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Abstract

AlphaZero, a deep reinforcement learning algorithm, has achieved superhuman
performance in complex games like Chess and Go. However, its strategic planning
ability beyond winning games remains unclear. We investigated this using 4-in-
a-row, a game used to study human planning. We analyzed AlphaZero’s feature
learning and puzzle-solving abilities. Despite strong gameplay, AlphaZero exhib-
ited a 93% failure rate in puzzles. Our feature analysis showed that its self-learned
strategies during training lacked certain critical human-like features. We added
human-inspired cognitive value function into its policy and value outputs, leading
to a 15% improvement in puzzle-solving accuracy. Our findings highlight the
potential for human insights to enhance AI’s strategic planning beyond self-play.

1 Introduction

AlphaZero has demonstrated remarkable proficiency in mastering complex games such as Chess
and Go, achieving superhuman performance through self-play [Silver et al., 2017, 2018]. Despite
its success, an important question remains: what exactly does it learn through self-play, and are
there limitations in its planning strategy? Planning, defined as the ability to anticipate and simulate
future actions and states, is a cornerstone of human intelligence, allowing us to navigate dynamic
and uncertain environments [Baker et al., 2017, Gershman et al., 2015]. However, many AI models,
including Large Language Models, often struggle to plan when faced with tasks that humans can easily
solve. [Valmeekam et al., 2022]. Similarly, traditional reinforcement learning models often overfit to
the specific environments in which they are trained, which restricts their capacity to generalize their
planning abilities across domains. Understanding the differences between human and AI planning
is critical for advancing AI systems that can plan flexibly and adaptively in real-world scenarios.
The full scope of these differences remains poorly understood, underscoring the need for deeper
investigations into the cognitive mechanisms underpinning AI and human planning [Griffiths et al.,
2019, Lake et al., 2017].

To bridge this gap and deepen our understanding of AI planning mechanisms, we turn to the game
of 4-in-a-row, a well-established task for studying human planning [van Opheusden et al., 2023].
By training AlphaZero on 4-in-a-row and comparing its performance to that of a validated human
cognitive model[van Opheusden et al., 2023], we aim to explore the underlying processes driving
AlphaZero’s feature learning and strategic planning ability.
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2 Methods

2.1 Task

4-in-a-row is a two-player game where players take turns dropping black and white pieces into
a vertical grid. The objective is to connect four of one’s own pieces horizontally, vertically, or
diagonally before the opponent does. The intermediate complexity of 4-in-a-row, with a state space
complexity of 1.2× 1016, provides an ideal middle ground between complexity and computational
tractability. It is sufficiently difficult for AlphaZero to learn, yet manageable enough to facilitate
meaningful comparisons between AlphaZero’s planning and human planning.

Figure 1: An example of a 4-in-a-row game board. The grid consists of six rows and seven columns.

2.2 AlphaZero Implementation

We implemented AlphaZero using a deep neural network architecture combined with Monte Carlo
Tree Search (MCTS) [Silver et al., 2017, 2018]. All agents were trained using high-performance
computing (HPC) resources. For each agent, we use an HPC node equipped with 64GB of memory
and 8 CPUs for the training process. The models were trained over a period of 5 days.

The agents were trained through self-play, where it generated its own training data by playing 100
games per training iteration. Each training example contains a tuple of (board positions s, MCTS
output π(s, a), game outcome r). The DNN outputs (p, v) are trained to match the game result r
under a mean-squared error loss and the action probabilities π under a cross-entropy loss, with L2

weight regularization. The DNN parameters are optimized by the Adam Optimizer, using the training
examples from the last 20 iterations, in mini-batches of 64 examples. During each training iteration,
the DNN is trained for 10 epochs. The updated network will play 30 games against the current best
network. If the updated network can win more games than it loses, it will be accepted and become
the new current best network for data generation and network comparison. For details on training and
hyperparameter choices, please refer to [Zheng et al., 2022].

2.3 Playing Strength

We established a human performance benchmark to assess AlphaZero’s playing strength. We ran
a tournament in which the strongest human player we could find played four games against eight
selected agents. The top eight agents trained via self-play consistently surpassed the most skilled
human player’s Elo rating [Elo, 1978], with a mean Elo difference of 90.4 (SD = 17.7). This
demonstrates AlphaZero’s effectiveness in winning games against human-level opponents. For a
comprehensive comparison between agent playing strength and human benchmarks, please refer to
[Zheng et al., 2022].

2.4 Puzzles

To evaluate AlphaZero’s problem-solving ability, we designed a set of 30 puzzles derived from 4-in-
a-row game states. Each puzzle presents a scenario where there is a forced win for the current player
within five moves. Solving these puzzles requires constructing sequential threats and anticipating the
opponent’s responses, thus testing the agent’s strategic planning and sequential reasoning.

3 Results

We investigated AlphaZero’s planning ability in 4-in-a-row, focusing on two key questions: (1) Can
AlphaZero acquire features similar to humans? (2) Can we leverage human insights to improve its
performance?
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3.0.1 Probing for Human-Used Features

To understand how AlphaZero became proficient at winning games, we employed feature probing
techniques similar to concept activation vectors [Kim et al., 2018]. This approach allowed us to detect
features used by human players, such as “3-in-a-row” and “2-in-a-row” configurations, identified
by van Opheusden et al. [2023]. We trained classifiers using activations from specific layers of the
neural network during training to predict the presence of these human-used features.

