

000 001 002 003 004 005 MIRROR SPECULATIVE DECODING: BREAKING THE 006 SERIAL BARRIER IN LLM INFERENCE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Speculative decoding accelerates LLM inference with draft lookahead, but its effectiveness is bottlenecked by autoregressive draft generation: larger drafts improve acceptance yet also increase speculation latency overhead, capping speedup. Existing approaches such as Medusa, Hydra, EAGLE partially address draft inefficiency, but ultimately trade acceptance rates for reduced draft latency, or preserve acceptance at the cost of added overheads that limit scaling.

Modern SoCs increasingly integrate heterogeneous accelerators, most commonly GPUs and NPUs with complementary throughput and efficiency characteristics, yet existing approaches are accelerator-agnostic and usually place both draft and target on the same type of device, which leaves cross-accelerator parallelism unused. We introduce Mirror Speculative Decoding (Mirror-SD), which breaks the latency–acceptance tradeoff by launching branch-complete rollouts from early-exit signals in parallel with the target’s suffix and by explicitly mapping computation across heterogeneous accelerators. In this design, the draft speculates forward token continuations for target to verify, while the target speculates correction paths for the draft, creating a bidirectional speculative process. To further reduce draft speculation latency overhead while preserving acceptance semantics, we pair Mirror-SD with speculative streaming (SS) so the draft emits multiple tokens per step. This dual strategy of combining parallel heterogeneous execution and SS pushes speculative decoding closer to its ideal regime of high acceptance while reducing speculation overhead. On SpecBench with server-scale models from 14B to 66B parameters, Mirror-SD consistently delivers realistic end-to-end gains, achieving $2.8 \times$ – $5.8 \times$ wall-time speedups across diverse tasks representing 30% average relative improvement over the strongest baseline, EAGLE3.

1 INTRODUCTION

Autoregressive (AR) large language models (LLMs) have achieved state-of-the-art performance across a wide spectrum of natural language processing (NLP) tasks, yet their decoding latency remains a fundamental bottleneck, particularly for real-time applications such as interactive dialogue, code generation, and on-device assistants (Brown et al., 2020; Pope et al., 2023). Speculative decoding (SD) has emerged as a promising paradigm to mitigate this limitation by coupling a lightweight *draft model* with a larger, high-fidelity *target model* (Leviathan et al., 2023; Chen et al., 2023). In the canonical two-model SD framework, the draft model generates candidate tokens which are then verified by the target model in a serial pipeline. While this approach reduces the number of target model invocations, the sequential dependency between draft and target stages limits achievable speedups. Recent works attempt to relax the serial constraints by equipping the target itself with speculative capacity. Medusa (Cai et al., 2023) equips the target with parallel decoding heads, while EAGLE (Li et al., 2024a) introduces a dedicated speculation layer. However, the same trade-off remains: larger speculative modules improve acceptance at the cost of higher draft construction latency, while smaller ones reduce overhead but lower acceptance and limit speedup. A detailed discussion of related approaches is provided in Appendix A.

The central challenge of speculative decoding lies in reconciling these competing factors: (i) enabling *parallel execution* of draft and target models to eliminate serial dependencies, (ii) *scaling the draft capacity* to achieve higher acceptance rates without incurring proportional latency overhead, and (iii) designing *bandwidth-efficient communication protocols* that allow draft and target

054 to exchange token-level feedback with minimal synchronization overhead. Achieving this balance
 055 reframes speculative decoding from primarily a model-level optimization toward a system-level co-
 056 design challenge, opening the path to real-time and efficient LLM inference.

057 Modern System on Chip (SoC) architectures increasingly feature heterogeneous compute units that
 058 combine high-throughput GPUs with specialized neural processing units (NPUs) (Jouppi et al.,
 059 2021; Intel Corporation, 2023; Advanced Micro Devices (AMD), 2023; Apple Inc., 2023a;b; Qual-
 060 comm Technologies Inc., 2023). enabling efficient partitioning of workloads across compute sub-
 061 strates optimized for different performance and power trade-offs. This architectural heterogeneity
 062 motivates a division-of-labor strategy for speculative decoding, wherein the draft model operates
 063 on the NPU exploiting its efficiency for approximate inference, while the target model executes on
 064 the GPU, which is better suited for high-fidelity, throughput-critical computation. Such partitioning
 065 leverages available NPU capacity and reduces contention on the GPU, thereby improving end-to-end
 066 latency in multi-accelerator deployments.

067 In this work, we propose a novel architecture that operationalizes this vision by partitioning specu-
 068 lative decoding across heterogeneous compute units, mapping draft inference onto compute-dense
 069 NPUs and target verification onto high-throughput GPUs. This design leverages underutilized accel-
 070 erator capacity, overlaps execution between models, and employs token-level feedback mechanisms
 071 to maximize acceptance while minimizing draft construction latency overhead.

073 2 SPECULATIVE DECODING: FORMALIZATION AND LIMITS

075 To ground our discussion, we first formalize standard autoregressive (AR) decoding and speculative
 076 decoding (SD), establishing the baseline needed to analyze the limits of SD precisely.

077 **Autoregressive (AR) decoding.** Let \mathcal{V} denote a finite vocabulary. We write $x_{1:m} \in \mathcal{V}^m$ for the
 078 context of length m and $y_{1:T} \in \mathcal{V}^T$ for the response of length T to be generated. A decoder-only
 079 AR model with parameters θ defines the conditional distribution

$$081 \quad p_\theta(y_{1:T} \mid x_{1:m}) = \prod_{t=1}^T p_\theta(y_t \mid x_{1:m}, y_{<t}), \quad p_\theta(\cdot \mid x_{1:m}, y_{<t}) = \text{Softmax}(W, h_t), \quad (1)$$

084 where $h_t \in \mathbb{R}^H$ is the *next-token* representation at position $m + t$, and $W \in \mathbb{R}^{|\mathcal{V}| \times H}$ is the output
 085 head mapping hidden states to vocabulary logits (Radford & Narasimhan, 2018; Vaswani et al.,
 086 2017). Scaling inference of such models often requires distributing computation across multiple
 087 devices via tensor parallelism, which partitions per-layer parameters across devices and aggregates
 088 partial results with collectives such as ALLREDUCE (Hansen-Palmus et al., 2024; Li et al., 2024e).
 089 The per-token latency is then set by the critical path combining local compute and synchronizations.

090 **Speculative decoding (SD).** Speculative decoding augments a *target model* $f_{\text{target}}(\cdot \mid \cdot)$ with a
 091 computationally cheaper *draft model* $f_{\text{draft}}(\cdot \mid \cdot)$ (Leviathan et al., 2023; Chen et al., 2023). At
 092 step t , conditioned on the verified prefix $(x, y_{<t})$, the draft proposes a γ -token window

$$094 \quad \hat{y}_{t+1:t+\gamma} \sim f_{\text{draft}}(\cdot \mid y_{<t}, x), \quad (2)$$

095 which the target then verifies left-to-right, producing the largest prefix on which both models agree:

$$097 \quad A_t \triangleq \max \left\{ r \in \{0, \dots, \gamma\} : \forall j \leq r, \hat{y}_{t+j} = \arg \max f_{\text{target}}(\cdot \mid y_{<t+j-1}, x) \right\}. \quad (3)$$

099 The agreed-upon tokens are committed as $y_{t+1:t+A_t} = \hat{y}_{t+1:t+A_t}$. If the draft and target disagree
 100 before the end of the window ($A_t < \gamma$), the target emits a correction y_{t+A_t+1} and decoding resumes
 101 from $(x, y_{\leq t+A_t})$. The (window-normalized) *acceptance rate* is

$$102 \quad \rho(\gamma; \phi, \theta) = \frac{\mathbb{E}[A_t]}{\gamma} \in [0, 1], \quad (4)$$

105 which quantifies the expected fraction of the draft’s proposals that are accepted by the target for
 106 window length γ . Let $T_{\text{draft}}(\gamma; \phi)$ and $T_{\text{target}}(\gamma; \theta)$ denote the wall-times to produce and to verify
 107 the window in Equations (2) and (3) (the latter includes the teacher-forced roll-forward through
 accepted tokens). Because verification cannot begin before speculation is available, and the *next*

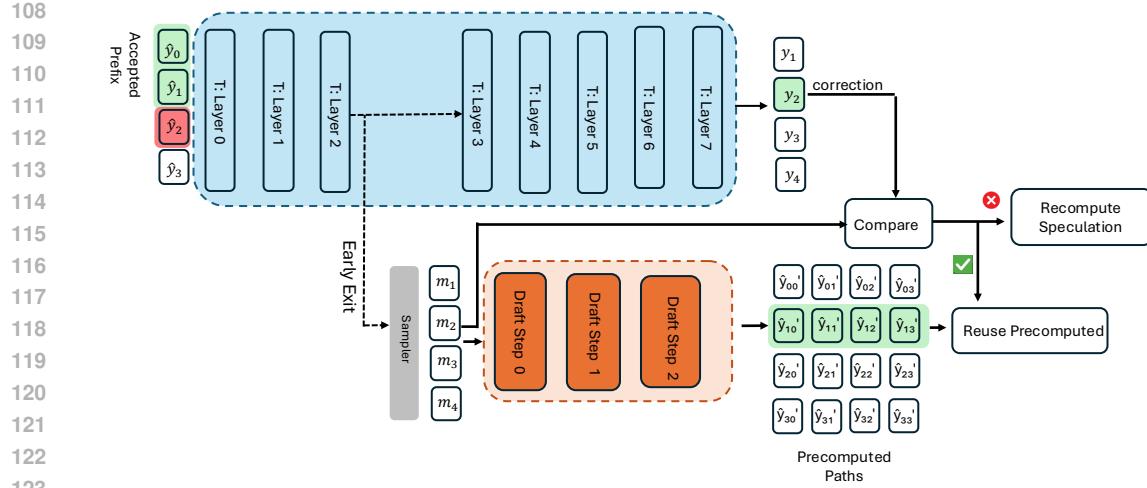


Figure 1: Mirror-SD verification and reuse (example with $\gamma = 3$, $\kappa = 1$). At early exit, the target (blue) emits $\mathcal{M}_t = \{m_1, \dots, m_4\}$ and continues to the final layer. The draft (orange) expands \mathcal{M}_t into branch-complete continuations $y'_{i0:i3}$ (grid). After verification, the target accepts \hat{y}_0, \hat{y}_1 and issues correction y_2 at depth $\tau = 2$. Reuse is possible if there exists a precomputed branch whose prefix matches the accepted tokens (\hat{y}_0, \hat{y}_1) and whose node at depth τ equals y_2 (green). Otherwise, speculation is recomputed (See Section 3.1 for the formal rule).

speculation cannot begin before the final acceptance decision at step t is known, the happen-before relation is

$$\hat{y}_{t+1:t+\gamma} \prec (\text{verification at } t) \prec \hat{y}_{t+1:t+\gamma}^{\text{next}},$$

yielding a *serial* step latency

$$T_{\text{SD}}(\gamma; \phi, \theta) = T_{\text{draft}}(\gamma; \phi) + T_{\text{target}}(\gamma; \theta). \quad (5)$$

Increasing draft capacity (larger γ , deeper/wider f_d) typically *increases* ρ but also increases T_{draft} , while tiny drafts reduce T_{draft} but suffer low ρ (Leviathan et al., 2023; Chen et al., 2023). Equation (5) exposes the core limitation: improvements in acceptance must compensate for the added draft latency, intrinsically coupling acceptance with latency.

3 MIRROR SPECULATIVE DECODING

We propose *Mirror Speculative Decoding* (Mirror SD), a systems–algorithm co-design that enables parallel draft-target execution by conditioning the draft on *intermediate* target-layer distributions and reconciling via a bandwidth-light token channel. This section develops the method end-to-end—formal semantics, latency models, and a realizable tensor-parallel implementation.

3.1 EARLY-EXIT PROXIES AND BRANCH-COMPLETE CONCURRENT SPECULATION.

Consider a target transformer of depth N with layers L_1, \dots, L_N and intermediate representations $h_t^{(\ell)}$ at step t . To generate high-fidelity early-exit proxies, we insert a lightweight non-linear MLP adapter $f_{\text{adapt}}(\cdot)$ that transforms the hidden state at exit layer $\ell_e < N$ before applying the shared final LM head W_{LM} :

$$p^{(\ell_e)}(\cdot | y_{<t}, x) = \text{Softmax}(W_{\text{LM}} \cdot f_{\text{adapt}}(h_t^{(\ell_e)})), \quad (6)$$

following the formulation in Pal et al. (2023a). Details of the early-exit adapter and its training procedure are provided in Appendix E.2. The resulting distribution exposes a low-bandwidth *token channel*:

$$\mathcal{M}_t = \text{Top-}\kappa(p^{(\ell_e)}(\cdot | y_{<t}, x)) = \{(v_i, \log \tilde{p}_i)\}_{i=1}^{\kappa}, \quad v_i \in \mathcal{V}, \quad (7)$$

162 containing only the top- κ candidate tokens and their log-probabilities. While this message is sent,
 163 the target continues its verification pass through $\mathcal{L}_{\ell_e+1}, \dots, \mathcal{L}_N$ to form the full next-token distribu-
 164 tion $p^{(N)}(\cdot | y_{<t}, x)$. Let $\gamma \in \mathbb{N}$ denote the *speculative window length*.
 165

166 Given \mathcal{M}_t , the draft begins a *branch-complete* rollout in parallel: for each candidate v_i and for every
 167 prefix length $r \leq \gamma$, it prepares a speculative continuation for the *next step* of decoding starting from
 168 v_i ,

$$169 \quad \forall i \in \{1, \dots, \kappa\}, \forall r \in \{1, \dots, \gamma\} : \hat{y}'^{(i)}_{t+1:t+r} \sim f_d(\cdot | y_{<t}, x, \tilde{y}_{t+1} = v_i). \quad (8)$$

170 While the draft’s batched branches run, the target finishes verification against the currently selected
 171 draft path under the standard speculative rule and determines the first mismatch (the *correction*).
 172 Formally, let

$$173 \quad A_t \triangleq \max \left\{ r \in \{0, \dots, \gamma\} : \hat{y}_{t+j} = y_{t+j}^{\text{targ}} \forall j \leq r \right\}$$

175 be the accepted prefix length, where y_{t+j}^{targ} are the target’s tokens obtained from $p^{(N)}(\cdot | y_{<t+j-1}, x)$
 176 (greedy/stochastic sampling). If $A_t < \gamma$, the correction occurs at index $\tau = A_t + 1$ with token

$$177 \quad c_{t+\tau} \triangleq y_{t+\tau}^{\text{targ}} \sim p^{(N)}(\cdot | y_{<t+\tau-1}, x).$$

179 Let \mathcal{T}_t be the hypothesis tree built at early exit from the top- κ roots $\{v_i\}$, whose nodes at depth r
 180 store the token at position $t + r$ and its precomputed continuation.

