
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIRROR SPECULATIVE DECODING: BREAKING THE
SERIAL BARRIER IN LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding accelerates LLM inference with draft lookahead, but its ef-
fectiveness is bottlenecked by autoregressive draft generation: larger drafts im-
prove acceptance yet also increase speculation latency overhead, capping speedup.
Existing approaches such as Medusa, Hydra, EAGLE partially address draft ineffi-
ciency, but ultimately trade acceptance rates for reduced draft latency, or preserve
acceptance at the cost of added overheads that limit scaling.
Modern SoCs increasingly integrate heterogeneous accelerators, most commonly
GPUs and NPUs with complementary throughput and efficiency characteristics,
yet existing approaches are accelerator-agnostic and usually place both draft and
target on the same type of device, which leaves cross-accelerator parallelism un-
used. We introduce Mirror Speculative Decoding (Mirror-SD), which breaks the
latency–acceptance tradeoff by launching branch-complete rollouts from early-
exit signals in parallel with the target’s suffix and by explicitly mapping com-
putation across heterogeneous accelerators. In this design, the draft speculates
forward token continuations for target to verify, while the target speculates cor-
rection paths for the draft, creating a bidirectional speculative process. To further
reduce draft speculation latency overhead while preserving acceptance semantics,
we pair Mirror-SD with speculative streaming (SS) so the draft emits multiple to-
kens per step. This dual strategy of combining parallel heterogeneous execution
and SS pushes speculative decoding closer to its ideal regime of high acceptance
while reducing speculation overhead. On SpecBench with server-scale models
from 14B to 66B parameters, Mirror-SD consistently delivers realistic end-to-end
gains, achieving 2.8×–5.8× wall-time speedups across diverse tasks representing
30% average relative improvement over the strongest baseline, EAGLE3.

1 INTRODUCTION

Autoregressive (AR) large language models (LLMs) have achieved state-of-the-art performance
across a wide spectrum of natural language processing (NLP) tasks, yet their decoding latency re-
mains a fundamental bottleneck, particularly for real-time applications such as interactive dialogue,
code generation, and on-device assistants (Brown et al., 2020; Pope et al., 2023). Speculative decod-
ing (SD) has emerged as a promising paradigm to mitigate this limitation by coupling a lightweight
draft model with a larger, high-fidelity target model (Leviathan et al., 2023; Chen et al., 2023). In
the canonical two-model SD framework, the draft model generates candidate tokens which are then
verified by the target model in a serial pipeline. While this approach reduces the number of tar-
get model invocations, the sequential dependency between draft and target stages limits achievable
speedups. Recent works attempt to relax the serial constraints by equipping the target itself with
speculative capacity. Medusa (Cai et al., 2023) equips the target with parallel decoding heads,
while EAGLE (Li et al., 2024a) introduces a dedicated speculation layer. However, the same trade-
off remains: larger speculative modules improve acceptance at the cost of higher draft construction
latency, while smaller ones reduce overhead but lower acceptance and limit speedup. A detailed
discussion of related approaches is provided in Appendix A.

The central challenge of speculative decoding lies in reconciling these competing factors: (i) en-
abling parallel execution of draft and target models to eliminate serial dependencies, (ii) scaling
the draft capacity to achieve higher acceptance rates without incurring proportional latency over-
head, and (iii) designing bandwidth-efficient communication protocols that allow draft and target
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to exchange token-level feedback with minimal synchronization overhead. Achieving this balance
reframes speculative decoding from primarily a model-level optimization toward a system-level co-
design challenge, opening the path to real-time and efficient LLM inference.

Modern System on Chip (SoC) architectures increasingly feature heterogeneous compute units that
combine high-throughput GPUs with specialized neural processing units (NPUs) (Jouppi et al.,
2021; Intel Corporation, 2023; Advanced Micro Devices (AMD), 2023; Apple Inc., 2023a;b; Qual-
comm Technologies Inc., 2023). enabling efficient partitioning of workloads across compute sub-
strates optimized for different performance and power trade-offs. This architectural heterogeneity
motivates a division-of-labor strategy for speculative decoding, wherein the draft model operates
on the NPU exploiting its efficiency for approximate inference, while the target model executes on
the GPU, which is better suited for high-fidelity, throughput-critical computation. Such partitioning
leverages available NPU capacity and reduces contention on the GPU, thereby improving end-to-end
latency in multi-accelerator deployments.

In this work, we propose a novel architecture that operationalizes this vision by partitioning specu-
lative decoding across heterogeneous compute units, mapping draft inference onto compute-dense
NPUs and target verification onto high-throughput GPUs. This design leverages underutilized accel-
erator capacity, overlaps execution between models, and employs token-level feedback mechanisms
to maximize acceptance while minimizing draft construction latency overhead.

2 SPECULATIVE DECODING: FORMALIZATION AND LIMITS

To ground our discussion, we first formalize standard autoregressive (AR) decoding and speculative
decoding (SD), establishing the baseline needed to analyze the limits of SD precisely.

Autoregressive (AR) decoding. Let V denote a finite vocabulary. We write x1:m ∈ Vm for the
context of length m and y1:T ∈ VT for the response of length T to be generated. A decoder-only
AR model with parameters θ defines the conditional distribution

pθ(y1:T | x1:m) =

T∏
t=1

pθ (yt | x1:m, y<t) , pθ(· | x1:m, y<t) = Softmax
(
W,ht

)
, (1)

where ht ∈ RH is the next-token representation at position m + t, and W ∈ R|V|×H is the output
head mapping hidden states to vocabulary logits (Radford & Narasimhan, 2018; Vaswani et al.,
2017). Scaling inference of such models often requires distributing computation across multiple
devices via tensor parallelism, which partitions per-layer parameters across devices and aggregates
partial results with collectives such as ALLREDUCE (Hansen-Palmus et al., 2024; Li et al., 2024e).
The per-token latency is then set by the critical path combining local compute and synchronizations.

Speculative decoding (SD). Speculative decoding augments a target model ftarget(· | ·) with a
computationally cheaper draft model fdraft(· | ·) (Leviathan et al., 2023; Chen et al., 2023). At
step t, conditioned on the verified prefix (x, y<t), the draft proposes a γ-token window

ŷt+1:t+γ ∼ fdraft(· | y<t, x) , (2)

which the target then verifies left-to-right, producing the largest prefix on which both models agree:

At ≜ max
{
r ∈ {0, . . . , γ} : ∀j ≤ r, ŷt+j = argmax ftarget(· | y<t+j−1, x)

}
. (3)

The agreed-upon tokens are committed as yt+1:t+At
= ŷt+1:t+At

. If the draft and target disagree
before the end of the window (At < γ), the target emits a correction yt+At+1 and decoding resumes
from (x, y≤t+At

). The (window-normalized) acceptance rate is

ρ(γ;ϕ, θ) =
E[At]

γ
∈ [0, 1], (4)

which quantifies the expected fraction of the draft’s proposals that are accepted by the target for
window length γ. Let Tdraft(γ;ϕ) and Ttarget(γ; θ) denote the wall-times to produce and to verify
the window in Equations (2) and (3) (the latter includes the teacher-forced roll-forward through
accepted tokens). Because verification cannot begin before speculation is available, and the next
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Figure 1: Mirror-SD verification and reuse (example with γ = 3, κ = 1). At early exit, the target
(blue) emits Mt = {m1, . . . ,m4} and continues to the final layer. The draft (orange) expands Mt

into branch-complete continuations y′i0:i3 (grid). After verification, the target accepts ŷ0, ŷ1 and
issues correction y2 at depth τ = 2. Reuse is possible if there exists a precomputed branch whose
prefix matches the accepted tokens (ŷ0, ŷ1) and whose node at depth τ equals y2 (green). Otherwise,
speculation is recomputed (See Section 3.1 for the formal rule).

speculation cannot begin before the final acceptance decision at step t is known, the happen-before
relation is

ŷt+1:t+γ ≺ (verification at t) ≺ ŷnext
t+1:t+γ ,

yielding a serial step latency

TSD(γ;ϕ, θ) = Tdraft(γ;ϕ) + Ttarget(γ; θ). (5)

Increasing draft capacity (larger γ, deeper/wider fd) typically increases ρ but also increases Tdraft,
while tiny drafts reduce Tdraft but suffer low ρ (Leviathan et al., 2023; Chen et al., 2023). Equa-
tion (5) exposes the core limitation: improvements in acceptance must compensate for the added
draft latency, intrinsically coupling acceptance with latency.

