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ABSTRACT

Learning directed causal graphs from time-series data poses significant chal-
lenges, especially in fMRI where slow sampling rate obscures fast neural inter-
actions. This temporal mismatch leads to undersampling, which can make mul-
tiple graphs equally plausible. We address this problem by explicitly modeling
undersampling effects when recovering causal graphs. Our approach employs
answer set programming (ASP) to enforce domain-specific constraints and op-
timize soft observational constraints, thereby identifying a Markov equivalence
class for the resulting graph solutions. By customizing an ASP solver to collect
multiple near-optimal solutions, we obtain not only the single best-fitting graph
but an equivalence class of high-scoring graphs for expert consideration. This
method, called Real-world noisy RASL (RnR), can also act as a meta-solver: it
refines the output of other causal discovery algorithms by accounting for under-
sampling biases. In simulations and empirical brain network data, RnR produces
more accurate causal graphs than state-of-the-art methods, improving F1-scores
by an average of 12% by reducing false connections. We demonstrate that RnR
is robust to varying undersampling rates – maintaining high precision and recall
even as sampling becomes sparser – whereas competing methods degrade signif-
icantly. Our results suggest that incorporating undersampling-aware constraints
via ASP yields more reliable and interpretable brain connectivity estimates from
fMRI time series, bridging the gap between neural dynamics and observational
data.

1 INTRODUCTION

Causal inference from functional Magnetic Resonance Imaging (fMRI) data has emerged as a crit-
ical endeavor to understand the neural mechanisms underlying cognitive processes and behaviors.
Researchers not only seek to identify active brain regions during tasks, but also unravel the causal
relationships between these regions, often referred to as ”effective connectivity” (Friston, 1994).
Graphical causal models, such as causal Bayesian networks, have become a popular framework for
this purpose, combining directed graphs with joint probability distributions to model the depen-
dencies between different brain regions (Pearl, 2009). These models adhere to the Causal Markov
Condition, which asserts that each node in a causal graph is conditionally independent of its non-
descendants given its parents (Spirtes et al., 2001).

However, applying these models to fMRI data is fraught with challenges, particularly due to the
mismatch between the temporal resolution of fMRI and the rapid timescale of neural processes.
Typical sampling intervals in fMRI, ranging from one to three seconds, are much slower than the
millisecond-level interactions between neurons, leading to significant undersampling (Valdes-Sosa
et al., 2011). This undersampling often results in multiple causal graphs being statistically indis-
tinguishable given observed data, forming what is known as a Markov Equivalence Class (Pearl,
2009; Spirtes et al., 2001). These problems are exacerbated by the indirect nature of the Blood-
Oxygen-Level Dependent (BOLD)1 signal, which reflects neural activity through complex and vari-
able hemodynamic responses (Handwerker et al., 2004).

1BOLD signal is the measurement obtained from fMRI that reflects changes in blood oxygenation related
to neural activity. When neurons fire, blood flow to that region changes; fMRI captures these changes at a slow
timescale (on the order of 1–2 seconds per sample). Importantly, the BOLD signal is an indirect and delayed
proxy of neural firing.
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Figure 1: Top left(A): Size of optimization solu-
tion set across different undersamplings, repeated
100 times. Bottom right(B): Commission error of
the solution vs. optimization cost for that solution.
Solutions in one equivalent class are highlighted in
red.

In addition, the inherent variability in the
hemodynamic response across different brain
regions and subjects, adds another layer of
complexity. Variations in the time-to-peak of
the BOLD response can lead to incorrect in-
ferences about the direction of causality, par-
ticularly when using methods like Granger
causality, which assumes a fixed temporal re-
lationship between cause and effect (David
et al., 2008; Seth et al., 2013). Although some
studies suggest that Granger causality may be
robust to certain variations in the hemody-
namic response (Seth et al., 2013), the com-
bination of measurement noise, undersam-
pling, and hemodynamic variability often un-
dermines the reliability of causal inferences
from fMRI data.

