigm (Fig. 1 (a)), where the object coor-
dinates are converted to LLM understandable text tokens
(e.g., [x1,y1, T2, y2]). Consequently, LMMs can generate
object coordinates as part of their standard next token pre-
diction process. However, the pix2seq paradigm is limited
to discrete coordinate outputs and struggles to provide pixel-
level outputs (i.e., segmentation masks), which significantly
hinders real-world applications.

To address the limitations, we propose the pix2emb
paradigm (Fig. 1), which can accept both locations as in-
puts and outputs, and accommodate different location for-
mats. The key idea is to model all location information
as embeddings, which can be generated from and decoded
into different location formats with corresponding encoders
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and decoders. Specifically, we introduce a new token,
<trigger>, which serves as a trigger for localization.
During the text generation, the <trigger> triggers the
location decoding. Then, the hidden states of <trigger>
can be used for both detection and segmentation, as depicted
in Fig. 2. The predicted or provided object location will be
encoded back into the embedding for the object referring
in the generation. However, the location encoding can only
be trained indirectly through the captioning loss, and the
location input embedding space is unaligned with the output
embedding space. Thus, we propose a cycle consistency
loss to align the location input and output embedding space,
where the location input ability can also benefit from the
location output training.

Building upon the proposed pix2emb method, we introduce
a new LMM named NExT-Chat that seamlessly integrates
chat, detection, and segmentation capabilities into a sin-
gle unified model. NExT-Chat is trained in a multi-stage
manner, which initially involves training on conversational
data with bounding boxes, and then followed by segmenta-
tion data. This multi-stage training enables us to take full
advantage of the rich and high-quality data (conversation
with bounding boxes) accumulated from the pix2seq prac-
tices, and then extend to the segmentation with very limited
annotations. Benefiting from the multi-stage training, our
NExT-Chat can even achieve better performance than base-
lines using an order of magnitude larger mask annotations
(e.g., LISA (Lai et al., 2023)).

To show the effectiveness of our NExT-Chat, we validate
our NExT-Chat on various datasets. On the POPE-Random
dataset, NExT-Chat achieves an impressive accuracy of 87.7,
surpassing Shikra’s 86.9. In referring expression segmenta-
tion (RES), it attains an average cloU of 71.3, outperforming
LISA’s 67.9. Moreover, NExT-Chat achieves a remarkable
79.6 in CIDEr score for RefCOCOg region captioning, sig-
nificantly exceeding Kosmos-2’s 62.3.

To summarize, our contributions can be listed as follows:

* Pix2emb Method. We propose the pix2emb method,
which can accommodate different output formats such
as bounding boxes and segmentation masks.

e NExT-Chat Model. Based on the proposed pix2emb
method, we build NExT-Chat that can unify the chat,
detection and segmentation into a single LMM.

e Comprehensive Experiments. We provide abundant
qualitative and quantitative results to showcase the
effectiveness of our proposed method.

2. Related Works

Large multimodal model (LMM). LMMs are typically
built on large language models (LLMs) with visual per-

ception modules, which can generate captions or an-
swer questions based on the given multimodal content.
Flamingo (Alayrac et al., 2022) extracts vision information
with a pre-trained vision backbone, and incorporate them
into the text features with cross-attention layers. Differ-
ently, BLIP-2 (Li et al., 2023c) and Kosmos (Huang et al.,
2023) directly feed the visual features into the LLMs as
soft prompts. Following BLIP-2, MiniGPT-4 (Zhu et al.,
2023) and VPGTrans (Zhang et al., 2023a) build LMMs
with transfer learning, and significantly reduce the training
cost. When considering the training paradigm, researchers
find that instruction tuning can better align the LMM with
the expected output format. MiniGPT-4 (Zhu et al., 2023)
fine-tunes its model with less than 5,000 self-instruct image-
text pairs and turns the model into better conversation robot.
Different from MiniGPT-4’s self-instruct, LLaVA (Liu et al.,
2023c) generates the instruction tuning data with the text-
only GPT-4 models by feeding the visual information as
text sentences. Otter (Li et al., 2023b;a) further propose
a MIMIC-IT dataset that can turn the LMM into better in-
context learners. However, these LMMs (Alayrac et al.,
2022; Liu et al., 2023b;c) can only take the whole im-
age/video as input and output text, and are incapable of
handling region understanding tasks.

LMM for Region Understanding. GPT4ROI (Zhang et al.,
2023b) proposes to encode the regions as features for loca-
tion input scenarios. LISA (Lai et al., 2023) proposes to
combine the LLM with the SAM for object segmentation.
However, they are either limited to the location input or
single object segmentation. Pix2seq (Chen et al., 2021) first
represents object bounding box coordinates as text tokens
and thus the LM can take the object locations as both the in-
put and output. Take Kosmos-2 as an example, it discretizes
the whole image into 32 %32 bins, where the bin’s id repre-
sents the points lying in it. Shikra (Chen et al., 2023b) points
out that introducing too many new tokens will inevitably
increase the training difficulties. Thus, Shikra proposes
to reuse the LLM’s original vocabulary and turn the box
coordinates into normalized numerical values with certain
precision like [0.111,0.111,0.333, 0.333]. Although avoid-
ing introducing too many new tokens, it requires roughly
26 tokens to represent each bounding box, which is ineffec-
tive. Different from these works, our NExT-Chat introduces
the pix2emb paradigm that can both accept the location
inputs and outputs and accomodate different location for-
mats (e.g.bounding boxes and masks). More discussion is
in Appendix A.

