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ABSTRACT

A recent breakthrough in nonconvex optimization is the online-to-nonconvex
conversion framework of |Cutkosky et al.| (2023)), which reformulates the task of
finding an e-first-order stationary point as an online learning problem. When both
the gradient and the Hessian are Lipschitz continuous, instantiating this framework
with two different online learners achieves a complexity of O(e~1"® log(1/¢))
in the deterministic case and a complexity of O(¢73-%) in the stochastic case.
However, this approach suffers from several limitations: (i) the deterministic
method relies on a complex double-loop scheme that solves a fixed-point equation
to construct hint vectors for an optimistic online learner, introducing an extra
logarithmic factor; (ii) the stochastic method assumes a bounded second-order
moment of the stochastic gradient, which is stronger than standard variance bounds;
and (iii) different online learning algorithms are used in the two settings.

In this paper, we address these issues by introducing an online optimistic gradient
method based on a novel doubly optimistic hint function. Specifically, we use the
gradient at an extrapolated point as the hint, motivated by two optimistic assump-
tions: that the difference between the hint and the target gradient remains near
constant, and that consecutive update directions change slowly due to smoothness.
Our method eliminates the need for a double loop and removes the logarithmic
factor. Furthermore, by simply replacing full gradients with stochastic gradients
and under the standard assumption that their variance is bounded by o2, we obtain
a unified algorithm with complexity O (=17 4 ¢2¢=3-%), smoothly interpolating
between the best-known deterministic rate and the optimal stochastic rate.

1 INTRODUCTION

In this paper, we consider an unconstrained minimization problem

min (x), )
where F : R? — R is a smooth but possibly non-convex function bounded from below. With
access to a deterministic gradient oracle, it is well known that gradient descent (GD) can find an
e-stationary point within O(e~2) iterations when the gradient of F is Lipschitz continuous, which
is worst-case optimal among all first-order methods (Carmon et al., | 2020). In the stochastic setting,
where the oracle returns an unbiased noisy gradient with variance bounded by o2, stochastic gradient
descent (SGD) achieves a complexity of 0(672 + 02674) (Ghadimi & Lan, [2013), which is likewise
worst-case optimal (Arjevani et al., [2023).

Interestingly, when both the gradient and the Hessian of F' are Lipschitz continuous, it becomes possi-
ble to outperform standard GD or SGD. In the deterministic setting, Carmon et al.|(2017)) proposed an
accelerated gradient-based method that exploits directions of negative curvature, achieving a complex-
ity of O(~ 1" log(1/e)). Concurrently, Agarwal et al.|(2017) introduced an approximate variant of
the cubic regularization method (Nesterov & Polyaki [2006), which uses only first-order gradients and
access to Hessian-vector products, and achieves a complexity of O(c¢ 175 log(d/<)). More recently,
Li & Lin|(2022;[2023) eliminated the logarithmic factor from these bounds by incorporating restarting
techniques into accelerated gradient and heavy-ball methods, achieving the state-of-the-art complexity
of O(¢~1:75). However, the methods proposed in (Carmon et al., 2017; Agarwal et al., 2017) are
complex and rely on multiple subroutines to exploit negative curvature, while the restarting techniques
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in (Li & Lin| 2022; 2023)) involve lengthy derivations, and their extension to the stochastic setting
remains unclear. In the stochastic setting, the best known result is due to|Cutkosky & Mehta| (2020),
who proposed normalized SGD with momentum and extrapolation, achieving O(s~2 + o2~ 3-).
While this method attains the optimal rate of O (o2 ~3?) for the stochastic setting (Arjevani et al.,
2020), it fails to achieve the accelerated rate of O(e~1"?) for the deterministic setting. Notably,
to the best of our knowledge, no single unified algorithm simultaneously attains the best-known
guarantees in both settings.

To address this gap, a promising step toward unification is the online-to-nonconvex (O2NC) conversion
proposed in (Cutkosky et al.|[2023)), which offers a general and powerful framework for nonconvex
optimization across various settings. The core idea is to reduce the problem of finding a stationary
point of a nonconvex function to an online learning problem over the update directions. This
reduction enables converting an online learning algorithm into a nonconvex optimization method,
which greatly simplifies convergence analysis. In the smooth setting considered in this paper, by
instantiating two different online learning algorithms, |Cutkosky et al.|(2023)) establish a complexity
of O(e~1"1og(1/e)) in the deterministic case and O(G2e~>°) in the stochastic case, where G*
is an upper bound on the second-order moment of the stochastic gradient. Despite its conceptual
elegance, the O2NC framework has several limitations. First, in the deterministic setting, the
algorithm relies on a fixed-point iteration as a subroutine, introducing an extra logarithmic factor
in the convergence rate and adding complexity to the algorithmic design. Second, in the stochastic
setting, it requires a stronger assumption that the second-order moment of the stochastic gradient
is uniformly bounded, which can be restrictive in practice. Third, the framework requires different
online learning algorithms for the stochastic and deterministic settings, limiting its modularity and
complicating potential extensions.