In response to these challenges, this paper
proposes a novel approach called RnR that explicitly accounts for the effects of undersampling
in the derivation of causal graphs. By employing constraint optimization through Answer Set Pro-
gramming (ASP), we aim to identify the most probable causal graph from a set of potential candi-
dates. ASP allows for the incorporation of domain-specific knowledge and constraints, facilitating
the identification of not only a single graph but an equivalence class of possible graphs, thereby of-
fering a more comprehensive understanding of the underlying causal structure (Gebser et al., 2012).
We validate our approach using both simulated data and real fMRI data, demonstrating its superi-
ority over existing methods . Our results suggest that ASP offers a powerful new tool for causal
inference in neuroimaging, providing more accurate and intuitive insights into the brain’s functional
architecture.

2 BACKGROUND

We study recovery of the true causal graph G1 from an observed, undersampled measurement graph
H when the sampling rate u is unknown. We first fix notation and core facts, then state the limitation
that motivates our approach.

A directed dynamic causal model extends standard causal models (Pearl et al., 2000; Spirtes et al.,
1993) by adding time: variables V1:n appear at times t, t−1, . . ., and a first-order Markov structure is
assumed so that Vt⊥⊥ Vt−k | Vt−1 for k > 1 (Spirtes et al., 2000). When sampling is slow relative
to neural dynamics, fMRI produces an undersampled graph Gu that can differ from G1 (Danks &
Plis, 2013; Gong et al., 2015). In the compressed representation, an edge i→ j in Gu occurs iff
there is a directed path of length u from i to j in G1; a bidirected edge i↔ j occurs if a common
ancestor reaches both with equal path length < u (Danks & Plis, 2013). This view clarifies which
dependencies are artifacts of rate.

To address the structural implications of undersampling, several approaches have been developed.
For instance, Danks & Plis (2013) explored the problem structurally, while Gong et al. (2015) pro-
vided a parametric approach for two-variable systems.

Dealing with latent confounders, such as those introduced by undersampling, has led to the de-
velopment of various graph representations, including Partially-Observed Ancestral Graphs (PAGs)
(Zhang, 2008) and Maximal Ancestral Graphs (MAGs) (Richardson & Spirtes, 2002). However,
these frameworks often struggle with the complexities introduced by undersampling (Mooij &
Claassen, 2020). Compressed graphs are effective for undersampling: they are 1–1 equivalent to
dynamic ADMGs and allow computing rate effects by path length, and they outperform PAG/MAG-
style formulations under unknown u (Plis et al., 2015; Abavisani et al., 2023).

The Rate-Agnostic Structure Learning (RASL) algorithm (Plis et al., 2015) addressed the challenge
of causal inference from undersampled data by directly tackling undersampling while adopting a
rate-agnostic approach that avoids assumptions about the undersampling rate. RASL was a big leap
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Figure 2: Normalized omission (top) and commission (bottom) errors for edge-breaking experiments
with varying undersampling rates and graph densities, comparing the original approach with our
improved sRASL-based method.

in computational efficiency. It cleverly checked all possible rates and used ”stopping rules” to keep
from re-exploring the same parts of a graph. Its main drawback, however, was that it didn’t scale
well to larger graphs, leaving room for improvement. Building on this foundation, newer approaches
to causal learning have been developed that are far more scalable and efficient.

Building on these foundations, recent advancements in causal structure learning have led to the
development of generalized rate-agnostic approaches that significantly enhance the scalability and
efficiency of these methods. The reformulation of RASL into a constraint satisfaction framework,
expressed using a declarative language, has shown considerable promise by enabling more efficient
analysis of large graphs called Solver-based RASL (sRASL) (Abavisani et al., 2023). By incorpo-
rating constraints from strongly connected components (SCCs)2 this approach offers a scalable and
accurate method for causal inference from undersampled data. It can analyze graphs with over 100
nodes—a significant improvement on earlier methods that struggled with much smaller graphs. The
sRASL method improves solving time 1000-fold while maintaining the same theoretical guarantees
as its predecessors. However, sRASL shows limitations on real-world datasets, as the performance
gains seen in simulations do not fully translate to noisy, practical conditions.

In Sanchez-Romero et al. (2019b), several methods were tested on synthetic BOLD data with feed-
back (e.g., Granger regression, MVAR, FASK, Two-Step). Many reached over 80% orientation
precision and recall, including for 2-cycles. That study, however, did not consider that BOLD is
undersampled. Here we revisit those algorithms under sparse sampling and compare them with an
ASP-based approach (RnR).