3 MIRROR SPECULATIVE DECODING

We propose Mirror Speculative Decoding (Mirror SD), a systems–algorithm co-design that enables
parallel draft-target execution by conditioning the draft on intermediate target-layer distributions
and reconciling via a bandwidth-light token channel. This section develops the method end-to-
end—formal semantics, latency models, and a realizable tensor-parallel implementation.

3.1 EARLY-EXIT PROXIES AND BRANCH-COMPLETE CONCURRENT SPECULATION.

Consider a target transformer of depth N with layers L1, . . . , LN and intermediate representations
h
(ℓ)
t at step t. To generate high-fidelity early-exit proxies, we insert a lightweight non-linear MLP

adapter fadapt(·) that transforms the hidden state at exit layer ℓe < N before applying the shared
final LM head WLM:

p(ℓe)(· | y<t, x) = Softmax
(
WLM · fadapt(h

(ℓe)
t )

)
, (6)

following the formulation in Pal et al. (2023a). Details of the early-exit adapter and its training
procedure are provided in Appendix E.2. The resulting distribution exposes a low-bandwidth token
channel:

Mt = Top-κ
(
p(ℓe)(· | y<t, x)

)
= {(vi, log p̃i)}κi=1, vi ∈ V, (7)

3
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containing only the top-κ candidate tokens and their log-probabilities. While this message is sent,
the target continues its verification pass through Lℓe+1, . . . ,LN to form the full next-token distribu-
tion p(N)(· | y<t, x). Let γ ∈ N denote the speculative window length.

Given Mt, the draft begins a branch-complete rollout in parallel: for each candidate vi and for every
prefix length r ≤ γ, it prepares a speculative continuation for the next step of decoding starting from
vi,

∀i ∈ {1, . . . , κ}, ∀r ∈ {1, . . . , γ} : ŷ
′(i)
t+1:t+r ∼ fd(· | y<t, x, ỹt+1 = vi) . (8)

While the draft’s batched branches run, the target finishes verification against the currently selected
draft path under the standard speculative rule and determines the first mismatch (the correction).
Formally, let

At ≜ max
{
r ∈ {0, . . . , γ} : ŷt+j = ytarg

t+j ∀ j ≤ r
}

be the accepted prefix length, where ytarg
t+j are the target’s tokens obtained from p(N)(· | y<t+j−1, x)

(greedy/stochastic sampling). If At < γ, the correction occurs at index τ=At+1 with token

ct+τ ≜ ytarg
t+τ ∼ p(N)(· | y<t+τ−1, x).

Let Tt be the hypothesis tree built at early exit from the top-κ roots {vi}, whose nodes at depth r
store the token at position t+ r and its precomputed continuation.

Verification vs. reuse criterion. At step t, the target accepts a prefix of length At and issues a
correction at τ = At+1 with token ct+τ . The early-exit message Mt induces a hypothesis tree Tt
rooted at the top-κ candidates, with Pathsr(Tt) denoting all root-to-depth-r prefixes, which serve
as anchors for speculative continuations. The accepted prefix is Πt = (ytargt+1 , . . . , y

targ
t+At

), and the
corrected prefix extends it with the correction token, Π+

t = (Πt, ct+τ ). Reuse occurs whenever this
corrected prefix already appears as a path in Tt, i.e.

Π+
t ∈ Pathsτ (Tt),

so that only the correction must be checked while the accepted positions 1:At remain fixed.

Operational selection of the next window.

ŷ′t+1:t+γ =


branch rooted at ct+1, At = 0 ∧ ∃ i : vi = ct+1,

precomputed continuation at depth τ along Πt, At ≥ 1 ∧ Π+
t ∈ Pathsτ (Tt),

fresh rollout from (y1:t+At
, ct+τ ), otherwise.

In all cases, the committed output is ytargt+1:t+At
, after which decoding advances to the next step.

Effect of sampling width at early exit. Let q(·) = p(N)(· | ht) and p̃(·) = p(ℓe)(· | ht). We denote
the top-κ mass overlap as:

Ωκ =
∑

y∈Top-κ(p̃)

q(y). (9)

It follows that P
(
yt+1 ∈ Top-κ(p̃)

)
= Ωκ, which is nondecreasing in κ and satisfies limκ→|V| Ωκ =

1. Larger κ therefore reduces fallbacks requiring speculation recomputation and improves through-
put, while leaving acceptance semantics intact (See Appendix B).

3.2 DRAFT EXECUTION WITH SPECULATIVE STREAMING

For the draft model fd, we employ Speculative Streaming (SS) (Bhendawade et al., 2024), a specu-
lative mechanism that verifies previously proposed tokens while generating new speculative tokens
in the same forward pass using multi-stream attention. Applying SS to the target would modify
its decoding dynamics and alter the final distribution p(N)(· | y<t, x) (Bhendawade et al., 2024),
breaking the lossless guarantee established in Appendix B. In contrast, using SS on the draft accel-
erates speculation generation without changing acceptance semantics, since all commitments still
require verification against the unchanged target. This design leverages SS precisely where it yields
additional concurrency while preserving correctness (See Appendix B). Appendix D.2 illustrates
the SS mechanism and compares draft-only speedups between vanilla and SS drafts.
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Figure 2: Heterogeneous sharding in Mirror-SD. The target (blue) uses Megatron-style TP with two
collectives per MHA/MLP block, while the draft (orange) uses SPD-style sharding across GD NPUs
with only two synchronizations per step. This design reduces sync cost, enlarges draft capacity, and
improves acceptance without raising critical-path latency. Note: The beige bands labeled “All-
Reduce Draft + Target” are a visual shorthand: the draft and target perform separate all-reduces
within their own device groups, with no cross-collective coupling.

Multi-stream attention (MSA) factorization. Let M (ℓ)
t denote the main-stream hidden state at

layer ℓ and step t, and S
(ℓ)
t,j the hidden state of lookahead stream j∈{1, . . . , γ}. Speculative stream-

ing (SS) constructs attention masks so that each St,j attends to the verified prefix and to lower-index
lookahead streams {St,1, . . . , St,j}, while the main stream Mt attends only to the verified prefix. At
the top layer, a shared LM head W

(d)
LM projects these hidden states to token logits:

W
(d)
LM M

(N)
t 7→ pd(· | ht) and W

(d)
LM S

(N)
t,j 7→ pd(· | ht, j), j = 1, . . . , γ.

so a single forward pass yields both the distribution used to verify the prior draft and the distributions
needed to grow the next speculative window across multiple lookahead depths. SS trains these
streams with a future n-gram prediction objective without introducing additional heads.

Work-conserving draft generation within Mirror-SD. Within each Mirror-SD step, the draft
must furnish a branch-complete speculative window of length γ at the rendezvous ( Section 3.1).
Under SS, a single draft internal step can emit ηj ≥ 1 tokens by verifying the prior proposal and
predicting multiple future tokens in one pass (Bhendawade et al., 2024). Consequently, the number
of draft steps J required to materialize γ tokens satisfies

J ≤
⌈

γ
η̄

⌉
, η̄ = 1

J

J∑
j=1

ηj .

3.3 HETEROGENEOUS SHARDING OF MIRROR-SD

We co-schedule a depth–N target on GT=8 GPUs and a depth–Nd draft on GD=8 NPUs. The
target is a pre-trained model and thus kept in its standard Megatron-style tensor parallel (TP) form
(Shoeybi et al., 2019), ensuring compatibility with existing inference stacks and KV-cache layouts.
In contrast, the draft is trained from scratch using the SPD architecture (Kim et al., 2025) and
deployed on NPUs. We write S for per–microbatch sequence length, B for microbatch size, and
|V| for vocabulary size. Figure 2 illustrates the heterogeneous sharding setup with an example
configuration (target of 8 layers, draft of 4 layers); in practice, both target and draft may use different
depths based on the experiment configuration.
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Target sharding We use Megatron-style TP on the target: column-parallel Wqkv and Wo in MHA,
and column/row-parallel W1,W2 in the MLP. Each transformer block performs the standard two
TP collectives (attention and MLP). At early exit ℓe, the target emits Top-κ

(
p(ℓe)

)
over the token

channel while continuing the verification phase; acceptance remains decided against p(N) and is
therefore unchanged relative to vanilla SD (See Appendix B).