Our contribution. Building on the O2NC framework, we propose a simple yet effective algorithm
that replaces the fixed-point iteration subroutine in (Cutkosky et al.| 2023) with a single stochastic
gradient call at an extrapolated point, achieving a complexity of O (¢ ~17° 4 g2¢73-5). This eliminates
the additional logarithmic factor and smoothly interpolates between the best-known deterministic
and stochastic rates. Our core idea is a novel doubly optimistic online gradient method, which
aims to predict the gradient using a carefully crafted hint function. Inspired by standard optimistic
methods (Chiang et al.}2012; |Rakhlin & Sridharan| 2013} Joulani et al.| |2020)), our first optimistic
assumption is that the discrepancy between the gradient and the hint evolves slowly over time.
Crucially, we introduce a second optimism that the update direction itself also evolves slowly,
which we exploit using the function’s smoothness to guide the design of the hint. To the best of
our knowledge, this is the first algorithm to seamlessly attain the best-known guarantees in both
deterministic and stochastic settings, resolving a key limitation of the original O2NC framework.

1.1 ADDITIONAL RELATED WORK

Deterministic setting Beyond the works reviewed in the introduction, Marumo & Takeda| (2024aib)
built on the restarting technique from (L1 & Lin, {2022} 2023) to develop parameter-free algorithms
using line search, thereby removing the need for prior knowledge of problem-specific constants.
Complementing these upper bounds, Carmon et al.[(2021) established a lower bound of Q(e~ %) for

functions with Lipschitz gradient and Hessian. This leaves a gap of O (s~ 2%) between the best-known
upper and lower bounds in this setting. Several works also aimed to find second-order stationary
points (Agarwal et al.,|2017;Carmon et al., | 2018} Jin et al.|, [2018; Allen-Zhu & Lil 2018} Xu et al.}
2017; Royer & Wright, 2018 |[Royer et al., 2020) using gradient or Hessian-vector product oracles,
but their complexity remains no better than O(s~17%).

Stochastic setting Several works have shown improved guarantees by either strengthening the
oracle or imposing additional restrictions on the noise. Specifically, with a stronger oracle that has
access to Hessian-vector products, |/Arjevani et al.[(2020) proposed a variance-reduction algorithm
that combines stochastic gradients with Hessian-vector products, attaining the optimal complexity
of O(o2e73). Moreover, another line of work relies on the mean-squared smoothness assumption
on stochastic gradients, i.e., E[||V f(x; &) — Vf(y; €)||?] < L?||x — y||? for all x and y with some
constant L; under this condition, variance-reduction-based methods such as SPIDER (Fang et al.,
2018) and SNVRG (Zhou et al.}[2020) achieved a complexity of (’)(05_3). Under a slightly stricter
assumption that V f (x; £) is Lipschitz continuous with probability one, |Cutkosky & Orabona(2019)
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established the complexity of O(e=2 + oc~2). It is also worth mentioning that the above methods
require a multi-point stochastic oracle, which computes the stochastic gradients at two different points
with the same random seed £. Finally, the lower bounds in (Arjevani et al.| 2023) established that
these complexity results are worst-case optimal.

Online-to-nonconvex conversion Apart from the smooth nonconvex optimization considered in
this paper, the original O2NC conversion was proposed by |Cutkosky et al.|(2023)) also addresses
nonsmooth nonconvex optimization, yielding an optimal stochastic algorithm. The framework has
been extended and refined in several follow-up works (Zhang & Cutkosky} 2024; |Ahn et al.| [2024al),
and it has been shown that various practical algorithms, such as SGD with momentum and Adam,
can be interpreted within the O2NC framework (Zhang & Cutkoskyl 2024;|Ahn et al.| 2024b; Ahn &
Cutkoskyl, 2024; |/Ahn et al.| 2024a).

Comparison with Jiang et al. (2025) A recent work by|Jiang et al.[(2025) also built upon the online-
to-non-convex conversion framework introduced by |Cutkosky et al.| (2023)), leveraging optimistic
online gradient descent to tackle the resulting online learning problem. However, their focus is on
quasi-Newton methods in the deterministic setting, whereas our work focuses on first-order methods
in both stochastic and deterministic settings. While that approach shares a similar high-level structure
and relies on common core lemmas as ours, they differ fundamentally in their hint constructions.
Specifically, in our paper, our hint is based on the stochastic gradient at an extrapolated point,
whereas Jiang et al.| (2025)) employed a second-order approximation, where the approximate Hessian
matrix is updated via an online learning algorithm in the space of matrices. Due to the different hint
constructions, our analysis exploits negative terms in the regret of optimistic online gradient descent
to obtain tighter regret bounds—terms that are neglected in (Jiang et al., [2025).

2  PRELIMINARIES AND BACKGROUND

Throughout the paper, we assume that F satisfies two key assumptions described below. Unless
otherwise specified, we use || - || to denote the ¢5-norm for vectors and the operator norm of matrices.

Assumption 2.1. We have |VF(x) — VF(y)|| < L1||x — y|| for any x,y € R%
Assumption 2.2. We have |V2F(x) — V2F(y)|| < La|x — y|| for any x,y € R<.

In the stochastic setting, we assume access to an unbiased gradient oracle with bounded variance.

Assumption 2.3. We assume that we have access to a stochastic gradient oracle satisfying
Eeop [Vf(x:6)] = VF(x) and Eeup|Vf(x:€) —VF(x)|* <o? VxeRY  (2)

where D is a data distribution.

