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ABSTRACT

In this work, we present an observation of severe class-imbalanced predictions in
few-shot learning and propose solving it by acquiring a more balanced marginal
probability through Transductive Fine-tuning with Margin-based uncertainty
weighting and Class-balanced normalization (TF-MC). Margin-based uncertainty
weighting compresses the utilization of wrong predictions with lower loss weights
to stabilize predicted marginal distribution. Class-balanced normalization adjusts
the predicted probability for testing data to pursue class-balanced fine-tuning
without directly regularizing the marginal testing distribution. TF-MC effectively
improves the class balance in predictions with state-of-the-art performance on in-
/ out-of-distribution evaluations of Meta-Dataset (Triantafillou et al., 2019) and
surpasses previous transductive methods by a large margin.

1 INTRODUCTION
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Figure 1: Class-Imbalanced Predictions
in Few-Shot Learning. The difference
between the maximum and minimum
per-class predictions is used to quan-
tify the level of class imbalance, and the
average of imbalanced predictions with
per-class accuracy is reported. Data are
from ten datasets in Meta-Dataset (Tri-
antafillou et al., 2019) with 100 episodes
for each dataset and ten per-class test-
ing samples. All previous methods
suffer from the severe issue of class-
imbalanced predictions; the difference
between the number of per-class predic-
tions could be more significant than ten.
TF-MC successfully reduces the imbal-
anced predictions with the best per-class
accuracy. Refer to Appendix. B for fur-
ther discussions.

Deep Learning has gained vital development with vari-
ous architecture designs, optimization techniques, data
augmentation, learning strategies, etc. As deep learning
techniques demonstrate the great potential to be applied
to more practical applications, the lack of manual labeling
force and the difficulty of data acquisition makes few-shot
learning increasingly important. Few-Shot Learning (FSL)
has been quite an active research field (Finn et al., 2017;
Ravi & Larochelle, 2016; Vinyals et al., 2016; Snell et al.,
2017; Gidaris et al., 2019; Chen et al., 2019; Triantafillou
et al., 2019) and the recent development to benchmark over
datasets from different scales and domains (Triantafillou
et al., 2019) encourages practically efficient algorithms in
few-shot learning.

In this work, we present an observation: the predictions
in few-shot learning are severely class-imbalanced. As
shown in Figure. 1, previous state-of-the-art methods (Li
et al., 2022; Tao et al., 2022; Li et al., 2021; Dhillon
et al., 2019) on Meta-Dataset without exception suffers
from the issue of class-imbalanced predictions. A good
classification model usually learns to abstract categorical
and semantic information robust to variations, which might
not be sufficiently present in only a few training samples.
Consequently, the insufficient learning manifests as the
class-imbalanced predictions in FSL. Classes with the
least number of predictions would carry lower per-class
accuracy, as the number of corrected predictions is at most
the number of predictions. For testing scenarios in favor
of these classes, the class-imbalanced prediction could
cause a fatal failure. Solving the issue of class-imbalanced
predictions would improve the robustness of algorithms to
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Figure 2: Illustration of TF-MC. TF-MC obtains a more balanced marginal probability by compress-
ing the utilization of wrong predictions (Margin-Based Uncertainty Weighting) and normalizing
probabilities for unlabeled data to encourage class-balanced fine-tuning (Class-balanced Normaliza-
tion). By using TF-MC, the difference between per-class predictions reduces from 21.3% to 14.4%
with per-class accuracy improved from 4.5% to 4.9% in 1-shot 10-way classification. Results are
averaged over 100 episodes in Meta-Dataset (Triantafillou et al., 2019).

different testing scenarios, which is crucial for real applications where the testing environment is
often largely non-uniform.

Recent works with (test-time) finetuning (Hu et al., 2022; Li et al., 2022; Tao et al., 2022) show
great potential to fast and effectively adapt feature extractors on few-shot tasks with the state-of-
the-art cross-domain performance. However, the optimization criterion in (test-time) finetuning is
not designed to improve the class-balanced learning. During finetuning, parameters are optimized
by minimizing the loss on a few training samples, known as empirical risk minimization (ERM),
which assumes that training and testing datum follow the same distribution. However, the distribution
estimated from a few training data is biased with its true distribution (Tao et al., 2022), which
invalidates the assumption of ERM and potentially leads to class-imbalanced predictions on the
testing datum. Transductive finetuning (Dhillon et al., 2019) proposes to optimize parameters together
with training and testing datum, which to some degree dismisses the effect of biased distribution
estimation from training datum. However, as with the other transductive methods in FSL, the
predictions on testing datum are directly used without explicitly considering the class-imbalanced
issue, which theoretically leads to sub-optimal solutions as we analyze in Sec. 2.2.