Draft sharding. The draft is trained with SPD architecture (Kim et al., 2025). We divide the
Nd layers into two contiguous segments. Within each segment we instantiate GD parallel tracks;
track g ∈ {1, . . . , GD} is pinned to NPU g and advances through all layers of its segment using
a resident weight shard. There is no inter-NPU traffic inside a segment (See Figure 2). At the
segment boundary, all tracks perform a single global synchronization to re-align tensor partitions,
and a second synchronization occurs at the end of the forward pass to assemble full-width logits
for the main and lookahead streams. Each internal draft step executes two all-reduce collectives on
activation shards while weights remain sharded. This replaces per-layer synchronization with a fixed
two-collective cost, reducing latency and enabling more parameters to be sharded across NPUs. In
practice, this expands draft capacity and improves acceptance rates ρ(γ;ϕ, θ) without increasing
critical-path latency.

Cross-accelerator rendezvous. Mirror-SD performs two token-level exchanges per step: early-
exit (ℓe) and final verification (N ). These exchanges carry O(B κ) small items (IDs and log-
probabilities) and are negligible in practice (microseconds) compared to millisecond-scale tar-
get/draft compute; they are accounted for by Trv in the latency model.

3.4 LATENCY ANALYSIS

Let the target early-exit at layer ℓe in a depth-N stack with per–layer times cℓ, and write

T 1:ℓe
target =

ℓe∑
ℓ=1

cℓ, T ℓe+1:N
target =

N∑
ℓ=ℓe+1

cℓ.

Let γ be the speculative window length and let T gen
draft(γ) denote the time to produce a branch-

complete draft window (absorbing any multi-token SS steps). We account for the two rendezvous
overheads at early exit and final verification,

T (ee)
rv , T (fv)

rv , Trv ≜ T (ee)
rv + T (fv)

rv ,

where the GPU↔NPU token exchanges carry only O(Bκ) IDs/log-probabilities.

A single Mirror-SD step consists of (i) target prefix, (ii) early-exit rendezvous, (iii) a parallel region
where the target suffix overlaps the draft generation, and (iv) final rendezvous. The step latency is

TMirror = T 1:ℓe
target + T (ee)

rv +max
{
T ℓe+1:N

target , T gen
draft(γ)

}
+ T (fv)

rv . (10)

Let the overlap budget be ∆ ≜ T ℓe+1:N
target . If T gen

draft(γ) ≤ ∆, the entire draft generation is hidden
under the target suffix and

TMirror = Ttarget + Trv.

Otherwise the draft dominates the parallel region and

TMirror = T 1:ℓe
target + T (ee)

rv + T gen
draft(γ) + T (fv)

rv .

Thus, scaling the draft that only increases overlapped T gen
draft(γ) is free up to budget ∆, while

the token-channel transfers remain a small O(Bκ) term. We provide a full accounting of sam-
pling/transfer costs, multi-step SS, and synchronization in Appendix C.

4 EXPERIMENTS

We evaluate Mirror-SD on a broad suite of generation workloads under realistic serving constraints,
using server-scale decoder-only LLMs that are routinely deployed in production inference stacks
across mid to large capacities, and we compare against strong speculative-decoding baselines.
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4.1 EVALUATION PROTOCOL

Datasets and tasks. We integrate our approach with the open-source SpecBench framework (Xia
et al., 2024b) to ensure a fair, reproducible comparison against prior methods. SpecBench provides
standardized prompts and pre/post-processing, sampling settings and released configs and seeds (Xia
et al., 2024b). We report results on multi-turn interactive conversation (MT Bench), translation,
summarization, mathematical reasoning, machine translation and retrieval-augmented generation
(RAG). Context and generation lengths follow the SpecBench protocol (Xia et al., 2024b).

Models and baselines. We evaluate Mirror-SD on server-scale targets that are deployable in pro-
duction inference stacks: Qwen3-14B and Qwen3-32B (Yang et al., 2025), Mistral-24B (Mistral,
2025), and OPT-66B (Zhang et al., 2022). For Qwen targets, we train a 0.6B-parameter draft with
2 segments and 8 tracks and deploy it on 8 NPUs as described in Section 3.3. For Mistral we train
a 0.5B draft, and for OPT we train a 200M draft, both sharded as in Section 3.3 to optimize syn-
chronization cost. All draft models are trained with SS objective described in (Bhendawade et al.,
2024) on UltraChat (Ding et al., 2023). Across all target models, drafts are launched from the
mid-layer early exit ( 12 of total depth) with top-κ=8 under batch size 1. Please refer to Appendix E
for the effects of early-exit depth and κ. Baselines include vanilla SD, Medusa (Cai et al., 2024),
Hydra (Ankner et al., 2024b), EAGLE 2/3 (Li et al., 2024b; 2025a), Recycling (Luo et al., 2024),
PLD (Saxena, 2023a), SpS (Joao Gante, 2023), REST (He et al., 2024), and Lookahead (Fu et al.,
2023). All baselines have public implementations in SpecBench (Xia et al., 2024b), and we use the
corresponding implementations.

Metrics. We focus solely on efficiency, without reporting accuracy metrics, since Mirror-SD is
lossless and guarantees identical outputs to the target model under the same decoding process (see
Appendix B). Our two key metrics are: (i) end-to-end wall-time speedup over target-only autore-
gressive decoding, reported as a speedup factor; and (ii) acceptance length, the expected number
of tokens accepted per speculative window, averaged across steps and prompts. We report greedy
decoding with temperature τ = 0 and stochastic decoding with τ = 1. The same decoding hyper-
parameters are used for all methods.

Serving configuration and reproducibility. Target models are distributed across eight M2 Ultra
GPUs using Megatron-style tensor parallelism (Section 3.3), while the draft runs on eight NPUs
(Apple Inc. (2023a)). All evaluations use a fixed batch size of 1 and speculative window length
γ=7; please refer to Appendix D.1 for analysis of batching effects. The token channel transmits
only the top-κ token IDs and log-probabilities in bf16. For determinism, interconnects are pinned
and frequency scaling is disabled. Timings include compute, collectives, and rendezvous overhead.

4.2 TRI-OBJECTIVE ANALYSIS WITH AN MT-BENCH DIAGNOSTIC

Speculative decoding couples three quantities: the speculative window γ, the acceptance length
E[At] = γ ρ(γ;ϕ, θ), and drafting latency added to critical path. In vanilla SD, enlarging γ typically
boosts acceptance but also increases draft construction time since drafting is serial, yielding an
upward-sloping latency curve. For Mirror-SD, the step latency follows the model in Section 3.4
(Equation (10)): as long as T gen

draft(γ)≤∆ with ∆ = T ℓe+1:N
target , increasing γ (and thus E[At]) adds no

marginal latency; once T gen
draft(γ)>∆, latency grows by the excess beyond ∆. Acceptance semantics

remain unchanged ( Appendix B). We validate these hypotheses on MT-Bench (Bai et al., 2024) by
sweeping γ, measuring E[At] and the observed draft construction overhead added to critical path,
and comparing three methods that share the same target: (i) vanilla SD with autoregressive drafts
from 12M to 1.7B parameters, (ii) Mirror-SD with a 0.6M draft, and (iii) Mirror-SD with a SS draft
( Section 3.2) of 0.6B. For fairness, all approaches in Figure 3a use NPU for draft placement.