2.1 ONLINE-TO-NONCONVEX CONVERSION

As discussed, the online-to-nonconvex conversion (O2NC) framework proposed in |Cutkosky et al.
(2023)) provides a unified approach that reformulates the task of finding a stationary point of a
nonconvex function F' as an online convex optimization (OCO) problem. By instantiating this
framework with different online learning algorithms to solve the resulting OCO problem, one can
derive various algorithms for nonconvex optimization. In this section, we first recap the core ideas
behind the O2NC framework.

Consider the general update rule x,, = x,,_1 + A,,, where we assume that the update direction A,,
has a bounded norm, i.e., ||A,|| < D for a constant D > 0. The starting point of |[Cutkosky et al.
(2023)) is to apply the fundamental theorem of calculus to characterize the function decrease between
two consecutive points as

F(xp) = F(xn-1) = Vi, X —Xn—1) = (Vin, Ap), 3)

where in the above expression V,, = fol VF(xp—1+$(x, —Xn—1)) dsis the average gradient along
the line segment between x,,_; and X,,. Given the equality in (3) and upper bound on the norm of

A, the ideal choice of A,, to maximize the function value decrease is to setitas A,, = —D Hg”” s
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which leads to a function decrease of —D||V,,||. However, the implementation of this update poses
several challenges, which we outline below along with potential solutions.

First, computing V,, involves evaluating an integral over a segment, which is computationally
expensive. One remedy is to approximate the average gradient over the segment by evaluating the
gradient at a randomly selected point along the line segment connecting x,,_; and x,,; in expectation,
this yields the same value as V,,. An alternative, deterministic approach is to use the gradient at the
midpoint %(xn,l + X,,) as an approximation to V,,. Under the assumption of Lipschitz continuity
of the Hessian, it can be shown that the resulting error is O(LDQ). In this work, we adopt the second
approach and define the midpoint as w,, = %(xn,l + Xp).

However, two key challenges remain. First, in the stochastic setting, we do not have access to the
gradient VF'(w,,), but only to a stochastic gradient oracle (see Assumption . To resolve this, we
use an unbiased stochastic estimate of the gradient at the midpoint, denoted by g,, = V f(wy,; &),
where &,, ~ D. In the rest of the paper, we assume access to a stochastic gradient oracle with variance
o2. By setting 0 = 0, our analysis and algorithm naturally recover the deterministic setting.

The second and perhaps most critical challenge, which arises in both deterministic and stochastic
settings, is that computing the (stochastic) gradient at the midpoint w,, requires knowledge of the
next iterate x,,, which itself depends on the update direction A,,. Since x,, is not available when
choosing A,,, this creates a circular dependency. To overcome this, we cast the selection of A,
as an online learning problem, where A,, is the action taken at round n, and the loss is defined as
(gn, Ay). This loss reflects how well the chosen direction aligns with the negative of the (stochastic)
gradient evaluated at the midpoint, thus guiding the updates even in the absence of x,, at decision
time. Concretely, the online-to-nonconvex conversion framework proceeds as follows

e Update x,, = X,,—1 + Ay and w,, = x,_1 + %An;
* Construct a stochastic estimate g,, = V f(w,,;§,,) with &, ~ D;
* Feed the loss (g,,, A) to an online learning algorithm to obtain A, ;1 with ||A, 11| < D.

A key result from [Cutkosky et al| (2023) establishes that convergence to stationarity in Problem (T)
can be related to a specific notion of regret in the online learning problem above. Specifically, suppose
the process runs for M = KT iterations, divided into K episodes of length 7" each. We then define
the K -shifting regret as

K kT
RegT(ulv“'vuK) :Z Z <gnaAn_uk>a (4)

k=1n=(k—-1)T+1

where {u” }521 is a sequence of comparator vectors to be specified. In the next proposition, we bound
the gradient norm at the average iterates in terms of Reg,(u!, ..., u’). Due to space constraints,
we defer the detailed discussions and the proof to the Appendix.

Proposition 2.1. Suppose that Assumptions and 2.3 - hold. For k = 1,...,K, de-

fine W = TZ,L_(k Hrp1 Wn and uF = DM. Recall the definition of

\IZn:(k,l)T+l gnll
Regp(ul, ..., uf) in @). Then we have
K
F(xo) — F* E[Regp(u',...,u®)] Ly , Lo, o
F(w —D —T“D —.
[ glv DKT DKT TRV TR

<

In Proposition the returned points {w* }le represent the average iterates within each episode,
and the comparators {u”*}#_ are defined based on the sum of stochastic gradients in each episode.
Moreover, the proposition shows that the average gradient norm at {W’“}szl can be bounded in terms
of the K -shifting regret with respect to these comparators. Hence, to obtain a gradient complexity
bound for finding a stationary point of the function F/, it suffices to use an online learning algorithm
to minimize the regret. This approach yields an explicit update for A,,, and consequently for the
iterates. Specifically, the online learning problem we need to solve is presented in the box below.

In Section [3] we introduce our online doubly optimistic gradient method along with a new hint
function, designed to efficiently solve the above online learning problem in both deterministic and
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stochastic settings. Before that, we briefly review the online learning algorithms proposed in|Cutkosky
et al.| (2023), originally developed for these settings, and highlight their limitations. Notably, the
approaches differ between the deterministic and stochastic cases to achieve the best possible regret
bounds and corresponding gradient complexity.