3. Method

In this section, we present the NExT-Chat framework, start-
ing with an introduction to the overall LMM architecture
(§3.1), followed by a description of the pix2emb method
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Figure 2. The overall framework of NExT-Chat. The image and given bounding boxes are encoded by image and box encoders respectively.
During decoding, the hidden states of the <t rigger> are fed into box and mask decoders, enabling object detection and segmentation.

(§3.2). Finally, we introduce the multi-stage training (§3.3).

3.1. LMM Architecture

For the LMM architecture, we adopt a LLaVA-like
architecture.  Specifically, we employ a CLIP ViT-
L/14@336px (Radford et al., 2021) as the vision encoder.
The input image is converted into 24 x24 patch embeddings
and then projected to the same dimension as the word em-
beddings of the LLM, which can be considered as visual
tokens. Then, the visual tokens will be fed into a decoder-
only LLM for conditional text generation. Regarding the
selection of LLMs, we opt for the recently released Vicuna-
1.5 model (Zheng et al., 2023).

3.2. Pix2Emb Method

Detection. To model the object location as output, we
introduce a special token, denoted as <t rigger>, which
serves to trigger the localization. As depicted in Fig. 2,
the LMM is trained to generate the <trigger> token
before predicting the locations. Then, the embedding t €
R"™ of <trigger> is passed to the Box Decoder F for
coordinates regression. Mathematically, the process can be
expressed as:

b = F(t), o
where b € R* represents the predicted bounding box coor-

dinates in the format [z, yo, 1, 1]

In our NExT-Chat model, the box decoder consists of a
2-layer MLP. To supervise the location output, we employ a
joint loss function comprising of the L1 loss and the GloU
loss (Rezatofighi et al., 2019) during training:

Laet = agli(b,bgt) + BaGloU(b, by), @)

where by, is the ground truth coordinates, and ag = 2,
B4 = 0.8 follows the ratio in DETR (Carion et al., 2020).

(@) bbox alignment
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Figure 3. Cycle consistency loss to bind the location encoder and
decoder training, which can benefit the location input tasks.

Segmentation. Similar to the detection process, we uti-
lize the hidden states t of the <t rigger> as input for the
mask head. Inspired by LISA (Lai et al., 2023), we em-
ploy SAM (Kirillov et al., 2023) as our mask head, which
additionally takes the original image as input. To ensure
the compatibility between the LMM’s hidden states and
SAM, we project the hidden states to match the dimension
of SAM’s prompt embedding using a linear projector, which
will be fed into SAM to provide location information. Some
astute readers may notice that the detected bounding boxes
can also serve as SAM’s prompts. We conduct an ablation
study in Table 6 and empirically find that using only the
hidden states can achieve the best performance. To train the
mask output, we follow the loss in LISA (Lai et al., 2023):

‘CSEQ = OCSBCE(II’I, mgt) + BSD(mv mgt)a (3)

where BCE and D are BCE Loss and Dice Loss separately.
as and G, are 2 and 0.5 respectively.

Location as Input. In addition to the location output, it
is essential to incorporate location as input as well. To be
consistent with the location output modeling, we also use
a single embedding to represent the location information.
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Where is the boat to the left of boat[0] &
in <image>?

Answer: it’s [0].

mentioned object?

Can you provide a description of the image
<image> and include the locations for each

Four stuffed teddy bears of various colors
0] [1] [2] [3] are sitting on a rock outside .

~

Do

What is the potential job of the man? Please &
include object locations and explain.

Based on the image, the man is wearing
a uniform [0] and is riding a brown
horse [1] . It is likely that the man is a
police officer or serves a law
enforcement role, as he is wearing a
uniform, riding a horse, and possibly
patrolling the area. His potential job
could include patrolling neighborhoods,
responding to calls or incidents,

% attending community events, or

ensuring public safety. The man on the
horse may also be a mounted patrol
officer, in charge of protecting a

Where is the skateboard in <image>? &

Answer: it’s [0].

in image?

=} a white light switch
V2N

Can you give me a description of the region [0] &

I specific area or event, watching over
the public, or providing support to other
law enforcement officers.

Figure 4. Qualitative examples of NExT-Chat, which shows the model’s capability of (a)&(b) visual grounding, (¢) grounded captioning,

(d) region captioning, and (e) region-aware reasoning.