Findings. Vanilla SD traces an ascending surface: larger drafts increase E[At] but raise step la-
tency commensurately. Mirror-SD shifts this surface downward by overlapping draft generation on
NPUs with target verification on GPUs, revealing a near-zero-slope regime wherever T gen

draft(γ)≤∆.
Adding speculative streaming further reduces T gen

draft(γ) by requiring fewer internal draft steps J to
cover the same window length γ, which extends the near-zero-slope region and pushes the sur-
face down again. Across γ, Mirror-SD and Mirror-SD+SS dominate the Pareto frontier—achieving
higher E[At] at a given latency, lower latency at a given E[At], and a wider feasible range before
saturating the overlap budget defined in Section 3.4.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1
2

3
4

5
6

7

Gamma

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

4.5 Acce
pta

nce
 Le

ng
th

0

2

4

6

8

10

12

14

La
te

nc
y

  12m

  60m

  0.6b

  1.7b

  mirror-0.6b

  mirror-0.6b-ss 2

4

6

8

10

12

14

La
te

nc
y

(a) Tri-objective diagnostic on MT-Bench.

1 2 3 4 5 6 7
Gamma

1

2

3

4

5

Ac
ce

pt
an

ce
 L

en
gt

h 
(m

ea
n 

±
 s

td
)

writing
roleplay
reasoning
math
coding
extraction
stem
humanities
translation
summarization
qa
math_reasoning
rag

(b) Acceptance length across SpecBench and MT Bench
tasks with 0.6B draft and 32B Target. MT Bench tasks are
reported individually.

Figure 3: (a) Speculative window γ, acceptance length, and drafting construction overhead in critical
path on MT Bench. (b) Acceptance length E[At] on SpecBench and MT Bench tasks (mean ± std).

Table 1: SpecBench wall-time speedups. Mirror-SD outperforms prior methods across models,
tasks, and decoding temperatures, showing consistent improvements.

Model Task EAGLE3 EAGLE2 Hydra Recycling Medusa Vanilla-SD PLD SpS REST Lookahead Mirror-SD

Qwen3-14B (T=0)

Translation 2.53x 1.98x 2.03x 1.86x 1.65x 2.34x 1.18x 1.15x 1.21x 1.09x 4.13x
Summarization 2.91x 2.19x 2.00x 2.30x 1.55x 1.76x 2.12x 1.87x 1.38x 1.30x 3.07x

Question Answering 3.09x 2.39x 2.19x 2.13x 1.62x 1.81x 1.14x 1.31x 1.61x 1.27x 3.18x
Mathematical Reasoning 3.36x 2.75x 2.53x 2.58x 2.12x 2.80x 1.67x 1.59x 1.15x 1.70x 5.32x

Retrieval Aug. Generation 2.66x 2.13x 2.04x 2.06x 1.64x 2.02x 1.67x 1.75x 1.57x 1.32x 3.49x
Multi-turn Conversation 3.29x 3.05x 2.45x 2.44x 1.93x 2.07x 1.63x 1.81x 1.49x 1.35x 3.70x

Qwen3-14B (T=1)

Translation 1.92x 1.81x 1.81x 1.78x 1.54x 2.19x 1.07x 1.04x 1.08x 1.03x 3.89x
Summarization 2.84x 2.05x 1.66x 1.84x 1.40x 1.50x 1.86x 1.40x 1.20x 1.13x 2.81x

Question Answering 2.61x 2.00x 1.85x 1.84x 1.37x 1.36x 1.04x 1.18x 1.28x 1.15x 2.80x
Mathematical Reasoning 3.25x 2.54x 2.42x 2.29x 2.01x 2.53x 1.49x 1.42x 1.05x 1.39x 5.02x

Retrieval Aug. Generation 2.53x 1.86x 1.59x 1.89x 1.47x 1.68x 1.56x 1.60x 1.30x 1.07x 2.95x
Multi-turn Conversation 3.05x 2.78x 2.16x 2.15x 1.81x 1.98x 1.42x 1.41x 1.37x 1.24x 3.48x

Qwen3-32B (T=0)

Translation 2.52x 2.10x 2.14x 1.57x 1.56x 2.74x 1.09x 1.24x 1.15x 1.12x 3.72x
Summarization 2.98x 2.59x 1.98x 1.98x 1.56x 2.07x 1.82x 1.62x 1.38x 1.26x 3.14x

Question Answering 2.76x 2.26x 2.17x 1.63x 1.81x 2.06x 1.17x 1.59x 1.70x 1.13x 3.04x
Mathematical Reasoning 3.77x 3.49x 2.52x 1.95x 2.23x 3.33x 1.68x 1.70x 1.33x 1.49x 5.84x

Retrieval Aug. Generation 2.65x 2.22x 1.92x 1.61x 1.59x 2.33x 1.42x 1.69x 1.76x 1.15x 3.42x
Multi-turn Conversation 3.29x 3.24x 2.75x 1.79x 1.92x 2.67x 1.53x 1.65x 1.63x 1.33x 3.59x

Qwen3-32B (T=1)

Translation 2.36x 1.79x 1.90x 1.40x 1.42x 2.43x 1.03x 1.09x 1.03x 1.05x 3.15x
Summarization 2.79x 2.22x 1.75x 1.48x 1.45x 1.92x 1.59x 1.43x 1.16x 1.17x 2.92x

Question Answering 2.34x 2.09x 1.72x 1.46x 1.61x 1.89x 1.04x 1.37x 1.44x 1.04x 2.90x
Mathematical Reasoning 3.45x 3.13x 2.35x 1.80x 1.66x 2.88x 1.36x 1.59x 1.20x 1.28x 5.08x

Retrieval Aug. Generation 2.34x 1.96x 1.79x 1.50x 1.35x 2.08x 1.28x 1.35x 1.48x 1.07x 3.33x
Multi-turn Conversation 3.14x 2.58x 2.29x 1.63x 1.73x 2.39x 1.34x 1.48x 1.47x 1.17x 3.28x

4.3 EFFECTIVENESS

Table 1 reports end-to-end wall-time speedups across SpecBench (Xia et al., 2024b) tasks. A clear
pattern emerges: Mirror-SD shows improvements over baselines across model sizes, temperatures,
and workloads. On Qwen3-14B, Mirror-SD averages 3.8× acceleration with greedy sampling, com-
pared to 2.97× for the strongest prior methods; on Qwen3-32B, the average rises to 3.78×, eclipsing
baselines at roughly 3×. The gains are most pronounced on long-horizon workloads (e.g., mathe-
matical reasoning), where Mirror-SD reaches up to 5.84× speedup. The improvement is driven
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Figure 4: Speedup for OPT and Mistral under drafting strategies across tasks and temperatures.

primarily by a larger acceptance length E[At]: Mirror-SD lets us scale the draft and apply spec-
ulative streaming without paying proportional step latency, which increases the number of tokens
committed per target step. Since throughput scales roughly with the expected tokens accepted per
step, S ∝ 1 + E[At], these acceptance gains translate directly into wall-time speedups. Retrieval-
augmented generation shows a similar effect, benefitting from stable intermediate distributions that
allow the draft to sustain long accepted prefixes. Even on high-entropy domains such as multi-turn
conversation, where acceptance is intrinsically harder, Mirror-SD consistently delivers 3.3–3.7× ac-
celeration compared to the 1.8-2.4× range of Hydra, Recycling or Medusa. In translation and QA,
the margin is steadier but no less striking: Mirror-SD maintains a speedup edge across both greedy
and stochastic decoding, validating that its improvements are insensitive to decoding regime. For an
intuition grounded in the concurrency model and scaling laws behind Figure 3a, see Appendix C.

4.4 GENERALIZABILITY ACROSS MODEL FAMILIES

To test whether the gains of Mirror-SD extend beyond Qwen, we repeat the study on two server-scale
decoder-only families: Mistral-24B and OPT-66B. For each target, we hold decoding hyperparam-
eters and draft capacity fixed and compare four variants: (1) standard speculative decoding with
an autoregressive draft, (2) standard speculative decoding with a speculative-streaming draft, (3)
Mirror-SD with an autoregressive draft, and (4) Mirror-SD with a speculative-streaming draft. Fig-
ure 4 reports end-to-end speedups over target-only decoding for translation, summarization, and
multi-turn conversation under τ = 0 and τ = 1 regimes. Across both families and all tasks, the
vanilla SD baseline with autoregressive-draft generation yields the smallest gains; adding specula-
tive streaming increases throughput; switching to Mirror-SD produces a further jump; combining
Mirror-SD with speculative streaming delivers the largest speedups. This progression matches the
analysis in Sections 3.2 and 3.4: Mirror-SD shortens the critical path by overlapping draft gener-
ation with the target suffix, while speculative streaming reduces the draft generation time T gen

draft(γ)
by emitting multiple tokens per internal draft step. Together, these effects allow larger acceptance
lengths E[At] without additional step latency until the overlap budget is reached, and the target’s
output distribution remains unchanged by construction. These results show that pairing Mirror-SD
with a speculative-streaming draft generalizes across model families, delivering higher throughput
without altering the base architecture or quality.