Online Learning Problem
Forn=1,...,KT:

* The learner chooses A,, € R such that [|A,|| < D;
* Sample &, ~ D and compute g, = V f (3 (xn +Xn—1); &), Where X, = X514+ Ay
* The learner observes the loss £, (A,,) = (gn, Ay).

Goal: Minimize the regret Regp(u', ..., uf) = S8 Z’ZZ(kq)Tﬂ@m A, —ub).

Deterministic setting. In the deterministic setting, [Cutkosky et al.|(2023)) employs an optimistic
gradient method, which relies on a hint vector h,, to approximate the true gradient g,, as closely as
possible. The regret of these methods is governed by the approximation error between h,, and g,, as
shown later in Lemma Hence, a natural choice for h,, is to leverage the smoothness of F' and set
h,, = g,_1. However, this only leads to a complexity of O(E_%) that is suboptimal compared to the
state-of-the-art, as discussed in Section@ To achieve a better rate, Cutkosky et al.| (2023) build on a
variant of optimistic gradient descent from |Chen et al.|(2021) and propose a more sophisticated hint
construction. Specifically, starting from A=0, they follow the update rule A, = Ilja <D} (An —
nhy,), A,H_l =Ilya)<Dy (An — 1gn) Where ITj o < p(-) denotes projection onto the Euclidean
ball of radius D. As shown by the update rule, the algorithm maintains two sequences: A, and A,,.

The auxiliary sequence A, is designed to closely approximate A,, and plays a key role in constructing
the hint vector h,,. Specifically, h,, is computed through an inner loop that solves the following

fixed-point equation for h, which depends on A,,, h = VF (xn_l + %H{”AHSD}[AR - nh]) )

While successfully achieving the complexity of O(e~!-"®log(1)), this hint construction introduces
two drawbacks: the inner loop adds an extra logarithmic factor to the final complexity bound, and the
fixed-point formulation complicates its extension to the stochastic setting.

Stochastic setting. In the stochastic setting, Cutkosky et al.| (2023)) proposes using standard pro-
jected online gradient descent (OGD) to solve the online learning problems. The update rule follows
Anr1 =1l a<py (A, — ngy). Under the assumption that the stochastic gradient has a bounded
second moment, i.e., E[||V f(x;&)[|?] < G? for all x, they prove that the regret of OGD can be
bounded by Reg(u',...,u’) = O(KGD+V/T). Under Assumptionand with proper tuning of
the hyperparameters, this leads to an improved complexity of O(e~3-%). However, note that this rate
does not improve in the deterministic setting, where 0 = 0. Moreover, the bounded second moment
condition required to guarantee regret bounds using OGD can be a restrictive assumption to impose,
which is not necessary in other existing methods (Cutkosky & Mehta| (2020).

To address the limitations identified above in both the stochastic and deterministic settings, we
develop our “Online Doubly Optimistic Gradient” method. In the following section, we explain
how the algorithm leverages two layers of optimism to overcome these challenges and provide a
comprehensive analysis of its complexity.

3  PROPOSED ALGORITHM

This section introduces our proposed algorithm and the key ideas behind its design. Building on the
O2NC framework |Cutkosky et al.[(2023)), we reformulate the problem of finding a stationary point of
F as an online learning task. To solve the resulting OCO problem, we present a modified variant
of the Online Optimistic Gradient method, distinct from the one discussed in the previous section.
In addition, as our main algorithmic contribution, we propose a novel hint function derived from a
two-level optimism scheme, detailed below. Hence, we refer to our approach as the “Online Doubly
Optimistic Gradient” method.
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Figure 1: Illustration for the extrapolated point in our algorithm.

3.1 ONLINE OPTIMISTIC GRADIENT METHOD

As mentioned earlier, we also aim to solve the online learning problem described in Section [2.1]
Unlike the optimistic template used in |Cutkosky et al.| (2023)), which requires two projections per
iteration, we adopt a simpler variant of the optimistic gradient method that requires only a single
projection. Specifically, for n > 1, we update the direction A,, 1 using the following rule

A, =jaj<p (An = nhpgr —n(gn —hy)), Vo > 1, ®)
and for n = 1, we initialize with A; = arg minja<p(h1, A).

To motivate the update rule introduced above, observe that a natural approach would be to base the
update of A,, on the current gradient g,,, but this is not feasible because g, is revealed only after A,
has already been selected. To address this challenge, we leverage online optimistic learning techniques
from Rakhlin & Sridharan| (2013)); Joulani et al.| (2020), introducing the first layer of optimism in
our doubly optimistic algorithm. These methods rely on a hint vector h,, that approximates g,
as accurately as possible. The intuition of this approach assumes that the deviation between the
true gradient and the hint remains relatively stable across iterations, i.e., g,+1 — hp1+1 ~ g, — h,,.
Accordingly, one can estimate g, +1 ~ h,11 + g, — h,, and the update combines an optimistic
prediction using h,,; with a correction based on the observed error g,, — h,,.

Next, we present the K -shifting regret bound for the optimistic gradient method described in (©).
This result holds for any hint function and, accordingly, depends on the approximation error between
g, and h,,, as shown in the following lemma.