Specifically, a 2-layer MLP is introduced as the location
encoder G. The location encoder takes the bounding box
b as input and converts them into embeddings t € R™.
Due to the inconvenience of drawing masks by humans
users, we do not additionally train a mask encoder in our
NExT-Chat. If there are special scenarios that require mask
input, we convert them into boxes. To train the location
encoder, a straightforward way is to ask the LMM to make
region descriptions, and thus the location encoder can be
supervised through the standard text generation 10ss Lyez¢-

However, we observe that the location encoder cannot be
effectively trained solely through L;.,:. Different from
the location decoders that can be directly trained with L.+
or L4, the supervision from the Ly is indirect and con-
strained by the amount of the location input data. Inspired by

the weight tying in LLMs’ word embedding layers and token
classification layers, we introduce a cycle consistency loss
to align the location input and output’s embedding space.
Therefore, the location encoder and location decoder can
benefit from each other’s training. As illustrated in Fig. 3
(a), a bounding box will be encoded and then decoded. Two
bounding boxes are asked to be the same. Similarly, the
hidden states of <trigger> will also be used for cycle
loss (Fig. 3 (b)). Formally, the L., can be defined as:

Leye = L1(b, F(G(b))) + L2(t, G(F (), ()

where b is the provided bounding box and t is the predicted
embedding. £; and Lo correspond to the L1 loss and L2
loss respectively.
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Table 1. Image Hallucination: the comparison between our NExT-Chat with current SOTA models on the POPE benchmark for image

hallucination diagnosis.

Datasets ‘ Metrics ‘ NExT-Chat Shikra InstructBLIP MiniGPT-4 LLaVA MM-GPT mPLUG-Owl
Accuracy (1) 87.70 86.90 88.57 79.67 50.37 50.10 53.97
Precision (1) 93.46 94.40 84.09 78.24 50.19 50.05 52.07
Random Recall (1) 81.87 79.27 95.13 82.20 99.13 100.00 99.60
F1-Score (1) 87.28 86.19 89.27 80.17 66.64 66.71 68.39
Yes 45.15 43.26 56.57 52.53 98.77 99.90 95.63
Accuracy (1) 84.57 83.97 82.77 69.73 49.87 50.00 50.90
Precision (1) 86.54 87.55 76.27 65.86 49.93 50.00 50.46
Popular Recall (1) 81.87 79.20 95.13 81.93 99.27 100.00 99.40
F1-Score (1) 84.14 83.16 84.66 73.02 66.44 66.67 66.94
Yes 47.30 45.23 62.37 62.20 99.40 100.00 98.57
Accuracy (1) 81.93 83.10 72.10 65.17 49.70 50.00 50.67
Precision (1) 82.02 85.60 65.13 61.19 49.85 50.00 50.34
Adversarial | Recall (1) 81.80 79.60 95.13 82.93 99.07 100.00 99.33
F1-Score (1) 81.91 82.49 77.32 70.42 66.32 66.67 66.82
Yes 49.87 46.50 73.03 67.77 99.37 100.00 98.67

3.3. Training Process

We design a three-stage training for the NExT-Chat. Stage-1
is to train the model for simple conversations with bounding
boxes. In stage-2, we further enhance the model’s conversa-
tion ability. In stage-3, the output format will be extended
to segmentation masks with lightweight training.

Stage-1. In stage-1, we perform pre-training using a mix-
ture of data from various sources, including Flickr30K Enti-
ties (Plummer et al., 2015), Visual Genome (Krishna et al.,
2017), RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al.,
2016), RefCOCOg (Mao et al., 2016), VQAv2 (Antol et al.,
2015), PointQA (Mani et al., 2020), Visual7W (Zhu et al.,
2016), and VCR (Zellers et al., 2019). The model is trained
with a batch size of 64 and a learning rate of 2e-5 for 65k
steps. During this pre-training stage, the entire language
model, box encoder, and decoder are trained while keeping
the image encoder frozen. The training loss is formulated
as:

le = ['tewt + ['det + ['cyc- (5)

For the NExT-Chat 7B model, the stage-1 training takes 8
A100 (80G) GPUs for around 59 hours.

Stage-2. In the second stage, we further fine-tune the model
using data from VQAv2, RefCOCO, Flickr30K Entities,
LLaVA-instruct, VCR and Shikra-RD (Chen et al., 2023b).
The batch size is set to 64, and the learning rate is set to 2e-5.
The loss is the same as stage-1’s loss. For the NExT-Chat
7B model, the stage-2 training uses 8 A100 (80G) GPUs for
around 10 hours.

Stage-3. After two stages of training, the model has already

been equipped with the conversation ability and the region
modeling ability. In stage-3, we only need to extend the
bounding box output ability to the mask output. Specifically,
we train the linear projector between the LMM and SAM,
as well as the decoder of SAM. The loss for the stage-3 is:

‘CS?) = Eseg . (6)

To prevent catastrophic forgetting, we keep other parameters
frozen during the segmentation training. Thanks to the small
amount of training parameters, the training can be done in 3
hours with 8 A100 (80G) GPUs. This training is performed
using the referring segmentation splits of RefCOCO series
datasets.