181 **Verification vs. reuse criterion.** At step t , the target accepts a prefix of length A_t and issues a
 182 correction at $\tau = A_t + 1$ with token $c_{t+\tau}$. The early-exit message \mathcal{M}_t induces a hypothesis tree \mathcal{T}_t
 183 rooted at the top- κ candidates, with $\text{Paths}_r(\mathcal{T}_t)$ denoting all root-to-depth- r prefixes, which serve
 184 as anchors for speculative continuations. The accepted prefix is $\Pi_t = (y_{t+1}^{\text{targ}}, \dots, y_{t+A_t}^{\text{targ}})$, and the
 185 corrected prefix extends it with the correction token, $\Pi_t^+ = (\Pi_t, c_{t+\tau})$. Reuse occurs whenever this
 186 corrected prefix already appears as a path in \mathcal{T}_t , i.e.

$$188 \quad \Pi_t^+ \in \text{Paths}_\tau(\mathcal{T}_t),$$

189 so that only the correction must be checked while the accepted positions $1:A_t$ remain fixed.

190 *Operational selection of the next window.*

$$192 \quad \hat{y}'_{t+1:t+\gamma} = \begin{cases} \text{branch rooted at } c_{t+1}, & A_t = 0 \wedge \exists i : v_i = c_{t+1}, \\ \text{precomputed continuation at depth } \tau \text{ along } \Pi_t, & A_t \geq 1 \wedge \Pi_t^+ \in \text{Paths}_\tau(\mathcal{T}_t), \\ \text{fresh rollout from } (y_{1:t+A_t}, c_{t+\tau}), & \text{otherwise.} \end{cases}$$

197 In all cases, the committed output is $y_{t+1:t+A_t}^{\text{targ}}$, after which decoding advances to the next step.

198 **Effect of sampling width at early exit.** Let $q(\cdot) = p^{(N)}(\cdot | h_t)$ and $\tilde{p}(\cdot) = p^{(\ell_e)}(\cdot | h_t)$. We denote
 199 the top- κ mass overlap as:

$$200 \quad \Omega_\kappa = \sum_{y \in \text{Top-}\kappa(\tilde{p})} q(y). \quad (9)$$

202 It follows that $\mathbb{P}(y_{t+1} \in \text{Top-}\kappa(\tilde{p})) = \Omega_\kappa$, which is nondecreasing in κ and satisfies $\lim_{\kappa \rightarrow |\mathcal{V}|} \Omega_\kappa = 1$. Larger κ therefore reduces fallbacks requiring speculation recomputation and improves through-
 203 put, while leaving acceptance semantics intact (See Appendix B).

206 3.2 DRAFT EXECUTION WITH SPECULATIVE STREAMING

208 For the draft model f_d , we employ *Speculative Streaming* (SS) (Bhendawade et al., 2024), a specu-
 209 lative mechanism that *verifies* previously proposed tokens while *generating* new speculative tokens
 210 *in the same forward pass* using multi-stream attention. Applying SS to the target would modify
 211 its decoding dynamics and alter the final distribution $p^{(N)}(\cdot | y_{<t}, x)$ (Bhendawade et al., 2024),
 212 breaking the lossless guarantee established in Appendix B. In contrast, using SS on the draft acceler-
 213 ates speculation generation without changing acceptance semantics, since all commitments still
 214 require verification against the unchanged target. This design leverages SS precisely where it yields
 215 additional concurrency while preserving correctness (See Appendix B). Appendix D.2 illustrates
 the SS mechanism and compares draft-only speedups between vanilla and SS drafts.

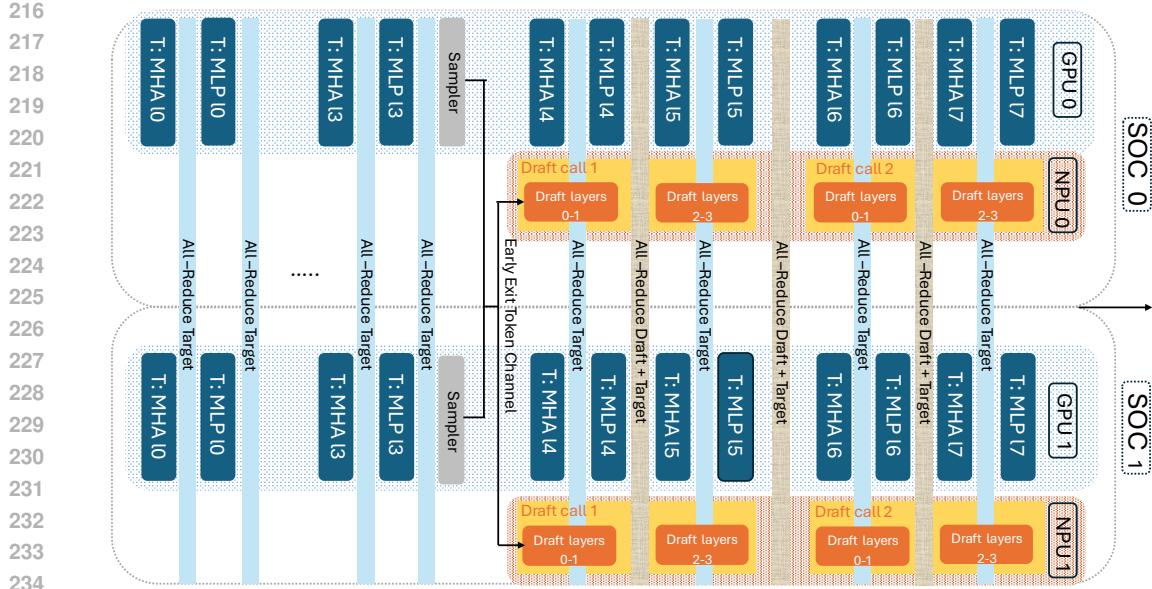


Figure 2: Heterogeneous sharding in Mirror-SD. The *target* (blue) uses Megatron-style TP with two collectives per MHA/MLP block, while the *draft* (orange) uses SPD-style sharding across G_D NPUs with only two synchronizations per step. This design reduces sync cost, enlarges draft capacity, and improves acceptance without raising critical-path latency. *Note:* The beige bands labeled “All-Reduce Draft + Target” are a visual shorthand: the draft and target perform *separate* all-reduces within their own device groups, with no cross-collective coupling.

Multi-stream attention (MSA) factorization. Let $M_t^{(\ell)}$ denote the main-stream hidden state at layer ℓ and step t , and $S_{t,j}^{(\ell)}$ the hidden state of lookahead stream $j \in \{1, \dots, \gamma\}$. Speculative streaming (SS) constructs attention masks so that each $S_{t,j}$ attends to the verified prefix and to lower-index lookahead streams $\{S_{t,1}, \dots, S_{t,j}\}$, while the main stream M_t attends only to the verified prefix. At the top layer, a *shared* LM head $W_{\text{LM}}^{(d)}$ projects these hidden states to token logits:

$$W_{\text{LM}}^{(d)} M_t^{(N)} \mapsto p_d(\cdot | h_t) \quad \text{and} \quad W_{\text{LM}}^{(d)} S_{t,j}^{(N)} \mapsto p_d(\cdot | h_t, j), \quad j = 1, \dots, \gamma.$$

so a single forward pass yields both the distribution used to *verify* the prior draft and the distributions needed to *grow* the next speculative window across multiple lookahead depths. SS trains these streams with a future n -gram prediction objective without introducing additional heads.

Work-conserving draft generation within Mirror-SD. Within each Mirror-SD step, the draft must furnish a branch-complete speculative window of length γ at the rendezvous (Section 3.1). Under SS, a single draft *internal* step can emit $\eta_j \geq 1$ tokens by verifying the prior proposal and predicting multiple future tokens in one pass (Bhendawade et al., 2024). Consequently, the number of draft steps J required to materialize γ tokens satisfies

$$J \leq \left\lceil \frac{\gamma}{\bar{\eta}} \right\rceil, \quad \bar{\eta} = \frac{1}{J} \sum_{j=1}^J \eta_j.$$

3.3 HETEROGENEOUS SHARDING OF MIRROR-SD

We co-schedule a depth- N *target* on $G_T=8$ GPUs and a depth- N_d *draft* on $G_D=8$ NPUs. The target is a pre-trained model and thus kept in its standard Megatron-style tensor parallel (TP) form (Shoeybi et al., 2019), ensuring compatibility with existing inference stacks and KV-cache layouts. In contrast, the draft is trained from scratch using the SPD architecture (Kim et al., 2025) and deployed on NPUs. We write S for per-microbatch sequence length, B for microbatch size, and $|\mathcal{V}|$ for vocabulary size. Figure 2 illustrates the heterogeneous sharding setup with an example configuration (target of 8 layers, draft of 4 layers); in practice, both target and draft may use different depths based on the experiment configuration.

270 **Target sharding** We use Megatron-style TP on the target: column-parallel W_{qkv} and W_o in MHA,
 271 and column/row-parallel W_1, W_2 in the MLP. Each transformer block performs the standard two
 272 TP collectives (attention and MLP). At early exit ℓ_e , the target emits $\text{Top-}\kappa(p^{(\ell_e)})$ over the token
 273 channel while continuing the verification phase; acceptance remains decided against $p^{(N)}$ and is
 274 therefore unchanged relative to vanilla SD (See Appendix B).
 275

276 **Draft sharding.** The draft is trained with SPD architecture (Kim et al., 2025). We divide the
 277 N_d layers into two contiguous segments. Within each segment we instantiate G_D parallel tracks;
 278 track $g \in \{1, \dots, G_D\}$ is pinned to NPU g and advances through all layers of its segment using
 279 a resident weight shard. There is no inter-NPU traffic inside a segment (See Figure 2). At the
 280 segment boundary, all tracks perform a single global synchronization to re-align tensor partitions,
 281 and a second synchronization occurs at the end of the forward pass to assemble full-width logits
 282 for the main and lookahead streams. Each internal draft step executes two all-reduce collectives on
 283 activation shards while weights remain sharded. This replaces per-layer synchronization with a fixed
 284 two-collective cost, reducing latency and enabling more parameters to be sharded across NPUs. In
 285 practice, this expands draft capacity and improves acceptance rates $\rho(\gamma; \phi, \theta)$ without increasing
 286 critical-path latency.
 287

288 **Cross-accelerator rendezvous.** Mirror-SD performs two token-level exchanges per step: early-
 289 exit (ℓ_e) and final verification (N). These exchanges carry $O(B\kappa)$ small items (IDs and log-
 290 probabilities) and are negligible in practice (microseconds) compared to millisecond-scale tar-
 291 get/draft compute; they are accounted for by T_{rv} in the latency model.
 292

3.4 LATENCY ANALYSIS

294 Let the target early-exit at layer ℓ_e in a depth- N stack with per-layer times c_ℓ , and write

$$295 \quad T_{\text{target}}^{1:\ell_e} = \sum_{\ell=1}^{\ell_e} c_\ell, \quad T_{\text{target}}^{\ell_e+1:N} = \sum_{\ell=\ell_e+1}^N c_\ell.$$

299 Let γ be the speculative window length and let $T_{\text{draft}}^{\text{gen}}(\gamma)$ denote the time to produce a branch-
 300 complete draft window (absorbing any multi-token SS steps). We account for the two rendezvous
 301 overheads at early exit and final verification,

$$302 \quad T_{\text{rv}}^{(\text{ee})}, \quad T_{\text{rv}}^{(\text{fv})}, \quad T_{\text{rv}} \triangleq T_{\text{rv}}^{(\text{ee})} + T_{\text{rv}}^{(\text{fv})},$$

303 where the GPU \leftrightarrow NPU token exchanges carry only $O(B\kappa)$ IDs/log-probabilities.

305 A single Mirror-SD step consists of (i) target prefix, (ii) early-exit rendezvous, (iii) a parallel region
 306 where the target suffix overlaps the draft generation, and (iv) final rendezvous. The step latency is

$$307 \quad T_{\text{Mirror}} = T_{\text{target}}^{1:\ell_e} + T_{\text{rv}}^{(\text{ee})} + \max\{T_{\text{target}}^{\ell_e+1:N}, T_{\text{draft}}^{\text{gen}}(\gamma)\} + T_{\text{rv}}^{(\text{fv})}. \quad (10)$$

309 Let the *overlap budget* be $\Delta \triangleq T_{\text{target}}^{\ell_e+1:N}$. If $T_{\text{draft}}^{\text{gen}}(\gamma) \leq \Delta$, the entire draft generation is hidden
 310 under the target suffix and

$$311 \quad T_{\text{Mirror}} = T_{\text{target}} + T_{\text{rv}}.$$

313 Otherwise the draft dominates the parallel region and

$$314 \quad T_{\text{Mirror}} = T_{\text{target}}^{1:\ell_e} + T_{\text{rv}}^{(\text{ee})} + T_{\text{draft}}^{\text{gen}}(\gamma) + T_{\text{rv}}^{(\text{fv})}.$$

316 Thus, scaling the draft that only increases overlapped $T_{\text{draft}}^{\text{gen}}(\gamma)$ is *free* up to budget Δ , while
 317 the token-channel transfers remain a small $O(B\kappa)$ term. We provide a full accounting of sam-
 318 pling/transfer costs, multi-step SS, and synchronization in Appendix C.

320 4 EXPERIMENTS

322 We evaluate Mirror-SD on a broad suite of generation workloads under realistic serving constraints,
 323 using server-scale decoder-only LLMs that are routinely deployed in production inference stacks
 324 across mid to large capacities, and we compare against strong speculative-decoding baselines.

324
325

4.1 EVALUATION PROTOCOL

326
327
328
329
330
331

Datasets and tasks. We integrate our approach with the open-source SpecBench framework (Xia et al., 2024b) to ensure a fair, reproducible comparison against prior methods. SpecBench provides standardized prompts and pre/post-processing, sampling settings and released configs and seeds (Xia et al., 2024b). We report results on multi-turn interactive conversation (MT Bench), translation, summarization, mathematical reasoning, machine translation and retrieval-augmented generation (RAG). Context and generation lengths follow the SpecBench protocol (Xia et al., 2024b).