We propose Transductive Fine-tuning with Margin-based uncertainty weighting and Class-balanced
normalization (TF-MC) to obtain a more balanced marginal probability during finetuning, which in
turn solves the class-imbalanced predictions to some extent. Margin-based uncertainty weighting
assigns per-sample loss weights according to the uncertainty scores computed from predicted proba-
bilities. Specifically, we address the importance of utilizing top-two maximum probabilities (margin
(Scheffer et al., 2001)) in entropy computation and demonstrate its supreme ability to compress the
utilization of wrong predictions through experimental results. Class-balanced normalization aims
to adjust the predicted probabilities of testing data to pursue class-balanced finetuning. The learned
marginal probability is estimated by combining each query sample with the full support set, which is
further aligned with the Uniform prior. In doing so, each testing sample’s prediction is adjusted by a
scale vector, which quantifies the difference between the marginal and uniform. The predictions of
the testing datum are eventually balanced without directly regularizing on the marginal probability.
TF-MC effectively alleviates the issue of class-imbalanced predictions: as shown in Fig. 1, compared
with Transductive-Finetuning (TF), TF-MC largely reduces the imbalanced predictions by around
5 samples and further improves per-class accuracy with 2.1%. TF-MC shows robust cross-domain
performance boosts on Meta-Dataset, demonstrating its potential in real applications.

Our contributions can be summarized as: 1). We design an effective weighting strategy – margin-based
uncertainty, to compress the utilization of wrong predictions in transductive fine-tuning. Margin-based
uncertainty weighting achieves consistent performance boosts over all ten datasets across different
domains in Meta-Dataset (Triantafillou et al., 2019). 2). We propose Class-balanced normalization
to individually adjust the predicted probability of testing data, encouraging the class-balanced fine-
tuning while averting direct regularization on testing prior. 3). We present an essential observation
of class-imbalanced predictions in FSL and propose the simple yet efficient TF-MC to improve
it. TF-MC shows robust performance boosts on Meta-Dataset in-/out-of-distribution evaluations,
demonstrating its potential in real applications for different domains.
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2 METHOD

For one episode in FSL, the training and testing set are referred as the support and query set,
respectively. Let (x,y) denote the pair of an input x with its ground-truth one-hot label y ∈ RC ,
where C is the number of classes. The support set is then represented as Ds = {(xi,yi)}Ns

i=1, and
the query set is denoted as Dq = {(xi)}

Nq

i=1 where the ground-truth labels are unknown if used in
the transductive manner; Ns and Nq are the total number of samples in support set and query set,
respectively.

2.1 RE-VISIT TRANSDUCTIVE FINE-TUNING

We first introduce the transductive fine-tuning framework adopted in (Dhillon et al., 2019). A feature
extractor fθ is firstly pre-trained on the meta-training set, and transductive fine-tuning is conducted
on the meta-test set within each episode. We denote pθ(y|x) as the categorical probabilities on C
classes which is the output from the softmax layer in the model:

pθ(y = c|x) = exp zc∑C
i=1 exp zi

, (1)

where zi = ⟨ωi, fθ(x)⟩, i ∈ C, the dot-product between ωi and fθ(x), is the logit for class i. As
widely used in (Snell et al., 2017; Qi et al., 2018; Chen et al., 2020; Tao et al., 2022; Li et al., 2022),
ωi is the novel class prototype that is initialized as the mean feature from the support set Ds. A model
with parameter θ is learnt to classify Ds and Dq as measured by the following criterion:

θ∗(Ds,Dq) = argminθ(
1

Ns

∑
(x,y)∈Ds

Ls(x,y) +
1

Nq

∑
(x)∈Dq

Lq(x)). (2)

The loss Ls(x,y) for the labeled support set is the cross-entropy loss. And the loss Lq(x) for the
unlabeled query set is constructed as entropy minimization:

Lq(x) = λH(pθ(y|x),pθ(y|x)) = λpθ(y|x) log(pθ(y|x)), (3)

where λ denotes the per-sample loss weight. The previous transductive finetuning (Dhillon et al.,
2019) assigns equal weights to testing samples (λ = 1).

2.2 CLASS-BALANCED NORMALIZATION

We firstly illustrate that the current optimization under Eq. 3 does not necessarily improve class
balance in predictions but to some degree further worsen it. We take the class with the most prediction
cmax as a illustration. For samples wrongly predicted to cmax, ⟨ωcmax , fθ(x)⟩ > ⟨ωy, fθ(x)⟩ directly
leads to the wrong prediction. In other words, features are closer to the prototype of ωcmax rather
than the prototype of the ground-truth class.