4. Qualitative Results

In this section, we present qualitative results that showcase
the capabilities of our NExT-Chat model across various
scenarios. More results are included in the Appendix E.

Visual Grounding. First of all, NExT-Chat is capable of
grounding objects with given queries. As shown in Fig. 4
(a), it can accurately locate the skateboard based on the text
description. In addition to the text-only prompt, our NExT-
Chat can also accept the location input in visual grounding.
For example, it can locate the boat to the left of the middle
boat marked by a bounding box in Fig. 4 (b).

Grounded Captioning. Another compelling application of
our NExT-Chat model is its ability to describe the visual
content with grounded objects in the images. Fig. 4 (c)
demonstrates that our model can identify the major 4 bears
in the image, and effectively organize them into a coherent



NExT-Chat: An LMM for Chat, Detection and Segmentation

Table 2. RES: comparison between our NExT-Chat and baselines on RES. The evaluation metric is cloU. ft refers to a task-specific
fine-tuning for LMM based models. box+SAM is the result of using NExT-Chat predicted box and SAM without stage-3 training.

Type Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB  val testA testB  val test
MCN (Luo et al., 2020) 624 642 597 506 550 447 492 494
VLT (Ding et al., 2021) 67.5 70.5 652 563 610 501 550 57.7
CRIS (Wang et al., 2022b) 70.5 732 66.1 653 681 537 599 604
non-LMM  LAVT (Yang et al., 2022b) 7277 758 68.8 621 684 551 612 621
GRES (Liu et al., 2023a) 738 76,5 702 660 710 577 650 66.0
X-Decoder (Zou et al., 2023a) - - - - - - 64.6 -
SEEM (Zou et al., 2023b) - - - - - - 65.7 -
PolyFormer (B) (Liu et al., 2023d) 74.8 76.6 71.1 67.6 729 593 67.8 69.1
PolyFormer (L) (Liu et al., 2023d) 76.0 783 733 693 746 619 69.2 702
LISA-7B (Lai et al., 2023) 74.1 76,5 T71.1 624 674 565 664 68.5
LISA-7B (ft) (Lai et al., 2023) 749 79.1 723 651 708 58.1 67.9 70.6
LMM GLaMM (Rasheed et al., 2023) 547 58.1 522 425 471 395 548 556
GLaMM (ft) (Rasheed et al., 2023) 78.3 81.5 744 68.0 757 61.8 725 720
NEXT-Chat (box+SAM) 694 759 635 612 690 523 624 64.0
NEXT-Chat 769 805 724 676 737 594 695 703
NEXT-Chat (ft) 803 824 761 735 785 660 748 753

sentence ~Four stuffed teddy bears of various colors [0, 1,
2, 3] are sitting on a rock outside”.

Region Captioning. NExT-Chat can also accept the loca-
tion as input and describe the region’s content. Note that,
existing image-level LMMs have already been able to gen-
erate captions for the main objects in the image. Thus, to
evaluate our model’s region captioning ability, we ask the
model to describe a small light switch in the background,
which is generally ignored by the image-level LMMs. As
depicted in Fig. 4 (d), our model can accurately describe the
input as a white light switch, which demonstrates the effec-
tiveness of our model in generating region-based captions.

Reasoning. Thanks to the incorporation of LLM, our model
is also capable of answering questions with region-aware
explanations. As shown in Fig. 4 (e), given the question
“what is the potential job of the man?”, our model can not
only hypothesize the man’s job as a police officer but also
ground the visual evidence which is the man’s uniform and
horse. The example showcases the model’s capability for
nuanced reasoning and the ability to link the mentioned
objects with the regions in the images.

5. Experiment

In this section, we evaluate our NExT-Chat model by com-
paring it with current state-of-the-art (SOTA) models on

various tasks including image-level hallucination diagnose,
referring expression segmentation (RES), referring expres-
sion comprehension (REC), and region captioning.

5.1. Hallucination

Experimental Setup. For a comprehensive evaluation, we
benchmarked our NExT-Chat model against current state-
of-the-art (SOTA) LMMs including Shikra (Chen et al.,
2023b), InstructBLIP (Dai et al., 2023), MiniGPT-4 (Zhu
et al., 2023), LLaVA (Liu et al., 2023c), MM-GPT (Gong
et al., 2023) and mPLUG-OWL (Ye et al., 2023) on the
POPE dataset (Li et al., 2023d).

Results. The results, presented in Table 1, demonstrate that
our NExT-Chat exhibits competitive performance compared
with existing SOTA models. Notably, our model achieves
the best performance for the random and popular splits and
achieves the second-best performance for the adversarial
split. These findings indicate that our NExT-Chat model is
competent in generating accurate responses, thus position-
ing it among the top-performing models in the field.

