
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIRROR SPECULATIVE DECODING: BREAKING THE
SERIAL BARRIER IN LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding accelerates LLM inference with draft lookahead, but its ef-
fectiveness is bottlenecked by autoregressive draft generation: larger drafts im-
prove acceptance yet also increase speculation latency overhead, capping speedup.
Existing approaches such as Medusa, Hydra, EAGLE partially address draft ineffi-
ciency, but ultimately trade acceptance rates for reduced draft latency, or preserve
acceptance at the cost of added overheads that limit scaling.
Modern SoCs increasingly integrate heterogeneous accelerators, most commonly
GPUs and NPUs with complementary throughput and efficiency characteristics,
yet existing approaches are accelerator-agnostic and usually place both draft and
target on the same type of device, which leaves cross-accelerator parallelism un-
used. We introduce Mirror Speculative Decoding (Mirror-SD), which breaks the
latency–acceptance tradeoff by launching branch-complete rollouts from early-
exit signals in parallel with the target’s suffix and by explicitly mapping com-
putation across heterogeneous accelerators. In this design, the draft speculates
forward token continuations for target to verify, while the target speculates cor-
rection paths for the draft, creating a bidirectional speculative process. To further
reduce draft speculation latency overhead while preserving acceptance semantics,
we pair Mirror-SD with speculative streaming (SS) so the draft emits multiple to-
kens per step. This dual strategy of combining parallel heterogeneous execution
and SS pushes speculative decoding closer to its ideal regime of high acceptance
while reducing speculation overhead. On SpecBench with server-scale models
from 14B to 66B parameters, Mirror-SD consistently delivers realistic end-to-end
gains, achieving 2.8×–5.8× wall-time speedups across diverse tasks representing
30% average relative improvement over the strongest baseline, EAGLE3.

1 INTRODUCTION

Autoregressive (AR) large language models (LLMs) have achieved state-of-the-art performance
across a wide spectrum of natural language processing (NLP) tasks, yet their decoding latency re-
mains a fundamental bottleneck, particularly for real-time applications such as interactive dialogue,
code generation, and on-device assistants (Brown et al., 2020; Pope et al., 2023). Speculative decod-
ing (SD) has emerged as a promising paradigm to mitigate this limitation by coupling a lightweight
draft model with a larger, high-fidelity target model (Leviathan et al., 2023; Chen et al., 2023). In
the canonical two-model SD framework, the draft model generates candidate tokens which are then
verified by the target model in a serial pipeline. While this approach reduces the number of tar-
get model invocations, the sequential dependency between draft and target stages limits achievable
speedups. Recent works attempt to relax the serial constraints by equipping the target itself with
speculative capacity. Medusa (Cai et al., 2023) equips the target with parallel decoding heads,
while EAGLE (Li et al., 2024a) introduces a dedicated speculation layer. However, the same trade-
off remains: larger speculative modules improve acceptance at the cost of higher draft construction
latency, while smaller ones reduce overhead but lower acceptance and limit speedup. A detailed
discussion of related approaches is provided in Appendix A.

The central challenge of speculative decoding lies in reconciling these competing factors: (i) en-
abling parallel execution of draft and target models to eliminate serial dependencies, (ii) scaling
the draft capacity to achieve higher acceptance rates without incurring proportional latency over-
head, and (iii) designing bandwidth-efficient communication protocols that allow draft and target

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to exchange token-level feedback with minimal synchronization overhead. Achieving this balance
reframes speculative decoding from primarily a model-level optimization toward a system-level co-
design challenge, opening the path to real-time and efficient LLM inference.

Modern System on Chip (SoC) architectures increasingly feature heterogeneous compute units that
combine high-throughput GPUs with specialized neural processing units (NPUs) (Jouppi et al.,
2021; Intel Corporation, 2023; Advanced Micro Devices (AMD), 2023; Apple Inc., 2023a;b; Qual-
comm Technologies Inc., 2023). enabling efficient partitioning of workloads across compute sub-
strates optimized for different performance and power trade-offs. This architectural heterogeneity
motivates a division-of-labor strategy for speculative decoding, wherein the draft model operates
on the NPU exploiting its efficiency for approximate inference, while the target model executes on
the GPU, which is better suited for high-fidelity, throughput-critical computation. Such partitioning
leverages available NPU capacity and reduces contention on the GPU, thereby improving end-to-end
latency in multi-accelerator deployments.

In this work, we propose a novel architecture that operationalizes this vision by partitioning specu-
lative decoding across heterogeneous compute units, mapping draft inference onto compute-dense
NPUs and target verification onto high-throughput GPUs. This design leverages underutilized accel-
erator capacity, overlaps execution between models, and employs token-level feedback mechanisms
to maximize acceptance while minimizing draft construction latency overhead.

2 SPECULATIVE DECODING: FORMALIZATION AND LIMITS

To ground our discussion, we first formalize standard autoregressive (AR) decoding and speculative
decoding (SD), establishing the baseline needed to analyze the limits of SD precisely.

Autoregressive (AR) decoding. Let V denote a finite vocabulary. We write x1:m ∈ Vm for the
context of length m and y1:T ∈ VT for the response of length T to be generated. A decoder-only
AR model with parameters θ defines the conditional distribution

pθ(y1:T | x1:m) =

T∏
t=1

pθ (yt | x1:m, y<t) , pθ(· | x1:m, y<t) = Softmax
(
W,ht

)
, (1)

where ht ∈ RH is the next-token representation at position m + t, and W ∈ R|V|×H is the output
head mapping hidden states to vocabulary logits (Radford & Narasimhan, 2018; Vaswani et al.,
2017). Scaling inference of such models often requires distributing computation across multiple
devices via tensor parallelism, which partitions per-layer parameters across devices and aggregates
partial results with collectives such as ALLREDUCE (Hansen-Palmus et al., 2024; Li et al., 2024e).
The per-token latency is then set by the critical path combining local compute and synchronizations.

Speculative decoding (SD). Speculative decoding augments a target model ftarget(· | ·) with a
computationally cheaper draft model fdraft(· | ·) (Leviathan et al., 2023; Chen et al., 2023). At
step t, conditioned on the verified prefix (x, y<t), the draft proposes a γ-token window

ŷt+1:t+γ ∼ fdraft(· | y<t, x) , (2)

which the target then verifies left-to-right, producing the largest prefix on which both models agree:

At ≜ max
{
r ∈ {0, . . . , γ} : ∀j ≤ r, ŷt+j = argmax ftarget(· | y<t+j−1, x)

}
. (3)

The agreed-upon tokens are committed as yt+1:t+At
= ŷt+1:t+At

. If the draft and target disagree
before the end of the window (At < γ), the target emits a correction yt+At+1 and decoding resumes
from (x, y≤t+At

). The (window-normalized) acceptance rate is

ρ(γ;ϕ, θ) =
E[At]

γ
∈ [0, 1], (4)

which quantifies the expected fraction of the draft’s proposals that are accepted by the target for
window length γ. Let Tdraft(γ;ϕ) and Ttarget(γ; θ) denote the wall-times to produce and to verify
the window in Equations (2) and (3) (the latter includes the teacher-forced roll-forward through
accepted tokens). Because verification cannot begin before speculation is available, and the next

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

T: Layer 0

S
am

p
ler

ො𝑦0

ො𝑦2

ො𝑦3

correction

Compare

Reuse Precomputed

Recompute 
Speculation

T: Layer 1

T: Layer 2

T: Layer 3

T: Layer 4

T: Layer 5

T: Layer 6

T: Layer 7

D
raft Step  2

D
raft Step  0

D
raft Step  1

ො𝑦1

ො𝑦
3

𝑚1

𝑚3

𝑚4

𝑚2

𝑦1

𝑦3

𝑦4

𝑦2

ŷ₀₀′ ŷ₀₁′ ŷ₀₂′ ŷ₀₃′

ŷ₁₀′ ŷ₁₁′ ŷ₁₂′ ŷ₁₃′

ŷ₂₀′ ŷ₂₁′ ŷ₂₂′ ŷ₂₃′

ŷ₃₀′ ŷ₃₁′ ŷ₃₂′ ŷ₃₃′

Early Exit

A
ccepted 
Prefix

Precomputed 
Paths

Figure 1: Mirror-SD verification and reuse (example with γ = 3, κ = 1). At early exit, the target
(blue) emits Mt = {m1, . . . ,m4} and continues to the final layer. The draft (orange) expands Mt

into branch-complete continuations y′i0:i3 (grid). After verification, the target accepts ŷ0, ŷ1 and
issues correction y2 at depth τ = 2. Reuse is possible if there exists a precomputed branch whose
prefix matches the accepted tokens (ŷ0, ŷ1) and whose node at depth τ equals y2 (green). Otherwise,
speculation is recomputed (See Section 3.1 for the formal rule).

speculation cannot begin before the final acceptance decision at step t is known, the happen-before
relation is

ŷt+1:t+γ ≺ (verification at t) ≺ ŷnext
t+1:t+γ ,

yielding a serial step latency

TSD(γ;ϕ, θ) = Tdraft(γ;ϕ) + Ttarget(γ; θ). (5)

Increasing draft capacity (larger γ, deeper/wider fd) typically increases ρ but also increases Tdraft,
while tiny drafts reduce Tdraft but suffer low ρ (Leviathan et al., 2023; Chen et al., 2023). Equa-
tion (5) exposes the core limitation: improvements in acceptance must compensate for the added
draft latency, intrinsically coupling acceptance with latency.

3 MIRROR SPECULATIVE DECODING

We propose Mirror Speculative Decoding (Mirror SD), a systems–algorithm co-design that enables
parallel draft-target execution by conditioning the draft on intermediate target-layer distributions
and reconciling via a bandwidth-light token channel. This section develops the method end-to-
end—formal semantics, latency models, and a realizable tensor-parallel implementation.

3.1 EARLY-EXIT PROXIES AND BRANCH-COMPLETE CONCURRENT SPECULATION.

Consider a target transformer of depth N with layers L1, . . . , LN and intermediate representations
h
(ℓ)
t at step t. To generate high-fidelity early-exit proxies, we insert a lightweight non-linear MLP

adapter fadapt(·) that transforms the hidden state at exit layer ℓe < N before applying the shared
final LM head WLM:

p(ℓe)(· | y<t, x) = Softmax
(
WLM · fadapt(h

(ℓe)
t )

)
, (6)

following the formulation in Pal et al. (2023a). Details of the early-exit adapter and its training
procedure are provided in Appendix E.2. The resulting distribution exposes a low-bandwidth token
channel:

Mt = Top-κ
(
p(ℓe)(· | y<t, x)

)
= {(vi, log p̃i)}κi=1, vi ∈ V, (7)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

containing only the top-κ candidate tokens and their log-probabilities. While this message is sent,
the target continues its verification pass through Lℓe+1, . . . ,LN to form the full next-token distribu-
tion p(N)(· | y<t, x). Let γ ∈ N denote the speculative window length.