For one sample x ∈ Dq , the gradient for feature fθ(x) from the entropy loss is:

∂Lq

∂fθ(x)
=

C∑
i

∂Lq

∂zi
ωi (4)

Where ∂Lq

∂zi
serves as the scalar to control how much the gradient would update with ωi. By summing

over all samples, the gradient on zi, i ∈ C is:

∂Lq

∂zi
= − 1

Nq

Nq∑
j

pij(1− pij) (5)

Where pij = pθ(i|j) to simplify notations. By applying gradient descent, the optimization through
features are:
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fθ(x) = fθ(x)−
∂Lq

∂fθ(x)
= fθ(x) +

C∑
i

(
1

Nq

Nq∑
j

pij(1− pij))ωi (6)

The overall stochastic gradient update on fθ(x) leads the direction of fθ(x) towards a direction that
is weighted by the absolute value of |∂Lq

∂zi
| on ωi. Meanwhile by Jensen’s inequality:

|∂Lq

∂zi
| = 1

Nq

Nq∑
j

(pij(1− pij)) ≥ p(i)(1− p(i)) (7)

And p(i) is the marginal probability for class i involved during finetuning:

p(i) =
1

Nq

Nq∑
j

p(i|j) (8)

As shown in Eq. 7, |∂Lq

∂zi
| is lower bounded by the marginal probability. Thus class cmax owns

the relatively larger gradient ∂Lq

∂zcmax
than other classes. As indicated in Eq. 4 the larger | ∂Lq

∂zcmax
|

deviates the optimization of fθ(x) getting closer to the direction of ωcmax
, which exacerbates the

class-imbalanced prediction by further deflecting on cmax. Detailed discussions are further provided
in Appendix.E.

This addresses the necessity of pursuing a class-balanced marginal probability p(y) during finetuning
which we propose to solve by Margin-based uncertainty weighting and Class-balanced normalization.
To balance marginal probability, we adjust the predicted probability p(y|x) for each testing data by
class-balanced normalization, which is designed as the following: for each x ∈ Dq, it is combined
with the full support set as x ∪ Ds; and the current learned marginal probability is estimated using
x ∪ Ds. By aligning the estimated marginal probability with a uniform prior, a unique scale vector is
obtained for each testing sample, which is further used in probability normalization. Formally, for
q = pθ(y|x):

q̃ = Normalize(q
U

Êx∪Ds [pθ(y|x)]
) (9)

Where Normalize(xi) =
xi∑
j xj

. In doing so, each sample from the query set obtains a unique scale

vector U
Êx∪Ds [pθ(y|x)]

which allows per-sample probability normalization. Meanwhile, aligning the
estimated marginal probability of x ∪ Ds to Uniform avoids direct regularization on the marginal
probability of the whole query set, which allows the probability normalization theoretically effective
when the actual testing set is not uniform. Detailed discussion is further provided in Appendix.A.

2.3 MARGIN-BASED UNCERTAINTY WEIGHTING

We propose to assign each unlabeled sample with a loss weight λ(p) associated with its possibility of
being a wrong prediction, which equally turns Eq. 8 into:

p(i) =
1

Nq

Nq∑
j

λ(p)p(i|j) (10)

By compressing the utilization of possibly wrong predictions using λ(p(i|j)), a more balanced
marginal probability is obtained from weighted testing data.

The maximum of probabilities pmax referred as confidence (Guo et al., 2017) is used to assign the
predicted class. In semi-supervised learning (Iscen et al., 2019), entropy-based per-sample loss
weight is used as:
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λ(p) = 1− e(p) (11)

And e(p) refers to the normalized entropy:

e(p) = −
∑c

i (pi log pi)

log c
(12)

where
∑c

i pi = 1,p = [p1, p2, ...pc] and c is the number of classes. e(p) is normalized to [0, 1] as
the entropy

∑c
i (pi log pi) is scaled by its maximum value log c. Entropy on p(y|x) quantifies the

uncertainty of probabilities, and larger uncertainty generally refers to a lower confidence level the
sample carries towards its class prediction. However, when diving into Eq. 12, we discover that
the uncertainty on the whole probability distribution may not be ideal to distinguish whether the
predictions are wrong.
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Figure 3: A 3-class Illustration on Uncertainty
Scores computed by Margin-based entropy and en-
tropy. We plot the values of uncertainty scores
according to confidence and margin. Colors rep-
resent uncertainty scores referred as the colorbar
attached. Entropy assigns lower uncertainty scores
over the minimum margin area (lighter red) which
is opposite with the margin information. Margin-
based entropy assigns higher uncertainty scores
(darker red) over the low confidence (0.4 - 0.5) and
small margin areas. Margin-based entropy applies
the uncertainty scores consistent with margin: in-
creasing the uncertainty score of p = [0.6, 0.4, 0]
(0.2 margin) from 0.61 to 0.98 and decreasing the
uncertainty score of p = [0.6, 0.2, 0.2] (0.4 mar-
gin) from 0.86 to 0.81.