Lemma 3.1. Consider executing the update described in () with a constant step size 1. Then
the K-shifting regret can be bounded by Regp(u!, ... uff) < % + 2 Zf:Tl llgn — hyl]? —

ﬁ ZTIL(:TQ ||A71 - An—1||2'

Lemma 3.1]highlights the crucial role of the hint vector h,,: the more accurately it approximates the
true gradient g,,, the more favorable the convergence behavior of the algorithm becomes. Precise hints
tighten the regret bound, while inaccurate approximations can substantially degrade performance.
Lemma [3.1] also establishes the foundation for the second layer of optimism in our algorithm. In
particular, it features a negative term, ||A,, — A,,_1]|?, which was previously neglected in (Cutkosky
et al.|(2023). Under the smoothness assumption, we can reasonably expect that A, ~ A,,_;. Our
second layer of optimism capitalizes on this assumption and incorporates the previously neglected
term, establishing a connection between this term and ||g,, — h,,||? under the Lipschitz continuity
of the gradient. This connection allows us to use telescoping techniques, thereby improving upon
previous convergence rates within this framework. We now address the critical question of how to
construct the hint sequence h,, to minimize the regret bound established in Lemma|3.1

3.2 HINT CONSTRUCTION

For ease of exposition, we first assume access to a deterministic gradient oracle; we will return to the
stochastic setting at the end of this section. As explained in Section [3.1] our primary objective in hint
construction is to estimate g,, = VF'(w,,) with maximum accuracy using only information available
up to x,,_1, as illustrated in Figure[T} Leveraging the function’s smoothness properties, an intuitive
first approximation is to reuse the previous gradient estimate, assuming g,, ~ g,_1—effectively
positing that the gradient at w,, approximates the gradient at w,,_;. However, this straightforward
approximation fails to exploit the negative term ||A,, — A,_1||? in Lemma[3.1] With this approach,
llgrn —hy|| < L||w,, —Wy_1|| becomes proportional to || A,, + A, _1 ||, preventing the application of
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Algorithm 1 Online Doubly Optimistic Gradient Algorithm
Require: Initial point xo, K,7T € N, radius D

itialize: _ V f(x0;€0) — .
Initialize: Ay = —D itz by = V(%05 o)

1: forn =1to KT do

2 Set x,, = Xp_ 1+An,wn—xn 1+ An’ ":x"—'_%A"

3 Set Apy1 =1jaj<p (A ﬁnvf(szn) N (Vf(Wn;6n) = Vf(Zn-1;8n-1)))
4: end for
5
6

: Setwk =wi_nrefork=1,...,Kandt=1,...,T
: Setwh = %Zlewf fork=1,...,K
Deterministic Oracle: arg minge w1 . wxy [[VE(W)],

7: return w =
urhw Stochastic Oracle: Uniformly sample {w',..., W},

telescoping arguments. Consequently, this method yields an overall gradient complexity of O(s~ 1/ 6)
in the deterministic setting |Cutkosky et al.| (2023)), which is worse than the best-known bound of
O(e~/4).

Cutkosky et al.| (2023) improved this rate under the O2NC framework by constructing the hint
h,, through a fixed-point iteration scheme. Their approach develops an approximation A,, of A,
via multiple iteration steps, estimating g,, ~ VF(x,_1 + %An) While this method achieves

an improved convergence rate of O(¢~"/*1log(1/¢)) in the deterministic setting, it introduces an
additional logarithmic factor. Moreover, this construction is complex and presents challenges when
extended to stochastic environments. These limitations motivate our search for an alternative that
maintains theoretical guarantees while offering greater simplicity and broader applicability.

Our method not only removes the logarithmic factor in the deterministic case but also matches the
known lower bound in the stochastic case, achieving a complexity of O(e =47 + g2¢735). We
leverage our second layer of optimism to improve upon previous results. Referring to Figure[T] our
goal is to estimate the gradient at w,, using only information available up to x,,_;. Since w,, =
Xp_1+ %A" and we can reasonably approximate A, ~ A, _; in the smooth setting, we propose
to estimate the gradient at w,, using the gradient at an extrapolated point z,,_; = x,,—1 + %An,l.
This leads to the following elegant construction for the hint

1
by, = VF(z0-1) = VF(x0-1 + 5 80). (©6)

We use the convention Ay = 0, which implies that hy = VF(x(). This approximation has a clear
mathematical ]ustlﬁcatlon from the regret analysis. Recalling from Lemma [3.T| the negative term
|A, — A, _1]? that was previously neglected in Cutkosky et al.[(2023), we can now see that under
this hint construction and usmg Assumption we have ||g, — h,|| < ||w, — , and by
construction || w;,, — z,—1|| = 3[|A, — Ap_y Wlth appropriate stepsize selection, this allows us
to leverage telescoping between these two terms and obtain tighter convergence rates.

The novelty of our hint construction lies in its simplicity: it requires only one gradient call compared
to the multi-step procedure in|Cutkosky et al|(2023)), and it significantly simplifies the analysis. In
particular, this makes it especially well-suited for the stochastic setting, where the only modification
needed is replacing the deterministic gradient with its stochastic counterpart, i.e., h,, 11 = V f(zn; &),
where £, is the random sample drawn at iteration n. In this setting, we continue to leverage the
telescoping argument, with only an additional term accounting for the stochastic gradient variance.
The regret incurred by our hint is formalized in the following lemma.