Given Mt, the draft begins a branch-complete rollout in parallel: for each candidate vi and for every
prefix length r ≤ γ, it prepares a speculative continuation for the next step of decoding starting from
vi,

∀i ∈ {1, . . . , κ}, ∀r ∈ {1, . . . , γ} : ŷ
′(i)
t+1:t+r ∼ fd(· | y<t, x, ỹt+1 = vi) . (8)

While the draft’s batched branches run, the target finishes verification against the currently selected
draft path under the standard speculative rule and determines the first mismatch (the correction).
Formally, let

At ≜ max
{
r ∈ {0, . . . , γ} : ŷt+j = ytarg

t+j ∀ j ≤ r
}

be the accepted prefix length, where ytarg
t+j are the target’s tokens obtained from p(N)(· | y<t+j−1, x)

(greedy/stochastic sampling). If At < γ, the correction occurs at index τ=At+1 with token

ct+τ ≜ ytarg
t+τ ∼ p(N)(· | y<t+τ−1, x).

Let Tt be the hypothesis tree built at early exit from the top-κ roots {vi}, whose nodes at depth r
store the token at position t+ r and its precomputed continuation.

Verification vs. reuse criterion. At step t, the target accepts a prefix of length At and issues a
correction at τ = At+1 with token ct+τ . The early-exit message Mt induces a hypothesis tree Tt
rooted at the top-κ candidates, with Pathsr(Tt) denoting all root-to-depth-r prefixes, which serve
as anchors for speculative continuations. The accepted prefix is Πt = (ytargt+1 , . . . , y

targ
t+At

), and the
corrected prefix extends it with the correction token, Π+

t = (Πt, ct+τ ). Reuse occurs whenever this
corrected prefix already appears as a path in Tt, i.e.

Π+
t ∈ Pathsτ (Tt),

so that only the correction must be checked while the accepted positions 1:At remain fixed.

Operational selection of the next window.

ŷ′t+1:t+γ =


branch rooted at ct+1, At = 0 ∧ ∃ i : vi = ct+1,

precomputed continuation at depth τ along Πt, At ≥ 1 ∧ Π+
t ∈ Pathsτ (Tt),

fresh rollout from (y1:t+At
, ct+τ ), otherwise.

In all cases, the committed output is ytargt+1:t+At
, after which decoding advances to the next step.

Effect of sampling width at early exit. Let q(·) = p(N)(· | ht) and p̃(·) = p(ℓe)(· | ht). We denote
the top-κ mass overlap as:

Ωκ =
∑

y∈Top-κ(p̃)

q(y). (9)

It follows that P
(
yt+1 ∈ Top-κ(p̃)

)
= Ωκ, which is nondecreasing in κ and satisfies limκ→|V| Ωκ =

1. Larger κ therefore reduces fallbacks requiring speculation recomputation and improves through-
put, while leaving acceptance semantics intact (See Appendix B).

3.2 DRAFT EXECUTION WITH SPECULATIVE STREAMING

For the draft model fd, we employ Speculative Streaming (SS) (Bhendawade et al., 2024), a specu-
lative mechanism that verifies previously proposed tokens while generating new speculative tokens
in the same forward pass using multi-stream attention. Applying SS to the target would modify
its decoding dynamics and alter the final distribution p(N)(· | y<t, x) (Bhendawade et al., 2024),
breaking the lossless guarantee established in Appendix B. In contrast, using SS on the draft accel-
erates speculation generation without changing acceptance semantics, since all commitments still
require verification against the unchanged target. This design leverages SS precisely where it yields
additional concurrency while preserving correctness (See Appendix B). Appendix D.2 illustrates
the SS mechanism and compares draft-only speedups between vanilla and SS drafts.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

T: M
H

A l0
All –Reduce Target

…..

N
PU

 1
N

PU
 0

G
PU

 0
G

PU
 1

SO
C

  0
SO

C
  1

All –Reduce Target

All –Reduce Target

All –Reduce Target

All –Reduce Target

All –Reduce Target

All –Reduce Target

All –Reduce Target

All –Reduce D
raft + Target

All –Reduce D
raft + Target

Draft layers    
0-1

Draft call 1 Draft call 2

Draft call 1 Draft call 2

Draft layers    
2-3

Draft layers    
0-1

Draft layers    
2-3

Draft layers    
0-1

Draft layers    
2-3

Draft layers    
0-1

Draft layers    
2-3

T: M
LP l0

T: M
H

A l0

T: M
H

A l3

T: M
H

A l4

T: M
H

A l5

T: M
H

A l6

T: M
H

A l7

T: M
LP l0

T: M
LP l3

T: M
LP l4

T: M
LP l5

T: M
LP l6

T: M
LP l7

T: M
H

A l3

T: M
H

A l4

T: M
H

A l5

T: M
H

A l6

T: M
H

A l7

T: M
LP l3

T: M
LP l4

T: M
LP l5

T: M
LP l6

T: M
LP l7

All –Reduce D
raft + Target

All –Reduce D
raft + Target

Early Exit Token C
hannel

Sam
pler

Sam
pler

Figure 2: Heterogeneous sharding in Mirror-SD. The target (blue) uses Megatron-style TP with two
collectives per MHA/MLP block, while the draft (orange) uses SPD-style sharding across GD NPUs
with only two synchronizations per step. This design reduces sync cost, enlarges draft capacity, and
improves acceptance without raising critical-path latency. Note: The beige bands labeled “All-
Reduce Draft + Target” are a visual shorthand: the draft and target perform separate all-reduces
within their own device groups, with no cross-collective coupling.

Multi-stream attention (MSA) factorization. Let M (ℓ)
t denote the main-stream hidden state at

layer ℓ and step t, and S
(ℓ)
t,j the hidden state of lookahead stream j∈{1, . . . , γ}. Speculative stream-

ing (SS) constructs attention masks so that each St,j attends to the verified prefix and to lower-index
lookahead streams {St,1, . . . , St,j}, while the main stream Mt attends only to the verified prefix. At
the top layer, a shared LM head W

(d)
LM projects these hidden states to token logits:

W
(d)
LM M

(N)
t 7→ pd(· | ht) and W

(d)
LM S

(N)
t,j 7→ pd(· | ht, j), j = 1, . . . , γ.

so a single forward pass yields both the distribution used to verify the prior draft and the distributions
needed to grow the next speculative window across multiple lookahead depths. SS trains these
streams with a future n-gram prediction objective without introducing additional heads.

Work-conserving draft generation within Mirror-SD. Within each Mirror-SD step, the draft
must furnish a branch-complete speculative window of length γ at the rendezvous ( Section 3.1).
Under SS, a single draft internal step can emit ηj ≥ 1 tokens by verifying the prior proposal and
predicting multiple future tokens in one pass (Bhendawade et al., 2024). Consequently, the number
of draft steps J required to materialize γ tokens satisfies

J ≤
⌈

γ
η̄

⌉
, η̄ = 1

J

J∑
j=1

ηj .

3.3 HETEROGENEOUS SHARDING OF MIRROR-SD

We co-schedule a depth–N target on GT=8 GPUs and a depth–Nd draft on GD=8 NPUs. The
target is a pre-trained model and thus kept in its standard Megatron-style tensor parallel (TP) form
(Shoeybi et al., 2019), ensuring compatibility with existing inference stacks and KV-cache layouts.
In contrast, the draft is trained from scratch using the SPD architecture (Kim et al., 2025) and
deployed on NPUs. We write S for per–microbatch sequence length, B for microbatch size, and
|V| for vocabulary size. Figure 2 illustrates the heterogeneous sharding setup with an example
configuration (target of 8 layers, draft of 4 layers); in practice, both target and draft may use different
depths based on the experiment configuration.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Target sharding We use Megatron-style TP on the target: column-parallel Wqkv and Wo in MHA,
and column/row-parallel W1,W2 in the MLP. Each transformer block performs the standard two
TP collectives (attention and MLP). At early exit ℓe, the target emits Top-κ

(
p(ℓe)

)
over the token

channel while continuing the verification phase; acceptance remains decided against p(N) and is
therefore unchanged relative to vanilla SD (See Appendix B).

Draft sharding. The draft is trained with SPD architecture (Kim et al., 2025). We divide the
Nd layers into two contiguous segments. Within each segment we instantiate GD parallel tracks;
track g ∈ {1, . . . , GD} is pinned to NPU g and advances through all layers of its segment using
a resident weight shard. There is no inter-NPU traffic inside a segment (See Figure 2). At the
segment boundary, all tracks perform a single global synchronization to re-align tensor partitions,
and a second synchronization occurs at the end of the forward pass to assemble full-width logits
for the main and lookahead streams. Each internal draft step executes two all-reduce collectives on
activation shards while weights remain sharded. This replaces per-layer synchronization with a fixed
two-collective cost, reducing latency and enabling more parameters to be sharded across NPUs. In
practice, this expands draft capacity and improves acceptance rates ρ(γ;ϕ, θ) without increasing
critical-path latency.

Cross-accelerator rendezvous. Mirror-SD performs two token-level exchanges per step: early-
exit (ℓe) and final verification (N ). These exchanges carry O(B κ) small items (IDs and log-
probabilities) and are negligible in practice (microseconds) compared to millisecond-scale tar-
get/draft compute; they are accounted for by Trv in the latency model.

3.4 LATENCY ANALYSIS

Let the target early-exit at layer ℓe in a depth-N stack with per–layer times cℓ, and write

T 1:ℓe
target =

ℓe∑
ℓ=1

cℓ, T ℓe+1:N
target =

N∑
ℓ=ℓe+1

cℓ.

Let γ be the speculative window length and let T gen
draft(γ) denote the time to produce a branch-

complete draft window (absorbing any multi-token SS steps). We account for the two rendezvous
overheads at early exit and final verification,

T (ee)
rv , T (fv)

rv , Trv ≜ T (ee)
rv + T (fv)

rv ,

where the GPU↔NPU token exchanges carry only O(Bκ) IDs/log-probabilities.

A single Mirror-SD step consists of (i) target prefix, (ii) early-exit rendezvous, (iii) a parallel region
where the target suffix overlaps the draft generation, and (iv) final rendezvous. The step latency is

TMirror = T 1:ℓe
target + T (ee)

rv +max
{
T ℓe+1:N

target , T gen
draft(γ)

}
+ T (fv)

rv . (10)

Let the overlap budget be ∆ ≜ T ℓe+1:N
target . If T gen

draft(γ) ≤ ∆, the entire draft generation is hidden
under the target suffix and

TMirror = Ttarget + Trv.

Otherwise the draft dominates the parallel region and

TMirror = T 1:ℓe
target + T (ee)

rv + T gen
draft(γ) + T (fv)

rv .

Thus, scaling the draft that only increases overlapped T gen
draft(γ) is free up to budget ∆, while

the token-channel transfers remain a small O(Bκ) term. We provide a full accounting of sam-
pling/transfer costs, multi-step SS, and synchronization in Appendix C.

4 EXPERIMENTS

We evaluate Mirror-SD on a broad suite of generation workloads under realistic serving constraints,
using server-scale decoder-only LLMs that are routinely deployed in production inference stacks
across mid to large capacities, and we compare against strong speculative-decoding baselines.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 EVALUATION PROTOCOL

Datasets and tasks. We integrate our approach with the open-source SpecBench framework (Xia
et al., 2024b) to ensure a fair, reproducible comparison against prior methods. SpecBench provides
standardized prompts and pre/post-processing, sampling settings and released configs and seeds (Xia
et al., 2024b). We report results on multi-turn interactive conversation (MT Bench), translation,
summarization, mathematical reasoning, machine translation and retrieval-augmented generation
(RAG). Context and generation lengths follow the SpecBench protocol (Xia et al., 2024b).