Intuitively, wrong predictions are more likely to
be made when the model produces similar proba-
bilities between two classes. In other words, the
margin between the maximum and second max-
imum probability ∆p can largely reflect how
"uncertain" (low margin) or "certain" (large mar-
gin) an example is with its prediction (Scheffer
et al., 2001).

When pmax is fixed, margin ∆p is in the
range of: min(∆p) = pmax − (1 − pmax),
max(∆p) = pmax − 1−pmax

c−1 . For max(∆p),
the entropy is:

emax(∆p) = emin(∆p) +
(1− pmax) log(c− 1)

log c
(13)

As (1−pmax) log(c−1)
log c is non-negative, Eq. 13 re-

veals that samples with largest margin max(∆p)
carry larger entropy-based uncertainty scores
than samples with min(∆p), which is contra-
dictory to the information implied by the mar-
gin.

To solve this contradiction, we address the im-
portance of only using top-2 probabilities in
Eq. 12. The maximum and second maximum
probabilities are first normalized to satisfy the
requirement of

∑c
i pi = 1 in Eq. 12 and further

used in Eq. 14. This simple modification can
unify the information carried by both confidence, margin and entropy. The margin-based uncertainty
is defined as:

ê(p) =
−1

log 2
[pmax log pmax + (pmax −∆p) log(pmax −∆p)] (14)

When margin ∆̂p is fixed, ê(p) is non-decreasing with confidence pc; when confidence pc is fixed,
margin ê(p) is as well non-decreasing with ∆̂p. In doing so, the margin-based entropy score could
consistently reflect the confidence level max(p) as well as the margin ∆p, as shown in Fig. 3.
By focusing on the uncertainty delivered by the margin in p, it achieves stronger compression
on utilization of wrong predictions compared with entropy-based loss weights, which is furthered
illustrated in Appendix.D.
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Method CN MW ILSVRC Omni Acraft Birds DTD QDraw Fungi Flower Sign COCO
58.57 68.13 53.32 76.55 74.38 77.68 44.34 89.11 49.61 56.4

F 59.96 78.7 72.32 78.30 76.96 86.04 47.51 91.95 76.39 57.32
TF 59.19 73.71 57.56 77.53 75.63 80.83 48.18 90.14 60.42 58.82
TF ✓ 59.63 74.58 56.45 76.07 75.92 81.4 46.04 91.26 62.21 59.17
TF ✓ 61.49 81.64 68.88 80.23 78.55 85.2 50.72 92.67 73.96 60.09
TF ✓ ✓ 62.18 83.78 70.9 81.25 79.15 86.85 51.17 93.3 78.23 62.46

Table 1: Ablation studies using ResNet18. Results are reported using average of 600 episodes.
The first row corresponds to the performance of the Proto-classifier. fine-tuning (F) the backbone
is firstly evaluated. Transductive Finetune (TF), Margin-based Uncertainty Weighting (MW) and
Class-balanced Normalization (CN) separately or combined are verified. TF with MW and CN
achieves the best results in the ablation study.

3 EXPERIMENTAL VALIDATION

In this section, we first conduct comprehensive ablation experiments to verify the effectiveness of
Margin-based Uncertainty Weighting and Class-balanced Normalization and address the essential
role of transductive fine-tuning for extreme few-shot cases compared with purely fine-tuning. Further
we evaluate and compare our results with the other latest techniques on Meta-Dataset (Triantafillou
et al., 2019) Imagenet-only and All-datasets evaluations.

3.1 IMPLEMENTATION DETAILS

A Briefing on Datasets. We evaluate our method on Meta-Dataset (Triantafillou et al., 2019), which
is so far the most comprehensive benchmark for few-shot learning composed of multiple existing
datasets in different domains. More specifically, there are two evaluation protocols in Meta-Dataset.
The in-distribution evaluation, also referred as All-datasets evaluation, allows using available training
sets from 8 of 10 datasets and the out-of-distribution evaluation, referred as Imagenet-only evaluation,
allows only using the training set from ILSVRC-2012 (Russakovsky et al., 2015b).