5.2. Referring Expression Segmentation

Experimental Setup. To rigorously assess our model’s
proficiency in generating segmentation masks guided by
natural language instructions, we use the referring ex-
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Table 3. REC: comparison between our NExT-Chat and baselines on REC. The evaluation metric is Acc@0.5.

Type Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB  val testA testB  val test
MATttNet (Yu et al., 2018) 764 804 693 649 703 56.0 66.7 67.0
OFA-L (Wang et al., 2022a) 80.0 837 764 683 760 61.8 676 67.6

OFASys - 80.1 - - - - - -
non-LMM  TransVG (Deng et al., 2021) 81.0 827 784 648 707 569 687 677
UNITER (Chen et al., 2020) 814 870 742 759 815 66.7 740 68.7
VILLA (Gan et al., 2020) 824 875 748 762 815 668 762 76.7
UniTAB (Yang et al., 2022a) 86.3 88.8 806 787 832 69.5 80.0 80.0
G-DINO-L (Liu et al., 2023e) 90.6 932 882 828 890 759 86.1 87.0
Kosmos-2 (Peng et al., 2023) 523 574 473 455 507 422 60.6 61.7

LMM VisionLLM-H (Wang et al., 2023a) - 86.7 - - - - - -
Shikra-7B (Chen et al., 2023b) 87.0 90.6 802 81.6 874 721 823 822
Shikra-13B (Chen et al., 2023b) 87.8 91.1 81.8 829 878 744 826 832
NExT-Chat-7B (ours) 855 90.0 779 772 845 68.0 80.1 79.8

pression segmentation (RES) splits of RefCOCO, Ref-
COCO+, and RefCOCOg. As for baselines, we choose
both the LMM based methods (LISA (Lai et al., 2023)
and GLaMM (Rasheed et al., 2023)) and non-LMM based
methods including MCN (Luo et al., 2020), VLT (Ding
et al., 2021), CRIS (Wang et al., 2022b), LAVT (Yang
et al., 2022b), GRES (Liu et al., 2023a), X-Decoder (Zou
et al., 2023a), SEEM (Zou et al., 2023b) and PolyFormer
(B/L) (Liu et al., 2023d). cloU metric is employed to evalu-
ate different methods.

Results. As demonstrated in Table 2, NExT-Chat exhibits
superior or comparable cloU scores relative to all baseline
models. In comparison with non-LMM based methods,
our approach consistently achieves either the highest or
second-highest performance across various dataset splits.
Against LMM-based methods, specifically the LISA-7B and
GLaMM, NExT-Chat demonstrates enhanced performance
in six dataset splits, notably achieving a substantial 6.3 point
improvement in the RefCOCO+ testA split than LISA. It is
noteworthy that NExT-Chat is trained with a significantly
smaller mask annotations, comprising only 127k object
masks, in contrast to baselines such as LISA, which utilize
mask annotations more than an order of magnitude larger.

We note that the LMM baselines like LISA and GLaMM
also report the task-specific fine-tuned results in their paper.
Following the practice, we also conduct a task-specific fine-
tuning with the whole LLM parameters tuned. As depicted
in Table 2, NExT-Chat (ft) can achieve the best performance
compared with LISA (ft) and GLaMM (ft) across all of the
data splits, which demonstrates the benefits of boosting the

segmentation ability with bounding box data.

5.3. Referring Expression Comprehension

Experimental Setup. In addition to the segmentation abil-
ity, we also validate the detection ability of our method.
Concretely, we adopt the REC splits of RefCOCO, Ref-
COCO+, and RefCOCOg. As for baselines, we first include
the LMM method (pix2seq): Kosmos-2 (Peng et al., 2023),
VisionLLM-H (Wang et al., 2023a), and Shikra (Chen
et al., 2023b) We also include the non-LLM based methods:
MAttNet (Yu et al., 2018), OFA-L (Wang et al., 2022a),
UniTab (Yang et al., 2022a) and etc.

Results. First of all, our NExT-Chat can achieve excel-
lent REC results and even beat a series of specifically fine-
tuned non-LMM methods like VILLA (Gan et al., 2020),
UNITER (Chen et al., 2020) and TranVG (Deng et al., 2021)
on all of the splits. When compared with the LMM base-
lines, our NExT-Chat can outperform the Kosmos-2 and
VisionLLM-H. Concretely, we can achieve a 3.3 higher
Acc@0.5 than VisionLLM-H on RefCOCO testA. There is
an interesting phenomenon that our NExT-Chat is slightly
lower than Shikra-7B, which uses a similar data recipe for
detection training. We hypothesize the reasons are that: (1) a
fixed weight of the detection loss is sub-optimal and requires
further exploration for a dynamic balance with the text loss.
(2) LLM is not pre-trained on the regression tasks and will
potentially increase the training difficulty. However, we
believe that incorporating the regression tasks in the LMM
will be necessary, especially for targets like embodied Al.
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Table 4. Region Captioning: comparison between our NExT-Chat
and baselines on RefCOCOg (google). ft indicates to a task-
specific fine-tuning for LMMs.