Models and baselines. We evaluate Mirror-SD on server-scale targets that are deployable in pro-
duction inference stacks: Qwen3-14B and Qwen3-32B (Yang et al., 2025), Mistral-24B (Mistral,
2025), and OPT-66B (Zhang et al., 2022). For Qwen targets, we train a 0.6B-parameter draft with
2 segments and 8 tracks and deploy it on 8 NPUs as described in Section 3.3. For Mistral we train
a 0.5B draft, and for OPT we train a 200M draft, both sharded as in Section 3.3 to optimize syn-
chronization cost. All draft models are trained with SS objective described in (Bhendawade et al.,
2024) on UltraChat (Ding et al., 2023). Across all target models, drafts are launched from the
mid-layer early exit ( 12 of total depth) with top-κ=8 under batch size 1. Please refer to Appendix E
for the effects of early-exit depth and κ. Baselines include vanilla SD, Medusa (Cai et al., 2024),
Hydra (Ankner et al., 2024b), EAGLE 2/3 (Li et al., 2024b; 2025a), Recycling (Luo et al., 2024),
PLD (Saxena, 2023a), SpS (Joao Gante, 2023), REST (He et al., 2024), and Lookahead (Fu et al.,
2023). All baselines have public implementations in SpecBench (Xia et al., 2024b), and we use the
corresponding implementations.

Metrics. We focus solely on efficiency, without reporting accuracy metrics, since Mirror-SD is
lossless and guarantees identical outputs to the target model under the same decoding process (see
Appendix B). Our two key metrics are: (i) end-to-end wall-time speedup over target-only autore-
gressive decoding, reported as a speedup factor; and (ii) acceptance length, the expected number
of tokens accepted per speculative window, averaged across steps and prompts. We report greedy
decoding with temperature τ = 0 and stochastic decoding with τ = 1. The same decoding hyper-
parameters are used for all methods.

Serving configuration and reproducibility. Target models are distributed across eight M2 Ultra
GPUs using Megatron-style tensor parallelism (Section 3.3), while the draft runs on eight NPUs
(Apple Inc. (2023a)). All evaluations use a fixed batch size of 1 and speculative window length
γ=7; please refer to Appendix D.1 for analysis of batching effects. The token channel transmits
only the top-κ token IDs and log-probabilities in bf16. For determinism, interconnects are pinned
and frequency scaling is disabled. Timings include compute, collectives, and rendezvous overhead.

4.2 TRI-OBJECTIVE ANALYSIS WITH AN MT-BENCH DIAGNOSTIC

Speculative decoding couples three quantities: the speculative window γ, the acceptance length
E[At] = γ ρ(γ;ϕ, θ), and drafting latency added to critical path. In vanilla SD, enlarging γ typically
boosts acceptance but also increases draft construction time since drafting is serial, yielding an
upward-sloping latency curve. For Mirror-SD, the step latency follows the model in Section 3.4
(Equation (10)): as long as T gen

draft(γ)≤∆ with ∆ = T ℓe+1:N
target , increasing γ (and thus E[At]) adds no

marginal latency; once T gen
draft(γ)>∆, latency grows by the excess beyond ∆. Acceptance semantics

remain unchanged ( Appendix B). We validate these hypotheses on MT-Bench (Bai et al., 2024) by
sweeping γ, measuring E[At] and the observed draft construction overhead added to critical path,
and comparing three methods that share the same target: (i) vanilla SD with autoregressive drafts
from 12M to 1.7B parameters, (ii) Mirror-SD with a 0.6M draft, and (iii) Mirror-SD with a SS draft
( Section 3.2) of 0.6B. For fairness, all approaches in Figure 3a use NPU for draft placement.

Findings. Vanilla SD traces an ascending surface: larger drafts increase E[At] but raise step la-
tency commensurately. Mirror-SD shifts this surface downward by overlapping draft generation on
NPUs with target verification on GPUs, revealing a near-zero-slope regime wherever T gen

draft(γ)≤∆.
Adding speculative streaming further reduces T gen

draft(γ) by requiring fewer internal draft steps J to
cover the same window length γ, which extends the near-zero-slope region and pushes the sur-
face down again. Across γ, Mirror-SD and Mirror-SD+SS dominate the Pareto frontier—achieving
higher E[At] at a given latency, lower latency at a given E[At], and a wider feasible range before
saturating the overlap budget defined in Section 3.4.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1
2

3
4

5
6

7

Gamma

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

4.5 Acce
pta

nce
 Le

ng
th

0

2

4

6

8

10

12

14

La
te

nc
y

  12m

  60m

  0.6b

  1.7b

  mirror-0.6b

  mirror-0.6b-ss 2

4

6

8

10

12

14

La
te

nc
y

(a) Tri-objective diagnostic on MT-Bench.

1 2 3 4 5 6 7
Gamma

1

2

3

4

5

Ac
ce

pt
an

ce
 L

en
gt

h 
(m

ea
n 

±
 s

td
)

writing
roleplay
reasoning
math
coding
extraction
stem
humanities
translation
summarization
qa
math_reasoning
rag

(b) Acceptance length across SpecBench and MT Bench
tasks with 0.6B draft and 32B Target. MT Bench tasks are
reported individually.

Figure 3: (a) Speculative window γ, acceptance length, and drafting construction overhead in critical
path on MT Bench. (b) Acceptance length E[At] on SpecBench and MT Bench tasks (mean ± std).

Table 1: SpecBench wall-time speedups. Mirror-SD outperforms prior methods across models,
tasks, and decoding temperatures, showing consistent improvements.

Model Task EAGLE3 EAGLE2 Hydra Recycling Medusa Vanilla-SD PLD SpS REST Lookahead Mirror-SD

Qwen3-14B (T=0)

Translation 2.53x 1.98x 2.03x 1.86x 1.65x 2.34x 1.18x 1.15x 1.21x 1.09x 4.13x
Summarization 2.91x 2.19x 2.00x 2.30x 1.55x 1.76x 2.12x 1.87x 1.38x 1.30x 3.07x

Question Answering 3.09x 2.39x 2.19x 2.13x 1.62x 1.81x 1.14x 1.31x 1.61x 1.27x 3.18x
Mathematical Reasoning 3.36x 2.75x 2.53x 2.58x 2.12x 2.80x 1.67x 1.59x 1.15x 1.70x 5.32x

Retrieval Aug. Generation 2.66x 2.13x 2.04x 2.06x 1.64x 2.02x 1.67x 1.75x 1.57x 1.32x 3.49x
Multi-turn Conversation 3.29x 3.05x 2.45x 2.44x 1.93x 2.07x 1.63x 1.81x 1.49x 1.35x 3.70x

Qwen3-14B (T=1)

Translation 1.92x 1.81x 1.81x 1.78x 1.54x 2.19x 1.07x 1.04x 1.08x 1.03x 3.89x
Summarization 2.84x 2.05x 1.66x 1.84x 1.40x 1.50x 1.86x 1.40x 1.20x 1.13x 2.81x

Question Answering 2.61x 2.00x 1.85x 1.84x 1.37x 1.36x 1.04x 1.18x 1.28x 1.15x 2.80x
Mathematical Reasoning 3.25x 2.54x 2.42x 2.29x 2.01x 2.53x 1.49x 1.42x 1.05x 1.39x 5.02x

Retrieval Aug. Generation 2.53x 1.86x 1.59x 1.89x 1.47x 1.68x 1.56x 1.60x 1.30x 1.07x 2.95x
Multi-turn Conversation 3.05x 2.78x 2.16x 2.15x 1.81x 1.98x 1.42x 1.41x 1.37x 1.24x 3.48x

Qwen3-32B (T=0)

Translation 2.52x 2.10x 2.14x 1.57x 1.56x 2.74x 1.09x 1.24x 1.15x 1.12x 3.72x
Summarization 2.98x 2.59x 1.98x 1.98x 1.56x 2.07x 1.82x 1.62x 1.38x 1.26x 3.14x

Question Answering 2.76x 2.26x 2.17x 1.63x 1.81x 2.06x 1.17x 1.59x 1.70x 1.13x 3.04x
Mathematical Reasoning 3.77x 3.49x 2.52x 1.95x 2.23x 3.33x 1.68x 1.70x 1.33x 1.49x 5.84x

Retrieval Aug. Generation 2.65x 2.22x 1.92x 1.61x 1.59x 2.33x 1.42x 1.69x 1.76x 1.15x 3.42x
Multi-turn Conversation 3.29x 3.24x 2.75x 1.79x 1.92x 2.67x 1.53x 1.65x 1.63x 1.33x 3.59x

Qwen3-32B (T=1)

Translation 2.36x 1.79x 1.90x 1.40x 1.42x 2.43x 1.03x 1.09x 1.03x 1.05x 3.15x
Summarization 2.79x 2.22x 1.75x 1.48x 1.45x 1.92x 1.59x 1.43x 1.16x 1.17x 2.92x

Question Answering 2.34x 2.09x 1.72x 1.46x 1.61x 1.89x 1.04x 1.37x 1.44x 1.04x 2.90x
Mathematical Reasoning 3.45x 3.13x 2.35x 1.80x 1.66x 2.88x 1.36x 1.59x 1.20x 1.28x 5.08x

Retrieval Aug. Generation 2.34x 1.96x 1.79x 1.50x 1.35x 2.08x 1.28x 1.35x 1.48x 1.07x 3.33x
Multi-turn Conversation 3.14x 2.58x 2.29x 1.63x 1.73x 2.39x 1.34x 1.48x 1.47x 1.17x 3.28x

4.3 EFFECTIVENESS

Table 1 reports end-to-end wall-time speedups across SpecBench (Xia et al., 2024b) tasks. A clear
pattern emerges: Mirror-SD shows improvements over baselines across model sizes, temperatures,
and workloads. On Qwen3-14B, Mirror-SD averages 3.8× acceleration with greedy sampling, com-
pared to 2.97× for the strongest prior methods; on Qwen3-32B, the average rises to 3.78×, eclipsing
baselines at roughly 3×. The gains are most pronounced on long-horizon workloads (e.g., mathe-
matical reasoning), where Mirror-SD reaches up to 5.84× speedup. The improvement is driven

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Vanilla SD + vanilla draft

Vanilla SD + SS Draft

Mirror SD + vanilla draft

Mirror SD + SS Draft

3.0

3.5

4.0

4.5

Sp
ee

du
p

Translation (T=0)
Translation (T=1)
Summarization (T=0)

Summarization (T=1)
Multi-Turn Conv. (T=0)
Multi-Turn Conv. (T=1)

(a) OPT

Vanilla SD + vanilla draft

Vanilla SD + SS Draft

Mirror SD + vanilla draft

Mirror SD + SS Draft

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

Translation (T=0)
Translation (T=1)
Summarization (T=0)

Summarization (T=1)
Multi-Turn Conv. (T=0)
Multi-Turn Conv. (T=1)

(b) Mistral

Figure 4: Speedup for OPT and Mistral under drafting strategies across tasks and temperatures.

primarily by a larger acceptance length E[At]: Mirror-SD lets us scale the draft and apply spec-
ulative streaming without paying proportional step latency, which increases the number of tokens
committed per target step. Since throughput scales roughly with the expected tokens accepted per
step, S ∝ 1 + E[At], these acceptance gains translate directly into wall-time speedups. Retrieval-
augmented generation shows a similar effect, benefitting from stable intermediate distributions that
allow the draft to sustain long accepted prefixes. Even on high-entropy domains such as multi-turn
conversation, where acceptance is intrinsically harder, Mirror-SD consistently delivers 3.3–3.7× ac-
celeration compared to the 1.8-2.4× range of Hydra, Recycling or Medusa. In translation and QA,
the margin is steadier but no less striking: Mirror-SD maintains a speedup edge across both greedy
and stochastic decoding, validating that its improvements are insensitive to decoding regime. For an
intuition grounded in the concurrency model and scaling laws behind Figure 3a, see Appendix C.