The method space has grown (e.g., LiNGAM (Shimizu et al., 2006), EC-GAN (Kim et al., 2021),
amortized transformers (Paul et al., 2022), and RL-style models (Mnih et al., 2016; Salehi et al.,
2021; Pamfil et al., 2020)). For clean comparison and interpretability, we benchmark the widely
used set from Sanchez-Romero et al. (2019b): GIMME (Gates & Molenaar, 2010), MVGC (Barnett
& Seth, 2009), MVAR (Bressler & Seth, 2003), and FASK (Sanchez-Romero et al., 2019a). These
cover group and individual modeling, multivariate dependencies, and non-Gaussian orientation cues.

We then evaluate all methods on undersampled data and against ASP. This isolates robustness to
undersampling. Among baselines, FASK performs well; RnR further improves accuracy by making
undersampling explicit. Detailed results appear in Section 4.2.

3 METHODS

In this section, we present Real-world noisy RASL (RnR)3, our enhanced structure learning frame-
work, tailored for fMRI connectivity analysis. Our method, RnR, builds upon the sRASL framework

2Subsets of nodes in a directed graph where each node is reachable from every other node in the subset. In
other words, an SCC is a “maximal loop” or cluster of nodes with mutual reachability. In our method, we allow
nodes within an SCC to be interlinked (modeling instantaneous or cyclic relationships), but we enforce that the
graph of SCCs (each SCC treated as a single super-node) has no directed cycles, making it a DAG.

3A note on naming: “RASL” stands for Rate-Agnostic Structure Learning, an approach introduced by Plis
et al. (2015) for causal discovery without knowing the true sampling rate. sRASL for structural RASL used
ASP to find a single optimal causal graph consistent with undersampled data Abavisani et al. (2023). Our
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through several key innovations tailored for noisy, undersampled fMRI data. These contributions
include: (1) utilizing custom made Answer Set Programming solver to retrieve all plausible, near-
optimal graphs within a cost threshold instead of a single solution; (2) constraining the optimization
with realistic edge density limits to ensure the resulting graphs are biologically plausible; (3) act-
ing as a meta-solver to refine the outputs of other causal discovery algorithms by systematically
handling undersampling effects; (4) employing a prioritized, multi-stage process that sequentially
matches graph density, resolves links, and orients edges; and (5) applying an adaptive weighting
scheme to the cost function to discourage spurious connections while retaining high-confidence
ones.

3.1 OVERVIEW OF THE SRASL FRAMEWORK

Figure 3: Performance comparison using
Sanchez-Romero’s data with and without the
RASL meta-solver. Applying RASL on top
of traditional methods improves accuracy by
accounting for undersampling effects, with addi-
tional gains achieved by using PCMCI.

The original sRASL framework (Abavisani
et al., 2023) is an ASP-based approach that
takes an initial directed graph H and applies
structural constraints to refine it. We follow
Abavisani et al. (2023) and use Clingo4 for our
implementation. sRASL allows cycles within
strongly connected components (SCCs), but
requires the SCCs themselves to form a Di-
rected Acyclic Graph (DAG). This DAG-over-
SCCs structure prevents latent-level causal cy-
cles. The original sRASL only returned a sin-
gle optimal solution minimizing a cost func-
tion, but this posed limitations. Due to inherent
uncertainty in the case of undersampling, the
solution with the least cost is not necessarily
the correct answer. Therefore, ignoring near-
optimal alternatives in noisy data can be mis-
leading.

3.2 OPTIMIZATION FOR MULTIPLE SOLUTIONS

To address the limitation of single-solution output, we modified Clingo to return all graphs G satis-
fying:

C(G) ≤ C(G∗) + ∆, (1)

where C(G) is the cost of graph G, G∗ is the optimal graph, and ∆ is a small tolerance. We define
the cost function as:

C(G) =
∑
e∈H

w+
e · I[e /∈ G] +

∑
e/∈H

w−
e · I[e ∈ G], (2)

where H is the measurement graph (input), w+
e penalizes removal of edges in H, w−

e penalizes
addition of edges not in H, and I[·] is the indicator function. This yields a manageable set of near-
optimal solutions for downstream selection and interpretation.

3.3 DENSITY CONSTRAINT FOR REALISTIC GRAPHS

Neuroscience knowledge can inform the expected density of functional brain networks. Empirical
studies of brain connectivity (both functional and structural) show that brain graphs tend to be neither
nearly empty nor fully connected; they often have a moderate density (for example, on the order of
10–30% of all possible edges, depending on node definition (Smith et al., 2011). After running
sRASL, we observed that some solutions were unrealistically sparse or dense, likely because the

RnR extends this by considering real-world noise (hence “Real-world noisy RASL”) and retrieving multiple
solutions.