5 CONCLUSION

We introduced Mirror Speculative Decoding (Mirror-SD), a systems–algorithm co-design that over-
laps target and draft computation, reduces draft synchronizations, and confines cross-accelerator
traffic to a lightweight token channel. Deployed on heterogeneous GPU–NPU setups, Mirror-SD
consistently accelerates decoding by 2.8X to 5.8X while preserving correctness. By reducing serial
bottlenecks and leveraging multi-accelerator SoCs, Mirror-SD demonstrates a practical low-latency
approach for large-scale LLM serving.
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A RELATED WORKS

Speculative decoding with draft models. The original speculative decoding paradigm acceler-
ates autoregressive generation by pairing a small, fast draft model with a larger target model, which
verifies proposed tokens (Chen et al., 2023; Leviathan et al., 2023). This approach achieves substan-
tial wall-time savings whenever the draft is hardware-efficient and closely aligned with the target.
Domain-specialized drafts trained via distillation further improve acceptance in task-specific settings
(Hong et al., 2025). Recent variants explore parallelization strategies, such as batch-axis specula-
tion (Sun et al., 2023b) and tree-structured drafts (Miao et al., 2023; Spector & Re, 2023), to raise
acceptance rates and amortize draft cost.

Single-model approaches. An alternative line of work removes the explicit draft model and equips
the target itself with speculative capacity. Medusa predicts multiple tokens in parallel via extra heads
(Cai et al., 2023), while Hydra enforces autoregressive coupling across those heads to raise accep-
tance (Ankner et al., 2024b). EAGLE introduces a dedicated speculation layer (Li et al., 2024a),
with EAGLE-2 enabling dynamic tree retries (Li et al., 2024b) and EAGLE-3 moving to token-level
prediction with multi-layer fusion (Li et al., 2025a). Prompt-lookup decoding (PLD) and Looka-
head propose suffixes by retrieval rather than generation (Saxena, 2023a; Fu et al., 2023), which
is effective when prefix–continuation correlations are strong. Recycling reduces wasted work by
reusing intermediate activations when speculative branches are invalidated, instead of recomputing
full forwards (Luo et al., 2024). Other recent advances include structured or retrieval-based decod-
ing policies (Yi et al., 2024a; He et al., 2024). Across the single-model designs, speculative capacity
is integrated into the target stack, so larger or wider modules increase acceptance but still add work
on the target’s critical path; by contrast, Mirror-SD runs draft and target on heterogeneous devices
and overlaps draft within the target’s suffix window, converting added draft capacity into acceptance
gains without inflating per-step latency proportionally.

Dynamic and adaptive decoding. Beyond speculation, a range of methods accelerate inference
by adapting compute during decoding. CALM (Schuster et al., 2022) and related early-exit methods
reduce cost by exiting tokens at shallow layers, while skip decoding (Corro et al., 2023) mitigates
key-value cache mismatch via position-dependent layer skipping. Mixture-of-Depths (MoD) (Ra-
poso et al., 2024) routes only a subset of tokens through full blocks, yielding non-uniform FLOP
allocation. Other strategies include token merging (Bolya et al., 2023) to reduce sequence length
dynamically, adaptive span models (Sukhbaatar et al., 2019) that learn context windows per token,
and CoLT5 (Ainslie et al., 2023) which routes tokens through heavy or light pathways. More re-
cently, M2R2 (Bhendawade et al., 2025) introduces accelerated residual streams to improve early
alignment and efficiency. Together, these approaches trade fixed per-token compute for dynamic
allocation, complementing speculative decoding’s strategy of parallelizing token generation.

Positioning. Mirror-SD builds on these advances but takes a distinct perspective: it is a sys-
tems–algorithm co-design aimed at minimizing the critical path in speculative decoding. By launch-
ing drafts from intermediate target layers, overlapping draft and target compute, and confining cross-
accelerator communication to lightweight token exchanges, Mirror-SD complements prior algorith-
mic improvements and makes speculation more effective in heterogeneous GPU–NPU deployments.

B CORRECTNESS: ACCEPTANCE AND DISTRIBUTION

Let γ be the speculative window length, N the number of transformer layers in the target, and let
At ∈{0, . . . , γ} denote the accepted-prefix length at step t. Recall that the target’s final next-token
distribution is p(N)(· | h·) and that verification commits the longest prefix of the draft that matches
the target’s tokens.

Acceptance operator (rule-level equivalence). For any realized draft proposal ŷt+1:t+γ and re-
alized target tokens ytargett+1:t+γ (obtained by rolling the target with teacher forcing along the agreed
prefix and stopping at the first mismatch), both vanilla SD and Mirror-SD compute

At = max
{
r ≤ γ : ŷt+j = ytargett+j ∀j ≤ r

}
. (11)
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Figure 5: Batching effects on speedup across tasks and scales. Both vanilla SD and Mirror-SD slow
down as batch size B increases due to growing draft compute and verification cost, but Mirror-SD
consistently outperforms vanilla SD by preserving non-zero overlap under batching.

Equation (11) is the same acceptance operator in both algorithms: Mirror-SD never commits a
token that was not verified against p(N), and any commit is exactly the longest verified prefix. Thus,
Mirror-SD changes only the schedule by which draft proposals are produced (overlapping with target
compute), not the acceptance rule.

Distributional equivalence (when the verified draft path is identically distributed). Fix the
models (fdraft, ftarget) and window γ. Let Ct be the decoding context at step t (prompt and
previously committed tokens), and let ζdraft, ζtarget collect all random seeds for draft and target
sampling. Define the function

S(ŷt+1:t+γ , y
target
t+1:t+γ) = max{r ≤ γ : ŷt+j = ytargett+j ∀j ≤ r},

so that At = S(ŷ, ytarget) in both procedures.

Assume the draft sequence actually presented to verification in Mirror-SD, denoted ŷMir
t+1:t+γ , has

the same conditional distribution as the vanilla draft sequence ŷVan
t+1:t+γ given Ct:

ŷMir
t+1:t+γ

d
= ŷVan

t+1:t+γ | Ct. (12)

Then, under a common coupling of (ζd, ζt),

PMirror(At = r) = P
(
S(ŷMir, ytarg) = r

)
= P

(
S(ŷVan, ytarg) = r

)
= PVanilla(At = r) , ∀r ∈ {0, . . . , γ}.

(13)

Hence the acceptance-rate statistic ρ(γ;ϕ, θ) = E[At]/γ coincides between Mirror-SD and vanilla
SD.

Sufficient condition for equation 12. Condition equation 12 holds if the draft path used for ver-
ification in Mirror-SD is sampled from fdraft(· | ht) exactly as in vanilla SD, or more generally
if the branch-selection policy induces the same conditional law for the verified draft sequence as
vanilla SD. Under this mild parity condition, Mirror-SD is distributionally identical to vanilla SD
with respect to At, while still enjoying the latency benefits of overlapping draft computation with
the target’s suffix.

C LATENCY AND COMMUNICATION ANALYSIS

This appendix consolidates the latency model of Mirror-SD with its tensor-parallel (TP) communi-
cation costs.

Draft and Target Latencies Within one Mirror-SD step, the draft may take J ≥ 1 internal steps.
With speculative streaming (SS), step j emits ηj ≥ 1 tokens so that

∑J
j=1 ηj ≥ γ, with average
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η̄ = 1
J

∑
j ηj and

T gen
draft(γ) =

J∑
j=1

(ud
j + sdj ), J ≤

⌈
γ
η̄

⌉
.

Here ud
j is device-local compute and sdj draft synchronization. For the target, each layer ℓ incurs

cℓ = ut
ℓ + stℓ, giving

T 1:ℓe
target =

ℓe∑
ℓ=1

cℓ, T ℓe+1:N
target =

N∑
ℓ=ℓe+1

cℓ.