332
333
334
335
336
337
338
339
340
341
342
343

Models and baselines. We evaluate Mirror-SD on server-scale targets that are deployable in production inference stacks: Qwen3-14B and Qwen3-32B (Yang et al., 2025), Mistral-24B (Mistral, 2025), and OPT-66B (Zhang et al., 2022). For Qwen targets, we train a 0.6B-parameter draft with 2 segments and 8 tracks and deploy it on 8 NPUs as described in Section 3.3. For Mistral we train a 0.5B draft, and for OPT we train a 200M draft, both sharded as in Section 3.3 to optimize synchronization cost. All draft models are trained with SS objective described in (Bhendawade et al., 2024) on UltraChat (Ding et al., 2023). Across all target models, drafts are launched from the mid-layer early exit ($\frac{1}{2}$ of total depth) with top- $\kappa=8$ under batch size 1. Please refer to Appendix E for the effects of early-exit depth and κ . Baselines include vanilla SD, Medusa (Cai et al., 2024), Hydra (Ankner et al., 2024b), EAGLE 2/3 (Li et al., 2024b; 2025a), Recycling (Luo et al., 2024), PLD (Saxena, 2023a), SpS (Joao Gante, 2023), REST (He et al., 2024), and Lookahead (Fu et al., 2023). All baselines have public implementations in SpecBench (Xia et al., 2024b), and we use the corresponding implementations.

344
345
346
347
348
349
350

Metrics. We focus solely on efficiency, without reporting accuracy metrics, since Mirror-SD is lossless and guarantees identical outputs to the target model under the same decoding process (see Appendix B). Our two key metrics are: (i) end-to-end wall-time speedup over target-only autoregressive decoding, reported as a speedup factor; and (ii) *acceptance length*, the expected number of tokens accepted per speculative window, averaged across steps and prompts. We report greedy decoding with temperature $\tau = 0$ and stochastic decoding with $\tau = 1$. The same decoding hyperparameters are used for all methods.

351
352
353
354
355
356
357

Serving configuration and reproducibility. Target models are distributed across eight M2 Ultra GPUs using Megatron-style tensor parallelism (Section 3.3), while the draft runs on eight NPUs (Apple Inc. (2023a)). All evaluations use a fixed batch size of 1 and speculative window length $\gamma=7$; please refer to Appendix D.1 for analysis of batching effects. The token channel transmits only the top- κ token IDs and log-probabilities in `bf16`. For determinism, interconnects are pinned and frequency scaling is disabled. Timings include compute, collectives, and rendezvous overhead.

358
359

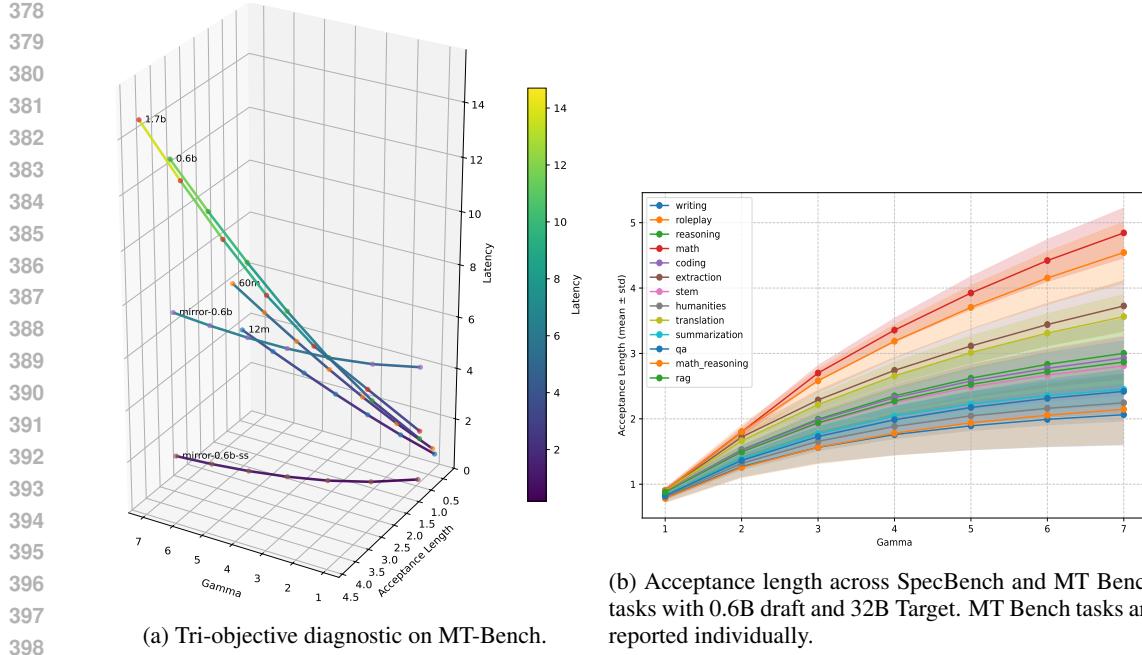
4.2 TRI-OBJECTIVE ANALYSIS WITH AN MT-BENCH DIAGNOSTIC

360
361
362
363
364
365
366
367
368
369
370

Speculative decoding couples three quantities: the speculative window γ , the acceptance length $\mathbb{E}[A_t] = \gamma \rho(\gamma; \phi, \theta)$, and drafting latency added to critical path. In vanilla SD, enlarging γ typically boosts acceptance but also increases draft construction time since drafting is serial, yielding an upward-sloping latency curve. For Mirror-SD, the step latency follows the model in Section 3.4 (Equation (10)): as long as $T_{\text{draft}}^{\text{gen}}(\gamma) \leq \Delta$ with $\Delta = T_{\text{target}}^{\ell_e+1:N}$, increasing γ (and thus $\mathbb{E}[A_t]$) adds *no* marginal latency; once $T_{\text{draft}}^{\text{gen}}(\gamma) > \Delta$, latency grows by the excess beyond Δ . Acceptance semantics remain unchanged (Appendix B). We validate these hypotheses on MT-Bench (Bai et al., 2024) by sweeping γ , measuring $\mathbb{E}[A_t]$ and the observed draft construction overhead added to critical path, and comparing three methods that share the same target: (i) vanilla SD with autoregressive drafts from 12M to 1.7B parameters, (ii) Mirror-SD with a 0.6M draft, and (iii) Mirror-SD with a SS draft (Section 3.2) of 0.6B. For fairness, all approaches in Figure 3a use NPU for draft placement.

371
372
373
374
375
376
377

Findings. Vanilla SD traces an ascending surface: larger drafts increase $\mathbb{E}[A_t]$ but raise step latency commensurately. Mirror-SD shifts this surface downward by overlapping draft generation on NPUs with target verification on GPUs, revealing a near-zero-slope regime wherever $T_{\text{draft}}^{\text{gen}}(\gamma) \leq \Delta$. Adding speculative streaming further reduces $T_{\text{draft}}^{\text{gen}}(\gamma)$ by requiring fewer internal draft steps J to cover the same window length γ , which extends the near-zero-slope region and pushes the surface down again. Across γ , Mirror-SD and Mirror-SD+SS dominate the Pareto frontier—achieving higher $\mathbb{E}[A_t]$ at a given latency, lower latency at a given $\mathbb{E}[A_t]$, and a wider feasible range before saturating the overlap budget defined in Section 3.4.



(a) Tri-objective diagnostic on MT-Bench.

(b) Acceptance length across SpecBench and MT Bench tasks with 0.6B draft and 32B Target. MT Bench tasks are reported individually.

Figure 3: (a) Speculative window γ , acceptance length, and drafting construction overhead in critical path on MT Bench. (b) Acceptance length $\mathbb{E}[A_t]$ on SpecBench and MT Bench tasks (mean \pm std).

Table 1: SpecBench wall-time speedups. Mirror-SD outperforms prior methods across models, tasks, and decoding temperatures, showing consistent improvements.

Model	Task	EAGLE3	EAGLE2	Hydra	Recycling	Medusa	Vanilla-SD	PLD	SpS	REST	Lookahead	Mirror-SD
Qwen3-14B (T=0)	Translation	2.53x	1.98x	2.03x	1.86x	1.65x	2.34x	1.18x	1.15x	1.21x	1.09x	4.13x
	Summarization	2.91x	2.19x	2.00x	2.30x	1.55x	1.76x	2.12x	1.87x	1.38x	1.30x	3.07x
	Question Answering	3.09x	2.39x	2.19x	2.13x	1.62x	1.81x	1.14x	1.31x	1.61x	1.27x	3.18x
	Mathematical Reasoning	3.36x	2.75x	2.53x	2.58x	2.12x	2.80x	1.67x	1.59x	1.15x	1.70x	5.32x
	Retrieval Aug. Generation	2.66x	2.13x	2.04x	2.06x	1.64x	2.02x	1.67x	1.75x	1.57x	1.32x	3.49x
	Multi-turn Conversation	3.29x	3.05x	2.45x	2.44x	1.93x	2.07x	1.63x	1.81x	1.49x	1.35x	3.70x
Qwen3-14B (T=1)	Translation	1.92x	1.81x	1.81x	1.78x	1.54x	2.19x	1.07x	1.04x	1.08x	1.03x	3.89x
	Summarization	2.84x	2.05x	1.66x	1.84x	1.40x	1.50x	1.86x	1.40x	1.20x	1.13x	2.81x
	Question Answering	2.61x	2.00x	1.85x	1.84x	1.37x	1.36x	1.04x	1.18x	1.28x	1.15x	2.80x
	Mathematical Reasoning	3.25x	2.54x	2.42x	2.29x	2.01x	2.53x	1.49x	1.42x	1.05x	1.39x	5.02x
	Retrieval Aug. Generation	2.53x	1.86x	1.59x	1.89x	1.47x	1.68x	1.56x	1.60x	1.30x	1.07x	2.95x
	Multi-turn Conversation	3.05x	2.78x	2.16x	2.15x	1.81x	1.98x	1.42x	1.41x	1.37x	1.24x	3.48x
Qwen3-32B (T=0)	Translation	2.52x	2.10x	2.14x	1.57x	1.56x	2.74x	1.09x	1.24x	1.15x	1.12x	3.72x
	Summarization	2.98x	2.59x	1.98x	1.98x	1.56x	2.07x	1.82x	1.62x	1.38x	1.26x	3.14x
	Question Answering	2.76x	2.26x	2.17x	1.63x	1.81x	2.06x	1.17x	1.59x	1.70x	1.13x	3.04x
	Mathematical Reasoning	3.77x	3.49x	2.52x	1.95x	2.23x	3.33x	1.68x	1.70x	1.33x	1.49x	5.84x
	Retrieval Aug. Generation	2.65x	2.22x	1.92x	1.61x	1.59x	2.33x	1.42x	1.69x	1.76x	1.15x	3.42x
	Multi-turn Conversation	3.29x	3.24x	2.75x	1.79x	1.92x	2.67x	1.53x	1.65x	1.63x	1.33x	3.59x
Qwen3-32B (T=1)	Translation	2.36x	1.79x	1.90x	1.40x	1.42x	2.43x	1.03x	1.09x	1.03x	1.05x	3.15x
	Summarization	2.79x	2.22x	1.75x	1.48x	1.45x	1.92x	1.59x	1.43x	1.16x	1.17x	2.92x
	Question Answering	2.34x	2.09x	1.72x	1.46x	1.61x	1.89x	1.04x	1.37x	1.44x	1.04x	2.90x
	Mathematical Reasoning	3.45x	3.13x	2.35x	1.80x	1.66x	2.88x	1.36x	1.59x	1.20x	1.28x	5.08x
	Retrieval Aug. Generation	2.34x	1.96x	1.79x	1.50x	1.35x	2.08x	1.28x	1.35x	1.48x	1.07x	3.33x
	Multi-turn Conversation	3.14x	2.58x	2.29x	1.63x	1.73x	2.39x	1.34x	1.48x	1.47x	1.17x	3.28x

4.3 EFFECTIVENESS

Table 1 reports end-to-end wall-time speedups across SpecBench (Xia et al., 2024b) tasks. A clear pattern emerges: Mirror-SD shows improvements over baselines across model sizes, temperatures, and workloads. On Qwen3-14B, Mirror-SD averages $3.8\times$ acceleration with greedy sampling, compared to $2.97\times$ for the strongest prior methods; on Qwen3-32B, the average rises to $3.78\times$, eclipsing baselines at roughly $3\times$. The gains are most pronounced on long-horizon workloads (e.g., mathematical reasoning), where Mirror-SD reaches up to $5.84\times$ speedup. The improvement is driven

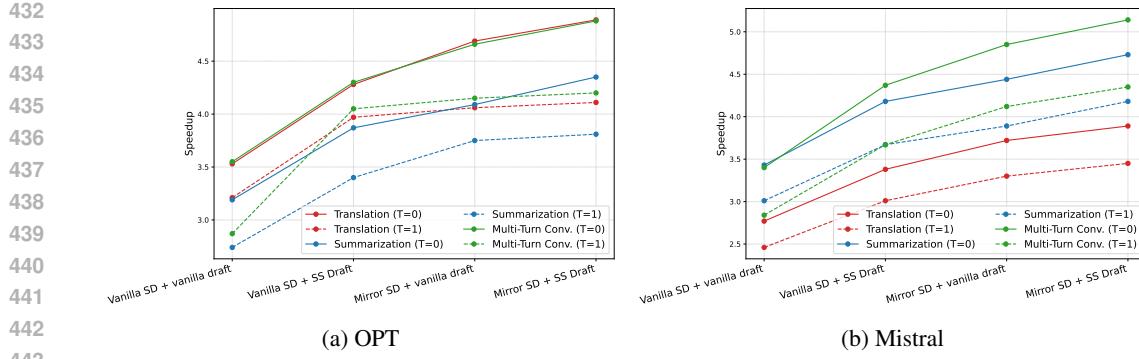


Figure 4: Speedup for OPT and Mistral under drafting strategies across tasks and temperatures.

primarily by a larger acceptance length $\mathbb{E}[A_t]$: Mirror-SD lets us scale the draft and apply speculative streaming without paying proportional step latency, which increases the number of tokens committed per target step. Since throughput scales roughly with the expected tokens accepted per step, $S \propto 1 + \mathbb{E}[A_t]$, these acceptance gains translate directly into wall-time speedups. Retrieval-augmented generation shows a similar effect, benefitting from stable intermediate distributions that allow the draft to sustain long accepted prefixes. Even on high-entropy domains such as multi-turn conversation, where acceptance is intrinsically harder, Mirror-SD consistently delivers 3.3–3.7× acceleration compared to the 1.8–2.4× range of Hydra, Recycling or Medusa. In translation and QA, the margin is steadier but no less striking: Mirror-SD maintains a speedup edge across both greedy and stochastic decoding, validating that its improvements are insensitive to decoding regime. For an intuition grounded in the concurrency model and scaling laws behind Figure 3a, see Appendix C.