4Clingo is an open-source solver for Answer Set Programming (ASP) that finds solutions (called “answer
sets”) to a given set of logical rules and constraints. In our context, Clingo explores different possible graphs
and identifies those that satisfy all our constraints while optimizing a cost function.
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optimization only cared about matchingH and not an absolute scale of connectivity. To correct this,
we introduce an explicit density constraint in our ASP formulation:

1 countedge1(C):- C = #count { edge1(X, Y): edge1(X, Y), node(X),
node(Y)}.

2 countfull(C):- C = n*n.
3 hypoth_density(D) :- D = 1000*X/Y, countfull(Y), countedge1(X).
4 abs_diff(Diff) :- hypoth_density(D), Diff = |D - d|.
5 :˜ abs_diff(Diff). [Diff@2]

Line 1 − 3 calculates graph density in the present hypothetical solution, and lines 4, 5 measure the
difference from ground truth and penalize when value Diff> 0. This prevents trivial empty or
all-to-all graphs and ensures structural realism based on known brain network densities (which are
reasonably well-estimated and biologically bound).

3.4 PRIORITIZED OPTIMIZATION BY CONNECTION TYPE

To efficiently recover causal graphs under severe noise and undersampling, we adopt a prioritized
multi-stage optimization strategy that decomposes the total cost into structurally meaningful com-
ponents. Our aim is to minimize the overall cost as formulated in Equation 2 to guide acceptance of
approximate solutions satisfying Equation 1. We decompose the total cost as:

C(G) = Cd(G) + Cb(G) + Co(G), (3)

corresponding respectively to penalties on density (edge count), bidirected structure, and edge ori-
entation. More specifically, we use the following stepwise cost minimizations:

min
G∈G

Cd(G) = λd · |density(G)− density(G∗)| (4)

Feasible set F1 : F1 = {G ∈ G | Cd(G) ≤ ϵ1}

min
G∈F1

Cb(G) = λb ·# {bidirected mismatch to G∗} (5)

Feasible set F2 : F2 = {G ∈ F1 | Cb(G) ≤ ϵ2}

min
G∈F1,F2

Cd(G) = λd ·# {directed mismatch to G∗} (6)

where G denote a candidate causal graph, G the space of all possible graphs, G∗ the ground-truth.
ϵ1 and ϵ2 are tolerance parameters. Priority weights λd ≫ λb ≫ λo reflect the order of importance.
This approach constrains the search space in a lexicographic manner: first matching global sparsity,
then resolving stable structural backbones, and finally fine-tuning edge directions.

3.5 ADAPTIVE WEIGHTING SCHEME FOR EDGES

The weights w+
e and w−

e in the cost function (Equation 2) critically influence which edges the solver
prefers to keep or drop. We devise an adaptive weighting scheme based on the intuition that not all
edges in the initial graph H are equally reliable, and similarly not all potential missing edges are
equally implausible. Specifically, we leverage the strength of connection evidence (e.g., correlation
or a statistical score) for each edge to set these weights: For each edge e that is present in the initial
graphH (meaning the first-order method or data proposed this connection), we assign w+

e inversely
proportional to the confidence or strength of e. For example, if e corresponds to a high correlation
or a strong Granger causality score between two regions, we give it a high weight—the ASP solver
will incur a large cost for removing this edge, so it will likely keep it unless necessary. Conversely,
if e was only weakly supported (perhaps a borderline significant link), we set w+

e lower, indicating
that dropping this edge is not heavily penalized. This adaptivity encodes our uncertainty: strong
edges should be trusted more (harder to delete), weak edges can be pruned if they conflict with other
constraints.

5
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For each potential edge e that is absent in H (the initial method found no link), we set w−
e to a

maximum penalty by default, reflecting a strong bias against adding completely new edges unless
absolutely necessary. In other words, we assume H is mostly correct in saying those edges are
absent, so the solver will avoid introducing a new connection e because it would incur a high cost.
However, there is one exception: if we have domain knowledge or secondary evidence that a certain
missing edge might actually exist (e.g., known anatomical connection between those regions), we
could lower w−

e for that edge. In general, though, w−
e is large to favor sparse solutions that do not

introduce unsupported edges.