At early exit and final verification, rendezvous costs decompose as

T (ee)
rv = T (ee)

samp + T
(ee)
xfer , T (fv)

rv = T (fv)
samp + T

(fv)
xfer , Trv = T (ee)

rv + T (fv)
rv ,

where transfers involve only O(Bκ) IDs/log-probs and are negligible compared with compute.

Mirror-SD Latency Law The per-step latency is

TMirror = T 1:ℓe
target + T (ee)

rv +max{T ℓe+1:N
target , T gen

draft(γ)}+ T (fv)
rv . (14)

Let ∆ = T ℓe+1:N
target . If T gen

draft(γ) ≤ ∆, draft work is fully hidden: TMirror = Ttarget + Trv. Otherwise,
draft cost dominates the parallel region: TMirror = T 1:ℓe

target +T gen
draft(γ)+Trv. Compared to vanilla SD,

TSD = T 1:ℓe
target + T ℓe+1:N

target + T gen
draft(γ),

Mirror-SD hides draft work up to ∆, leaving only lightweight rendezvous terms on the critical path.

Comparison to vanilla SD (per step). Vanilla SD executes draft and target serially:

TSD = T 1:ℓe
target + T ℓe+1:N

target + T gen
draft(γ) = Ttarget + T gen

draft(γ),

where we write ∆
def
= T ℓe+1:N

target for the overlap budget. Using the Mirror-SD law above,

TMirror = T 1:ℓe
target + T (ee)

rv +max{∆, T gen
draft(γ)}+ T (fv)

rv = Ttarget + Trv, if T gen
draft(γ) ≤ ∆,

and
TMirror = T 1:ℓe

target + T gen
draft(γ) + Trv, if T gen

draft(γ) > ∆,

with Trv=T
(ee)
rv +T

(fv)
rv .

Per-step time saved. The improvement is

∆T
def
= TSD − TMirror =

(
min{∆, T gen

draft(γ)}
)
− Trv,

i.e., Mirror-SD hides up to the smaller of the overlap budget and the draft time, minus lightweight
rendezvous. Thus Mirror-SD is strictly faster whenever

Trv < min{∆, T gen
draft(γ)}.

Per-step speedup. The piecewise speedup S=TSD/TMirror is

S =


Ttarget + T gen

draft(γ)

Ttarget + Trv
, if T gen

draft(γ) ≤ ∆,

T 1:ℓe
target +∆+ T gen

draft(γ)

T 1:ℓe
target + T gen

draft(γ) + Trv

, if T gen
draft(γ) > ∆.

In practice Trv is O(Bκ) token/log-prob exchange and sampling, i.e., microsecond-scale, so the con-
ditions above are typically satisfied; speculative streaming (larger η̄) further reduces J and T gen

draft(γ),
making full hiding (T gen

draft(γ)≤∆) common.

Communication Costs under TP For G devices and message size M (per rank), AllReduce cost is

Tallreduce(M ;G) = α logG+ βM,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

with α per-hop latency and β per-word transfer time.

Target: Let HT be the target hidden width, GT its TP degree, and ST the effective tokens per
collective. Each of the N blocks performs two collectives on shards of size MT = B ST HT

GT
, giving

T comm
target = 2N · Tallreduce

(
MT; GT

)
.

Draft: Let HD be the draft hidden width, GD its TP degree, and SD the effective tokens per draft
collective. Each draft internal step performs two collectives on shards of size MD = B SD HD

GD
, so

T comm
draft-step = 2Tallreduce

(
MD; GD

)
, T comm

draft (over J steps) = 2J Tallreduce

(
MD; GD

)
,

which is included in T gen
draft(γ).

Cross-accelerator: Token-channel exchanges remain O(Bκ) IDs/log-probs and are microsecond-
scale.

D EXTENDED ABLATIONS & EMPIRICAL ANALYSIS

D.1 BATCHING EFFECTS

In deployment, batching is often enabled to improve throughput and amortize GPU compute, but it is
not universal: many interactive or privacy-sensitive settings prioritize per-request latency and avoid
batching. To ensure completeness, we therefore also evaluate Mirror-SD under batched inference.
The key question is whether speculative decoding, and Mirror-SD in particular, retains its gains when
batching is enabled, or whether draft overhead grows to the point of erasing speedup. To bound the
growth of draft-side computation with increasing batch size and to keep draft execution maximally
hidden under the target, we scale the draft hyperparameters with B: as B increases, we reduce both
Top-κ and the number of SS lookahead streams so that aggregate draft cost and the token-channel
payload remain controlled. Concretely, we use κ=8 with two SS streams for B ∈ {1, 8}; from
B=16 onward we use a single SS stream and progressively reduce κ: κ=4 for B=16, κ=2 for
B=32, and κ=1 for B ≥ 64.

Observed trends. We find that vanilla SD speedup declines steadily as batch size B increases
(Figure 5b). Larger batches lengthen the target verification phase both because more sequences must
be processed in parallel and because batching introduces additional padding and synchronization
under tensor-parallel execution. Mirror-SD also shows a downward trend with B, but consistently
outperforms vanilla SD (Figure 5b, Figure 5a). As B grows, the draft must evaluate top-κ candidates
across γ positions for each sequence, which increases draft compute and intra-NPU communication
and pushes the draft path toward a compute-bound regime. Consequently, its ability to overlap
with target verification diminishes. This decreased yet positive overlap is sufficient for Mirror-SD
to maintain a consistent speedup lead over vanilla SD as batching increases. In practice, batching
introduces several intertwined effects: (i) the target takes longer, enlarging the potential overlap
window; (ii) the draft also takes longer, and its relative overhead grows with the κ × γ expansion;
(iii) autoregressive baselines slow as B increases; (iv) speculative decoding slows even more, as it
inherits both AR’s slowdown and the draft’s added work; and (v) under tensor-parallel sharding,
both SD variants lose relative speedup, but Mirror-SD maintains a consistent lead by exploiting
concurrency across heterogeneous accelerators.

Relative draft overhead. We also report a normalized “relative draft overhead” in Figure 5, defined
as the fraction of draft speculation time that cannot be hidden under target verification, normalized
against the total overhead of vanilla SD. This metric is dimensionless and directly reveals how much
of the draft path remains exposed on the critical path. As batch size B increases, the verification
phase grows longer, but draft compute and intra-NPU communication grow even faster (since each
sequence requires top-κ rollouts across γ positions). Consequently, relative draft overhead rises with
B, aligning with the decreasing speedups observed in our batching experiments.

D.2 DRAFT-SIDE SPEEDUPS WITH SPECULATIVE STREAMING

We quantify the internal draft gains from Speculative Streaming (SS) under the same targets and
decoding settings as our main experiments. As described in Section 3.2, SS verifies previously
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Draft Step with SS
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(a) Speculative Streaming (SS): each draft step pro-
poses multiple tokens via lookahead streams; ac-
cepted tokens extend the prefix, rejected ones are
dropped.
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Figure 6: Comparison of Speculative Streaming (SS) draft dynamics (left) and resulting speedups
(right).
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(c) Roleplay
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(e) Coding
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(f) Math reasoning

Figure 7: Fallback frequency vs. Top-κ and early-exit depth across six tasks (Humanities, Math,
Roleplay, STEM, Coding, Math Reasoning). Each panel shows fallback frequency as a function of
k for exits at 1/4, 1/2, and 3/4 of depth; smaller values indicate fewer fallbacks and greater reuse.

proposed tokens while producing multiple new lookahead tokens in a single forward pass via multi-
stream attention. Empirically, this reduces the number of draft internal steps J needed to materialize
a window of length γ, typically yielding J ≪ γ and a corresponding reduction in draft generation
time T gen

draft(γ). Figure 6b reports the draft-only speedup of SS over a plain autoregressive draft
across translation, summarization, QA, mathematical reasoning, RAG, and MT-Bench. The effect
is consistent across workloads: SS achieves substantially fewer internal steps for the same γ and,
consequently, shorter T gen

draft(γ). When composed with Mirror-SD’s overlap (Section 3.4), this pushes
the operating point further into the zero-slope region where increases in γ raise acceptance length
E[At] = γ ρ(γ;ϕ, θ) without increasing step latency. Because acceptance semantics are unchanged
( Appendix B), all end-to-end gains are purely systems-level.
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Figure 8: GPU-only evaluation of Mirror-SD at temperature T=0. The 0.6B draft runs on a single
A100 GPU and the 32B target uses an 8-GPU tensor-parallel setup. All other experimental settings
match Table 1, Mirror-SD consistently outperforms Vanilla-SD across all tasks.