4.4 GENERALIZABILITY ACROSS MODEL FAMILIES

To test whether the gains of Mirror-SD extend beyond Qwen, we repeat the study on two server-scale decoder-only families: Mistral-24B and OPT-66B. For each target, we hold decoding hyperparameters and draft capacity fixed and compare four variants: (1) standard speculative decoding with an autoregressive draft, (2) standard speculative decoding with a speculative-streaming draft, (3) Mirror-SD with an autoregressive draft, and (4) Mirror-SD with a speculative-streaming draft. Figure 4 reports end-to-end speedups over target-only decoding for translation, summarization, and multi-turn conversation under $\tau = 0$ and $\tau = 1$ regimes. Across both families and all tasks, the vanilla SD baseline with autoregressive-draft generation yields the smallest gains; adding speculative streaming increases throughput; switching to Mirror-SD produces a further jump; combining Mirror-SD with speculative streaming delivers the largest speedups. This progression matches the analysis in Sections 3.2 and 3.4: Mirror-SD shortens the critical path by overlapping draft generation with the target suffix, while speculative streaming reduces the draft generation time $T_{\text{draft}}^{\text{gen}}(\gamma)$ by emitting multiple tokens per internal draft step. Together, these effects allow larger acceptance lengths $\mathbb{E}[A_t]$ without additional step latency until the overlap budget is reached, and the target’s output distribution remains unchanged by construction. These results show that pairing Mirror-SD with a speculative-streaming draft generalizes across model families, delivering higher throughput without altering the base architecture or quality.

5 CONCLUSION

We introduced *Mirror Speculative Decoding* (Mirror-SD), a systems–algorithm co-design that overlaps target and draft computation, reduces draft synchronizations, and confines cross-accelerator traffic to a lightweight token channel. Deployed on heterogeneous GPU–NPU setups, Mirror-SD consistently accelerates decoding by 2.8X to 5.8X while preserving correctness. By reducing serial bottlenecks and leveraging multi-accelerator SoCs, Mirror-SD demonstrates a practical low-latency approach for large-scale LLM serving.

486 REFERENCES
487

488 Marah Abdin et al. Phi-3 technical report: A highly capable language model locally on your phone, 2024.

489

490 Advanced Micro Devices (AMD). Introducing Ryzen AI: AI Engine Powered by XDNA Architecture, 2023. URL <https://www.amd.com/en/processors/ryzen-ai.html>. Accessed: July 2025.

491

492

493 Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana, Linden Li, Julian Quevedo, and Daya Khudia. Llm inference performance engineering: Best practices., 2023a.

494

495

496 Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. *arXiv preprint arXiv:2306.13649*, 2023b.

497

498

499 Joshua Ainslie, Santiago Ontanon, Yi Tay, James Lee-Thorp, Michiel de Jong, Yinhan Yang, Dustin Tran, Jason Lee, Huaixiu Steven Chen, and Mandy Guo. Colt5: Faster long-range transformers with conditional computation. *Transactions of the Association for Computational Linguistics (TACL)*, 11:551–568, 2023.

500

501

502

503

504 Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding, 2024a.

505

506

507

508 Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa de- coding, 2024b.

509

510

511 Anonymous. Designing draft models for speculative decoding. In *Submitted to ACL Rolling Review - April 2024*, 2024a. URL <https://openreview.net/forum?id=mACK3ZVHoU>. under review.

512

513

514

515 Anonymous. Faster speculative decoding via effective draft decoder with pruned candidate tree. arXiv preprint under ACL ARR 2024, December 2024b. URL <https://openreview.net/forum?id=acl-676>. ACL ARR 2024 December Submission 676.

516

517

518 Apple. Use writing tools on your mac, n.d. URL <https://support.apple.com/guide/mac-help/use-writing-tools-mch1dc6c260/mac>. Accessed: 2025-02-09.

519

520

521 Apple Inc. Apple unveils m2 ultra, the world’s most powerful chip for a personal computer. <https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/>, 2023a. Accessed: 2025-09-22.

522

523

524 Apple Inc. Apple unveils M3, M3 Pro, and M3 Max: The most advanced chips for a personal computer, 2023b. URL <https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max>. Accessed: July 2025.

525

526

527

528 Apple Inc. About the apple thunderbolt pro cables. <https://support.apple.com/en-us/118204>, 2024. Accessed: 2025-09-24.

529

530

531 Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su, Tiezheng Ge, Bo Zheng, and Wanli Ouyang. MT-bench-101: A fine-grained benchmark for evaluating large language models in multi-turn dialogues. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7421–7454, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.401. URL <https://aclanthology.org/2024.acl-long.401/>.

532

533

534

535

536

537

538 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, multitask benchmark for long context understanding. *arXiv preprint arXiv:2308.14508*, 2023.

539

540 Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mah-
 541 yar Najibi. Speculative streaming: Fast llm inference without auxiliary models. *arXiv preprint*
 542 *arXiv:2402.11131*, 2024.

543 Nikhil Bhendawade, Mahyar Najibi, Devang Naik, and Irina Belousova. M2r2: Mixture of multi-
 544 rate residuals for efficient transformer inference. *arXiv preprint arXiv:2502.02040*, 2025. URL
 545 <https://doi.org/10.48550/arXiv.2502.02040>.

546 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, and Judy Hoffman. Token merging for efficient
 547 vision transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 548 *Recognition (CVPR)*, pp. 1216–1225, 2023.

549 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 550 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 551 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

552 F Warren Burton. Speculative computation, parallelism, and functional programming. *IEEE Trans-*
 553 *actions on Computers*, 100(12):1190–1193, 1985.

554 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, and Tri Dao. Medusa: Simple frame-
 555 work for accelerating llm generation with multiple decoding heads. <https://github.com/FasterDecoding/Medusa>, 2023.

556 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, De huai Chen, and
 557 Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding
 558 heads. *ArXiv*, abs/2401.10774, 2024. URL <https://api.semanticscholar.org/CorpusID:267061277>.

559 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
 560 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint*
 561 *arXiv:2302.01318*, 2023.

562 Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. DialogSum: A real-life scenario dia-
 563 logue summarization dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli
 564 (eds.), *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pp. 5062–
 565 5074, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 566 findings-acl.449. URL <https://aclanthology.org/2021.findings-acl.449>.

567 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 568 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
 569 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.

570 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 571 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 572 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
 573 1–113, 2023.

574 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 575 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 576 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 577 2021.

578 Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and
 579 Nazli Goharian. A discourse-aware attention model for abstractive summarization of long docu-
 580 ments. In *Proceedings of the 2018 Conference of the North American Chapter of the Association*
 581 *for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pp.
 582 615–621, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
 583 10.18653/v1/N18-2097. URL <https://aclanthology.org/N18-2097>.

584 Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
 585 Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
 586 llm inference. *arXiv preprint arXiv:2307.02628v1*, 2023.

594 Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. ChatLaw: Open-source legal large
 595 language model with integrated external knowledge bases. *arXiv preprint arXiv:2306.16092*,
 596 2023.

597 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
 598 plication for transformers at scale. *arXiv preprint arXiv:2208.07339*, 2022.

600 Tim Dettmers, Ruslan Svirichevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
 601 boos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. Spqr: A sparse-quantized repre-
 602 sentation for near-lossless llm weight compression. *arXiv preprint arXiv:2306.03078*, 2023.

603 Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
 604 Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
 605 conversations. *arXiv preprint arXiv:2305.14233*, 2023.

606 Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Evaluating the State-of-the-Art of End-to-
 607 End Natural Language Generation: The E2E NLG Challenge. *Computer Speech & Language*,
 608 59:123–156, January 2020. doi: 10.1016/j.csl.2019.06.009.

609 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
 610 one-shot. In *International Conference on Machine Learning*, pp. 10323–10337. PMLR, 2023.

611 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
 612 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

613 Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Breaking the sequential dependency of llm
 614 inference using lookahead decoding, November 2023. URL <https://lmsys.org/blog/2023-11-21-lookahead-decoding/>.

615 Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https://github.com/openlm-research/open_llama.

616 Raghav Goel, Mukul Agrani, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott.
 617 Direct alignment of draft model for speculative decoding with chat-fine-tuned llms. *arXiv preprint
 618 arXiv:2403.00858*, 2024.

619 Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models.
 620 *arXiv preprint arXiv:2306.08543*, 2023.

621 Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
 622 Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak Gopinath, Dian Ang Yap, Dong
 623 Yin, Feng Nan, Floris Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang, Jiarui Lu, John Peebles,
 624 Ke Ye, Mark Lee, Nan Du, Qibin Chen, Quentin Keunebroek, Sam Wiseman, Syd Evans, Tao
 625 Lei, Vivek Rathod, Xiang Kong, Xianzhi Du, Yanghao Li, Yongqiang Wang, Yuan Gao, Zaid
 626 Ahmed, Zhaoyang Xu, Zhiyun Lu, Al Rashid, Albin Madappally Jose, Alec Doane, Alfredo Ben-
 627 como, Allison Vanderby, Andrew Hansen, Ankur Jain, Anupama Mann, Areeba Kamal, Bugu
 628 Wu, Carolina Brum, Charlie Maalouf, Chinguun Erdenebileg, Chris Dulhanty, Dominik Moritz,
 629 Doug Kang, Eduardo Jimenez, Evan Ladd, Fangping Shi, Felix Bai, Frank Chu, Fred Hohman,
 630 Hadas Kotek, Hannah Gillis Coleman, Jane Li, Jeffrey Bigham, Jeffery Cao, Jeff Lai, Jessica Che-
 631 ung, Jiulong Shan, Joe Zhou, John Li, Jun Qin, Karanjeet Singh, Karla Vega, Kelvin Zou, Laura
 632 Heckman, Lauren Gardiner, Margit Bowler, Maria Cordell, Meng Cao, Nicole Hay, Nilesh Shah-
 633 dadpuri, Otto Godwin, Pranay Dighe, Pushyami Rachapudi, Ramsey Tantawi, Roman Frigg, Sam
 634 Davarnia, Sanskruti Shah, Saptarshi Guha, Sasha Sirovica, Shen Ma, Shuang Ma, Simon Wang,
 635 Sulgi Kim, Suma Jayaram, Vaishaal Shankar, Varsha Paidi, Vivek Kumar, Xin Wang, Xin Zheng,
 636 Walker Cheng, Yael Shrager, Yang Ye, Yasu Tanaka, Yihao Guo, Yunsong Meng, Zhao Tang Luo,
 637 Zhi Ouyang, Alp Aygar, Alvin Wan, Andrew Walkingshaw, Andy Narayanan, Antonie Lin, Ar-
 638 salan Farooq, Brent Ramerth, Colorado Reed, Chris Bartels, Chris Chaney, David Riazati, Eric
 639 Liang, Erin Feldman, Gabriel Hochstrasser, Guillaume Seguin, Irina Beloussova, Joris Pelemans,
 640 Karen Yang, Keivan Alizadeh, Liangliang Cao, Mahyar Najibi, Marco Zuliani, Max Horton, Min-
 641 sik Cho, Nikhil Bhendawade, Patrick Dong, Piotr Maj, Pulkit Agrawal, Qi Shan, Qichen Fu,
 642 Regan Poston, Sam Xu, Shuangning Liu, Sushma Rao, Tashweena Heeramun, Thomas Merth,
 643 Uday Rayala, Victor Cui, Vivek Rangarajan Sridhar, Wencong Zhang, Wenqi Zhang, Wentao
 644

648 Wu, Xingyu Zhou, Xinwen Liu, Yang Zhao, Yin Xia, Zhile Ren, and Zhongzheng Ren. App-
 649 ple intelligence foundation language models. *arXiv preprint arXiv:2407.21075*, 2024. URL
 650 <https://doi.org/10.48550/arXiv.2407.21075>.

651 Jan Hansen-Palmus, Michael Truong Le, Oliver Hausdörfer, and Alok Verma. Communication
 652 compression for tensor parallel lilm inference. *ArXiv*, abs/2411.09510, 2024. URL <https://api.semanticscholar.org/CorpusID:274023002>.

653 Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee, and Di He. Rest: Retrieval-based speculative
 654 decoding. *ArXiv*, abs/2311.08252, 2023. URL <https://api.semanticscholar.org/CorpusID:265157884>.

655 Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and Di He. REST: Retrieval-based speculative
 656 decoding. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024*
 657 *Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1582–1595, Mexico City, Mexico,
 658 June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.88.
 659 URL <https://aclanthology.org/2024.naacl-long.88/>.

660 Fenglu Hong, Ravi Raju, Jonathan Lingjie Li, Bo Li, Urmish Thakker, Avinash Ravichandran,
 661 Swayambhoo Jain, and Changran Hu. Training domain draft models for speculative decoding:
 662 Best practices and insights. *arXiv preprint arXiv:2503.07807*, 2025.

663 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 664 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeefYf9>.

665 Intel Corporation. Intel Core Ultra Processors, 2023. URL <https://www.intel.com/content/www/us/en/products/details/processors/core/ultra.html>. Accessed: July 2025.

666 Albert Q. Jiang et al. Mistral 7b, 2023.

667 Joao Gante. Assisted generation: a new direction toward low-latency text generation, 2023. URL
 668 <https://huggingface.co/blog/assisted-generation>.

669 Norman P Jouppi et al. Ten lessons from three generations shaped google’s tpuv4i. In *2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)*. IEEE, 2021.

670 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 671 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 672 models. *arXiv preprint arXiv:2001.08361*, 2020.

673 Han-Byul Kim, Duc N. M. Hoang, Arnav Kundu, Mohammad Samragh, and Minsik Cho. Spd:
 674 Sync-point drop for efficient tensor parallelism of large language models. *ArXiv*, abs/2502.20727,
 675 2025. URL <https://api.semanticscholar.org/CorpusID:276724757>.

676 Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
 677 Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In *Thirty-seventh*
 678 *Conference on Neural Information Processing Systems*, 2023.

679 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 680 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 681 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 682 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 683 *Association for Computational Linguistics*, 7:452–466, 2019.

684 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 685 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
 686 model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles (SOSP)*, pp. 611–626. ACM, 2023a. doi: 10.1145/3600006.3613165. URL
 687 <https://doi.org/10.1145/3600006.3613165>.