Methods RefCOCOg
CIDEr METEOR

GRIT (Wu et al., 2022) 71.6 15.2
Kosmos-2 (Peng et al., 2023) (0-shot) 60.3 12.2
Kosmos-2 (Peng et al., 2023) (2-shot) 62.2 13.8
Kosmos-2 (Peng et al., 2023) (4-shot) 62.3 14.1
ASM (Wang et al., 2023b) 41.9 13.6
GLaMM (Rasheed et al., 2023) 104.0 15.7
GLaMM (ft) (Rasheed et al., 2023) 105.0 16.2
NEXT-Chat 79.6 12.0
NEXT-Chat (ft) 114.0 17.4

5.4. Region Captioning

Experiment Setup. In addition to the location output, we
also validate the model’s ability to take locations as in-
put. The RefCOCOg (google) dataset is adopted, where
each model is asked to describe the given region. The
CIDEr and METEOR are applied as the evaluation met-
rics. For the baselines, we choose GRIT (Wu et al., 2022),
Kosmos-2 (Peng et al., 2023), ASM (Wang et al., 2023b)
and GLaMM (Rasheed et al., 2023).

Results. As shown in Table. 4, our model is capable of
achieving better CIDEr across all of the baselines except
GLaMM, which shows the superiority of our NExT-Chat.
It is worth noting that GLaMM includes the RefCOCOg
(google) dataset in their model training and thus can achieve
higher performance. Therefore, we also conduct a task-
specific fine-tuning and report it as NExT-Chat (ft) in Ta-
ble. 4. After the fine-tuning, our NExT-Chat (ft) can achieve
the best performance for both CIDEr and METEOR com-
pared with all of the baselines, which shows the effective-
ness of our region-modeling strategy.

6. Ablation Study

The influence of L.,.. We find that the cycle consistency
loss Ly is important for the location input tasks. To quan-
titatively evaluate its influence on the region captioning, we
train the NExT-Chat on the RefCOCO series data for both
referring expression comprehension and region captioning.
Then, we compare the results with and without L.y.. As
shown in Table 5, the model with the L., can achieve 68.7
for CIDEr and 11.3 for METEOR, while the model without
Ly can only achieve 65.1 for CIDEr and 10.9 for ME-
TEOR, which indicates the benefits of L., for the location
input tasks.

The influence of stage-3 training. The SAM model can
directly take the predicted bounding boxes as input and

Table 5. The influence of L., for region captioning.

Methods RefCOCOg
CIDEr METEOR

w/o Leye  65.1 10.9

W Leye 68.7 11.3

Table 6. The influence of different factors for RES. Training refers
to the stage-3 training. Box indicates whether to feed the box into
SAM. Emb. indicates whether to feed the <t rigger>’s hidden
states into SAM.

training box emb. ‘ RefCOCO RefCOCO+ RefCOCOg

v 69.6 60.8 63.2
v v 75.3 65.5 68.2
v v 76.6 66.9 69.9
v v v 76.1 66.5 69.5

output corresponding segmentation masks without our stage-
3 training. To study the effect of stage-3 training, we show
the non-training result (line 1) in Table 6. We find that the
training can significantly improve the performance on RES
task, which shows the necessity of the adaptation training.

Embedding vs box as inputs for mask decoder. The
mask decoder can take either the bounding box or the
<trigger> embedding as the input. To compare the influ-
ence of different inputs for mask decoder, we show results
with the box (line 2), emb (line 3), and box&emb (line 4)
inputs in Table 6. When comparing the box and emb., we
find that the embedding input has an obvious superiority
over the box, where changing from box input to embed-
ding input can result in an over 1 point improvement on all
of the 3 splits. Another interesting finding is that further
combining the box and embedding will not improve the per-
formance and even cause a slight degeneration. A potential
explanation is that the location information has already been
encoded in the embedding and the box can not provide any
new information.

7. Conclusion

In this paper, we present a novel location modeling method
called pix2emb, which utilizes embeddings to achieve mul-
tiple location output formats, such as bounding boxes and
segmentation masks. Based on the pix2emb, we train an
LMM named NExT-Chat, which significantly broadens the
range of application scenarios for LMMs. Our NExT-Chat
exhibits the ability to handle diverse tasks, including visual
grounding, region captioning, grounded captioning, and
region-aware reasoning. The model also achieves SOTA
performance on a series of datasets.
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Impact Statement

NExT-Chat is a multimodal conversation model that can
conduct region-level understanding. We try to discuss its
potential risks and mitigation strategies. First of all, our
model may suffer from the hallucination problem. Some
generated content may not conform to the visual facts in the
given images. Further alignment with high-quality data can
be applied to alleviate the hallucination. Secondly, similar
to the language model, our model may sometimes generate
offensive content for users. If the model is applied in human
conversation, filtration algorithms should be employed to
avoid exposing offensive content to users. Moreover, our
model is mainly trained on the general domain data and
thus may be not accurate enough for scenarios like medical
image processing. Domain-specific data fine-tuning will be
helpful to build conversation robots for the target domain.
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A. Pix2Emb v.s. Pix2Seq

In this section, we compare our pix2emb and different pix2seq variants. Concretely, there are mainly 3 pix2seq variants:

* 4bin represents bounding boxes using four bins in the format of [z, Yo, €1, y11. Each bin corresponds to a specific
location token out of the total 224 tokens available.