D.3 INFERENCE ON GPU-ONLY SYSTEMS

Mirror-SD is designed to exploit the heterogeneous accelerator topology now common in modern
SoCs: a high-throughput GPU paired with a lower-power NPUs (Jouppi et al., 2021; Intel Corpora-
tion, 2023; Advanced Micro Devices (AMD), 2023; Apple Inc., 2023a;b; Qualcomm Technologies
Inc., 2023). Existing speculative decoding methods do not leverage this heterogeneity; prior ap-
proaches execute both drafting and verification exclusively on GPUs, leaving substantial parallelism
unused. Our primary experiments therefore target GPU–NPU systems, where Mirror-SD unlocks
parallel execution of the large target model on the GPU and the lightweight draft model on the NPU
with minimal communication.

For completeness, and to demonstrate hardware-agnostic applicability, we also evaluate Mirror-SD
in a pure GPU setting. Here, the 0.6B draft model is executed on a single NVIDIA A100 GPU (with-
out sharding), while the 32B target model remains sharded across the 8-GPUs via tensor-parallelism
as described in Section 3.3. All early-exit heads, reuse logic, and fallback semantics remain un-
changed. Although the draft model has low arithmetic intensity, draft-side latency still benefits
from the substantially higher compute density and memory bandwidth of the A100 (312 TFLOPS
FP16 and 1.9 TB/s HBM2e) (NVIDIA Corporation, 2020) relative to the NPU used in our main
experiments (31.6 TOPS and 0.8 TB/s) (Apple Inc., 2023a). As a result, speculative rollouts are
faster in both the parallel region and during fallback. Fallback frequency itself is unchanged, as it is
determined solely by the target model.

As shown in Figure 8, Mirror-SD consistently improves throughput over Vanilla-SD across all six
task groups. All experimental settings, model configurations, and decoding parameters match those
used in Table 1. These results confirm that Mirror-SD provides reliable gains in GPU-only settings.

E FALLBACK DYNAMICS: INFLUENCE OF TOP-κ AND EARLY-EXIT DEPTH

E.1 SETUP AND DEFINITIONS

At decoding step t, let the target’s final next-token distribution be q(·) = p(N)(· | y<t, x) and the
early-exit proxy be p̃(·) = p(ℓe)(· | y<t, x). The target accepts a prefix of length At and, if a
mismatch occurs, issues a correction at index τ = At+1 with token ct+τ . The draft precomputes
a branch-complete window conditioned on the early-exit Top-κ set Mt = {(vi, log p̃i)}κi=1. Reuse
succeeds iff the target’s correction lies on a precomputed path,

Π+
t ∈ Pathsτ (Tt),

otherwise we fallback (re-initialize the draft from the corrected context). Let Ft = ⊮{Π+
t /∈

Pathsτ (Tt)} and FF ≡ E[Ft]. Define the overlap mass

Ωκ(ℓe)
def
=

∑
y∈Top-κ(p̃)

q(y),

i.e., the probability under q that the next token lies in the early-exit Top-κ set.
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Figure 9: Early-exit training curves for the 14B and 32B target models. Each plot shows the early-
exit loss and top-1 agreement for two representative exit depths. Mid-layer exits converge rapidly
and achieve high agreement with the final LM head, supporting reliable branch reuse during Mirror-
SD decoding.

E.2 EARLY-EXIT TRAINING

To obtain reliable intermediate distributions for the low-bandwidth token channel defined in equa-
tion 7, we train a small set of early-exit adapters inserted at multiple depths of the target model.
Specifically, we attach early-exit heads at approximately one-quarter, one-half, and three-quarters of
the total transformer depth, and train all of them simultaneously. The backbone parameters remain
frozen throughout training. Each early-exit head is implemented as a lightweight two-layer MLP.
Given the intermediate representation h

(ℓe)
t ∈ RH , the head applies a linear projection to a reduced

dimension H/2, followed by a ReLU nonlinearity and a second linear projection back to dimension
H . The resulting vector is then passed through the shared LM projection matrix WLM ∈ RH×V , the
same vocabulary projection used by the final layer of the model to produce the proxy distribution.
This structure preserves the semantic geometry of the pretrained model while allowing intermediate
hidden states h(ℓe)

t to better align with the final-layer token distribution. The training objective is a
next-token cross-entropy loss applied at each selected early-exit depth. Let E = {ℓ1, ℓ2, . . . , ℓK}
denote the set of K early-exit positions. The overall loss is

LEE =
1

K

∑
ℓe∈E

LCE

(
p(ℓe)(yt+1), yt+1

)
, (15)

where each p(ℓe) is defined as in equation 6. Since the backbone remains frozen, optimization is
stable and converges rapidly.

Figure 9 shows representative training curves for the 14B and 32B Qwen-3 models. Mid-layer exits
typically provide strong agreement with the final LM head while maintaining low early-exit loss, en-
abling high-fidelity early-exit token channel. As shown in Figure 7, these intermediate distributions
are accurate enough that fallback events remain infrequent when using κ-sized candidate sets.

The early-exit adapters introduce only a very small number of trainable parameters relative to the
backbone, less than 0.18% of the total parameters in the 14B model and less than 0.08% in the
32B model. This makes early-exit training a lightweight and practical approach for producing high-
fidelity intermediate distributions and supporting a stable token channel in Mirror-SD.

E.3 MONOTONICITY IN k

Proposition 1 (Top-κ reduces fallback). For a fixed early-exit layer ℓe, the fallback frequency
FF(ℓe, κ) is nonincreasing in the integer κ and vanishes as κ→|V |:

κ2 ≥ κ1 =⇒ FF(ℓe, κ2) ≤ FF(ℓe, κ1), lim
κ→|V |

FF(ℓe, κ) = 0.

Proof. If At=0 (mismatch on the first token), reuse succeeds iff yt+1∈Top-κ(p(ℓe)), so Pr[Ft=1 |
At=0] = 1−Ωκ(ℓe). If At≥1, the root matches yt+1 and reuse at depth τ requires ct+τ to appear
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on some branch of the hypothesis tree Tt seeded by Top-κ(p(ℓe)). Increasing κ only adds roots/paths
and never removes existing ones, so {Π+

t ∈Pathsτ (Tt)} is monotone in κ. Taking expectations over
t yields the claim. The limit follows because Ωκ(ℓe)→1 as κ→|V |, at which point the hypothesis
tree contains all needed paths.

A useful corollary is
FF(ℓe, κ) ≤ 1− Ωκ(ℓe),

which is tight when most fallbacks occur at τ=1 (high-entropy regimes).

E.4 MONOTONICITY IN EARLY-EXIT DEPTH

Proposition 2 (Deeper exit reduces fallback). Fix κ. As the early-exit layer ℓe moves deeper
(toward N ), the overlap mass

Ωκ(ℓe) =
∑

y∈Top-κ(p(ℓe))

q(y)

converges to its maximal value q(S⋆) with S⋆ = Top-κ(q); consequently FF(ℓe, κ) ≤ 1 − Ωκ(ℓe)
decreases with depth and stabilizes at its minimum for sufficiently deep exits.

Proof. As the layer index ℓ increases, the distributions p(ℓ) approach q; write εℓ
def
= ∥p(ℓ)−q∥∞ → 0.

Let Sℓ = Top-κ(p(ℓ)) and S⋆ = Top-κ(q). Because Sℓ maximizes p(ℓ)-mass among all size-κ sets,
and any such set A satisfies |q(A)− p(ℓ)(A)| ≤ κ εℓ, we have

Ωκ(ℓ) = q(Sℓ) ≥ q(S⋆)− 2κ εℓ −−→
ℓ↑N

q(S⋆).