Pre-training the Backbone: Choice of the Network and Training Setting. For Imagenet-only
evaluation, the ILSVRC-2012 (Russakovsky et al., 2015a) in Meta-Dataset is splitted into 712
training, 158 validation and 130 test classes. We use the training set of 712 classes to train two feature
extractors with backbones: ResNet18 and ResNet34. For All-Datasets evaluation, Traffic-sign and
MSCOCO are excluded from training and the training sets from the other datasets in Meta-Dataset
are used in (pre)-training the feature extractor. We use the same ResNet18 in (Li et al., 2021; 2022)
as the feature extractor for All-Datasets evaluation. For ResNet18, we follow the same protocol in
Meta-Baseline (Chen et al., 2020), which is: the images are randomly resized cropped to 128x128,
horizontal flipped and normalized. For ResNet34, we follow the same structure modification in
(Doersch et al., 2020) which uses stride 1 and dilated convolution for the last residual block and the
input image size is 224x224. For the training of feature extractors, we use the same setting: the initial
learning rate is set to 0.1 with 1e-4 weight decay and decreases by a factor of 0.1 every 30 epochs
with total 90 epochs. Both models are trained using the SGD optimizer with batch size 256.

Setting of Evaluation and Fine-tuning: The general evaluation on Meta-Dataset utilizes a flexible
sampling of episodes (Triantafillou et al., 2019), which allows a maximum of 500 images in the
support set in one episode. Data argumentation works as resizing and center cropping images to
128x128 (ResNet18) and 224x224 (ResNet34) followed by normalization. We follow the same fine-
tuning setting in (Dhillon et al., 2019; Tao et al., 2022): learning rate of 5e-5, Adam optimizer and 25
total epochs. We follow the same metrics in meta-Baseline (Chen et al., 2020): for fine-tuning on the
(Meta-)test set, features and class prototypes are under normalization for the softmax cross-entropy
loss. The temperature in the loss function is initialized to 10. Experiments of fine-tuning run on 1
P6000 GPU. For All-Datasets evaluation, we evaluate our method upon the latest technique TSA (Li
et al., 2022) and follow the same fine-tuning setting with adadelta but only extending the iterations
from 40 to 60. We explain some abbreviations used in this section. Proto-classifier refers to purely
evaluating the (pre-)trained feature extractor with average feature initialized classifier, which is the
same evaluation in (Chen et al., 2020). Finetune refers to only using the support set to finetune the
(pre-)trained feature extractor. TF-MC refers to our methods.
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Method Model ILSVRC Omni Acraft Birds DTD QDraw Fungi Flower Sign COCO
fo-P-M – 49.5 ± 1.1 60.0 ± 1.4 53.1 ± 1.0 68.8 ± 1.0 66.6 ± 0.8 49.0 ± 1.1 39.7 ± 1.1 85.3 ± 0.8 47.1 ± 1.1 41.0 ± 1.1(Triantafillou et al., 2019)
BOHB – 51.9 ± 1.1 67.6 ± 1.2 54.1 ± 0.9 70.7 ± 0.9 68.3 ± 0.8 50.3 ± 1.0 41.4 ± 1.1 87.3 ± 0.6 51.8 ± 1.0 48.0 ± 1.0(Saikia et al., 2020)

LR R-18 60.1 64.9 63.1 77.7 78.6 62.5 47.1 91.6 77.5 57.0(Tian et al., 2020)
Meta-B R-18 59.2 69.1 54.1 77.3 76.0 57.3 45.4 89.6 66.2 55.7(Chen et al., 2020)
CNAPS R-18 54.8 62.0 49.2 66.5 71.6 56.6 37.5 82.1 63.1 45.8(Bateni et al., 2022)

DCM-SS R-34 64.6 81.8 79.7 85.0 77.9 87.1 49.3 93.2 88.7 57.7(Tao et al., 2022)
CTX R-34 62.7 ± 1.0 82.2 ± 1.0 79.5 ± 0.9 80.6 ± 0.9 75.6 ± 0.6 72.7 ± 0.8 51.6 ± 1.1 95.3 ± 0.4 82.6 ± 0.8 59.9 ± 1.0(Doersch et al., 2020)
TSA R-34 63.7 ± 1.0 82.6 ± 1.1 80.1 ± 1.0 83.4 ± 0.8 79.6 ± 0.7 71.0 ± 0.8 51.4 ± 1.2 94.1 ± 0.5 81.7 ± 1.0 61.7 ± 1.0(Li et al., 2022)

T-CNAPS R-18 54.1 ± 1.1 62.9 ± 1.3 48.4 ± 0.9 67.3 ± 0.9 72.5 ± 0.7 58.0 ± 1.0 37.7 ± 1.1 82.8 ± 0.8 61.8 ± 1.1 45.8 ± 1.0(Bateni et al., 2022)
T-F WR-28 60.5 82.0 72.4 82.1 80.5 57.4 47.7 92.0 64.4 42.9(Dhillon et al., 2019)