702 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 703 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 704 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 705 Systems Principles*, 2023b.

706 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 707 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

708

709 Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
 710 Textbooks are all you need ii: **phi-1.5** technical report. *arXiv preprint arXiv:2309.05463*, 2023.

711

712 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
 713 rethinking feature uncertainty. *arXiv preprint arXiv:2401.15077*, 2024a.

714 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
 715 models with dynamic draft trees. *arXiv preprint arXiv:2406.16858*, 2024b.

716 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
 717 rethinking feature uncertainty. In *International Conference on Machine Learning*, 2024c.

718

719 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
 720 guage models with dynamic draft trees. In *Empirical Methods in Natural Language Processing*,
 721 2024d.

722 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
 723 ation of large language models via training-time test. *arXiv preprint arXiv:2503.01840*, 2025a.

724

725 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
 726 acceleration of large language models via training-time test. In *Annual Conference on Neural
 727 Information Processing Systems*, 2025b.

728 Zonghang Li, Wenjiao Feng, Mohsen Guizani, and Hongfang Yu. Tpi-llm: Serving 70b-scale llms
 729 efficiently on low-resource edge devices. *ArXiv*, abs/2410.00531, 2024e. URL <https://api.semanticscholar.org/CorpusID:273023213>.

730

731 Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, and
 732 Dongliang Xu. Turning trash into treasure: Accelerating inference of large language models
 733 with token recycling. *arXiv preprint arXiv:2408.08696*, 2024.

734

735 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
 736 Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
 737 generative llm serving with speculative inference and token tree verification. *arXiv preprint
 738 arXiv:2305.09781*, 2023.

739 Mistral. Mistral Small 3 (2501). 2025. <https://mistral.ai/news/mistral-small-3>.

740

741 Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. *arXiv
 742 preprint arXiv:2311.13581*, 2023.

743

744 Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large
 745 language models can do parallel decoding. *arXiv preprint arXiv:2307.15337*, 2023.

746 Nvidia. Fastertransformer, 2024. URL <https://github.com/NVIDIA/FasterTransformer>.

747

748 NVIDIA Corporation. Nvidia A100 tensor core gpu architecture. <https://www.nvidia.com/en-us/data-center/a100/>, 2020. NVIDIA reports up to 312 TFLOPS FP16 Tensor Core
 749 throughput and 1.6–2.0 TB/s HBM2e memory bandwidth.

750

751 Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C. Wallace, and David Bau. Future lens: Ant-
 752 icipating subsequent tokens from a single hidden state. *ArXiv*, abs/2311.04897, 2023a. URL
 753 <https://api.semanticscholar.org/CorpusID:265050744>.

754

755 Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C Wallace, and David Bau. Future lens: Anticipating
 756 subsequent tokens from a single hidden state. *arXiv preprint arXiv:2311.04897*, 2023b.

756 Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
 757 Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
 758 *Proceedings of Machine Learning and Systems*, 5, 2023.

759

760 Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and
 761 Ming Zhou. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. *arXiv*
 762 *preprint arXiv:2001.04063*, 2020.

763 Qualcomm Technologies Inc. Snapdragon 8 Gen 3 Mobile Platform Prod-
 764 uct Brief, 2023. URL <https://www.qualcomm.com/products/snapdragon-8-gen-3-mobile-platform>. Accessed: July 2025.

765

766 Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
 767 training. 2018. URL <https://api.semanticscholar.org/CorpusID:49313245>.

768

769 David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
 770 Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
 771 models. *arXiv preprint arXiv:2404.02258*, 2024. URL <https://doi.org/10.48550/arXiv.2404.02258>.

772

773 Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
 774 Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential.
 775 *arXiv preprint arXiv:2507.11851*, 2025.

776

777 Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Ric-
 778 cardo Marin, and Emanuele Rodolà. Accelerating transformer inference for translation via paral-
 779 el decoding. *arXiv preprint arXiv:2305.10427*, 2023.

780

781 Apoorv Saxena. Prompt lookup decoding, November 2023a. URL <https://github.com/apoorvumang/prompt-lookup-decoding/>.

782

783 Apoorv Saxena. Prompt lookup decoding, November 2023b. URL <https://github.com/apoorvumang/prompt-lookup-decoding/>.

784

785 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
 786 Donald Metzler. Confident adaptive language modeling. In *Proceedings of the 36th International
 787 Conference on Neural Information Processing Systems (NeurIPS)*, pp. 17456–17472, April 2022.

788

789 Dmitriy Serdyuk, Nan Rosemary Ke, Alessandro Sordoni, Adam Trischler, Chris Pal, and Yoshua
 790 Bengio. Twin networks: Matching the future for sequence generation. *arXiv preprint
 791 arXiv:1708.06742*, 2017.

792

793 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 794 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
 795 allelism. *ArXiv*, abs/1909.08053, 2019. URL <https://api.semanticscholar.org/CorpusID:202660670>.

796

797 Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. *arXiv*
 798 *preprint arXiv:2308.04623*, 2023.

799

800 Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep auto-
 801 regressive models. *Advances in Neural Information Processing Systems*, 31, 2018.

802

803 Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
 804 span in transformers. In *Proceedings of the 57th Annual Meeting of the Association for Compu-
 805 tational Linguistics (ACL)*, pp. 331–335, 2019.

806

807 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
 808 for large language models. *arXiv preprint arXiv:2306.11695*, 2023a.

809

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
 Spectr: Fast speculative decoding via optimal transport. *arXiv preprint arXiv:2310.15141*, 2023b.

810 Yi Tay, Dara Bahri, Donald Metzler, et al. Scale efficiently: Insights from training and scaling large
 811 language models. *arXiv preprint arXiv:2210.03863*, 2022.

812

813 Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
 814 Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
 815 applications. *arXiv preprint arXiv:2201.08239*, 2022.

816

817 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 818 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 819 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

820

821 Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023b.

822

823 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 824 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*

825 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 826 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 827 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

828

829 Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabrowski, Mark Dredze, Sebastian Gehrmann, Prab-
 830 hanjan Kambadur, David Rosenberg, and Gideon Mann. BloombergGPT: A large language model
 831 for finance. *arXiv preprint arXiv:2303.17564*, 2023.

832

833 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wen-
 834 jie Li, and Zhifang Sui. Unlocking efficiency in large language model inference: A com-
 835 prehensive survey of speculative decoding. *ArXiv*, abs/2401.07851, 2024a. URL <https://api.semanticscholar.org/CorpusID:266999159>.

836

837 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
 838 Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
 839 of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings*
 840 of the Association for Computational Linguistics ACL 2024, pp. 7655–7671, Bangkok, Thailand
 841 and virtual meeting, August 2024b. Association for Computational Linguistics. doi: 10.18653/
 842 v1/2024.findings-acl.456. URL <https://aclanthology.org/2024.findings-acl.456>.

843

844 Minghao Yan, Saurabh Agarwal, and Shivaram Venkataraman. Decoding speculative decoding.
 845 *arXiv preprint arXiv:2402.01528*, 2024.

846

847 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 848 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 849 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 850 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 851 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 852 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 853 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 854 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 855 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

856

857 Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
 858 Xlnet: Generalized autoregressive pretraining for language understanding. *Advances in neural*
 859 *information processing systems*, 32, 2019.

860

861 Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
 862 He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
 863 *Advances in Neural Information Processing Systems*, 35:27168–27183, 2022.

864

865 Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation meets
 866 verification: Accelerating large language model inference with smart parallel auto-correct decod-
 867 ing. *arXiv preprint arXiv:2402.11809*, 2024a. doi: 10.48550/arXiv.2402.11809.

864 Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation meets
865 verification: Accelerating large language model inference with smart parallel auto-correct decod-
866 ing. *arXiv preprint arXiv:2402.11809*, 2024b.

867 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
868 Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
869 and cross-domain semantic parsing and text-to-sql task. *arXiv preprint arXiv:1809.08887*, 2018.

870 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christo-
871 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
872 language models. *arXiv preprint arXiv:2205.01068*, 2022.

873 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
874 Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
875 Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

876 Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
877 natural language using reinforcement learning. *arXiv preprint arXiv:1709.00103*, 2017a.

878 Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
879 natural language using reinforcement learning. *CoRR*, abs/1709.00103, 2017b.

880 Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
881 Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
882 decoding via knowledge distillation. *arXiv preprint arXiv:2310.08461*, 2023.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 919 920 921 922 Appendix

923 924 925 926 927 APPENDIX CONTENTS

928 929 A Related Works	19
930 931 B Correctness: Acceptance and Distribution	19
932 933 C Latency and Communication Analysis	20
934 935 D Extended Ablations & Empirical Analysis	22
936 937 D.1 Batching Effects	22
938 939 D.2 Draft-side speedups with speculative streaming	22
940 941 D.3 Inference on GPU-Only Systems	24
942 943 E Fallback Dynamics: Influence of Top-κ and Early-Exit Depth	24
944 945 E.1 Setup and definitions	24
946 947 E.2 Early-Exit Training	25
948 949 E.3 Monotonicity in k	25
950 951 E.4 Monotonicity in early-exit depth	26
952 953 E.5 Empirical confirmation	26
954 955 E.6 Practical recommendation	26
956 957 F Integration with Production Inference Systems	27
958 959 G Additional Experimental Details	28
960 961 G.1 Target and Draft Sharding	28
962 963 G.2 Draft Model Configuration	28
964 965 H LLM Usage Statement	29

966
967
968
969
970
971

972 A RELATED WORKS
973

974 **Speculative decoding with draft models.** The original speculative decoding paradigm accelerates autoregressive generation by pairing a small, fast *draft* model with a larger *target* model, which
975 verifies proposed tokens (Chen et al., 2023; Leviathan et al., 2023). This approach achieves substantial
976 wall-time savings whenever the draft is hardware-efficient and closely aligned with the target.
977 Domain-specialized drafts trained via distillation further improve acceptance in task-specific settings
978 (Hong et al., 2025). Recent variants explore parallelization strategies, such as batch-axis specula-
979 tion (Sun et al., 2023b) and tree-structured drafts (Miao et al., 2023; Spector & Re, 2023), to raise
980 acceptance rates and amortize draft cost.
981

982 **Single-model approaches.** An alternative line of work removes the explicit draft model and equips
983 the target itself with speculative capacity. Medusa predicts multiple tokens in parallel via extra heads
984 (Cai et al., 2023), while Hydra enforces autoregressive coupling across those heads to raise accep-
985 tance (Ankner et al., 2024b). EAGLE introduces a dedicated speculation layer (Li et al., 2024a),
986 with EAGLE-2 enabling dynamic tree retries (Li et al., 2024b) and EAGLE-3 moving to token-level
987 prediction with multi-layer fusion (Li et al., 2025a). Prompt-lookup decoding (PLD) and Looka-
988 head propose suffixes by retrieval rather than generation (Saxena, 2023a; Fu et al., 2023), which
989 is effective when prefix-continuation correlations are strong. Recycling reduces wasted work by
990 reusing intermediate activations when speculative branches are invalidated, instead of recomputing
991 full forwards (Luo et al., 2024). Other recent advances include structured or retrieval-based decod-
992 ing policies (Yi et al., 2024a; He et al., 2024). Across the single-model designs, speculative capacity
993 is integrated into the target stack, so larger or wider modules increase acceptance but still add work
994 on the target’s critical path; by contrast, Mirror-SD runs draft and target on heterogeneous devices
995 and overlaps draft within the target’s suffix window, converting added draft capacity into acceptance
996 gains without inflating per-step latency proportionally.
997

998 **Dynamic and adaptive decoding.** Beyond speculation, a range of methods accelerate inference
999 by adapting compute during decoding. CALM (Schuster et al., 2022) and related early-exit methods
1000 reduce cost by exiting tokens at shallow layers, while skip decoding (Corro et al., 2023) mitigates
1001 key-value cache mismatch via position-dependent layer skipping. Mixture-of-Depths (MoD) (Ra-
1002 poso et al., 2024) routes only a subset of tokens through full blocks, yielding non-uniform FLOP
1003 allocation. Other strategies include token merging (Bolya et al., 2023) to reduce sequence length
1004 dynamically, adaptive span models (Sukhbaatar et al., 2019) that learn context windows per token,
1005 and CoLT5 (Ainslie et al., 2023) which routes tokens through heavy or light pathways. More re-
1006 cently, M2R2 (Bhendawade et al., 2025) introduces accelerated residual streams to improve early
1007 alignment and efficiency. Together, these approaches trade fixed per-token compute for dynamic
1008 allocation, complementing speculative decoding’s strategy of parallelizing token generation.
1009

1010 **Positioning.** Mirror-SD builds on these advances but takes a distinct perspective: it is a sys-
1011 tems-algorithm co-design aimed at minimizing the *critical path* in speculative decoding. By launch-
1012 ing drafts from intermediate target layers, overlapping draft and target compute, and confining cross-
1013 accelerator communication to lightweight token exchanges, Mirror-SD complements prior algo-
1014 rithmic improvements and makes speculation more effective in heterogeneous GPU-NPU deployments.
1015

1016 B CORRECTNESS: ACCEPTANCE AND DISTRIBUTION
1017

1018 Let γ be the speculative window length, N the number of transformer layers in the target, and let
1019 $A_t \in \{0, \dots, \gamma\}$ denote the accepted-prefix length at step t . Recall that the target’s final next-token
1020 distribution is $p^{(N)}(\cdot | h.)$ and that verification commits the longest prefix of the draft that matches
the target’s tokens.
1021

1022 **Acceptance operator (rule-level equivalence).** For any realized draft proposal $\hat{y}_{t+1:t+\gamma}$ and re-
1023 alized target tokens $y_{t+1:t+\gamma}^{\text{target}}$ (obtained by rolling the target with teacher forcing along the agreed
1024 prefix and stopping at the first mismatch), both vanilla SD and Mirror-SD compute

$$1025 A_t = \max \left\{ r \leq \gamma : \hat{y}_{t+j} = y_{t+j}^{\text{target}} \quad \forall j \leq r \right\}. \quad (11)$$

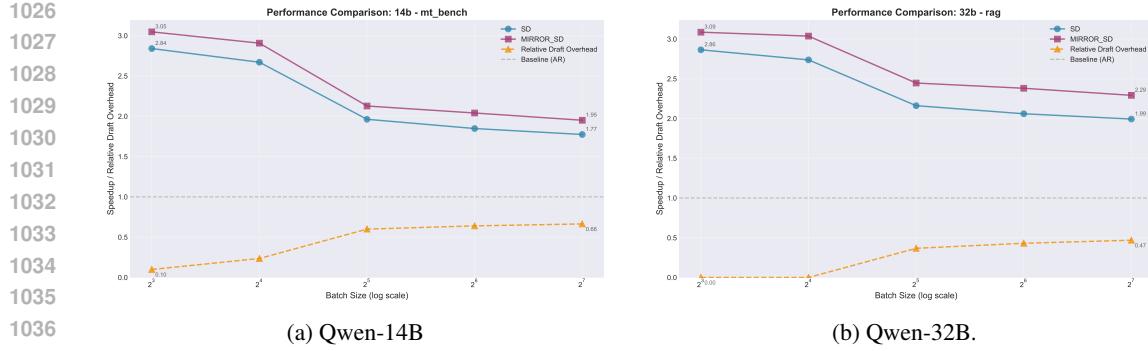


Figure 5: Batching effects on speedup across tasks and scales. Both vanilla SD and Mirror-SD slow down as batch size B increases due to growing draft compute and verification cost, but Mirror-SD consistently outperforms vanilla SD by preserving non-zero overlap under batching.