Lemma 3.2. Consider executing the update described in () with the hint constmctlon defined in
(6 (or its stochastic counterpart in the stochastic setting), using step size n < f I . Then we can

9L3nD?
bound one episode of the K -shifting regret, as [E —(k— 1)T+1<gna A, —u >} < 4D +++
6nTo?.

The stochastic variant of our proposed method is summarized in Algorithm|l} The deterministic
version can be obtained by simply replacing the stochastic gradients with their deterministic coun-
terparts. In the following section, we present a comprehensive complexity analysis to establish the
convergence rate of the algorithm.
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3.3 COMPLEXITY ANALYSIS

Thus far, we have presented our proposed “Online Doubly Optimistic Gradient” method in Algo-
rithm |1} and discussed the construction of the hint vector h,,. Next, leveraging Lemma and
Proposition 2.1} we establish the convergence rate of our proposed method.

Theorem  3.3. If Assumptwns hold and we set D =

1 _5 3 ,
O(min{(ML5o?) T (MLILI) 7)) . T = ©(min{max{[(z5m)F]. [(£5)}] 1 4.
K= {%J andn = @(%) in Algorithm then

L~ o] n2pb ot 21 (F(xo) — F7)?
EL(Zyvmw>ﬂ—0(wew—F>zQMj+L1,]Wi) .

Proof Sketch. Based on Proposition[2.1] achieving the final convergence rate requires bounding the K-

shifting regret. As a corollary of Lemma we get E [Regp(ul,...,uf)] < % + M +

6nKTo?. Combining this regret bound with Proposition we obtain E [% Zszl |V F(w*) ||} <

F(xo)—F* | 4D , 9LinD 677 o2 2, Lyg212 |, o
DT~ Tt T2r T +42D+22TD+\/T'

Finally, by selecting the parameters 1, D, and T" according to the theorem’s prescription, we arrive

at the stated convergence rate. The definitions of D and 7" involve a max and min, respectively, to

interpolate between the deterministic and stochastic regimes. This allows the final bound to adapt to

the variance o of the stochastic oracle, interpolating between both settings. O

We show that after M iterations, the gradient norm at the best iterate satisfies
ming<x<i E [||VF(v‘v’€)||] =0 (M42//77 + M4/7>, which yields a total gradient complexity of

O(0%c735 4 ¢71:75). This matches the lower bound Q(o2e~3%) in the stochastic regime Arjevani
et al.| (2023)) and recovers the best known rate (9(5*1‘75) in the deterministic setting, smoothly
interpolating between these two regimes.

4 ADAPTIVE STEP SIZE SCHEME

In the previous section, we analyzed Algorithm [T| with a constant step size 7 and established its
convergence rate. However, as shown in Theorem [3.3] the choice of 7 depends on the global gradient
Lipschitz constant and the episode length 7', which can be overly conservative and leads to slow
convergence. To address this, it is often desirable to select the step size adaptively to exploit the local
Lipschitz continuity of the objective function. In this section, we extend Algorithm [I]to incorporate an
adaptive step size scheme that automatically adjusts the step size based on past gradient information.

Inspired by the adaptive step size analyses developed in|Kavis et al.|(2019);|/Antonakopoulos et al.
(2022); |Levy et al.|(2018), we define the learning rate as

~vD

M = T )
n mo k k
Vot ST jgh _ pk|2
where v > 0 controls the initial step size and o > 0 is a small constant added for numerical stability.
Here, gk = g(k—1)7+i and ht = = h(;_1)74i, with k indicating the episode and ¢ the iteration index
n mod T H k

within that episode. The sum ), gF — h¥||2 is reset at the beginning of each episode, which
facilitates the theoretical analysis of regret in the Online Learning Problem [T]

®

The key challenge in analyzing the adaptive step size scheme in (8)) is that the step size 7,, does not
admit a direct upper bound, making it difficult to leverage the negative term in the regret analysis.
Specifically, similar to Lemma[3.1] we can bound the regret for the first episode as (the subsequent

episodes follow by similar arguments) Zzzl<g", A, —ul) < 3D + Zn L (37; g, — h,|* -

477% 1A, —A,_q ||2) . In the constant step size setting, as shown in the proof of Lemma the key to

applying the telescoping argument is the ability to choose 1 < \/glL , ensuring that the negative term
1
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— 15 |1, — A1 || balances the deterministic approximation error 2| VF(wy) — VE(zn_1)|%
1

V3L’

However, in the adaptive setting, we have no guarantee that 7,, is bounded by
telescoping argument not directly applicable.

making the

To overcome this difficulty, we adopt a thresholding strategy inspired by prior work in |Kavis et al.
(2019); |Antonakopoulos et al.| (2022); Levy et al.|(2018). At a high level, we partition the iterations
within each episode into two categories. For iterations where 7,, is below a certain threshold, we

show that the negative term dominates the positive one. Conversely, when 7, is large, the definition
of () implies that the denominator 3 7 2°**'||g% — h¥||2 is small, which allows us to control the

cumulative contribution of the positive terms. We refer the reader to the appendix for further details.

Under the adaptive step size 7,,, we establish the following lemma, which bounds the regret incurred
during a single episode of the K -shifting regret. Without loss of generality, we present the result for
the first episode; the analysis extends straightforwardly to any subsequent episode.