* 2bin employs two bins, with each bin representing a point. The entire image is divided into 1024 discrete bins, and
each bin represents the points within it.

* num does not introduce any new tokens to the vocabulary and directly uses the textual representation of numerical
values with three decimal places. However, the tokens required for each bounding box will be 26. It may also disturb
the language model’s ability for number-related generation.

As shown in Table 7, our pix2emb is the only method to model the location output as a regression task, which conforms
to the nature of coordinates prediction. When considering the tokens for each box, we only need 2 tokens to represent a
single bounding box, which significantly reduces the inference cost especially when compared with the num. As for the
new vocabulary, our pix2emb only requires 1 additional new token, which reduces the burden of training the extra new
parameters. Finally, our NExT-Chat can outperform both the VisionLLM and Kosmos-2 for the REC task. Although our
NExT-Chat can not surpass Shikra, our pix2emb pattern can be 169 times more effective than num for processing a single
bounding box considering the quadratic cost of LM’s self-attention calculation.

Table 7. Comparison between our pix2emb with 3 pix2seq variants including 4bin, 2bin, and num. Location Output is the way to predict
the coordinates. Format is the bounding box format. Tokes of Box represents the number of tokens to represent a single bounding box.
Note that “[” and “]” also require two tokens. Our pix2emb will use 2 tokens to represent a box consisting of a <t rigger> token and
the box’s embedding. New Vocabulary is the number of new tokens added to vocabulary for location modeling. Representative Models
are representative models for the given location modeling method.

. New Representative
Method Location Output Format Tokens of Box Vocabulary Model
pix2seq (4bin) classification [Zo, Yo, X1, Y1] 6 224 VisionLLM
pix2seq (2bin) classification [po, 1] 4 1024 Kosmos-2
pix2seq (num) classification (20, Y0, X1, Y1] 26 0 Shikra
pix2emb (ours) ‘ regression <trigger> <emb> 2 1 NEXT-Chat

B. Additional Ablation Studies

In this section, we present some additional ablation studies.

The influence of L, for the REC. We find that the cycle consistency loss will not only benefit the location input task
but also have a positive effect on the location output tasks. As shown in Table 8, the model trained with the L., can be
consistently better than the non-added one, with over 2 points improvements across all of the three splits.

Table 8. The influence of L, for REC.

Methods RefCOCO RefCOCO+ RefCOCOg

w/o Leye 59.8 453 49.6
W Leye 61.9 48.9 52.2

The influence of weight of £ ;.. We find that the balance of L4.; and L, is essential for the detection performance. We
denote the weight of the L. is k in the stage-1 training. We ablate the REC performance with different & in Table 9 with
around 10% data of the stage-1 pre-training and empirically observe that k = 1 is the best.
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Table 9. The influence of L 4.+’s weight k for REC.

k RefCOCO RefCOCO+ RefCOCOg
0.5 74.6 64.6 68.4
1 76.7 66.4 71.1
2 74.6 62.8 67.8
5 71.1 58.0 63.3

C. Detection v.s. Segmentation

Some astute authors may question why both the detection and segmentation abilities are preserved in the final model. Is the
segmentation already enough for the localization? Our answer is no. When working towards multimodal agents, there are
some scenarios requiring to indicate only the location rather than concrete objects or stuffs, which is more suitable to use
bounding boxes. As shown in Fig. 5, we may ask the model to find a place to put the cake or predict where will be the ball
after 1 second.

Where can | put another cake?

Figure 5. Two examples where the bounding boxes are more suitable than the masks.

D. Limitations

In the training procedure, our dataset primarily comprises individual image inputs, resulting in a limitation of our NExT-Chat
model when it comes to handling multiple image inputs. Furthermore, the absence of sufficient training data from diverse
domains hinders the model’s ability to generate accurate predictions in tasks involving medical and satellite image analysis.
We believe that further training the model with more diverse data and better alignment techniques will it safer and stronger.

E. Additional Qualitative Results

In this section, we additionally show some qualitative results of our NExT-Chat.

Visual Grounding. As shown in Fig. 6, we can see that our NExT-Chat accurately detects and segments the queried objects,
such as the bears and the sky in the background. To ensure that our model is not biased towards specific objects, we test
it with different queries to find all four bears individually. Our model successfully localizes each bear based on the given
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queries. In addition, our NExT-Chat is also capable of locating the background stuff like the sky in the image.