Equation (11) is the *same* acceptance operator in both algorithms: Mirror-SD never commits a token that was not verified against $p^{(N)}$, and any commit is exactly the longest verified prefix. Thus, Mirror-SD changes only the *schedule* by which draft proposals are produced (overlapping with target compute), not the acceptance rule.

Distributional equivalence (when the verified draft path is identically distributed). Fix the models $(f_{\text{draft}}, f_{\text{target}})$ and window γ . Let \mathcal{C}_t be the decoding context at step t (prompt and previously committed tokens), and let $\zeta_{\text{draft}}, \zeta_{\text{target}}$ collect all random seeds for draft and target sampling. Define the function

$$\mathcal{S}(\hat{y}_{t+1:t+\gamma}, y_{t+1:t+\gamma}^{\text{target}}) = \max\{r \leq \gamma : \hat{y}_{t+j} = y_{t+j}^{\text{target}} \forall j \leq r\},$$

so that $A_t = \mathcal{S}(\hat{y}, y^{\text{target}})$ in both procedures.

Assume the draft sequence actually presented to verification in Mirror-SD, denoted $\hat{y}_{t+1:t+\gamma}^{\text{Mir}}$, has the same conditional distribution as the vanilla draft sequence $\hat{y}_{t+1:t+\gamma}^{\text{Van}}$ given \mathcal{C}_t :

$$\hat{y}_{t+1:t+\gamma}^{\text{Mir}} \stackrel{d}{=} \hat{y}_{t+1:t+\gamma}^{\text{Van}} \mid \mathcal{C}_t. \quad (12)$$

Then, under a common coupling of (ζ_d, ζ_t) ,

$$\begin{aligned} \mathbb{P}_{\text{Mirror}}(A_t = r) &= \mathbb{P}(\mathcal{S}(\hat{y}^{\text{Mir}}, y^{\text{targ}}) = r) \\ &= \mathbb{P}(\mathcal{S}(\hat{y}^{\text{Van}}, y^{\text{targ}}) = r) \\ &= \mathbb{P}_{\text{Vanilla}}(A_t = r), \quad \forall r \in \{0, \dots, \gamma\}. \end{aligned} \quad (13)$$

Hence the acceptance-rate statistic $\rho(\gamma; \phi, \theta) = \mathbb{E}[A_t]/\gamma$ coincides between Mirror-SD and vanilla SD.

Sufficient condition for equation 12. Condition equation 12 holds if the draft path used for verification in Mirror-SD is sampled from $f_{\text{draft}}(\cdot \mid h_t)$ exactly as in vanilla SD, or more generally if the branch-selection policy induces the same conditional law for the verified draft sequence as vanilla SD. Under this mild parity condition, Mirror-SD is *distributionally* identical to vanilla SD with respect to A_t , while still enjoying the latency benefits of overlapping draft computation with the target's suffix.

C LATENCY AND COMMUNICATION ANALYSIS

This appendix consolidates the latency model of Mirror-SD with its tensor-parallel (TP) communication costs.

Draft and Target Latencies Within one Mirror-SD step, the draft may take $J \geq 1$ *internal* steps. With speculative streaming (SS), step j emits $\eta_j \geq 1$ tokens so that $\sum_{j=1}^J \eta_j \geq \gamma$, with average

1080 $\bar{\eta} = \frac{1}{J} \sum_j \eta_j$ and
 1081

$$1082 T_{\text{draft}}^{\text{gen}}(\gamma) = \sum_{j=1}^J (u_j^{\text{d}} + s_j^{\text{d}}), \quad J \leq \left\lceil \frac{\gamma}{\bar{\eta}} \right\rceil.$$

1084 Here u_j^{d} is device-local compute and s_j^{d} draft synchronization. For the target, each layer ℓ incurs
 1085 $c_\ell = u_\ell^{\text{t}} + s_\ell^{\text{t}}$, giving
 1086

$$1087 T_{\text{target}}^{1:\ell_e} = \sum_{\ell=1}^{\ell_e} c_\ell, \quad T_{\text{target}}^{\ell_e+1:N} = \sum_{\ell=\ell_e+1}^N c_\ell.$$

1090 At early exit and final verification, rendezvous costs decompose as
 1091

$$1092 T_{\text{rv}}^{(\text{ee})} = T_{\text{samp}}^{(\text{ee})} + T_{\text{xfer}}^{(\text{ee})}, \quad T_{\text{rv}}^{(\text{fv})} = T_{\text{samp}}^{(\text{fv})} + T_{\text{xfer}}^{(\text{fv})}, \quad T_{\text{rv}} = T_{\text{rv}}^{(\text{ee})} + T_{\text{rv}}^{(\text{fv})},$$

1093 where transfers involve only $O(B\kappa)$ IDs/log-probs and are negligible compared with compute.
 1094

1095 **Mirror-SD Latency Law** The per-step latency is

$$1096 T_{\text{Mirror}} = T_{\text{target}}^{1:\ell_e} + T_{\text{rv}}^{(\text{ee})} + \max\{T_{\text{target}}^{\ell_e+1:N}, T_{\text{draft}}^{\text{gen}}(\gamma)\} + T_{\text{rv}}^{(\text{fv})}. \quad (14)$$

1098 Let $\Delta = T_{\text{target}}^{\ell_e+1:N}$. If $T_{\text{draft}}^{\text{gen}}(\gamma) \leq \Delta$, draft work is fully hidden: $T_{\text{Mirror}} = T_{\text{target}} + T_{\text{rv}}$. Otherwise,
 1099 draft cost dominates the parallel region: $T_{\text{Mirror}} = T_{\text{target}}^{1:\ell_e} + T_{\text{draft}}^{\text{gen}}(\gamma) + T_{\text{rv}}$. Compared to vanilla SD,
 1100

$$1101 T_{\text{SD}} = T_{\text{target}}^{1:\ell_e} + T_{\text{target}}^{\ell_e+1:N} + T_{\text{draft}}^{\text{gen}}(\gamma),$$

1102 Mirror-SD hides draft work up to Δ , leaving only lightweight rendezvous terms on the critical path.
 1103

1104 **Comparison to vanilla SD (per step).** Vanilla SD executes draft and target serially:
 1105

$$1106 T_{\text{SD}} = T_{\text{target}}^{1:\ell_e} + T_{\text{target}}^{\ell_e+1:N} + T_{\text{draft}}^{\text{gen}}(\gamma) = T_{\text{target}} + T_{\text{draft}}^{\text{gen}}(\gamma),$$

1108 where we write $\Delta \stackrel{\text{def}}{=} T_{\text{target}}^{\ell_e+1:N}$ for the *overlap budget*. Using the Mirror-SD law above,
 1109

$$1110 T_{\text{Mirror}} = T_{\text{target}}^{1:\ell_e} + T_{\text{rv}}^{(\text{ee})} + \max\{\Delta, T_{\text{draft}}^{\text{gen}}(\gamma)\} + T_{\text{rv}}^{(\text{fv})} = T_{\text{target}} + T_{\text{rv}}, \quad \text{if } T_{\text{draft}}^{\text{gen}}(\gamma) \leq \Delta,$$

1111 and

$$1112 T_{\text{Mirror}} = T_{\text{target}}^{1:\ell_e} + T_{\text{draft}}^{\text{gen}}(\gamma) + T_{\text{rv}}, \quad \text{if } T_{\text{draft}}^{\text{gen}}(\gamma) > \Delta,$$

1113 with $T_{\text{rv}} = T_{\text{rv}}^{(\text{ee})} + T_{\text{rv}}^{(\text{fv})}$.
 1114

1115 *Per-step time saved.* The improvement is

$$1116 \Delta T \stackrel{\text{def}}{=} T_{\text{SD}} - T_{\text{Mirror}} = (\min\{\Delta, T_{\text{draft}}^{\text{gen}}(\gamma)\}) - T_{\text{rv}},$$

1118 i.e., Mirror-SD hides up to the smaller of the overlap budget and the draft time, minus lightweight
 1119 rendezvous. Thus Mirror-SD is strictly faster whenever

$$1120 T_{\text{rv}} < \min\{\Delta, T_{\text{draft}}^{\text{gen}}(\gamma)\}.$$

1122 *Per-step speedup.* The piecewise speedup $S = T_{\text{SD}}/T_{\text{Mirror}}$ is
 1123

$$1124 S = \begin{cases} \frac{T_{\text{target}} + T_{\text{draft}}^{\text{gen}}(\gamma)}{T_{\text{target}} + T_{\text{rv}}}, & \text{if } T_{\text{draft}}^{\text{gen}}(\gamma) \leq \Delta, \\ \frac{T_{\text{target}}^{1:\ell_e} + \Delta + T_{\text{draft}}^{\text{gen}}(\gamma)}{T_{\text{target}}^{1:\ell_e} + T_{\text{draft}}^{\text{gen}}(\gamma) + T_{\text{rv}}}, & \text{if } T_{\text{draft}}^{\text{gen}}(\gamma) > \Delta. \end{cases}$$

1129 In practice T_{rv} is $O(B\kappa)$ token/log-prob exchange and sampling, i.e., microsecond-scale, so the
 1130 conditions above are typically satisfied; speculative streaming (larger $\bar{\eta}$) further reduces J and $T_{\text{draft}}^{\text{gen}}(\gamma)$,
 1131 making full hiding ($T_{\text{draft}}^{\text{gen}}(\gamma) \leq \Delta$) common.

1132 **Communication Costs under TP** For G devices and message size M (per rank), AllReduce cost is
 1133

$$T_{\text{allreduce}}(M; G) = \alpha \log G + \beta M,$$

1134 with α per-hop latency and β per-word transfer time.

1135
 1136 **Target:** Let H_T be the target hidden width, G_T its TP degree, and S_T the effective tokens per
 1137 collective. Each of the N blocks performs two collectives on shards of size $M_T = \frac{B S_T H_T}{G_T}$, giving

$$1138 \quad T_{\text{target}}^{\text{comm}} = 2N \cdot T_{\text{allreduce}}(M_T; G_T).$$

1140 **Draft:** Let H_D be the draft hidden width, G_D its TP degree, and S_D the effective tokens per draft
 1141 collective. Each draft *internal* step performs two collectives on shards of size $M_D = \frac{B S_D H_D}{G_D}$, so

$$1143 \quad T_{\text{draft-step}}^{\text{comm}} = 2 T_{\text{allreduce}}(M_D; G_D), \quad T_{\text{draft (over } J \text{ steps)}}^{\text{comm}} = 2J T_{\text{allreduce}}(M_D; G_D),$$

1144 which is included in $T_{\text{draft}}^{\text{gen}}(\gamma)$.

1145 **Cross-accelerator:** Token-channel exchanges remain $O(B\kappa)$ IDs/log-probs and are microsecond-
 1146 scale.

1149 D EXTENDED ABLATIONS & EMPIRICAL ANALYSIS

1151 D.1 BATCHING EFFECTS

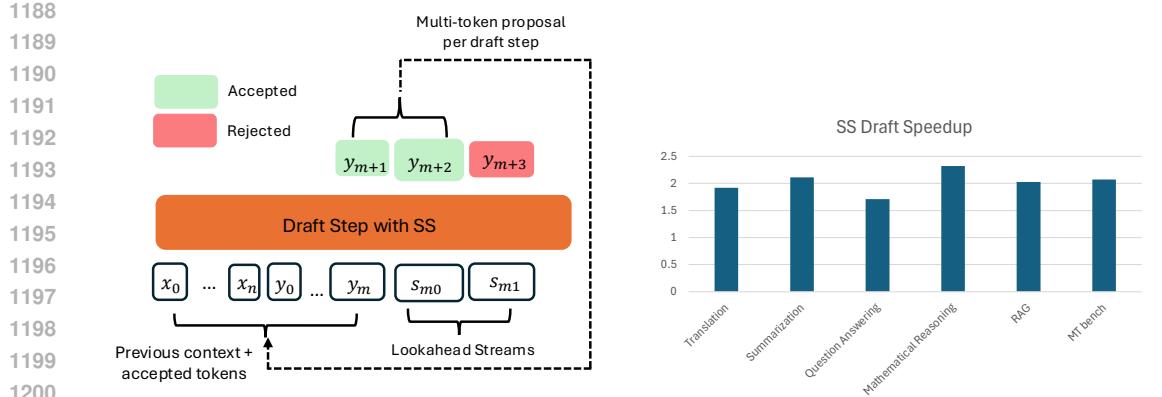
1152 In deployment, batching is often enabled to improve throughput and amortize GPU compute, but it is
 1153 not universal: many interactive or privacy-sensitive settings prioritize per-request latency and avoid
 1154 batching. To ensure completeness, we therefore also evaluate Mirror-SD under batched inference.
 1155 The key question is whether speculative decoding, and Mirror-SD in particular, retains its gains when
 1156 batching is enabled, or whether draft overhead grows to the point of erasing speedup. To bound the
 1157 growth of draft-side computation with increasing batch size and to keep draft execution maximally
 1158 hidden under the target, we *scale the draft hyperparameters with B* : as B increases, we reduce both
 1159 Top- κ and the number of SS lookahead streams so that aggregate draft cost and the token-channel
 1160 payload remain controlled. Concretely, we use $\kappa=8$ with two SS streams for $B \in \{1, 8\}$; from
 1161 $B=16$ onward we use a single SS stream and progressively reduce κ : $\kappa=4$ for $B=16$, $\kappa=2$ for
 1162 $B=32$, and $\kappa=1$ for $B \geq 64$.