Lemma 4.1. Consider executing the update described in (), using h,, as defined in (6) (or its
stochastic counterpart in the stochastic setting), and the adaptive step size defined in (8). Then we can

bound the first episode of the K -shifting regret as 27:;1 E [(gn, A, — u1>] <8 (% + 'y) DVTo +

—Zn-—1 ” !

3 .
16 (% + ’y) * L1v3 D2, where L, = maxi<n<T 7“",?”_}1"”

Lemma [.T|plays the same role as Lemma [3.2]in the constant step size setting. Notably, instead of
relying on the global gradient Lipschitz constant, the bound depends on L1, which can be interpreted
as a local Lipschitz constant and may be significantly smaller in practice. We are now ready to present
the final convergence guarantee for this adaptive variant of the “Online Doubly Optimistic Gradient”
method.

Theorem 4.2. Suppose Assumptions and 2.2 hold. If we run Algorithm[I| with h,, as
described in @ (or its stochastic counterpart in the stochastic setting), the values for D, T, and K
are selected as the ones in Theorem and n,, as described in @]) , replacing L1 with L3, where

L = max)<,<s %, then the following holds

E[;(éHVF(Wk)@ = O((F(xo) P

Theorem shows that our adaptive step size scheme maintains the same complexity of O (=175 +
o2e73-%) without requiring manual tuning of the learning rate, while offering improved dependence
on the gradient Lipschitz constant compared to the constant step size scheme. Moreover, Cutkosky &
Mehta| (2020) posed an open problem of designing an algorithm that achieves this complexity without
knowledge of the variance 0. Our result represents a first step towards this goal by introducing an
adaptive step size. A promising future direction is to further adapt the choices of D and T, ultimately

aiming to make the algorithm fully parameter-free.

5 CONCLUSION

In this paper, we build on the online-to-nonconvex conversion framework of |Cutkosky et al.| (2023)
and propose a simple algorithm for solving smooth nonconvex optimization problems, which only
requires two (stochastic) gradient queries per iteration. Our key contribution is a doubly optimistic
hint function for the online optimistic gradient method, thus eliminating the fixed point iteration
subroutine from [Cutkosky et al.| (2023). Assuming that both the gradient and the Hessian of the
objective are Lipschitz continuous and that the stochastic gradient has bounded variance o2, our
algorithm achieves a complexity of O(s =17 + g2¢3-%). This result smoothly interpolates between
the best-known deterministic rate and the worst-case optimal stochastic rate. In addition, we develop
an adaptive step size strategy for our algorithm, marking a first step toward a potential future direction:
the design of fully adaptive, parameter-free algorithms that match this performance without relying
on prior knowledge of problem-specific parameters.
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APPENDIX

A MORE DETAILS ON ONLINE-TO-NONCONVEX CONVERSION AND RELATED
PROOFS

In this section, we elaborate on the details of the online-to-nonconvex conversion under the assumption
that we have access to a deterministic oracle, with the goal of building intuition. In the next subsection,
these results will be extended to the case where only a stochastic oracle is available.

As introduced in Section[2.1] to eliminate the randomness from the analysis, we define the gradient

estimate g,, = VF(w,,) where w,, = %(Xn,l + X, ). This modification introduces an error in

approximating F(x,) — F(x,_1) by g A,,. However, as established in the next lemma, under
Assumption [2.2] and for sufficiently small D, this error becomes negligible. The proof is available in
(Jiang et al.| [2025, Appendix A.1).

Lemma A.1. Consider x,, = x,,—1 + A, where ||A,|| < D. Further, define g,, = VF(w,,) where

W, = %(anl + Xp). IfAssumptionholds, then F(x,_1) — F(x,) > —gl A, — Ligs.

Lemma provides a formal connection between g,,, A,,, and the function value decrease. While
the choice —g,, yields the steepest local descent, as discussed in Section the key challenge is
that g,, cannot be computed prior to selecting A,,, since it depends on x,,, which itself requires A,,.
This observation motivates an alternative interpretation: the process of choosing A,, can be cast as
an instance of online learning, where each A, serves as a decision variable, and the loss incurred at
step n is given by the linear form g A,,.

To rigorously relate the online learning perspective of choosing A,, to the objective of identifying a
stationary point, we appeal to Lemma[A.T] This result establishes that for any fixed comparator u,
after T iterations satisfies the following bound:

d d TL,D3
T T 2
Flxr) = Flxo) < 30T (8 —w)+ 3 glu+ ——
Setting the arbitrary vector as u = —D(3 7 -1 &)/ 7_, g, |, it can be shown:
T T
1 F(X()) — F(XT) 1 T L2D2

— n|| < —————= + — A, — . 10
HT;g = DT +DT; n(Bn =0+ =5 (10)

While the connection between the average gradient and the cumulative regret over 7’ iterations has
been established, our primary objective remains the identification of an e-first-order stationary point.
To bridge this gap, we now present a formal relationship linking the average of the gradients to the
gradient evaluated at the mean iterate. The following lemma serves a similar purpose to (Cutkosky
et al.,[2023| Proposition 15).