Complex Grounding. Our model also showcases reasoning abilities through challenging grounding problems. For instance,
in Fig. 7, our model accurately localizes the remote in response to the query “Where is the object to control the TV in the
image?” It also localizes the boat based on understanding the given object location input.

Region Captioning. To evaluate the effectiveness of our NExT-Chat model for location input, we conducted experiments
where the model generates descriptions based on given bounding boxes. As depicted in Fig. 8, our model consistently
produces accurate descriptions specifically tailored to the provided regions, without being influenced by the overall image
content or salient regions. We observed this behavior consistently across different examples. Notably, in the second row
of Fig. 8, our model demonstrates the ability to accurately recognize and describe small objects such as flags, as well as
background objects like trees.

Grounded Captioning. Fig. 9 demonstrates that our model can accurately identify and describe the major 2 or 3 objects in
an image, effectively organizing them into coherent sentences. By incorporating object references, our model demonstrates
a reduced tendency to generate captions containing non-existent objects. This highlights the model’s capability to generate
more accurate and contextually grounded image descriptions.

Reasoning. In addition to its demonstrated ability in single-turn and concise response generation, our NExT-Chat model also
possesses the capability for generating detailed explanations in response to given questions. As illustrated in the examples
of Fig. 10, our model exhibits the ability to infer the relationship between the man and the woman by analyzing contextual
cues. This inference is supported by the model’s ability to localize relevant regions within the image. This showcases the
model’s capacity for nuanced reasoning and comprehensive explanation generation.
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Visual Grounding
-

Where is the bear wearing the red decoration in <image>? & Where is the leftmost bear in <image>? &

Answer: it’s [0]. Answer: it’s [0].

Where is the rightmost bear in <image>? o Where is the second bear from left to right in <image>? &

.E. Answer: it’s [0]. Answer: it’s [0].

i i i ?
Where is the skateboard in <image>? o

{==i Answer:it's [0]. j==}i Answer: it's [0].

AN

Figure 6. Visual grounding examples of NExT-Chat.
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Complex Grounding

B

Where is the object used to control the TV in <image>?

Answer: it’s [0].

~

A

-

Answer: it’s [0].

A

Where is the boat to the left of boat[0] in <image>?

- 2N J
Figure 7. Hard visual grounding examples of NExT-Chat.
Region Captioning
e N N

What is region [0]?

man wearing a blue shirt.

man wearing a gray shirt.

Can you describe area [0]?

~ J
( N N
i i 2
Can you describe area [0]? & What is region [0]? &
==} stack of oranges for sale red and white sign
\ J
( N [ ~
Can you give me a description of the region [0] in image? & Can you give me a description of the region [0] in image? &
==} the trees are green =] awhite light switch
N /AN J

Figure 8. Region captioning examples of NExT-Chat.
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Grounded Captioning

—I

) - ) ) . Q
What is the woman doing? Please include object locations. & gigt)i/::sﬁ::.\’:;i: nﬂ:ifigagzno%fjége’)lmage <image> and include the [

The woman [0] is putting white powder [1] on a cake [2] .

Four stuffed teddy bears of various colors [0] [1] [2] [3] are sitting on a rock
outside .

Do

& Describe the scene in this picture <image> and give the position info for

What can you tell me about the contents of the image <image>? Please each item you talk about.

indicate the positions of any mentioned objects.

A man [0] in a black jacket [1] is eating .
A white dog [0] is laying on a marble table top next to a cup of coffee [1] .

; L ] ; . o
Can you provide a description of the image <image> and include the o . .
7 q A What can you tell me about the contents of the image <image>? Please
73
[eeEens (8 Coeh imeiloit] CHEsd indicate the positions of any mentioned objects.

[13]
Do

Two fighter jets [0] [1] are parked on a runway [2] .

A brown and white dog [0] is sleeping on a white couch [1] with a television
remote [2] on it .

AN

Figure 9. Grounded captioning examples of NExT-Chat.
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Reasoning

What will the boy do in reaction to the frisbee? Please include object locations and
explain.

Based on the image, it is suggested that the two people, a man [0] and a woman [1],
are likely a couple or very close friends. They are both looking at a laptop computer
[2], which could be related to work, study, or leisure activities. Their close
interaction while looking at the laptop could indicate a shared interest or a shared
task, which is typical of a professional or personal relationship, or simply spending
time together for entertainment. However, it is important to note that this is only an
suggestion based on the visual content, and the actual relationship between the
two individuals is not definitively clear from the image alone

/

-

What is the potential job of the man? Please include object locations and explain.

Based on the image, the man is wearing a uniform [0] and is riding a brown horse
[1] . It is likely that the man is a police officer or serves a law enforcement role, as
he is wearing a uniform, riding a horse, and possibly patrolling the area. His
potential job could include patrolling neighborhoods, responding to calls or
incidents, attending community events, or ensuring public safety. The man on the
horse may also be a mounted patrol officer, in charge of protecting a specific area
or event, watching over the public, or providing support to other law enforcement
officers.

Figure 10. Reasoning examples of NExT-Chat.
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