This weighting strategy was implemented by extracting pairwise correlation magnitudes from the
time-series data for all region pairs. For instance, in our fMRI simulations, we computed the Pearson
correlation for each pair of nodes; if an edge was present in H, we mapped its correlation (or
other score) to a weight in [0,1] range and then scaled it (the exact mapping can be provided in the
Appendix). Edges not in H were given a uniform high weight (effectively a large constant). The
ASP solver thus solves a weighted min-change problem, where changes to highly credible edges are
very costly, and changes to dubious edges are cheaper.

This adaptive weighting greatly improved the accuracy of the recovered graphs. It naturally handles
the uncertainty in fMRI: for example, if two regions had a very low measured correlation yet some
method erroneously connected them, RnR will likely remove that edge (low penalty to drop) in favor
of satisfying structural constraints. On the other hand, if two regions are strongly correlated but the
initial method missed the connection (say due to a too-conservative threshold), RnR will still be
unlikely to add it because of the high default cost for new edges. However, if adding that edge is
crucial to satisfy the DAG or density constraint, then the solver might do so, incurring the cost but
yielding a more consistent graph. In summary, adaptive weights allow RnR to “decide” which edges
to trust and which to doubt, rather than treating all edges uniformly.

3.6 RNR AS A META-SOLVER FOR UNDERSAMPLING EFFECTS

A significant challenge in causal learning from fMRI is handling unobserved common causes (la-
tent confounders) that arise from undersampling. For example, if two brain regions A and B are
both driven by an unmeasured region or stimulus (common cause) that was not captured due to
slow sampling, standard algorithms might either link A–B with directed edges in a loop or miss the
connection altogether. Bidirected edges (often denoted A ↔ B) can represent unresolved causal-
ity due to a hidden common cause in causal graphs. Some time-series causal discovery methods
(e.g., Granger causality (Granger, 1969), VAR models (Lütkepohl, 2005), and the PCMCI algo-
rithm (Runge et al., 2019)) are capable of producing bidirected or contemporaneous links. However,
many algorithms that ignore undersampling (e.g., standard PC or GES variants, Granger causality
in its basic form, etc.) will not output bidirected edges at all, potentially misrepresenting the true
connectivity.

We address this issue by using RnR as a meta-solver: RnR takes as input any initial graph H pro-
duced by a first-order method, but then refines it. If the initial method did not account for under-
sampling, H might contain spurious patterns (e.g., a two-node cycle A → B and B → A) or be
missing bidirectional links. We therefore augmentH before running ASP: for any pair of nodes that
form a mutual directed cycle (A→ B and A← B) inH, we interpret this as evidence of a possible
latent confounder. We then modify H by adding a bidirected edge A↔ B. Additionally, to encode
uncertainty about direction of influence, we include both directed edges A → B and A ← B in H
(if not already present), but assign them a low weight w− (penalty) for inclusion.

The ASP solver thus starts with an enriched graph containing a bidirectional link and two low-
confidence directed links between A and B. The solver can decide, through optimization, whether
the final solution should keep the bidirected connection, one of the directed connections, or both,
depending on what best satisfies all constraints and minimizes cost. Essentially, we are giving the
solver the flexibility to explain an observed correlation between A and B as a latent confounding
(bidirected edge), as a direct causal relationship (one of the directed edges), or as a mix of both,
whichever is most consistent with the data and constraints. By using RnR as a post-processor in
this way, we “inject” undersampling awareness into any algorithm’s output. In Section 4.2, we
demonstrate this meta-solver capability by applying RnR to outputs from the method of Sanchez-
Romero et al. (2019a) and from PCMCI, yielding improved results.

6
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3.7 IMPLEMENTATION AND PRACTICAL CONSIDERATIONS

ASP Implementation: We developed the RnR ASP model using Clingo’s input language. To sum-
marize, the program encodes: (1) Facts: all possible directed edges between nodes (except self-
connections) are initially considered. The input graph H is given as facts (e.g., edge(A,B) if
A → B in H). (2) Cost rules: rules that contribute to cost for including or excluding edges (as per
Equation 2, using Clingo’s #minimize or :˜ syntax with weights w+ and w−). (3) Constraints:
(3.a) No directed cycle among SCCs (implemented via a reachability check: we introduce a predi-
cate reach(X,Y) that is true if there is a path, and add a constraint :- reach(X,X). to forbid
cycles); (3.b) Graph density bounds as described in Section 3.4; (3.c) any known prior knowledge
(e.g., we add :- not edge(A,B) if we know A→ B must exist).