4.4 GENERALIZABILITY ACROSS MODEL FAMILIES

To test whether the gains of Mirror-SD extend beyond Qwen, we repeat the study on two server-scale
decoder-only families: Mistral-24B and OPT-66B. For each target, we hold decoding hyperparam-
eters and draft capacity fixed and compare four variants: (1) standard speculative decoding with
an autoregressive draft, (2) standard speculative decoding with a speculative-streaming draft, (3)
Mirror-SD with an autoregressive draft, and (4) Mirror-SD with a speculative-streaming draft. Fig-
ure 4 reports end-to-end speedups over target-only decoding for translation, summarization, and
multi-turn conversation under τ = 0 and τ = 1 regimes. Across both families and all tasks, the
vanilla SD baseline with autoregressive-draft generation yields the smallest gains; adding specula-
tive streaming increases throughput; switching to Mirror-SD produces a further jump; combining
Mirror-SD with speculative streaming delivers the largest speedups. This progression matches the
analysis in Sections 3.2 and 3.4: Mirror-SD shortens the critical path by overlapping draft gener-
ation with the target suffix, while speculative streaming reduces the draft generation time T gen

draft(γ)
by emitting multiple tokens per internal draft step. Together, these effects allow larger acceptance
lengths E[At] without additional step latency until the overlap budget is reached, and the target’s
output distribution remains unchanged by construction. These results show that pairing Mirror-SD
with a speculative-streaming draft generalizes across model families, delivering higher throughput
without altering the base architecture or quality.

5 CONCLUSION

We introduced Mirror Speculative Decoding (Mirror-SD), a systems–algorithm co-design that over-
laps target and draft computation, reduces draft synchronizations, and confines cross-accelerator
traffic to a lightweight token channel. Deployed on heterogeneous GPU–NPU setups, Mirror-SD
consistently accelerates decoding by 2.8X to 5.8X while preserving correctness. By reducing serial
bottlenecks and leveraging multi-accelerator SoCs, Mirror-SD demonstrates a practical low-latency
approach for large-scale LLM serving.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin et al. Phi-3 technical report: A highly capable language model locally on your phone,
2024.

Advanced Micro Devices (AMD). Introducing Ryzen AI: AI Engine Powered by XDNA Archi-
tecture, 2023. URL https://www.amd.com/en/processors/ryzen-ai.html. Ac-
cessed: July 2025.

Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana, Linden Li, Julian Quevedo, and Daya Khudia.
Llm inference performance engineering: Best practices., 2023a.

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023b.

Joshua Ainslie, Santiago Ontanon, Yi Tay, James Lee-Thorp, Michiel de Jong, Yinhan Yang, Dustin
Tran, Jason Lee, Huaixiu Steven Chen, and Mandy Guo. Colt5: Faster long-range transformers
with conditional computation. Transactions of the Association for Computational Linguistics
(TACL), 11:551–568, 2023.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding,
2024a.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa de- coding,
2024b.

Anonymous. Designing draft models for speculative decoding. In Submitted to ACL Rolling Review
- April 2024, 2024a. URL https://openreview.net/forum?id=mACk3ZVHoU. under
review.

Anonymous. Faster speculative decoding via effective draft decoder with pruned candidate tree.
arXiv preprint under ACL ARR 2024, December 2024b. URL https://openreview.net/
forum?id=acl-676. ACL ARR 2024 December Submission 676.

Apple. Use writing tools on your mac, n.d. URL https://support.apple.com/guide/
mac-help/use-writing-tools-mchldcd6c260/mac. Accessed: 2025-02-09.

Apple Inc. Apple unveils m2 ultra, the world’s most powerful chip for a personal computer. https:
//www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/, 2023a.
Accessed: 2025-09-22.

Apple Inc. Apple unveils M3, M3 Pro, and M3 Max: The most advanced chips for a
personal computer, 2023b. URL https://www.apple.com/newsroom/2023/10/
apple-unveils-m3-m3-pro-and-m3-max. Accessed: July 2025.

Apple Inc. About the apple thunderbolt pro cables. https://support.apple.com/en-us/
118204, 2024. Accessed: 2025-09-24.

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo
Su, Tiezheng Ge, Bo Zheng, and Wanli Ouyang. MT-bench-101: A fine-grained benchmark
for evaluating large language models in multi-turn dialogues. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7421–7454, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.401. URL
https://aclanthology.org/2024.acl-long.401/.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

10

https://www.amd.com/en/processors/ryzen-ai.html
https://openreview.net/forum?id=mACk3ZVHoU
https://openreview.net/forum?id=acl-676
https://openreview.net/forum?id=acl-676
https://support.apple.com/guide/mac-help/use-writing-tools-mchldcd6c260/mac
https://support.apple.com/guide/mac-help/use-writing-tools-mchldcd6c260/mac
https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/
https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max
https://support.apple.com/en-us/118204
https://support.apple.com/en-us/118204
https://aclanthology.org/2024.acl-long.401/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mah-
yar Najibi. Speculative streaming: Fast llm inference without auxiliary models. arXiv preprint
arXiv:2402.11131, 2024.

Nikhil Bhendawade, Mahyar Najibi, Devang Naik, and Irina Belousova. M2r2: Mixture of multi-
rate residuals for efficient transformer inference. arXiv preprint arXiv:2502.02040, 2025. URL
https://doi.org/10.48550/arXiv.2502.02040.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, and Judy Hoffman. Token merging for efficient
vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1216–1225, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

F Warren Burton. Speculative computation, parallelism, and functional programming. IEEE Trans-
actions on Computers, 100(12):1190–1193, 1985.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, and Tri Dao. Medusa: Simple frame-
work for accelerating llm generation with multiple decoding heads. https://github.com/
FasterDecoding/Medusa, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, De huai Chen, and
Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding
heads. ArXiv, abs/2401.10774, 2024. URL https://api.semanticscholar.org/
CorpusID:267061277.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. DialogSum: A real-life scenario dia-
logue summarization dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli
(eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 5062–
5074, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
findings-acl.449. URL https://aclanthology.org/2021.findings-acl.449.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and
Nazli Goharian. A discourse-aware attention model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
615–621, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-2097. URL https://aclanthology.org/N18-2097.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
llm inference. arXiv preprint arXiv:2307.02628v1, 2023.

11

https://doi.org/10.48550/arXiv.2502.02040
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://api.semanticscholar.org/CorpusID:267061277
https://api.semanticscholar.org/CorpusID:267061277
https://aclanthology.org/2021.findings-acl.449
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/N18-2097


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. ChatLaw: Open-source legal large
language model with integrated external knowledge bases. arXiv preprint arXiv:2306.16092,
2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Evaluating the State-of-the-Art of End-to-
End Natural Language Generation: The E2E NLG Challenge. Computer Speech & Language,
59:123–156, January 2020. doi: 10.1016/j.csl.2019.06.009.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Breaking the sequential dependency of llm
inference using lookahead decoding, November 2023. URL https://lmsys.org/blog/
2023-11-21-lookahead-decoding/.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

Raghavv Goel, Mukul Gagrani, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott.
Direct alignment of draft model for speculative decoding with chat-fine-tuned llms. arXiv preprint
arXiv:2403.00858, 2024.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models.
arXiv preprint arXiv:2306.08543, 2023.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak Gopinath, Dian Ang Yap, Dong
Yin, Feng Nan, Floris Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang, Jiarui Lu, John Peebles,
Ke Ye, Mark Lee, Nan Du, Qibin Chen, Quentin Keunebroek, Sam Wiseman, Syd Evans, Tao
Lei, Vivek Rathod, Xiang Kong, Xianzhi Du, Yanghao Li, Yongqiang Wang, Yuan Gao, Zaid
Ahmed, Zhaoyang Xu, Zhiyun Lu, Al Rashid, Albin Madappally Jose, Alec Doane, Alfredo Ben-
como, Allison Vanderby, Andrew Hansen, Ankur Jain, Anupama Mann, Areeba Kamal, Bugu
Wu, Carolina Brum, Charlie Maalouf, Chinguun Erdenebileg, Chris Dulhanty, Dominik Moritz,
Doug Kang, Eduardo Jimenez, Evan Ladd, Fangping Shi, Felix Bai, Frank Chu, Fred Hohman,
Hadas Kotek, Hannah Gillis Coleman, Jane Li, Jeffrey Bigham, Jeffery Cao, Jeff Lai, Jessica Che-
ung, Jiulong Shan, Joe Zhou, John Li, Jun Qin, Karanjeet Singh, Karla Vega, Kelvin Zou, Laura
Heckman, Lauren Gardiner, Margit Bowler, Maria Cordell, Meng Cao, Nicole Hay, Nilesh Shah-
dadpuri, Otto Godwin, Pranay Dighe, Pushyami Rachapudi, Ramsey Tantawi, Roman Frigg, Sam
Davarnia, Sanskruti Shah, Saptarshi Guha, Sasha Sirovica, Shen Ma, Shuang Ma, Simon Wang,
Sulgi Kim, Suma Jayaram, Vaishaal Shankar, Varsha Paidi, Vivek Kumar, Xin Wang, Xin Zheng,
Walker Cheng, Yael Shrager, Yang Ye, Yasu Tanaka, Yihao Guo, Yunsong Meng, Zhao Tang Luo,
Zhi Ouyang, Alp Aygar, Alvin Wan, Andrew Walkingshaw, Andy Narayanan, Antonie Lin, Ar-
salan Farooq, Brent Ramerth, Colorado Reed, Chris Bartels, Chris Chaney, David Riazati, Eric
Liang, Erin Feldman, Gabriel Hochstrasser, Guillaume Seguin, Irina Belousova, Joris Pelemans,
Karen Yang, Keivan Alizadeh, Liangliang Cao, Mahyar Najibi, Marco Zuliani, Max Horton, Min-
sik Cho, Nikhil Bhendawade, Patrick Dong, Piotr Maj, Pulkit Agrawal, Qi Shan, Qichen Fu,
Regan Poston, Sam Xu, Shuangning Liu, Sushma Rao, Tashweena Heeramun, Thomas Merth,
Uday Rayala, Victor Cui, Vivek Rangarajan Sridhar, Wencong Zhang, Wenqi Zhang, Wentao

12

https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wu, Xingyu Zhou, Xinwen Liu, Yang Zhao, Yin Xia, Zhile Ren, and Zhongzheng Ren. Ap-
ple intelligence foundation language models. arXiv preprint arXiv:2407.21075, 2024. URL
https://doi.org/10.48550/arXiv.2407.21075.