If the Top-κ boundary of q has margin ∆κ > 0, then whenever εℓ < ∆κ/2 the Top-κ set stabilizes
(Sℓ = S⋆) for all deeper layers, so Ωκ(ℓ) = q(S⋆) thereafter. Since reuse probability is monotone in
the q-mass captured by the seed set, the bound FF(ℓe, κ) ≤ 1−Ωκ(ℓe) implies a (weakly) decreasing
FF with depth and eventual stabilization at its minimum.

E.5 EMPIRICAL CONFIRMATION

Figure 7 reports fallback frequency as a function of k for early exits at 1/4, 1/2, and 3/4 of depth
across six tasks. Two consistent trends emerge:

• Top-κ effect. Increasing k monotonically lowers fallback, with diminishing returns once
Ωκ saturates. This matches the bound FF ≤ 1 − Ωκ(ℓe) and reflects a higher probability
that the draft’s precomputed path already contains the target’s correction.

• Early-exit effect. Holding k fixed, moving the exit deeper (1/4 → 1/2 → 3/4) lowers
fallback across tasks. Deeper exits raise Ωκ by improving agreement between the early-exit
proxy and the final distribution, so the correction token more often lies on a precomputed
branch.

E.6 PRACTICAL RECOMMENDATION

Unless otherwise noted, across all SpecBench experiments reported in Table 1 we set the Top-
κ width to κ = 8 and fix the early exit to the middle of the network (ℓe = N/2, “Exit 1/2”).
In practice, this mid-depth, k=8 configuration works well across most setups, balancing fallback
probability and the overlap budget for draft precomputation.

Choosing k and ℓe trades a small token-channel payload and longer precomputation for fewer fall-
backs and, consequently, longer accepted prefixes per step. In Mirror-SD, the channel payload is
O(Bκ) and the precomputation runs in parallel under the target suffix; thus, within the overlap
budget, increasing k or moving ℓe deeper reduces fallback without adding step latency, directly im-
proving end-to-end throughput via larger expected acceptance length. For bandwidth-constrained
deployments, κ=8, ℓe=N/2 is a robust default; when acceptance is still low, increase κ or move the
exit slightly deeper (subject to the overlap budget), and when channel or memory is tight, reduce κ
or use a slightly shallower exit.
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LLM Engine / Scheduler

Target Model Runner 

Target Forward (Layers 1 … ℓₑ)

Early-Exit LM Head @ ℓₑ 
(Top-κ = Mₜ)

Draft Model Runner 

Branch Tree Builder

Target Forward (Layers ℓₑ … N)

Rendezvous

KV Cache Manager + 
Paged Attention

Figure 10: Integration of Mirror-SD into vLLM. Existing vLLM components including the sched-
uler, target and draft model runners, and the PagedAttention KV cache are shown in light orange.
Mirror-SD adds three lightweight modules (blue): an early-exit LM head at layer ℓe, a branch-tree
builder for speculative rollouts, and a rendezvous module that matches the verified prefix against the
speculative tree to decide on reuse. These components integrate without modifying vLLM’s sched-
uler, memory layout, or attention kernels, preserving the single-target-forward serving invariant.

F INTEGRATION WITH PRODUCTION INFERENCE SYSTEMS

Modern production serving stacks such as vLLM (Kwon et al., 2023b) combine continuous batching,
centralized KV-cache management, and fused attention kernels to achieve high throughput. Mirror-
SD integrates cleanly into this architecture without modifying the scheduler or the core batching
logic. Figure 10 shows how Mirror-SD attaches to vLLM’s serving stack. vLLM already provides
three abstractions that are directly aligned with our design: (i) a continuous-batching scheduler that
issues exactly one target forward pass per decoding tick, (ii) a split target and draft model-runner
interface used by existing speculative decoders, and (iii) a block-level KV cache with prefix-sharing
and branch allocation via PagedAttention (Kwon et al., 2023b). Because these components match
the architectural requirements of Mirror-SD, only lightweight modules (highlighted in blue) are
added, and no changes are required to scheduling, memory layout, or attention kernels.

Early-exit instrumentation in the target runner. As shown in the center of Figure 10, the target
runner is augmented with a lightweight early-exit head placed after the first ℓe layers. A small
MLP adapter maps h(ℓe)

t into the space expected by the final LM head, after which the existing LM
projection is applied and a Top-κ operation produces the early-exit message Mt. Execution then
bifurcates exactly as in the diagram: the target continues through layers ℓe+1:N unchanged, while
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Mt is forwarded to the draft runner for parallel speculation. This preserves vLLM’s single-target-
forward invariant and adds only a modest overhead relative to a transformer layer.

Parallel draft execution and branch construction. As shown on the right side of Figure 10,
the second Mirror-SD component is a lightweight branch-tree builder that operates within vLLM’s
existing draft-runner abstraction. After receiving the early-exit message Mt, the draft model per-
forms a branch-complete speculative rollout of depth γ, reusing the prefix KV pages provisioned by
PagedAttention and allocating branch pages in exactly the same way vLLM handles divergent de-
coding paths. Because prefix sharing and branch-specific KV allocation are already native features
of vLLM’s KV manager, enabling tree-structured speculation requires no changes to the KV layout,
memory management, or attention kernels.

Verification and branch reuse. Once the target completes layer N , Mirror-SD derives the
accepted-prefix length At and a correction token. The rendezvous module in Figure 10 performs a
deterministic reuse test: if the corrected prefix matches a path in Tt, the corresponding chain of KV
pages is reused; otherwise, the system reverts to a fresh speculative window on the next tick. This
logic operates purely at the control-flow level (token IDs and page handles) and requires no changes
to vLLM’s scheduler, which already supports sequences advancing by different numbers of tokens
per step.

Low integration complexity. The Mirror-SD additions shown in Figure 10 are lightweight, state-
less extensions built from operations already present in vLLM, namely LM-head projections, Top-κ
extraction, KV prefix-sharing, and branch-specific page allocation. All core serving components
remain unchanged: continuous batching, CUDA Graph execution, the target forward graph, and
PagedAttention’s KV management. As a result, Mirror-SD integrates with minimal implementation
overhead while remaining fully compatible with high-throughput LLM serving in both GPU-only
and heterogeneous GPU–NPU deployments.

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 TARGET AND DRAFT SHARDING

For the experiments in Section 4, both target and draft models were distributed across eight Apple
M2 Ultra systems (Apple Inc., 2023a), each integrating a high-throughput GPU and a dedicated
Neural Engine (NPU). We allocate the target to GPUs using Megatron-style tensor parallelism and
the draft to NPUs using SPD-style sharding (see Section 3.3). Each M2 Ultra consists of a dual-die
package connected internally by UltraFusion, a die-to-die interconnect providing up to 2.5 TB/s
of bandwidth while presenting the system as a single logical GPU/NPU pair (Apple Inc., 2023a).
Across machines, we organize the 8 nodes into groups of 2, linked by Thunderbolt 5 interconnects
(up to 120 Gbps peak bandwidth) (Apple Inc., 2024). Groups are further connected through a
high-speed network fabric, providing sufficient bandwidth for inter-group synchronization with sub-
millisecond latency.

In this setup, cross-accelerator token-channel communication consists only of O(Bκ) items (token
IDs and a few log-probabilities), transferred via GPU→CPU→NPU copies. These messages remain
negligible compared to inter-layer collectives and draft compute, consistent with the latency analysis
in Section 3.4.

G.2 DRAFT MODEL CONFIGURATION

The draft used in our experiments is a 0.6B-parameter model trained with the SPD architecture
(Kim et al., 2025). It is organized into 16 transformer layers, divided into two contiguous segments
of 8 layers each. Within every segment we instantiate GD=8 parallel tracks, where track g ∈
{1, . . . , GD} is pinned to NPU g and advances through its resident shard of the segment. Each track
operates with a hidden size of 256 per shard. As in Section 3.3, there is no inter-NPU traffic within
a segment. Synchronization occurs only twice per forward pass: once at the segment boundary to
re-align tensor partitions, and once at the output to assemble logits for both main and lookahead
streams.
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H LLM USAGE STATEMENT

In preparing this manuscript, we used AI-assisted tools to check grammar and to rephrase some
sentences for clarity and readability. No content, results, or analysis were generated by AI systems;
all scientific contributions and conclusions are our own.
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