Our analysis revealed that the network acquired the crucial “3-in-a-row” feature in both the value
head and intermediate layers, even without exposure to human-generated data (Figure 2). However,
the “2-in-a-row” feature was not prominently represented in the network. This suggests potential
limitations in AlphaZero’s ability to learn the full spectrum of strategic features used by humans.

Figure 2: Feature Probing Analysis: Detection of “3-in-a-row” (left) versus “2-in-a-row” (right).
Activations from the value head and an intermediate layer show learning of the “3-in-a-row” feature.
Control inputs are included for reference.

3.0.2 Unsupervised Feature Representation

To further explore what AlphaZero learned through self-play without predefined concepts, we applied
a well-established method, Nonnegative Matrix Factorization (NMF), to extract and visualize latent
features from hidden layers [Lee & Seung, 2000, McGrath et al., 2022]. We concatenated activations
from 14,907 random game states into a matrix and approximated it as the product of weight and
feature matrices, minimizing reconstruction error. The resulting factors provided insights into the
network’s understanding of the game by highlighting important activation patterns.

NMF analysis revealed interpretable factors in the network’s intermediate layers, even though
AlphaZero was never exposed to human data. (Figure 3). These factors captured diagonal, vertical,
and horizontal patterns, suggesting AlphaZero’s ability to represent various game-relevant features
that are interpretable to humans.

Figure 3: Visualization of NMF for selected factors. Panels show features captured by different
residual blocks: diagonals, verticals, and horizontals.
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3.1 Puzzle Testing

Despite its strong playing strength, AlphaZero showed a surprising 93% failure rate in finding the
best move to solve the puzzles. These puzzles required constructing a logical sequence of moves to
force a win within a limited number of turns. In some instances, the agent displayed overly defensive
play, neglecting opportunities to build offensive threats (Figure 4a). This observation suggests a gap
between AlphaZero’s learned strategies and the specific reasoning path used by humans in planning
ahead.

3.2 Incorporating Human-Inspired Features

We hypothesized that incorporating a cognitive value function, as described by [van Opheusden et al.,
2023], with a linear combination of human-used features, could enhance AlphaZero’s puzzle-solving
performance. Specifically, we added this cognitive value function output to both the policy and
value outputs of AlphaZero network, leveraging features not typically captured in AlphaZero’s self-
learned heuristics and strategy, such as the "2-in-a-row" and "unconnected-2-in-a-row" configurations.
This augmentation of the value and policy predictions led to a 15% improvement in puzzle-solving
accuracy (Figure 4b). We observed that Cognitive Models demonstrated the highest performance with
an accuracy of 0.28± 0.03. In contrast, AlphaZero Agents exhibited substantially lower accuracy,
achieving 0.08± 0.01. When the cognitive function was incorporated into the Hybrid Agents, their
performance improved to 0.21± 0.03. This finding highlights the potential of incorporating human
cognitive insights to augment AI performance in tasks requiring specific strategic reasoning path,
such as solving puzzles optimally.

(a) An example of AlphaZero’s failure. The solu-
tion is to build a 3-in-a-row thread (highlighted in
blue). (b) Puzzle-solving accuracy comparison.

Figure 4: (a) Unsupervised feature representation and (b) AlphaZero’s failure in puzzle solving.

4 Discussion

This study investigated AlphaZero’s strategic planning in 4-in-a-row, offering insights into its potential
limitations. Our analysis revealed a duality: while AlphaZero successfully learned certain human-
interpretable features, such as 3-in-a-row patterns, it struggled to fully capture the breadth of features
employed by humans. Despite having very strong heuristics for winning games, AlphaZero’s feature
learning appears incomplete when compared tothat of humans, as evidenced by the absence of
features like 2-in-a-row in its learned representations.

Despite achieving superhuman playing strength, AlphaZero struggled with puzzles requiring a logical
sequence of reasoning [Steingrimsson, 2021].These results point to a fundamental limitation in
AlphaZero’s self-play training regime: it excels at winning games but falls short in tasks requiring
strategic, human-like planning. Notably, AlphaZero is not optimized for winning games in the shortest
way possible. As long as it secures a victory, the efficiency of the path taken is of little consequence.
Therefore, it is perhaps less surprising that AlphaZero’s performance declines in scenarios where the
shortest, most logical sequence is crucial.

By incorporating human-inspired features into AlphaZero’s policy and value estimations, we observed
an improvement in puzzle-solving accuracy, demonstrating that human cognitive insights can be
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leveraged to enhance AI performance in tasks requiring sophisticated strategic reasoning. This
improvement underscores the value of blending human intuition with AI learning models, suggesting
that hybrid approaches could help address some of the gaps in AI planning capabilities.

However, there are limitations to this approach that warrant further investigation. While introducing
human-inspired value function led to measurable gains in performance, it raises questions about the
generalizability of these improvements. AlphaZero’s enhanced performance may be specific to the
puzzles tested, and those puzzles represent a narrow set of highly structured scenarios.

5 Conclusion

Our work demonstrates that while AlphaZero excels in gameplay through self-play, it may not fully
acquire the nuanced of strategic planning used by humans. Incorporating human-inspired value
function can bridge this gap, improving the agent’s ability to solve complex puzzles requiring logical
sequence reasoning. This approach underscores the value of combining human cognitive insights
with AI learning methods to enhance performance in tasks that mirror human strategic thinking.
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