Jan Hansen-Palmus, Michael Truong Le, Oliver Hausdörfer, and Alok Verma. Communication
compression for tensor parallel llm inference. ArXiv, abs/2411.09510, 2024. URL https:
//api.semanticscholar.org/CorpusID:274023002.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee, and Di He. Rest: Retrieval-based speculative
decoding. ArXiv, abs/2311.08252, 2023. URL https://api.semanticscholar.org/
CorpusID:265157884.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and Di He. REST: Retrieval-based speculative
decoding. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 1582–1595, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.88.
URL https://aclanthology.org/2024.naacl-long.88/.

Fenglu Hong, Ravi Raju, Jonathan Lingjie Li, Bo Li, Urmish Thakker, Avinash Ravichandran,
Swayambhoo Jain, and Changran Hu. Training domain draft models for speculative decoding:
Best practices and insights. arXiv preprint arXiv:2503.07807, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Intel Corporation. Intel Core Ultra Processors, 2023. URL https://www.intel.com/
content/www/us/en/products/details/processors/core/ultra.html. Ac-
cessed: July 2025.

Albert Q. Jiang et al. Mistral 7b, 2023.

Joao Gante. Assisted generation: a new direction toward low-latency text generation, 2023. URL
https://huggingface.co/blog/assisted-generation.

Norman P Jouppi et al. Ten lessons from three generations shaped google’s tpuv4i. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Han-Byul Kim, Duc N. M. Hoang, Arnav Kundu, Mohammad Samragh, and Minsik Cho. Spd:
Sync-point drop for efficient tensor parallelism of large language models. ArXiv, abs/2502.20727,
2025. URL https://api.semanticscholar.org/CorpusID:276724757.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles (SOSP), pp. 611–626. ACM, 2023a. doi: 10.1145/3600006.3613165. URL
https://doi.org/10.1145/3600006.3613165.

13

https://doi.org/10.48550/arXiv.2407.21075
https://api.semanticscholar.org/CorpusID:274023002
https://api.semanticscholar.org/CorpusID:274023002
https://api.semanticscholar.org/CorpusID:265157884
https://api.semanticscholar.org/CorpusID:265157884
https://aclanthology.org/2024.naacl-long.88/
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://www.intel.com/content/www/us/en/products/details/processors/core/ultra.html
https://www.intel.com/content/www/us/en/products/details/processors/core/ultra.html
https://huggingface.co/blog/assisted-generation
https://api.semanticscholar.org/CorpusID:276724757
https://doi.org/10.1145/3600006.3613165


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023b.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024c.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
guage models with dynamic draft trees. In Empirical Methods in Natural Language Processing,
2024d.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
ation of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
acceleration of large language models via training-time test. In Annual Conference on Neural
Information Processing Systems, 2025b.

Zonghang Li, Wenjiao Feng, Mohsen Guizani, and Hongfang Yu. Tpi-llm: Serving 70b-scale llms
efficiently on low-resource edge devices. ArXiv, abs/2410.00531, 2024e. URL https://api.
semanticscholar.org/CorpusID:273023213.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, and
Dongliang Xu. Turning trash into treasure: Accelerating inference of large language models
with token recycling. arXiv preprint arXiv:2408.08696, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 2023.

Mistral. Mistral Small 3 (2501). 2025. https://mistral.ai/news/mistral-small-3.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large
language models can do parallel decoding. arXiv preprint arXiv:2307.15337, 2023.

Nvidia. Fastertransformer, 2024. URL https://github.com/NVIDIA/
FasterTransformer.

NVIDIA Corporation. Nvidia A100 tensor core gpu architecture. https://www.nvidia.com/
en-us/data-center/a100/, 2020. NVIDIA reports up to 312 TFLOPS FP16 Tensor Core
throughput and 1.6–2.0 TB/s HBM2e memory bandwidth.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C. Wallace, and David Bau. Future lens: An-
ticipating subsequent tokens from a single hidden state. ArXiv, abs/2311.04897, 2023a. URL
https://api.semanticscholar.org/CorpusID:265050744.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C Wallace, and David Bau. Future lens: Anticipating
subsequent tokens from a single hidden state. arXiv preprint arXiv:2311.04897, 2023b.

14

https://api.semanticscholar.org/CorpusID:273023213
https://api.semanticscholar.org/CorpusID:273023213
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://api.semanticscholar.org/CorpusID:265050744


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and
Ming Zhou. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. arXiv
preprint arXiv:2001.04063, 2020.

Qualcomm Technologies Inc. Snapdragon 8 Gen 3 Mobile Platform Prod-
uct Brief, 2023. URL https://www.qualcomm.com/products/
snapdragon-8-gen-3-mobile-platform. Accessed: July 2025.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024. URL https://doi.org/10.48550/
arXiv.2404.02258.

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential.
arXiv preprint arXiv:2507.11851, 2025.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Ric-
cardo Marin, and Emanuele Rodolà. Accelerating transformer inference for translation via paral-
lel decoding. arXiv preprint arXiv:2305.10427, 2023.

Apoorv Saxena. Prompt lookup decoding, November 2023a. URL https://github.com/
apoorvumang/prompt-lookup-decoding/.

Apoorv Saxena. Prompt lookup decoding, November 2023b. URL https://github.com/
apoorvumang/prompt-lookup-decoding/.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. In Proceedings of the 36th International
Conference on Neural Information Processing Systems (NeurIPS), pp. 17456–17472, April 2022.

Dmitriy Serdyuk, Nan Rosemary Ke, Alessandro Sordoni, Adam Trischler, Chris Pal, and Yoshua
Bengio. Twin networks: Matching the future for sequence generation. arXiv preprint
arXiv:1708.06742, 2017.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. ArXiv, abs/1909.08053, 2019. URL https://api.semanticscholar.org/
CorpusID:202660670.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pp. 331–335, 2019.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023a.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
Spectr: Fast speculative decoding via optimal transport. arXiv preprint arXiv:2310.15141, 2023b.

15

https://www.qualcomm.com/products/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/snapdragon-8-gen-3-mobile-platform
https://api.semanticscholar.org/CorpusID:49313245
https://doi.org/10.48550/arXiv.2404.02258
https://doi.org/10.48550/arXiv.2404.02258
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://api.semanticscholar.org/CorpusID:202660670
https://api.semanticscholar.org/CorpusID:202660670


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yi Tay, Dara Bahri, Donald Metzler, et al. Scale efficiently: Insights from training and scaling large
language models. arXiv preprint arXiv:2210.03863, 2022.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. BloombergGPT: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wen-
jie Li, and Zhifang Sui. Unlocking efficiency in large language model inference: A com-
prehensive survey of speculative decoding. ArXiv, abs/2401.07851, 2024a. URL https:
//api.semanticscholar.org/CorpusID:266999159.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 7655–7671, Bangkok, Thailand
and virtual meeting, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.456. URL https://aclanthology.org/2024.findings-acl.
456.

Minghao Yan, Saurabh Agarwal, and Shivaram Venkataraman. Decoding speculative decoding.
arXiv preprint arXiv:2402.01528, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation meets
verification: Accelerating large language model inference with smart parallel auto-correct decod-
ing. arXiv preprint arXiv:2402.11809, 2024a. doi: 10.48550/arXiv.2402.11809.

16

https://api.semanticscholar.org/CorpusID:266999159
https://api.semanticscholar.org/CorpusID:266999159
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456
https://arxiv.org/abs/2505.09388


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation meets
verification: Accelerating large language model inference with smart parallel auto-correct decod-
ing. arXiv preprint arXiv:2402.11809, 2024b.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017a.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017b.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Appendix
APPENDIX CONTENTS

A Related Works 19

B Correctness: Acceptance and Distribution 19

C Latency and Communication Analysis 20

D Extended Ablations & Empirical Analysis 22

D.1 Batching Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.2 Draft-side speedups with speculative streaming . . . . . . . . . . . . . . . . . . . 22

D.3 Inference on GPU-Only Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E Fallback Dynamics: Influence of Top-κ and Early-Exit Depth 24

E.1 Setup and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.2 Early-Exit Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.3 Monotonicity in k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.4 Monotonicity in early-exit depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.5 Empirical confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.6 Practical recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F Integration with Production Inference Systems 27

G Additional Experimental Details 28

G.1 Target and Draft Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

G.2 Draft Model Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

H LLM Usage Statement 29

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Speculative decoding with draft models. The original speculative decoding paradigm acceler-
ates autoregressive generation by pairing a small, fast draft model with a larger target model, which
verifies proposed tokens (Chen et al., 2023; Leviathan et al., 2023). This approach achieves substan-
tial wall-time savings whenever the draft is hardware-efficient and closely aligned with the target.
Domain-specialized drafts trained via distillation further improve acceptance in task-specific settings
(Hong et al., 2025). Recent variants explore parallelization strategies, such as batch-axis specula-
tion (Sun et al., 2023b) and tree-structured drafts (Miao et al., 2023; Spector & Re, 2023), to raise
acceptance rates and amortize draft cost.

Single-model approaches. An alternative line of work removes the explicit draft model and equips
the target itself with speculative capacity. Medusa predicts multiple tokens in parallel via extra heads
(Cai et al., 2023), while Hydra enforces autoregressive coupling across those heads to raise accep-
tance (Ankner et al., 2024b). EAGLE introduces a dedicated speculation layer (Li et al., 2024a),
with EAGLE-2 enabling dynamic tree retries (Li et al., 2024b) and EAGLE-3 moving to token-level
prediction with multi-layer fusion (Li et al., 2025a). Prompt-lookup decoding (PLD) and Looka-
head propose suffixes by retrieval rather than generation (Saxena, 2023a; Fu et al., 2023), which
is effective when prefix–continuation correlations are strong. Recycling reduces wasted work by
reusing intermediate activations when speculative branches are invalidated, instead of recomputing
full forwards (Luo et al., 2024). Other recent advances include structured or retrieval-based decod-
ing policies (Yi et al., 2024a; He et al., 2024). Across the single-model designs, speculative capacity
is integrated into the target stack, so larger or wider modules increase acceptance but still add work
on the target’s critical path; by contrast, Mirror-SD runs draft and target on heterogeneous devices
and overlaps draft within the target’s suffix window, converting added draft capacity into acceptance
gains without inflating per-step latency proportionally.

Dynamic and adaptive decoding. Beyond speculation, a range of methods accelerate inference
by adapting compute during decoding. CALM (Schuster et al., 2022) and related early-exit methods
reduce cost by exiting tokens at shallow layers, while skip decoding (Corro et al., 2023) mitigates
key-value cache mismatch via position-dependent layer skipping. Mixture-of-Depths (MoD) (Ra-
poso et al., 2024) routes only a subset of tokens through full blocks, yielding non-uniform FLOP
allocation. Other strategies include token merging (Bolya et al., 2023) to reduce sequence length
dynamically, adaptive span models (Sukhbaatar et al., 2019) that learn context windows per token,
and CoLT5 (Ainslie et al., 2023) which routes tokens through heavy or light pathways. More re-
cently, M2R2 (Bhendawade et al., 2025) introduces accelerated residual streams to improve early
alignment and efficiency. Together, these approaches trade fixed per-token compute for dynamic
allocation, complementing speculative decoding’s strategy of parallelizing token generation.