TF-MC R-18 62.2 ± 1.1 83.8 ± 1.1 70.9 ± 0.9 81.3 ± 0.8 79.2 ± 0.6 86.9 ± 0.6 51.2 ± 1.0 93.3 ± 0.4 78.2 ± 1.0 62.5 ± 0.9
TF-MC R-34 66.4 ± 1.0 87.5 ± 0.8 80.3 ± 0.9 87.4 ± 0.6 81.9 ± 0.6 87.3 ± 0.4 54.9 ± 0.9 94.8± 0.4 89.2 ± 0.9 61.5 ± 0.9

Table 2: Results on Imagenet-only evaluation of Meta-Dataset. We provide the statistical results with
95% confidence interval over 600 episodes. We provide the statistical results of over 600 episodes.
TF-MC brings consistent performance improvements over all ten datasets compared with recent
works.

3.2 ABLATION STUDIES

All of our ablation results are based on Imagenet-only evaluation in Meta-Dataset, which only using
the ilsvrc-2012 training set to pre-train the feature extractor ResNet-18.

Margin-based uncertainty Weighting (MW) out-performs the entropy-based weights
by a large margin and shows domain-agnostic performance boosts over all datasets.
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Figure 4: Weights with Top-k Prob.
MW (Top-2) outperforms entropy-based
weights (All) with a large margin. Re-
sults are averaged accuracy among
datasets with 600 episodes for each
dataset.

We first conduct ablations to compare MW with entropy-
based weights. As shown in Fig. 4, using MW offers
an absolute advantage of around 6% performance gain
over equally weighting unlabeled samples (i.e., without
using MW). Moreover, reducing the number of top-k prob-
abilities used in entropy computation improves the per-
formance comparing with entropy-based weights (All),
where MW (top-2) achieves the most improvement. The
results further support the importance of addressing top-2
probabilities to distinguish wrong and correct predictions
as illustrated in Sec. 2.3. In Table. 1, adding MW with
TF helps to make up for the performance loss using TF.
Comparing with only TF, adding MW brings performance
boosts from 1.27% on MSCOCO to 13.54% on Traffic
sign. Meanwhile, TF with MW surpasses fine-tuning over
7 out of 10 datasets with performance margins from 0.72%
on VGG-flower to 3.21% on Fungi. This demonstrates
the importance of down weighting samples with wrong

prediction during transductive fine-tuning. The consistent performance gains demonstrate the robust
domain generalization of transductive fine-tuning with MW.

Class-balanced Normalization (CN) effectively improves Transductive finetuning w/o MW.
We evaluate adding CN with TF w/o MW. As shown in Table. 1, comparing with TF, adding
CN improves performance over 7 datasets from 0.29% on DTD to 1.79% on Traffic sign with an
average improvement of 0.77%. And further by adding CN on TF with MW, CN brings consistent
performance improvements over 10 datasets from 0.45% on Fungi to 4.27% on Traffic sign. By
firstly down weighting samples with possibly wrong predictions using MW would manifest the effect
of CN further. We also provide thorough ablations to verify that CN generalizes well under different
testing scenarios in Appendix.

TF-MC improves transductive fine-tuning with a large margin. As we illustrate in Sec. 2.2,
directly and equally optimizing the predicted probabilities of all query samples will further deteriorate
the class imbalance issue, and this is reflected as the performance drop on 8 datasets using TF
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Dataset SUR URT FLUTE URL TriM S-CNAPS TSA T-CNAPS TF-MC
ILSVRC 56.1 ± 1.1 55.7±1.0 51.8±1.1 57.5 ± 1.1 58.6 ± 1.0 56.5 ± 1.1 57.4 ± 1.1 57.9 ± 1.1 59.2 ± 1.0

Omni 93.1 ± 0.5 94.4±0.4 93.2±0.5 94.5 ± 0.4 92.0 ± 0.6 91.9 ± 0.6 94.9 ± 0.4 94.3 ± 0.4 95.8 ± 0.3
Acraft 84.6 ± 0.7 85.8±0.6 87.2±0.5 88.6 ± 0.5 82.8 ± 0.7 83.8 ± 0.6 89.3 ± 0.4 84.7 ± 0.5 89.7 ± 0.5
Birds 70.6 ± 1.0 76.3±0.8 79.2±0.8 80.5 ± 0.7 75.3± 0.8 76.1 ± 0.9 81.4 ± 0.7 78.8 ± 0.7 81.8 ± 0.7
DTD 71.0 ± 0.8 71.8±0.7 68.8±0.8 76.2 ± 0.7 71.2± 0.8 70.0 ± 0.8 76.8 ± 0.7 66.2 ± 0.8 77.0 ± 0.7