1163 **Observed trends.** We find that vanilla SD speedup declines steadily as batch size B increases
 1164 (Figure 5b). Larger batches lengthen the target verification phase both because more sequences must
 1165 be processed in parallel and because batching introduces additional padding and synchronization
 1166 under tensor-parallel execution. Mirror-SD also shows a downward trend with B , but consistently
 1167 outperforms vanilla SD (Figure 5b, Figure 5a). As B grows, the draft must evaluate top- κ candidates
 1168 across γ positions for each sequence, which increases draft compute and intra-NPU communication
 1169 and pushes the draft path toward a compute-bound regime. Consequently, its ability to overlap
 1170 with target verification diminishes. This decreased yet positive overlap is sufficient for Mirror-SD
 1171 to maintain a consistent speedup lead over vanilla SD as batching increases. In practice, batching
 1172 introduces several intertwined effects: (i) the *target* takes longer, enlarging the potential overlap
 1173 window; (ii) the *draft* also takes longer, and its relative overhead grows with the $\kappa \times \gamma$ expansion;
 1174 (iii) autoregressive baselines slow as B increases; (iv) speculative decoding slows even more, as it
 1175 inherits both AR’s slowdown and the draft’s added work; and (v) under tensor-parallel sharding,
 1176 both SD variants lose relative speedup, but Mirror-SD maintains a consistent lead by exploiting
 1177 concurrency across heterogeneous accelerators.

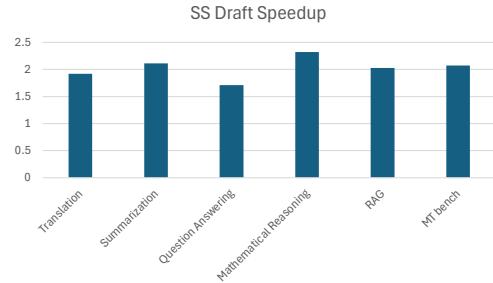
1178 **Relative draft overhead.** We also report a normalized “relative draft overhead” in Figure 5, defined
 1179 as the fraction of draft speculation time that cannot be hidden under target verification, normalized
 1180 against the total overhead of vanilla SD. This metric is dimensionless and directly reveals how much
 1181 of the draft path remains exposed on the critical path. As batch size B increases, the verification
 1182 phase grows longer, but draft compute and intra-NPU communication grow even faster (since each
 1183 sequence requires top- κ rollouts across γ positions). Consequently, relative draft overhead rises with
 1184 B , aligning with the decreasing speedups observed in our batching experiments.

1185 D.2 DRAFT-SIDE SPEEDUPS WITH SPECULATIVE STREAMING

1186 We quantify the internal draft gains from Speculative Streaming (SS) under the same targets and
 1187 decoding settings as our main experiments. As described in Section 3.2, SS verifies previously



(a) Speculative Streaming (SS): each draft step proposes multiple tokens via lookahead streams; accepted tokens extend the prefix, rejected ones are dropped.



(b) Draft-only speedup from SS relative to an autoregressive draft with 3 lookahead streams. Lower J for a given γ reduces $T_{\text{draft}}^{\text{gen}}(\gamma)$, enlarging the overlap margin in Mirror-SD and translating into end-to-end speedups.

Figure 6: Comparison of Speculative Streaming (SS) draft dynamics (left) and resulting speedups (right).

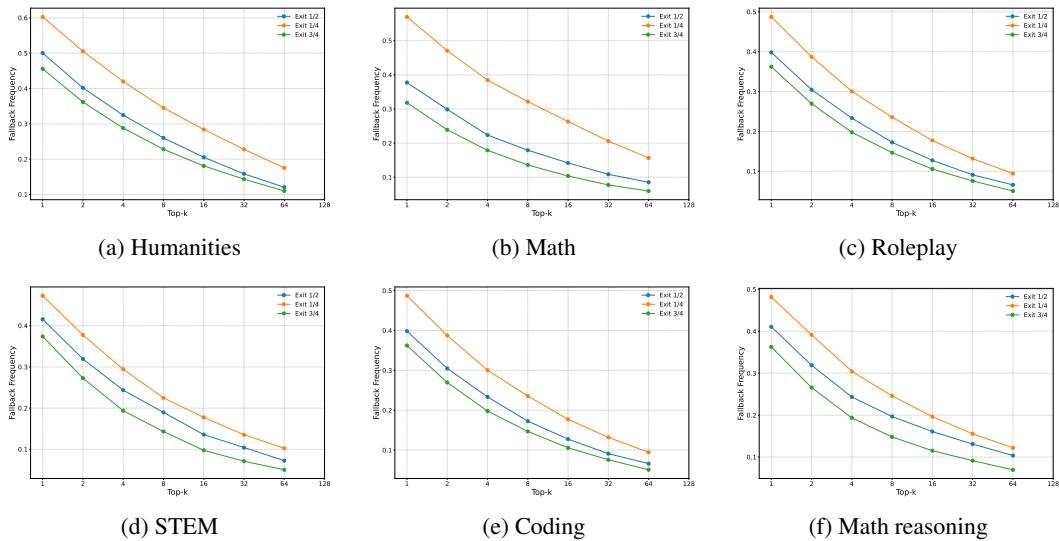


Figure 7: Fallback frequency vs. Top- κ and early-exit depth across six tasks (Humanities, Math, Roleplay, STEM, Coding, Math Reasoning). Each panel shows fallback frequency as a function of k for exits at 1/4, 1/2, and 3/4 of depth; smaller values indicate fewer fallbacks and greater reuse.

proposed tokens while producing multiple new lookahead tokens in a single forward pass via multi-stream attention. Empirically, this reduces the number of draft internal steps J needed to materialize a window of length γ , typically yielding $J \ll \gamma$ and a corresponding reduction in draft generation time $T_{\text{draft}}^{\text{gen}}(\gamma)$. Figure 6b reports the draft-only speedup of SS over a plain autoregressive draft across translation, summarization, QA, mathematical reasoning, RAG, and MT-Bench. The effect is consistent across workloads: SS achieves substantially fewer internal steps for the same γ and, consequently, shorter $T_{\text{draft}}^{\text{gen}}(\gamma)$. When composed with Mirror-SD’s overlap (Section 3.4), this pushes the operating point further into the zero-slope region where increases in γ raise acceptance length $\mathbb{E}[A_t] = \gamma \rho(\gamma; \phi, \theta)$ without increasing step latency. Because acceptance semantics are unchanged (Appendix B), all end-to-end gains are purely systems-level.

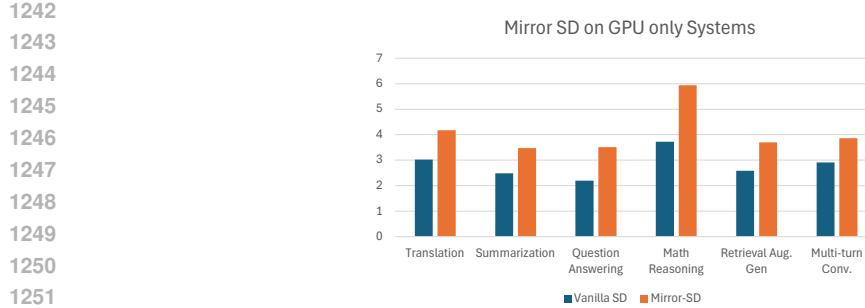


Figure 8: GPU-only evaluation of Mirror-SD at temperature $T=0$. The 0.6B draft runs on a single A100 GPU and the 32B target uses an 8-GPU tensor-parallel setup. All other experimental settings match Table 1, Mirror-SD consistently outperforms Vanilla-SD across all tasks.

D.3 INFERENCE ON GPU-ONLY SYSTEMS

Mirror-SD is designed to exploit the heterogeneous accelerator topology now common in modern SoCs: a high-throughput GPU paired with a lower-power NPUs (Jouppi et al., 2021; Intel Corporation, 2023; Advanced Micro Devices (AMD), 2023; Apple Inc., 2023a;b; Qualcomm Technologies Inc., 2023). Existing speculative decoding methods do not leverage this heterogeneity; prior approaches execute both drafting and verification exclusively on GPUs, leaving substantial parallelism unused. Our primary experiments therefore target GPU–NPU systems, where Mirror-SD unlocks parallel execution of the large target model on the GPU and the lightweight draft model on the NPU with minimal communication.

For completeness, and to demonstrate hardware-agnostic applicability, we also evaluate Mirror-SD in a pure GPU setting. Here, the 0.6B draft model is executed on a single NVIDIA A100 GPU (without sharding), while the 32B target model remains sharded across the 8-GPUs via tensor-parallelism as described in Section 3.3. All early-exit heads, reuse logic, and fallback semantics remain unchanged. Although the draft model has low arithmetic intensity, draft-side latency still benefits from the substantially higher compute density and memory bandwidth of the A100 (312 TFLOPS FP16 and 1.9 TB/s HBM2e) (NVIDIA Corporation, 2020) relative to the NPU used in our main experiments (31.6 TOPS and 0.8 TB/s) (Apple Inc., 2023a). As a result, speculative rollouts are faster in both the parallel region and during fallback. Fallback frequency itself is unchanged, as it is determined solely by the target model.

As shown in Figure 8, Mirror-SD consistently improves throughput over Vanilla-SD across all six task groups. All experimental settings, model configurations, and decoding parameters match those used in Table 1. These results confirm that Mirror-SD provides reliable gains in GPU-only settings.

E FALBACK DYNAMICS: INFLUENCE OF TOP- κ AND EARLY-EXIT DEPTH

E.1 SETUP AND DEFINITIONS

At decoding step t , let the target’s final next-token distribution be $q(\cdot) = p^{(N)}(\cdot \mid y_{<t}, x)$ and the early-exit proxy be $\tilde{p}(\cdot) = p^{(\ell_e)}(\cdot \mid y_{<t}, x)$. The target accepts a prefix of length A_t and, if a mismatch occurs, issues a correction at index $\tau = A_t + 1$ with token $c_{t+\tau}$. The draft precomputes a branch-complete window conditioned on the early-exit Top- κ set $M_t = \{(v_i, \log \tilde{p}_i)\}_{i=1}^\kappa$. Reuse succeeds iff the target’s correction lies on a precomputed path,

$$\Pi_t^+ \in \text{Paths}_\tau(T_t),$$

otherwise we *fallback* (re-initialize the draft from the corrected context). Let $F_t = \mathbb{1}\{\Pi_t^+ \notin \text{Paths}_\tau(T_t)\}$ and $\text{FF} \equiv \mathbb{E}[F_t]$. Define the *overlap mass*

$$\Omega_\kappa(\ell_e) \stackrel{\text{def}}{=} \sum_{y \in \text{Top-}\kappa(\tilde{p})} q(y),$$

i.e., the probability under q that the next token lies in the early-exit Top- κ set.

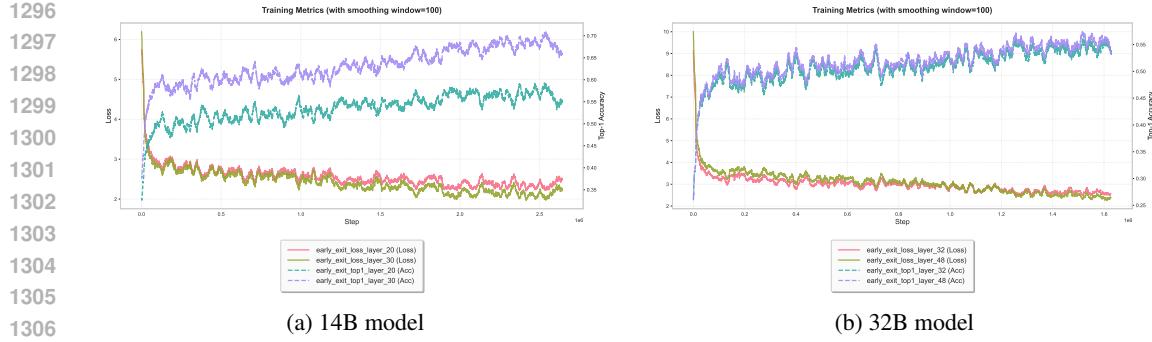


Figure 9: Early-exit training curves for the 14B and 32B target models. Each plot shows the early-exit loss and top-1 agreement for two representative exit depths. Mid-layer exits converge rapidly and achieve high agreement with the final LM head, supporting reliable branch reuse during Mirror-SD decoding.

E.2 EARLY-EXIT TRAINING

To obtain reliable intermediate distributions for the low-bandwidth token channel defined in equation 7, we train a small set of early-exit adapters inserted at multiple depths of the target model. Specifically, we attach early-exit heads at approximately one-quarter, one-half, and three-quarters of the total transformer depth, and train all of them simultaneously. The backbone parameters remain frozen throughout training. Each early-exit head is implemented as a lightweight two-layer MLP. Given the intermediate representation $h_t^{(\ell_e)} \in \mathbb{R}^H$, the head applies a linear projection to a reduced dimension $H/2$, followed by a ReLU nonlinearity and a second linear projection back to dimension H . The resulting vector is then passed through the *shared* LM projection matrix $W_{\text{LM}} \in \mathbb{R}^{H \times V}$, the same vocabulary projection used by the final layer of the model to produce the proxy distribution. This structure preserves the semantic geometry of the pretrained model while allowing intermediate hidden states $h_t^{(\ell_e)}$ to better align with the final-layer token distribution. The training objective is a next-token cross-entropy loss applied at each selected early-exit depth. Let $\mathcal{E} = \{\ell_1, \ell_2, \dots, \ell_K\}$ denote the set of K early-exit positions. The overall loss is

$$\mathcal{L}_{\text{EE}} = \frac{1}{K} \sum_{\ell_e \in \mathcal{E}} \mathcal{L}_{\text{CE}}(p^{(\ell_e)}(y_{t+1}), y_{t+1}), \quad (15)$$

where each $p^{(\ell_e)}$ is defined as in equation 6. Since the backbone remains frozen, optimization is stable and converges rapidly.

Figure 9 shows representative training curves for the 14B and 32B Qwen-3 models. Mid-layer exits typically provide strong agreement with the final LM head while maintaining low early-exit loss, enabling high-fidelity early-exit token channel. As shown in Figure 7, these intermediate distributions are accurate enough that fallback events remain infrequent when using κ -sized candidate sets.

The early-exit adapters introduce only a very small number of trainable parameters relative to the backbone, less than 0.18% of the total parameters in the 14B model and less than 0.08% in the 32B model. This makes early-exit training a lightweight and practical approach for producing high-fidelity intermediate distributions and supporting a stable token channel in Mirror-SD.