Positioning. Mirror-SD builds on these advances but takes a distinct perspective: it is a sys-
tems–algorithm co-design aimed at minimizing the critical path in speculative decoding. By launch-
ing drafts from intermediate target layers, overlapping draft and target compute, and confining cross-
accelerator communication to lightweight token exchanges, Mirror-SD complements prior algorith-
mic improvements and makes speculation more effective in heterogeneous GPU–NPU deployments.

B CORRECTNESS: ACCEPTANCE AND DISTRIBUTION

Let γ be the speculative window length, N the number of transformer layers in the target, and let
At ∈{0, . . . , γ} denote the accepted-prefix length at step t. Recall that the target’s final next-token
distribution is p(N)(· | h·) and that verification commits the longest prefix of the draft that matches
the target’s tokens.

Acceptance operator (rule-level equivalence). For any realized draft proposal ŷt+1:t+γ and re-
alized target tokens ytargett+1:t+γ (obtained by rolling the target with teacher forcing along the agreed
prefix and stopping at the first mismatch), both vanilla SD and Mirror-SD compute

At = max
{
r ≤ γ : ŷt+j = ytargett+j ∀j ≤ r

}
. (11)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2
3

2
4

2
5

2
6

2
7

Batch Size (log scale)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
up

 / 
R

el
at

iv
e 

D
ra

ft 
O

ve
rh

ea
d

2.84

1.77

3.05

1.95

0.10

0.66

Performance Comparison: 14b - mt_bench
SD
MIRROR_SD
Relative Draft Overhead
Baseline (AR)

(a) Qwen-14B

2
3

2
4

2
5

2
6

2
7

Batch Size (log scale)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
up

 / 
R

el
at

iv
e 

D
ra

ft 
O

ve
rh

ea
d

2.86

1.99

3.09

2.29

0.00

0.47

Performance Comparison: 32b - rag
SD
MIRROR_SD
Relative Draft Overhead
Baseline (AR)

(b) Qwen-32B.

Figure 5: Batching effects on speedup across tasks and scales. Both vanilla SD and Mirror-SD slow
down as batch size B increases due to growing draft compute and verification cost, but Mirror-SD
consistently outperforms vanilla SD by preserving non-zero overlap under batching.

Equation (11) is the same acceptance operator in both algorithms: Mirror-SD never commits a
token that was not verified against p(N), and any commit is exactly the longest verified prefix. Thus,
Mirror-SD changes only the schedule by which draft proposals are produced (overlapping with target
compute), not the acceptance rule.

Distributional equivalence (when the verified draft path is identically distributed). Fix the
models (fdraft, ftarget) and window γ. Let Ct be the decoding context at step t (prompt and
previously committed tokens), and let ζdraft, ζtarget collect all random seeds for draft and target
sampling. Define the function

S(ŷt+1:t+γ , y
target
t+1:t+γ) = max{r ≤ γ : ŷt+j = ytargett+j ∀j ≤ r},

so that At = S(ŷ, ytarget) in both procedures.

Assume the draft sequence actually presented to verification in Mirror-SD, denoted ŷMir
t+1:t+γ , has

the same conditional distribution as the vanilla draft sequence ŷVan
t+1:t+γ given Ct:

ŷMir
t+1:t+γ

d
= ŷVan

t+1:t+γ | Ct. (12)

Then, under a common coupling of (ζd, ζt),

PMirror(At = r) = P
(
S(ŷMir, ytarg) = r

)
= P

(
S(ŷVan, ytarg) = r

)
= PVanilla(At = r) , ∀r ∈ {0, . . . , γ}.

(13)

Hence the acceptance-rate statistic ρ(γ;ϕ, θ) = E[At]/γ coincides between Mirror-SD and vanilla
SD.

Sufficient condition for equation 12. Condition equation 12 holds if the draft path used for ver-
ification in Mirror-SD is sampled from fdraft(· | ht) exactly as in vanilla SD, or more generally
if the branch-selection policy induces the same conditional law for the verified draft sequence as
vanilla SD. Under this mild parity condition, Mirror-SD is distributionally identical to vanilla SD
with respect to At, while still enjoying the latency benefits of overlapping draft computation with
the target’s suffix.

C LATENCY AND COMMUNICATION ANALYSIS

This appendix consolidates the latency model of Mirror-SD with its tensor-parallel (TP) communi-
cation costs.

Draft and Target Latencies Within one Mirror-SD step, the draft may take J ≥ 1 internal steps.
With speculative streaming (SS), step j emits ηj ≥ 1 tokens so that

∑J
j=1 ηj ≥ γ, with average

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

η̄ = 1
J

∑
j ηj and

T gen
draft(γ) =

J∑
j=1

(ud
j + sdj ), J ≤

⌈
γ
η̄

⌉
.

Here ud
j is device-local compute and sdj draft synchronization. For the target, each layer ℓ incurs

cℓ = ut
ℓ + stℓ, giving

T 1:ℓe
target =

ℓe∑
ℓ=1

cℓ, T ℓe+1:N
target =

N∑
ℓ=ℓe+1

cℓ.

At early exit and final verification, rendezvous costs decompose as

T (ee)
rv = T (ee)

samp + T
(ee)
xfer , T (fv)

rv = T (fv)
samp + T

(fv)
xfer , Trv = T (ee)

rv + T (fv)
rv ,

where transfers involve only O(Bκ) IDs/log-probs and are negligible compared with compute.

Mirror-SD Latency Law The per-step latency is

TMirror = T 1:ℓe
target + T (ee)

rv +max{T ℓe+1:N
target , T gen

draft(γ)}+ T (fv)
rv . (14)

Let ∆ = T ℓe+1:N
target . If T gen

draft(γ) ≤ ∆, draft work is fully hidden: TMirror = Ttarget + Trv. Otherwise,
draft cost dominates the parallel region: TMirror = T 1:ℓe

target +T gen
draft(γ)+Trv. Compared to vanilla SD,

TSD = T 1:ℓe
target + T ℓe+1:N

target + T gen
draft(γ),

Mirror-SD hides draft work up to ∆, leaving only lightweight rendezvous terms on the critical path.

Comparison to vanilla SD (per step). Vanilla SD executes draft and target serially:

TSD = T 1:ℓe
target + T ℓe+1:N

target + T gen
draft(γ) = Ttarget + T gen

draft(γ),

where we write ∆
def
= T ℓe+1:N

target for the overlap budget. Using the Mirror-SD law above,

TMirror = T 1:ℓe
target + T (ee)

rv +max{∆, T gen
draft(γ)}+ T (fv)

rv = Ttarget + Trv, if T gen
draft(γ) ≤ ∆,

and
TMirror = T 1:ℓe

target + T gen
draft(γ) + Trv, if T gen

draft(γ) > ∆,

with Trv=T
(ee)
rv +T

(fv)
rv .

Per-step time saved. The improvement is

∆T
def
= TSD − TMirror =

(
min{∆, T gen

draft(γ)}
)
− Trv,

i.e., Mirror-SD hides up to the smaller of the overlap budget and the draft time, minus lightweight
rendezvous. Thus Mirror-SD is strictly faster whenever

Trv < min{∆, T gen
draft(γ)}.

Per-step speedup. The piecewise speedup S=TSD/TMirror is

S =


Ttarget + T gen

draft(γ)

Ttarget + Trv
, if T gen

draft(γ) ≤ ∆,

T 1:ℓe
target +∆+ T gen

draft(γ)

T 1:ℓe
target + T gen

draft(γ) + Trv

, if T gen
draft(γ) > ∆.

In practice Trv is O(Bκ) token/log-prob exchange and sampling, i.e., microsecond-scale, so the con-
ditions above are typically satisfied; speculative streaming (larger η̄) further reduces J and T gen

draft(γ),
making full hiding (T gen

draft(γ)≤∆) common.

Communication Costs under TP For G devices and message size M (per rank), AllReduce cost is

Tallreduce(M ;G) = α logG+ βM,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

with α per-hop latency and β per-word transfer time.

Target: Let HT be the target hidden width, GT its TP degree, and ST the effective tokens per
collective. Each of the N blocks performs two collectives on shards of size MT = B ST HT

GT
, giving

T comm
target = 2N · Tallreduce

(
MT; GT

)
.

Draft: Let HD be the draft hidden width, GD its TP degree, and SD the effective tokens per draft
collective. Each draft internal step performs two collectives on shards of size MD = B SD HD

GD
, so

T comm
draft-step = 2Tallreduce

(
MD; GD

)
, T comm

draft (over J steps) = 2J Tallreduce

(
MD; GD

)
,

which is included in T gen
draft(γ).

Cross-accelerator: Token-channel exchanges remain O(Bκ) IDs/log-probs and are microsecond-
scale.

D EXTENDED ABLATIONS & EMPIRICAL ANALYSIS

D.1 BATCHING EFFECTS

In deployment, batching is often enabled to improve throughput and amortize GPU compute, but it is
not universal: many interactive or privacy-sensitive settings prioritize per-request latency and avoid
batching. To ensure completeness, we therefore also evaluate Mirror-SD under batched inference.
The key question is whether speculative decoding, and Mirror-SD in particular, retains its gains when
batching is enabled, or whether draft overhead grows to the point of erasing speedup. To bound the
growth of draft-side computation with increasing batch size and to keep draft execution maximally
hidden under the target, we scale the draft hyperparameters with B: as B increases, we reduce both
Top-κ and the number of SS lookahead streams so that aggregate draft cost and the token-channel
payload remain controlled. Concretely, we use κ=8 with two SS streams for B ∈ {1, 8}; from
B=16 onward we use a single SS stream and progressively reduce κ: κ=4 for B=16, κ=2 for
B=32, and κ=1 for B ≥ 64.

Observed trends. We find that vanilla SD speedup declines steadily as batch size B increases
(Figure 5b). Larger batches lengthen the target verification phase both because more sequences must
be processed in parallel and because batching introduces additional padding and synchronization
under tensor-parallel execution. Mirror-SD also shows a downward trend with B, but consistently
outperforms vanilla SD (Figure 5b, Figure 5a). As B grows, the draft must evaluate top-κ candidates
across γ positions for each sequence, which increases draft compute and intra-NPU communication
and pushes the draft path toward a compute-bound regime. Consequently, its ability to overlap
with target verification diminishes. This decreased yet positive overlap is sufficient for Mirror-SD
to maintain a consistent speedup lead over vanilla SD as batching increases. In practice, batching
introduces several intertwined effects: (i) the target takes longer, enlarging the potential overlap
window; (ii) the draft also takes longer, and its relative overhead grows with the κ × γ expansion;
(iii) autoregressive baselines slow as B increases; (iv) speculative decoding slows even more, as it
inherits both AR’s slowdown and the draft’s added work; and (v) under tensor-parallel sharding,
both SD variants lose relative speedup, but Mirror-SD maintains a consistent lead by exploiting
concurrency across heterogeneous accelerators.