QDraw 81.3 ± 0.6 82.5±0.6 79.5±0.7 81.9 ± 0.6 77.3± 0.7 78.3 ±0.7 82.0 ± 0.6 77.9 ± 0.6 82.7 ± 0.6
Fungi 64.2 ± 1.1 63.5 ±1.0 58.1±1.1 68.1 ± 1.0 48.5±1.0 49.1 ±1.2 67.4±1.0 48.9 ± 1.2 67.9 ± 1.0
Flower 82.8 ± 0.8 88.2 ± 0.6 91.6±0.6 92.1 ± 0.5 90.5 ± 0.5 91.3 ±0.6 92.2±0.5 92.3 ± 0.4 93.9 ± 0.4
Sign 51.0 ± 1.1 48.2±1.1 58.4±1.1 63.3 ± 1.1 58.4 ± 1.1 63.0 ± 1.0 82.8 ±1.0 59.7 ± 1.1 84.5 ± 1.0

COCO 50.1 ± 1.0 52.2±1.1 50.0 ±1.0 54.0 ± 1.0 52.8 ± 1.1 42.4 ± 1.1 55.8±1.1 42.5 ± 1.1 56.2 ± 1.1
MNIST 94.3 ± 0.4 90.6 ± 0.5 96.2 ± 0.3 94.7 ± 0.4 95.6 ± 0.5 94.6 ± 0.4 96.7 ± 0.4 94.7 ± 0.3 96.8 ± 0.2

CIFAR10 66.5 ± 0.9 67.0 ± 0.8 75.4 ± 0.8 72.4 ± 0.8 78.6 ± 0.7 74.9 ± 0.7 82.9 ± 0.7 73.6 ± 0.7 82.6 ± 0.8
CIFAR100 56.9 ± 1.1 57.3 ±1.0 62.0 ± 1.0 63.5 ± 1.0 67.1 ± 1.0 61.3 ± 1.1 70.4 ± 0.9 61.8 ± 1.0 71.6 ± 0.9

Table 3: Results on All-datasets evaluation of Meta-Dataset. We provide the statistical results with
95% confidence interval over 600 episodes. TF-MC achieves the state-of-the-art performance on 9
out of 10 datasets.

compared with fine-tuning. TF with MW essentially makes up for the tremendous performance loss
of direct TF, and further adding CN brings consistent performance improvement.

Compared with fine-tuning, TF-MC overall boosts performance in few-shot cases, and its win
over fine-tuning is addressed under extreme few-shot cases. As shown in Table. 1, fine-tuning the
feature extractor with the support set retains good domain generalization and improves performance
by a large margin over all ten datasets. TF-MC can further boost the performance over 9 out of 10
datasets from 0.81% on Quickdraw to 5.14% on MSCOCO. We also conduct experiments to compare
performance under a different number of images for each class in the support set. In Fig. 5, for a
1-shot case where fine-tuning drops performance by around 5%, TF-MC makes up for the extreme
lack of training samples and boosts performance over 10% compared with fine-tuning. Moreover,
TF-MC also shows more considerable performance improvement compared with purely fine-tuning.
This demonstrates the effectiveness and practical importance of transductive learning in few-shot
classification.

3.3 COMPARING WITH STATE-OF-THE-ART

We report our results under different backbone models and provide a comparison over other pop-
ular methods in Table. 2 for Imagenet-only evaluation and Table. 3 for All-datasets evaluation.
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0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Proto-Classifier

Finetune

TF-MC

Figure 5: N-shot Analysis. Results are
averaged accuracy over datasets with
600 episodes. TF-MC boosts perfor-
mance where fine-tuning leads to sig-
nificant performance drop especially for
1-shot case.

We achieve the state-of-the-art performance on Meta-
Dataset evaluation with an Imagenet-only setting. Re-
sults of TF-MC on ResNet18 and ResNet34 show that
with a more powerful (pre-)trained feature extractor, the
performance of transductive fine-tuning is expected to
be boosted. Compared with other transductive methods
(Bateni et al., 2022; Dhillon et al., 2019), the perfor-
mance of TF-MC over all ten datasets gains consistent
improvement by a large margin. TF-MC with ResNet18
surpasses (Bateni et al., 2022) using the same backbone
and gets better results over 7 datasets compared with
(Dhillon et al., 2019) using a larger backbone. TF-MC
also beats (Doersch et al., 2020) with ResNet34, a well
designed meta-learning inductive method. The perfor-
mance gain of TF-MC over the first proposed transductive
fine-tuning(Dhillon et al., 2019) implies the importance of
reducing the issue of class-imbalanced predictions when
utilizing the testing set.