We provide the full ASP code in Supplementary Material, and a simplified excerpt is shown in
Figure 2 of the Appendix for illustration.

Computational Efficiency: Running Clingo with optN on our problem sizes (graphs of up to 10
nodes in our simulations) was fast (under a few seconds) for each instance. For larger graphs (e.g.,
20-50 nodes), ASP solving could become slower. However, our modular constraints (SCC-based
DAG) significantly reduce complexity by disallowing many cyclic possibilities upfront. Further
optimization or heuristic solving is a direction for future work, but for the scope of our experiments,
the approach was tractable.

Validation of Multiple Solutions: Importantly, retrieving multiple solutions allowed us to examine
the stability of the recovered graph. We found that often many of the top solutions shared most
edges in common, differing only in a few uncertain connections. This gave us confidence that our
method identifies a core reliable structure plus a small set of alternative edges. We illustrate this in
Figure 1A, which plots the number of solutions vs. undersampling rate: even at high undersampling,
the solution set remains of modest size (tens of graphs), and in Figure 1B we show the relationship
between solution cost and edge errors. Notably, we observed a positive correlation between op-
timization cost and edge commission error (false positive rate) across solutions. However, some
higher-cost solutions had low commission error, indicating that near-optimal graphs can sometimes
be almost as accurate as the optimal one. This justifies examining a small pool of top solutions. In
practice, we found that the best solution (by ground-truth error) was often among the top 10 by cost.
Therefore, our strategy is to take the top-N solutions from Clingo (we used N = 10) and then select
the final graph by an additional criterion (e.g., best fit on a validation dataset or expert judgment).
This approach yielded robust identification /of the true causal graph in our tests.

4 RESULTS

4.1 IMPROVED EDGE-BREAKING EXPERIMENT

We replicated and extended the edge-breaking experiment from Abavisani et al. (2023) to demon-
strate the robustness of our approach on graphs with intentionally broken edges. In this experiment,
we generated causal ground truth graphs G1 and undersampled them at various rates, then simulated
noise by randomly deleting an edge. The goal was to test the ability of our method to recover the
true graph structure, compared to the original sRASL. The results, depicted in Figure 2, show that
our method consistently achieved lower omission and commission errors5 compared to the original
approach, even under high undersampling conditions. This illustrates that our improved algorithm
can more effectively recover the true graph structure, including robustness against edge-breaking
perturbations.

4.2 BOLD SIMULATION DATA: ENHANCING CAUSAL INFERENCE WITH RASL AS A
META-SOLVER

We further evaluated RnR on simulated data from Sanchez-Romero et al. (2019b). These data
have been widely used within the neuroscience community, but were generated with small, simple

5A commission error is a false positive (i.e., incorrectly added edge). An omission error is a false negative
(i.e., incorrectly omitted edge). We report these separately to characterize different types of errors (adding
spurious links vs. missing real links).

7
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graphs lacking real loops and using an idiosyncratic data generation method. We demonstrate that
the methods that they study, including ones developed for these data (e.g., (Sanchez-Romero et al.,
2019a)), do not account for the effects of undersampling, which can bias causal inference.
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Figure 4: Comparison of Sanchez-Romero’s
simple data generation approach with larger,
more complex VAR-generated graphs. Sanchez-
Romero’s data lacks real loops and is limited in
scope, which may affect the generalizability of
causal inference results.

Our approach applied RnR as a meta-solver: af-
ter running Sanchez-Romero’s original meth-
ods, we applied RnR to the resulting graph
to explicitly incorporate the effects of under-
sampling. This adjustment led to improved
accuracy, as RnR optimized the causal graph
structure to better reflect the underlying dynam-
ics. In essence, RnR served as an enhancement
layer, correcting for undersampling effects ig-
nored by previous methods (Figure 3).