Relative draft overhead. We also report a normalized “relative draft overhead” in Figure 5, defined
as the fraction of draft speculation time that cannot be hidden under target verification, normalized
against the total overhead of vanilla SD. This metric is dimensionless and directly reveals how much
of the draft path remains exposed on the critical path. As batch size B increases, the verification
phase grows longer, but draft compute and intra-NPU communication grow even faster (since each
sequence requires top-κ rollouts across γ positions). Consequently, relative draft overhead rises with
B, aligning with the decreasing speedups observed in our batching experiments.

D.2 DRAFT-SIDE SPEEDUPS WITH SPECULATIVE STREAMING

We quantify the internal draft gains from Speculative Streaming (SS) under the same targets and
decoding settings as our main experiments. As described in Section 3.2, SS verifies previously

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Draft Step with SS

𝑥0 𝑥𝑛 𝑦0… 𝑠𝑚0 𝑠𝑚1𝑦𝑚…

𝑦𝑚+1 𝑦𝑚+2 𝑦𝑚+3

Previous context + 
accepted tokens 

Lookahead Streams

Accepted

Rejected

Multi-token proposal 
per draft step

(a) Speculative Streaming (SS): each draft step pro-
poses multiple tokens via lookahead streams; ac-
cepted tokens extend the prefix, rejected ones are
dropped.

0

0.5

1

1.5

2

2.5

Translatio
n

Summariz
atio

n

Questio
n Answerin

g

Mathematic
al R

easoning
RAG

MT bench

SS Draft Speedup 

(b) Draft-only speedup from SS relative to an autore-
gressive draft with 3 lookahead streams. Lower J
for a given γ reduces T gen

draft (γ), enlarging the overlap
margin in Mirror-SD and translating into end-to-end
speedups.

Figure 6: Comparison of Speculative Streaming (SS) draft dynamics (left) and resulting speedups
(right).

1 2 4 8 16 32 64 128
Top-k

0.1

0.2

0.3

0.4

0.5

0.6

Fa
llb

ac
k 

Fr
eq

ue
nc

y

Exit 1/2
Exit 1/4
Exit 3/4

(a) Humanities

1 2 4 8 16 32 64 128
Top-k

0.1

0.2

0.3

0.4

0.5

Fa
llb

ac
k 

Fr
eq

ue
nc

y

Exit 1/2
Exit 1/4
Exit 3/4

(b) Math

1 2 4 8 16 32 64 128
Top-k

0.1

0.2

0.3

0.4

0.5

Fa
llb

ac
k 

Fr
eq

ue
nc

y

Exit 1/2
Exit 1/4
Exit 3/4

(c) Roleplay

1 2 4 8 16 32 64 128
Top-k

0.1

0.2

0.3

0.4

Fa
llb

ac
k 

Fr
eq

ue
nc

y

Exit 1/2
Exit 1/4
Exit 3/4

(d) STEM

1 2 4 8 16 32 64 128
Top-k

0.1

0.2

0.3

0.4

0.5

Fa
llb

ac
k 

Fr
eq

ue
nc

y

Exit 1/2
Exit 1/4
Exit 3/4

(e) Coding

1 2 4 8 16 32 64 128
Top-k

0.1

0.2

0.3

0.4

0.5

Fa
llb

ac
k 

Fr
eq

ue
nc

y

Exit 1/2
Exit 1/4
Exit 3/4

(f) Math reasoning

Figure 7: Fallback frequency vs. Top-κ and early-exit depth across six tasks (Humanities, Math,
Roleplay, STEM, Coding, Math Reasoning). Each panel shows fallback frequency as a function of
k for exits at 1/4, 1/2, and 3/4 of depth; smaller values indicate fewer fallbacks and greater reuse.

proposed tokens while producing multiple new lookahead tokens in a single forward pass via multi-
stream attention. Empirically, this reduces the number of draft internal steps J needed to materialize
a window of length γ, typically yielding J ≪ γ and a corresponding reduction in draft generation
time T gen

draft(γ). Figure 6b reports the draft-only speedup of SS over a plain autoregressive draft
across translation, summarization, QA, mathematical reasoning, RAG, and MT-Bench. The effect
is consistent across workloads: SS achieves substantially fewer internal steps for the same γ and,
consequently, shorter T gen

draft(γ). When composed with Mirror-SD’s overlap (Section 3.4), this pushes
the operating point further into the zero-slope region where increases in γ raise acceptance length
E[At] = γ ρ(γ;ϕ, θ) without increasing step latency. Because acceptance semantics are unchanged
( Appendix B), all end-to-end gains are purely systems-level.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0

1

2

3

4

5

6

7

Translation Summarization Question
Answering

Math
Reasoning

Retrieval Aug.
Gen

Multi-turn
Conv.

Mirror SD on GPU only Systems

Vanilla SD Mirror-SD

Figure 8: GPU-only evaluation of Mirror-SD at temperature T=0. The 0.6B draft runs on a single
A100 GPU and the 32B target uses an 8-GPU tensor-parallel setup. All other experimental settings
match Table 1, Mirror-SD consistently outperforms Vanilla-SD across all tasks.

D.3 INFERENCE ON GPU-ONLY SYSTEMS

Mirror-SD is designed to exploit the heterogeneous accelerator topology now common in modern
SoCs: a high-throughput GPU paired with a lower-power NPUs (Jouppi et al., 2021; Intel Corpora-
tion, 2023; Advanced Micro Devices (AMD), 2023; Apple Inc., 2023a;b; Qualcomm Technologies
Inc., 2023). Existing speculative decoding methods do not leverage this heterogeneity; prior ap-
proaches execute both drafting and verification exclusively on GPUs, leaving substantial parallelism
unused. Our primary experiments therefore target GPU–NPU systems, where Mirror-SD unlocks
parallel execution of the large target model on the GPU and the lightweight draft model on the NPU
with minimal communication.

For completeness, and to demonstrate hardware-agnostic applicability, we also evaluate Mirror-SD
in a pure GPU setting. Here, the 0.6B draft model is executed on a single NVIDIA A100 GPU (with-
out sharding), while the 32B target model remains sharded across the 8-GPUs via tensor-parallelism
as described in Section 3.3. All early-exit heads, reuse logic, and fallback semantics remain un-
changed. Although the draft model has low arithmetic intensity, draft-side latency still benefits
from the substantially higher compute density and memory bandwidth of the A100 (312 TFLOPS
FP16 and 1.9 TB/s HBM2e) (NVIDIA Corporation, 2020) relative to the NPU used in our main
experiments (31.6 TOPS and 0.8 TB/s) (Apple Inc., 2023a). As a result, speculative rollouts are
faster in both the parallel region and during fallback. Fallback frequency itself is unchanged, as it is
determined solely by the target model.

As shown in Figure 8, Mirror-SD consistently improves throughput over Vanilla-SD across all six
task groups. All experimental settings, model configurations, and decoding parameters match those
used in Table 1. These results confirm that Mirror-SD provides reliable gains in GPU-only settings.

E FALLBACK DYNAMICS: INFLUENCE OF TOP-κ AND EARLY-EXIT DEPTH

E.1 SETUP AND DEFINITIONS

At decoding step t, let the target’s final next-token distribution be q(·) = p(N)(· | y<t, x) and the
early-exit proxy be p̃(·) = p(ℓe)(· | y<t, x). The target accepts a prefix of length At and, if a
mismatch occurs, issues a correction at index τ = At+1 with token ct+τ . The draft precomputes
a branch-complete window conditioned on the early-exit Top-κ set Mt = {(vi, log p̃i)}κi=1. Reuse
succeeds iff the target’s correction lies on a precomputed path,

Π+
t ∈ Pathsτ (Tt),

otherwise we fallback (re-initialize the draft from the corrected context). Let Ft = ⊮{Π+
t /∈

Pathsτ (Tt)} and FF ≡ E[Ft]. Define the overlap mass

Ωκ(ℓe)
def
=

∑
y∈Top-κ(p̃)

q(y),

i.e., the probability under q that the next token lies in the early-exit Top-κ set.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5
Step 1e6

2

3

4

5

6

Lo
ss

Training Metrics (with smoothing window=100)

early_exit_loss_layer_20 (Loss)
early_exit_loss_layer_30 (Loss)
early_exit_top1_layer_20 (Acc)
early_exit_top1_layer_30 (Acc)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

To
p-

1 
A

cc
ur

ac
y

(a) 14B model

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Step 1e6

2

3

4

5

6

7

8

9

10

Lo
ss

Training Metrics (with smoothing window=100)

early_exit_loss_layer_32 (Loss)
early_exit_loss_layer_48 (Loss)
early_exit_top1_layer_32 (Acc)
early_exit_top1_layer_48 (Acc)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

To
p-

1 
A

cc
ur

ac
y

(b) 32B model

Figure 9: Early-exit training curves for the 14B and 32B target models. Each plot shows the early-
exit loss and top-1 agreement for two representative exit depths. Mid-layer exits converge rapidly
and achieve high agreement with the final LM head, supporting reliable branch reuse during Mirror-
SD decoding.

E.2 EARLY-EXIT TRAINING

To obtain reliable intermediate distributions for the low-bandwidth token channel defined in equa-
tion 7, we train a small set of early-exit adapters inserted at multiple depths of the target model.
Specifically, we attach early-exit heads at approximately one-quarter, one-half, and three-quarters of
the total transformer depth, and train all of them simultaneously. The backbone parameters remain
frozen throughout training. Each early-exit head is implemented as a lightweight two-layer MLP.
Given the intermediate representation h

(ℓe)
t ∈ RH , the head applies a linear projection to a reduced

dimension H/2, followed by a ReLU nonlinearity and a second linear projection back to dimension
H . The resulting vector is then passed through the shared LM projection matrix WLM ∈ RH×V , the
same vocabulary projection used by the final layer of the model to produce the proxy distribution.
This structure preserves the semantic geometry of the pretrained model while allowing intermediate
hidden states h(ℓe)

t to better align with the final-layer token distribution. The training objective is a
next-token cross-entropy loss applied at each selected early-exit depth. Let E = {ℓ1, ℓ2, . . . , ℓK}
denote the set of K early-exit positions. The overall loss is

LEE =
1

K

∑
ℓe∈E

LCE

(
p(ℓe)(yt+1), yt+1

)
, (15)

where each p(ℓe) is defined as in equation 6. Since the backbone remains frozen, optimization is
stable and converges rapidly.

Figure 9 shows representative training curves for the 14B and 32B Qwen-3 models. Mid-layer exits
typically provide strong agreement with the final LM head while maintaining low early-exit loss, en-
abling high-fidelity early-exit token channel. As shown in Figure 7, these intermediate distributions
are accurate enough that fallback events remain infrequent when using κ-sized candidate sets.

The early-exit adapters introduce only a very small number of trainable parameters relative to the
backbone, less than 0.18% of the total parameters in the 14B model and less than 0.08% in the
32B model. This makes early-exit training a lightweight and practical approach for producing high-
fidelity intermediate distributions and supporting a stable token channel in Mirror-SD.

E.3 MONOTONICITY IN k

Proposition 1 (Top-κ reduces fallback). For a fixed early-exit layer ℓe, the fallback frequency
FF(ℓe, κ) is nonincreasing in the integer κ and vanishes as κ→|V |:

κ2 ≥ κ1 =⇒ FF(ℓe, κ2) ≤ FF(ℓe, κ1), lim
κ→|V |

FF(ℓe, κ) = 0.