Meanwhile, to further evaluate the potential of TF-MC and have a border comparison, we also
benchmark our method on All-datasets evaluation by simply using TF-MC with TSA Li et al. (2022).
Comparing with TSA Li et al. (2022), TF-MC improves performance over all 8 in-distribution
datasets (0.82% average margin), 4 out of 5 out-of-distribution datasets, which demonstrates that
TF-MC could be built on the latest technique of domain-specific adapters (Li et al., 2022)in FSL.
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Meanwhile, TF-MC outperforms the other transductive method (Bateni et al., 2022) with a large
margin and achieves state-of-the-art on 7 in-distribution datasets and 4 out-of-distribution datasets.

With TF-MC, using ResNet34 trained on Imagenet-only surpasses the performance of a ResNet18
trained with training sets from all datasets on 7 out of 10 datasets. With a domain-generalized method
like TF-MC, obtaining a more powerful backbone could potentially improve performance compared
with extending the training datasets. We hope this discussion could be beneficial for TF-MC in real
applications.

4 RELATED WORK

Transductive Few-Shot Learning: Transductive few-shot learning uses the unlabeled query set
(testing images) along the support set (training images) to make up for the lack of training data.
(Nichol et al., 2018) made the attempt of updating parameters of batch normalization layers using
unlabelled query samples. (Liu et al., 2018) proposes to propagate labels for unseen classes through
episodic meta-learning and (Bateni et al., 2022) presents the label refinement with a Mahalanobis-
distance based classifier. (Boudiaf et al., 2020) designs a loss to encourage the marginal distribution
of query set to be uniform and pseudo-labels are directly used without compressing the possibly
wrong predictions. (Hu et al., 2021) uses Optimal Transport Algorithm for pseudo label mapping with
entropy minimization of OTA-based mapping, which implicitly forces the testing marginal probability
to be uniform. (Lichtenstein et al., 2020) computes a linear projection space on features for each task
when utilizing the query set, which focuses on different directions with TF-MC. (Boudiaf et al., 2020;
Hu et al., 2021) enforce the testing distribution to be uniform and don’t propose to compress the
utilization of possibly wrong predictions. In (Dhillon et al., 2019), a transductive framework is firstly
proposed to involve the testing images (query set) during fine-tuning. (Dhillon et al., 2019) builds
the classification upon predicted logits other than directly on features. In contrast, we benchmark
the result of transductive fine-tuning directly on features and further propose methods that focus on
reducing the class imbalance in predictions. It is worth noticing that previous works on transductive
few-shot learning directly use the class-imbalanced predictions and ignore compressing the utilization
of possibly wrong predictions.

Semi-supervised Learning: Semi-supervised learning (SSL) is designed to introduce extra unla-
belled data into training set, which is different from the transductive methods that utilize the unlabeled
testing samples. Suppressing the influence of possible wrong predictions is as well an important task
in SSL. There are methods like assigning per-sample loss weights using entropy-measured probability
uncertainty (Iscen et al., 2019) and selecting samples with a strictly high confidence threshold (Sohn
et al., 2020). We compare our margin-based uncertainty weighting with entropy-based weighting
thoroughly in Sec. 2. And as shown in Appendix, the average confidence of correct predictions is only
0.4 empirically in FSL. Few-shot learning limits testing samples to have a very high confidence and
the performance for different datasets varies which makes the handcraft high-confidence threshold
inapplicable in this case.

Distribution Alignment and Confidence Calibration: Confidence calibration proposed in (Guo
et al., 2017) targets at post-processing to calibrate the overall confidence distribution matching
with the true correctness likelihood. Our work mainly address the class-wise imbalance issue on
predictions and propose Class-balanced Normalization to adjust probabilities for each testing sample
on the fly during fine-tuning. Distribution Alignment (DA) in (Berthelot et al., 2019) is designed
to match the predicted marginal distribution of unlabeled data with the marginal distribution of
labeled groundtruth. We provide thorough comparsion with DA in Appendix. Class alternating
normalization (Jia et al., 2021) proposes the alternation normalization to normalize the probability
for un-confident samples with the prior distribution of confident samples through multiple iterations
in the post-training stage.

5 CONCLUSION

In this work, we design the simple yet effective TF-MC by focusing on solving the issue of class-
imbalanced predictions in few-shot classification and we hope the strong performance of TF-MC
would encourage more practical usages of testing-time finetuning in real-world few-shot applications.
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