E.3 MONOTONICITY IN κ

Proposition 1 (Top- κ reduces fallback). For a fixed early-exit layer ℓ_e , the fallback frequency $\text{FF}(\ell_e, \kappa)$ is nonincreasing in the integer κ and vanishes as $\kappa \rightarrow |V|$:

$$\kappa_2 \geq \kappa_1 \implies \text{FF}(\ell_e, \kappa_2) \leq \text{FF}(\ell_e, \kappa_1), \quad \lim_{\kappa \rightarrow |V|} \text{FF}(\ell_e, \kappa) = 0.$$

Proof. If $A_t = 0$ (mismatch on the first token), reuse succeeds iff $y_{t+1} \in \text{Top-}\kappa(p^{(\ell_e)})$, so $\Pr[F_t = 1 | A_t = 0] = 1 - \Omega_\kappa(\ell_e)$. If $A_t \geq 1$, the root matches y_{t+1} and reuse at depth τ requires $c_{t+\tau}$ to appear

on some branch of the hypothesis tree T_t seeded by $\text{Top-}\kappa(p^{(\ell_e)})$. Increasing κ only adds roots/paths and never removes existing ones, so $\{\Pi_t^+ \in \text{Paths}_\tau(T_t)\}$ is monotone in κ . Taking expectations over t yields the claim. The limit follows because $\Omega_\kappa(\ell_e) \rightarrow 1$ as $\kappa \rightarrow |V|$, at which point the hypothesis tree contains all needed paths.

A useful corollary is

$$\text{FF}(\ell_e, \kappa) \leq 1 - \Omega_\kappa(\ell_e),$$

which is tight when most fallbacks occur at $\tau=1$ (high-entropy regimes).

E.4 MONOTONICITY IN EARLY-EXIT DEPTH

Proposition 2 (Deeper exit reduces fallback). Fix κ . As the early-exit layer ℓ_e moves deeper (toward N), the overlap mass

$$\Omega_\kappa(\ell_e) = \sum_{y \in \text{Top-}\kappa(p^{(\ell_e)})} q(y)$$

converges to its maximal value $q(S^*)$ with $S^* = \text{Top-}\kappa(q)$; consequently $\text{FF}(\ell_e, \kappa) \leq 1 - \Omega_\kappa(\ell_e)$ decreases with depth and stabilizes at its minimum for sufficiently deep exits.

Proof. As the layer index ℓ increases, the distributions $p^{(\ell)}$ approach q ; write $\varepsilon_\ell \stackrel{\text{def}}{=} \|p^{(\ell)} - q\|_\infty \rightarrow 0$. Let $S_\ell = \text{Top-}\kappa(p^{(\ell)})$ and $S^* = \text{Top-}\kappa(q)$. Because S_ℓ maximizes $p^{(\ell)}$ -mass among all size- κ sets, and any such set A satisfies $|q(A) - p^{(\ell)}(A)| \leq \kappa \varepsilon_\ell$, we have

$$\Omega_\kappa(\ell) = q(S_\ell) \geq q(S^*) - 2\kappa \varepsilon_\ell \xrightarrow{\ell \uparrow N} q(S^*).$$

If the Top- κ boundary of q has margin $\Delta_\kappa > 0$, then whenever $\varepsilon_\ell < \Delta_\kappa/2$ the Top- κ set stabilizes ($S_\ell = S^*$) for all deeper layers, so $\Omega_\kappa(\ell) = q(S^*)$ thereafter. Since reuse probability is monotone in the q -mass captured by the seed set, the bound $\text{FF}(\ell_e, \kappa) \leq 1 - \Omega_\kappa(\ell_e)$ implies a (weakly) decreasing FF with depth and eventual stabilization at its minimum.

E.5 EMPIRICAL CONFIRMATION

Figure 7 reports fallback frequency as a function of k for early exits at 1/4, 1/2, and 3/4 of depth across six tasks. Two consistent trends emerge:

- **Top- κ effect.** Increasing k monotonically lowers fallback, with diminishing returns once Ω_κ saturates. This matches the bound $\text{FF} \leq 1 - \Omega_\kappa(\ell_e)$ and reflects a higher probability that the draft’s precomputed path already contains the target’s correction.
- **Early-exit effect.** Holding k fixed, moving the exit deeper ($1/4 \rightarrow 1/2 \rightarrow 3/4$) lowers fallback across tasks. Deeper exits raise Ω_κ by improving agreement between the early-exit proxy and the final distribution, so the correction token more often lies on a precomputed branch.

E.6 PRACTICAL RECOMMENDATION

Unless otherwise noted, across all SpecBench experiments reported in Table 1 we set the Top- κ width to $\kappa = 8$ and fix the early exit to the middle of the network ($\ell_e = N/2$, “Exit 1/2”). In practice, this mid-depth, $k=8$ configuration works well across most setups, balancing fallback probability and the overlap budget for draft precomputation.

Choosing k and ℓ_e trades a small token-channel payload and longer precomputation for fewer fallbacks and, consequently, longer accepted prefixes per step. In Mirror-SD, the channel payload is $O(B\kappa)$ and the precomputation runs in parallel under the target suffix; thus, within the overlap budget, increasing k or moving ℓ_e deeper reduces fallback *without* adding step latency, directly improving end-to-end throughput via larger expected acceptance length. For bandwidth-constrained deployments, $\kappa=8$, $\ell_e=N/2$ is a robust default; when acceptance is still low, increase κ or move the exit slightly deeper (subject to the overlap budget), and when channel or memory is tight, reduce κ or use a slightly shallower exit.

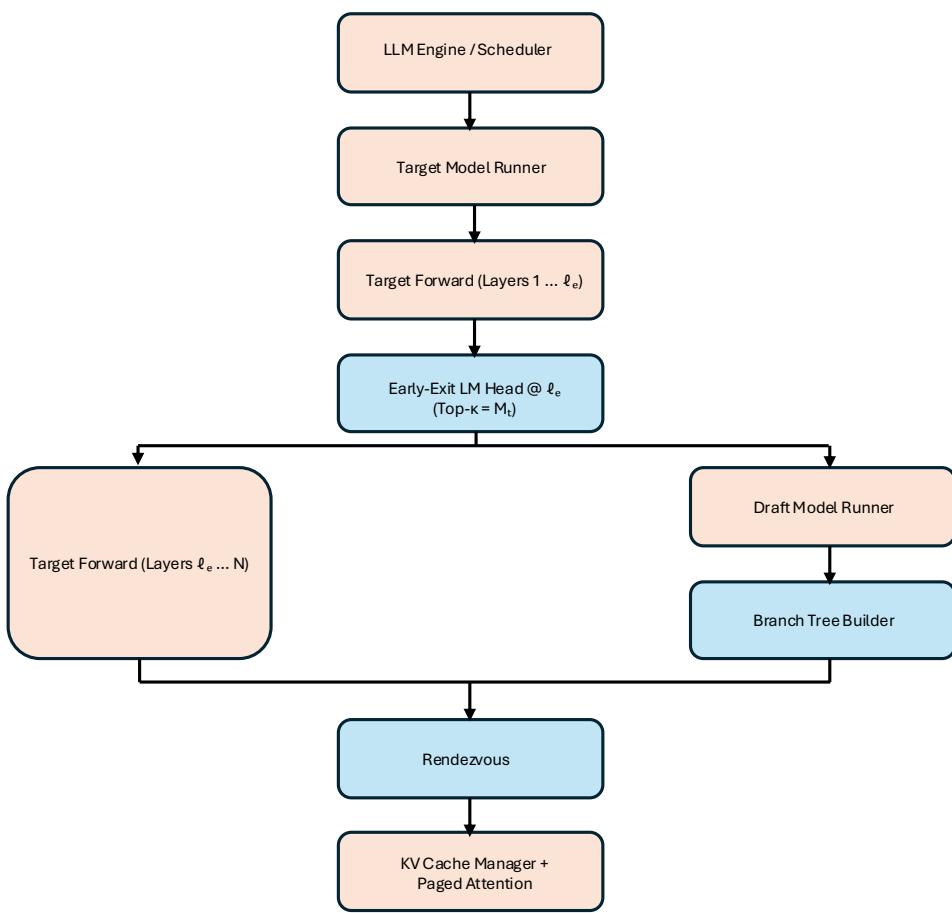


Figure 10: **Integration of Mirror-SD into vLLM.** Existing vLLM components including the scheduler, target and draft model runners, and the PagedAttention KV cache are shown in light orange. Mirror-SD adds three lightweight modules (blue): an early-exit LM head at layer ℓ_e , a branch-tree builder for speculative rollouts, and a rendezvous module that matches the verified prefix against the speculative tree to decide on reuse. These components integrate without modifying vLLM’s scheduler, memory layout, or attention kernels, preserving the single-target-forward serving invariant.

F INTEGRATION WITH PRODUCTION INFERENCE SYSTEMS

Modern production serving stacks such as vLLM (Kwon et al., 2023b) combine continuous batching, centralized KV-cache management, and fused attention kernels to achieve high throughput. Mirror-SD integrates cleanly into this architecture without modifying the scheduler or the core batching logic. Figure 10 shows how Mirror-SD attaches to vLLM’s serving stack. vLLM already provides three abstractions that are directly aligned with our design: (i) a continuous-batching scheduler that issues exactly one target forward pass per decoding tick, (ii) a split *target* and *draft* model-runner interface used by existing speculative decoders, and (iii) a block-level KV cache with prefix-sharing and branch allocation via PagedAttention (Kwon et al., 2023b). Because these components match the architectural requirements of Mirror-SD, only lightweight modules (highlighted in blue) are added, and no changes are required to scheduling, memory layout, or attention kernels.

Early-exit instrumentation in the target runner. As shown in the center of Figure 10, the target runner is augmented with a lightweight *early-exit head* placed after the first ℓ_e layers. A small MLP adapter maps $h_t^{(\ell_e)}$ into the space expected by the final LM head, after which the existing LM projection is applied and a Top- κ operation produces the early-exit message M_t . Execution then bifurcates exactly as in the diagram: the target continues through layers $\ell_e+1:N$ unchanged, while

1458 M_t is forwarded to the draft runner for parallel speculation. This preserves vLLM’s single-target-
 1459 forward invariant and adds only a modest overhead relative to a transformer layer.
 1460

1461 **Parallel draft execution and branch construction.** As shown on the right side of Figure 10,
 1462 the second Mirror-SD component is a lightweight *branch-tree builder* that operates within vLLM’s
 1463 existing draft-runner abstraction. After receiving the early-exit message M_t , the draft model per-
 1464 forms a branch-complete speculative rollout of depth γ , reusing the prefix KV pages provisioned by
 1465 PagedAttention and allocating branch pages in exactly the same way vLLM handles divergent de-
 1466 coding paths. Because prefix sharing and branch-specific KV allocation are already native features
 1467 of vLLM’s KV manager, enabling tree-structured speculation requires no changes to the KV layout,
 1468 memory management, or attention kernels.
 1469

1470 **Verification and branch reuse.** Once the target completes layer N , Mirror-SD derives the
 1471 accepted-prefix length A_t and a correction token. The rendezvous module in Figure 10 performs a
 1472 deterministic *reuse test*: if the corrected prefix matches a path in T_t , the corresponding chain of KV
 1473 pages is reused; otherwise, the system reverts to a fresh speculative window on the next tick. This
 1474 logic operates purely at the control-flow level (token IDs and page handles) and requires no changes
 1475 to vLLM’s scheduler, which already supports sequences advancing by different numbers of tokens
 1476 per step.
 1477

1478 **Low integration complexity.** The Mirror-SD additions shown in Figure 10 are lightweight, state-
 1479 less extensions built from operations already present in vLLM, namely LM-head projections, Top- κ
 1480 extraction, KV prefix-sharing, and branch-specific page allocation. All core serving components
 1481 remain unchanged: continuous batching, CUDA Graph execution, the target forward graph, and
 1482 PagedAttention’s KV management. As a result, Mirror-SD integrates with minimal implementation
 1483 overhead while remaining fully compatible with high-throughput LLM serving in both GPU-only
 1484 and heterogeneous GPU–NPU deployments.
 1485

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 TARGET AND DRAFT SHARDING

1489 For the experiments in Section 4, both target and draft models were distributed across *eight Apple*
 1490 *M2 Ultra systems* (Apple Inc., 2023a), each integrating a high-throughput GPU and a dedicated
 1491 Neural Engine (NPU). We allocate the target to GPUs using Megatron-style tensor parallelism and
 1492 the draft to NPUs using SPD-style sharding (see Section 3.3). Each M2 Ultra consists of a dual-die
 1493 package connected internally by *UltraFusion*, a die-to-die interconnect providing up to 2.5 TB/s
 1494 of bandwidth while presenting the system as a single logical GPU/NPU pair (Apple Inc., 2023a).
 1495 Across machines, we organize the 8 nodes into groups of 2, linked by Thunderbolt 5 interconnects
 1496 (up to 120 Gbps peak bandwidth) (Apple Inc., 2024). Groups are further connected through a
 1497 high-speed network fabric, providing sufficient bandwidth for inter-group synchronization with sub-
 1498 millisecond latency.
 1499

1500 In this setup, cross-accelerator token-channel communication consists only of $O(B\kappa)$ items (token
 1501 IDs and a few log-probabilities), transferred via GPU→CPU→NPU copies. These messages remain
 1502 negligible compared to inter-layer collectives and draft compute, consistent with the latency analysis
 in Section 3.4.
 1503

G.2 DRAFT MODEL CONFIGURATION

1504 The draft used in our experiments is a 0.6B-parameter model trained with the SPD architecture
 1505 (Kim et al., 2025). It is organized into 16 transformer layers, divided into two contiguous segments
 1506 of 8 layers each. Within every segment we instantiate $G_D=8$ parallel tracks, where track $g \in$
 1507 $\{1, \dots, G_D\}$ is pinned to NPU g and advances through its resident shard of the segment. Each track
 1508 operates with a hidden size of 256 per shard. As in Section 3.3, there is no inter-NPU traffic within
 1509 a segment. Synchronization occurs only twice per forward pass: once at the segment boundary to
 1510 re-align tensor partitions, and once at the output to assemble logits for both main and lookahead
 1511 streams.
 1512

1512 **H LLM USAGE STATEMENT**
1513

1514 In preparing this manuscript, we used AI-assisted tools to check grammar and to rephrase some
1515 sentences for clarity and readability. No content, results, or analysis were generated by AI systems;
1516 all scientific contributions and conclusions are our own.
1517

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565