Proof. If At=0 (mismatch on the first token), reuse succeeds iff yt+1∈Top-κ(p(ℓe)), so Pr[Ft=1 |
At=0] = 1−Ωκ(ℓe). If At≥1, the root matches yt+1 and reuse at depth τ requires ct+τ to appear

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

on some branch of the hypothesis tree Tt seeded by Top-κ(p(ℓe)). Increasing κ only adds roots/paths
and never removes existing ones, so {Π+

t ∈Pathsτ (Tt)} is monotone in κ. Taking expectations over
t yields the claim. The limit follows because Ωκ(ℓe)→1 as κ→|V |, at which point the hypothesis
tree contains all needed paths.

A useful corollary is
FF(ℓe, κ) ≤ 1− Ωκ(ℓe),

which is tight when most fallbacks occur at τ=1 (high-entropy regimes).

E.4 MONOTONICITY IN EARLY-EXIT DEPTH

Proposition 2 (Deeper exit reduces fallback). Fix κ. As the early-exit layer ℓe moves deeper
(toward N ), the overlap mass

Ωκ(ℓe) =
∑

y∈Top-κ(p(ℓe))

q(y)

converges to its maximal value q(S⋆) with S⋆ = Top-κ(q); consequently FF(ℓe, κ) ≤ 1 − Ωκ(ℓe)
decreases with depth and stabilizes at its minimum for sufficiently deep exits.

Proof. As the layer index ℓ increases, the distributions p(ℓ) approach q; write εℓ
def
= ∥p(ℓ)−q∥∞ → 0.

Let Sℓ = Top-κ(p(ℓ)) and S⋆ = Top-κ(q). Because Sℓ maximizes p(ℓ)-mass among all size-κ sets,
and any such set A satisfies |q(A)− p(ℓ)(A)| ≤ κ εℓ, we have

Ωκ(ℓ) = q(Sℓ) ≥ q(S⋆)− 2κ εℓ −−→
ℓ↑N

q(S⋆).

If the Top-κ boundary of q has margin ∆κ > 0, then whenever εℓ < ∆κ/2 the Top-κ set stabilizes
(Sℓ = S⋆) for all deeper layers, so Ωκ(ℓ) = q(S⋆) thereafter. Since reuse probability is monotone in
the q-mass captured by the seed set, the bound FF(ℓe, κ) ≤ 1−Ωκ(ℓe) implies a (weakly) decreasing
FF with depth and eventual stabilization at its minimum.

E.5 EMPIRICAL CONFIRMATION

Figure 7 reports fallback frequency as a function of k for early exits at 1/4, 1/2, and 3/4 of depth
across six tasks. Two consistent trends emerge:

• Top-κ effect. Increasing k monotonically lowers fallback, with diminishing returns once
Ωκ saturates. This matches the bound FF ≤ 1 − Ωκ(ℓe) and reflects a higher probability
that the draft’s precomputed path already contains the target’s correction.

• Early-exit effect. Holding k fixed, moving the exit deeper (1/4 → 1/2 → 3/4) lowers
fallback across tasks. Deeper exits raise Ωκ by improving agreement between the early-exit
proxy and the final distribution, so the correction token more often lies on a precomputed
branch.

E.6 PRACTICAL RECOMMENDATION

Unless otherwise noted, across all SpecBench experiments reported in Table 1 we set the Top-
κ width to κ = 8 and fix the early exit to the middle of the network (ℓe = N/2, “Exit 1/2”).
In practice, this mid-depth, k=8 configuration works well across most setups, balancing fallback
probability and the overlap budget for draft precomputation.

Choosing k and ℓe trades a small token-channel payload and longer precomputation for fewer fall-
backs and, consequently, longer accepted prefixes per step. In Mirror-SD, the channel payload is
O(Bκ) and the precomputation runs in parallel under the target suffix; thus, within the overlap
budget, increasing k or moving ℓe deeper reduces fallback without adding step latency, directly im-
proving end-to-end throughput via larger expected acceptance length. For bandwidth-constrained
deployments, κ=8, ℓe=N/2 is a robust default; when acceptance is still low, increase κ or move the
exit slightly deeper (subject to the overlap budget), and when channel or memory is tight, reduce κ
or use a slightly shallower exit.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

LLM Engine / Scheduler

Target Model Runner 

Target Forward (Layers 1 … ℓₑ)

Early-Exit LM Head @ ℓₑ 
(Top-κ = Mₜ)

Draft Model Runner 

Branch Tree Builder

Target Forward (Layers ℓₑ … N)

Rendezvous

KV Cache Manager + 
Paged Attention

Figure 10: Integration of Mirror-SD into vLLM. Existing vLLM components including the sched-
uler, target and draft model runners, and the PagedAttention KV cache are shown in light orange.
Mirror-SD adds three lightweight modules (blue): an early-exit LM head at layer ℓe, a branch-tree
builder for speculative rollouts, and a rendezvous module that matches the verified prefix against the
speculative tree to decide on reuse. These components integrate without modifying vLLM’s sched-
uler, memory layout, or attention kernels, preserving the single-target-forward serving invariant.

F INTEGRATION WITH PRODUCTION INFERENCE SYSTEMS

Modern production serving stacks such as vLLM (Kwon et al., 2023b) combine continuous batching,
centralized KV-cache management, and fused attention kernels to achieve high throughput. Mirror-
SD integrates cleanly into this architecture without modifying the scheduler or the core batching
logic. Figure 10 shows how Mirror-SD attaches to vLLM’s serving stack. vLLM already provides
three abstractions that are directly aligned with our design: (i) a continuous-batching scheduler that
issues exactly one target forward pass per decoding tick, (ii) a split target and draft model-runner
interface used by existing speculative decoders, and (iii) a block-level KV cache with prefix-sharing
and branch allocation via PagedAttention (Kwon et al., 2023b). Because these components match
the architectural requirements of Mirror-SD, only lightweight modules (highlighted in blue) are
added, and no changes are required to scheduling, memory layout, or attention kernels.

Early-exit instrumentation in the target runner. As shown in the center of Figure 10, the target
runner is augmented with a lightweight early-exit head placed after the first ℓe layers. A small
MLP adapter maps h(ℓe)

t into the space expected by the final LM head, after which the existing LM
projection is applied and a Top-κ operation produces the early-exit message Mt. Execution then
bifurcates exactly as in the diagram: the target continues through layers ℓe+1:N unchanged, while

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Mt is forwarded to the draft runner for parallel speculation. This preserves vLLM’s single-target-
forward invariant and adds only a modest overhead relative to a transformer layer.

Parallel draft execution and branch construction. As shown on the right side of Figure 10,
the second Mirror-SD component is a lightweight branch-tree builder that operates within vLLM’s
existing draft-runner abstraction. After receiving the early-exit message Mt, the draft model per-
forms a branch-complete speculative rollout of depth γ, reusing the prefix KV pages provisioned by
PagedAttention and allocating branch pages in exactly the same way vLLM handles divergent de-
coding paths. Because prefix sharing and branch-specific KV allocation are already native features
of vLLM’s KV manager, enabling tree-structured speculation requires no changes to the KV layout,
memory management, or attention kernels.

Verification and branch reuse. Once the target completes layer N , Mirror-SD derives the
accepted-prefix length At and a correction token. The rendezvous module in Figure 10 performs a
deterministic reuse test: if the corrected prefix matches a path in Tt, the corresponding chain of KV
pages is reused; otherwise, the system reverts to a fresh speculative window on the next tick. This
logic operates purely at the control-flow level (token IDs and page handles) and requires no changes
to vLLM’s scheduler, which already supports sequences advancing by different numbers of tokens
per step.

Low integration complexity. The Mirror-SD additions shown in Figure 10 are lightweight, state-
less extensions built from operations already present in vLLM, namely LM-head projections, Top-κ
extraction, KV prefix-sharing, and branch-specific page allocation. All core serving components
remain unchanged: continuous batching, CUDA Graph execution, the target forward graph, and
PagedAttention’s KV management. As a result, Mirror-SD integrates with minimal implementation
overhead while remaining fully compatible with high-throughput LLM serving in both GPU-only
and heterogeneous GPU–NPU deployments.

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 TARGET AND DRAFT SHARDING

For the experiments in Section 4, both target and draft models were distributed across eight Apple
M2 Ultra systems (Apple Inc., 2023a), each integrating a high-throughput GPU and a dedicated
Neural Engine (NPU). We allocate the target to GPUs using Megatron-style tensor parallelism and
the draft to NPUs using SPD-style sharding (see Section 3.3). Each M2 Ultra consists of a dual-die
package connected internally by UltraFusion, a die-to-die interconnect providing up to 2.5 TB/s
of bandwidth while presenting the system as a single logical GPU/NPU pair (Apple Inc., 2023a).
Across machines, we organize the 8 nodes into groups of 2, linked by Thunderbolt 5 interconnects
(up to 120 Gbps peak bandwidth) (Apple Inc., 2024). Groups are further connected through a
high-speed network fabric, providing sufficient bandwidth for inter-group synchronization with sub-
millisecond latency.

In this setup, cross-accelerator token-channel communication consists only of O(Bκ) items (token
IDs and a few log-probabilities), transferred via GPU→CPU→NPU copies. These messages remain
negligible compared to inter-layer collectives and draft compute, consistent with the latency analysis
in Section 3.4.

G.2 DRAFT MODEL CONFIGURATION

The draft used in our experiments is a 0.6B-parameter model trained with the SPD architecture
(Kim et al., 2025). It is organized into 16 transformer layers, divided into two contiguous segments
of 8 layers each. Within every segment we instantiate GD=8 parallel tracks, where track g ∈
{1, . . . , GD} is pinned to NPU g and advances through its resident shard of the segment. Each track
operates with a hidden size of 256 per shard. As in Section 3.3, there is no inter-NPU traffic within
a segment. Synchronization occurs only twice per forward pass: once at the segment boundary to
re-align tensor partitions, and once at the output to assemble logits for both main and lookahead
streams.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H LLM USAGE STATEMENT

In preparing this manuscript, we used AI-assisted tools to check grammar and to rephrase some
sentences for clarity and readability. No content, results, or analysis were generated by AI systems;
all scientific contributions and conclusions are our own.

29


	Introduction
	Speculative Decoding: Formalization and Limits
	Mirror Speculative Decoding
	Early-Exit Proxies and Branch-Complete Concurrent Speculation.
	Draft execution with Speculative Streaming
	Heterogeneous Sharding of Mirror-SD
	Latency Analysis

	Experiments
	Evaluation protocol
	Tri-objective analysis with an MT-Bench diagnostic
	Effectiveness
	Generalizability across model families

	Conclusion
	Appendix
	Related Works
	Correctness: Acceptance and Distribution
	Latency and Communication Analysis
	Extended Ablations & Empirical Analysis
	Batching Effects
	Draft-side speedups with speculative streaming
	Inference on GPU-Only Systems

	Fallback Dynamics: Influence of Top- and Early-Exit Depth
	Setup and definitions
	Early-Exit Training
	Monotonicity in k
	Monotonicity in early-exit depth
	Empirical confirmation
	Practical recommendation

	Integration with Production Inference Systems
	Additional Experimental Details
	Target and Draft Sharding
	Draft Model Configuration

	LLM Usage Statement