Additionally, we explored the use of PCMCI as
an alternative to standard methods like SVAR
and Granger Causality (GC). Cook et al. (2017)
had previously demonstrated that SVAR and
GC perform well for scenarios with isochronal
bidirected edges, which arise due to undersam-
pling, as well as directed edges. However,
we observed that PCMCI, initially introduced
by Moneta et al. and later significantly im-
proved by Runge, performs better in these sce-
narios. Therefore, we incorporated PCMCI
with RASL, achieving more accurate results
by effectively handling undersampling and im-
proving causal inference. Figure 3 illustrates these improvements.

Figure 5: Impact of different undersampling rates (1s, 2s, 3s) on BOLD signal preservation in fMRI
data simulated with the balloon model. Minimal error is observed with 1-second undersampling,
whereas larger intervals degrade accuracy in all methods that don’t account for undersampling effect.
Our method RnR accounts for this effect and does not suffer loss from undersampling.

4.3 ANALYZING THE LIMITATIONS OF SANCHEZ-ROMERO’S DATA GENERATION

Despite its widespread acceptance, Sanchez-Romero’s data generation approach is limited in scope
and complexity. It employs simple, small graphs without real loops and is generated using a spe-
cific, contrived process. To demonstrate the limitations of this dataset for broader causal inference
applications, we conducted experiments with larger VAR models on graphs with many variables
and more complex structures, showcasing the limitations of Sanchez-Romero’s setup (Figure 4).
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This underscores the importance of considering more realistic and complex data when testing causal
inference methods.

4.4 IMPACT OF UNDERSAMPLING ON BOLD SIGNAL IN FMRI DATA

We also examined the effect of undersampling on time series data generated from a VAR model
and then processed through a balloon model to simulate the BOLD response in fMRI data (Buxton
et al., 1998). Given the smooth nature of the BOLD signal, undersampling by one-second inter-
vals often leads to minimal information loss, while undersampling by larger intervals (e.g., two or
three seconds) introduces significant inaccuracies. Figure 5 illustrates how different undersampling
rates impact the preservation of temporal information in BOLD data, underscoring that aggressive
undersampling can obscure meaningful connectivity patterns.

5 CONCLUSIONS AND FUTURE DIRECTIONS

Undersampling is a critical yet often overlooked issue in the analysis of time series data, particu-
larly in the context of fMRI. In this paper, we addressed the undersampling problem directly by
incorporating its effects into the derivation of causal graphs using ASP. Our approach goes beyond
traditional methods by explicitly accounting for the temporal disconnect between neural processes
and fMRI sampling rates. By doing so, we not only identified the most probable causal graph but
also provided an equivalence class of potential graphs, enabling a more nuanced understanding of
the underlying causal structures.

Our results, validated on simulated fMRI data underscore the importance of addressing undersam-
pling in neuroimaging studies. We demonstrated that our ASP-based method outperforms existing
techniques, particularly in scenarios where undersampling distorts the true causal relationships be-
tween neural groups. Additionally, by comparing our approach to other algorithms, including those
studied by Sanchez-Romero et al. (2019b), we highlighted that while methods like FASK show
potential, they still fall short in fully capturing the complexities introduced by undersampling.

The undersampling issue is not merely a technical challenge but a fundamental barrier to accu-
rate causal inference in neuroscience. Ignoring it risks drawing erroneous conclusions about brain
function and connectivity. Our work represents a significant advancement in this area, providing a
robust and scalable solution that can improve the accuracy of causal inference in the presence of
undersampling.

As the scientific community continues to explore the neural mechanisms underlying cognition and
behavior, it is imperative that the undersampling problem is given the attention it deserves. Address-
ing this issue will be crucial in ensuring that the inferences drawn from fMRI data truly reflect the
underlying neural dynamics, leading to more reliable and meaningful insights into brain function.

One challenge for solving the optimization problem with ASP is ensuring a reasonable initial es-
timated graph H. The estimation errors at the measurement time-scale may inflate the estimation
errors at the causal timescale. However, simply selecting the estimator that minimizes the errors in
H, as we have done in this paper, may not be the optimal strategy. Not all errors inH have the same
effect on the quality of estimation and developing methods that consider that interplay is a promising
future direction.

Further optimization of these approaches to enable work with larger graphs may open potential new
domains where our methods may be applied. Although RnR is highly capable for working with
reasonably sized graphs, extending the number of nodes by an order of magnitude could broaden
the range of potential applications. This includes further practical application of the methods in the
study of brain function via fMRI as well as other dynamic modalities.
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