Lemma A.2. If g, = VF(w,) and Assumption 2.2\ holds, then |VF(w)| < |13 _, gl +
%tQDQ, where w = % 2221 W,

The proof of this lemma is provided in (Jiang et al., 2025, Appendix A.2). By combining this result
with the expression in (I0), we obtain a connection between the norm of the gradient at the averaged
iterate and the regret bound appearing on the right-hand side. It is important to note that the error
incurred when approximating the average of the gradients over ¢ iterations by the gradient evaluated
at the average iterate grows quadratically with the window length ¢. To control this approximation
error, we reset the averaging process every T iterations. At the same time, we must account for the
fact that certain terms in the upper bound scale inversely with T, requiring a careful choice of 1" to
achieve the tightest possible convergence guarantees.

A.1 PROOF OF PROPOSITION[2.]]

Note that when we have access to a stochastic oracle, the gradient becomes g,, = Vf(w,,&,).
Consequently, Lemma [A.T|takes the following form:

Ly D3

F(xp_1) — F(x,) > —VF(W,,L>TAn T

12
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This expression can be further related to g,, as follows:

T L2D3
F(anl) - F(Xn) > _<VF(Wn) — 8n; An> — 8, Ay — 18
Taking expectations and using the fact that g, is an unbiased estimator of VF'(w,,), we get:
LyD3
E[F (xq-1)] ~ E[F (x,)] > ~Elg, Ay — —2—.
By telescoping over T iterations and adding and subtracting Z:,l g u
d TL D3
2
E[F(xr)] = F(x0) <E | Y (g, Ap—u)| +E Z glu .
n=1

Choosing the comparator vector as u = —D(i_i8n /I =T_, g.|l, we obtain the following bound
1 1 T
TZgn —E Zgn(An—
n=1 n=1

Now consider the k-th episode (k = 1,2,..., K) fromn = (k — 1)T' + 1 to n = kT. By applying
the inequality in , we obtain

xo) — E[F(x7)]

LoD?
< .
- DT

T8

Y

kT

E[F(X(k_l)T)} — E[F(XkT)] 1 T .
< pp—— J—
H el = DT +t57E | D g (An—uh)
=(k— 1)T+1 (DT 41
LyD?
’ 12
TR (12)

Moreover, recall that W = L 3¢ —(k—1)7+1 Wn and it follows from Lemmathat |VE(W")| <

T Zn_(k DT41 VF(w,)| + %T2D2. Recall that Lemma |A.2{ was derived under the determin-

istic setting where g,, = VF(w,,), but now g,, = V f(w,,, ). However, we can state:

kT

|VF(wH)| < % > VE(w,)|[+ L2T2D2

n=(k—1)T+1
1 - Ly 2 12

=7 > (VF(wn) —gn+8n) + 5 T°D
n=(k—1)T+1
1 kT 1 kT LQ

< T Z (VF(wy,) — gn) +HT Z gnll + 2T2D2
n=(k—1)T+1 n=(k—1)T+1

The final inequality follows from the triangle inequality. In expectation, we can state

} Lo, (13)

sivretl < 2 gk Y wlf]+L

=(k—1)T+1

This bound follows from applying Assumptlon 23] which allows us to establish
kT
E { T Lone(e—1yr+1 VE(Wn) — gn

Using (I2)) together with (I3)) leads to

5

_ E | F(xx-1r)| — E[F(x7)] 1 il
B (v r(w)] < S e D)
n=(k—1)T+1
L2D2 LQ 2 ~2 g
—T“D .
+ 48 2 + T

13
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Summing over k = 1 to K and dividing by K, we obtain

K K kT
1 —k F(xo) — E[F(xu)] 1 T k
R < _
k=1 k=1 n=(k—1)T+1

Lo D?
48

o

Finally, noting that E [F'(x,)] > F* completes the proof.

+

L
+ 5 T°D% +

B PROOFS FOR ONLINE DOUBLY OPTIMISTIC GRADIENT WITH CONSTANT
STEP SIZE

In this section, we provide the detailed proofs corresponding to Section [3] where the Online Doubly
Optimistic Gradient method with a constant step size was introduced, along with its complexity
analysis. While some of the proofs closely follow arguments from Jiang et al.| (2025), we include
them here for completeness.

B.1 PROOF OF LEMMA[3.1]

To prepare for the proof of Lemma[3.1] we first prove an auxiliary result.
Lemma B.1. Consider the update rule in (3). Then for any u such that ||u|| < D, it holds that

HAn_u”2 | Ani1 —uH2
n 7An - S -
(8n+1 y1—w) o M

1
— (g0 —hy, A — 1) +17l|gn — ha ]| ~ 1A+~ Al

+{(gn+1 —hny1, Anyr — 1)

Proof. By using the optimality condition, for any u € {A € R¢: |A|| < D}, we have
(Ant1 = Ap + nhpgy +19(gn —hy),u— Apgy) > 0.
Rearranging terms, we obtain
(8nt1, Ant1 — 1) <(gnt1 —hyy1, Apyr — 1) — (gn —hy, Ay — 1)
18—l = S8 = Al = 5 A =,
where we have used the three-point equality (A, 11— Ay, u—A,41) = 2[|A, —u|?— 3| Ap 41—
A, |> = $|A, 41 — ul|*. Moreover, we have:
—(gn —h,, App1 —u)=—(g, —h,, A, —u)+ (g, —h,, A, — Api1).
We can further bound the second term as follows:

1
<gn - hna An - An+1> S Hgn, - hnHHAn - An+1|| S 77||gn - hn||2 + %”An-&-l - An||27

where the final inequality follows from the weighted Young’s inequality. Putting all of the above
inequalities together yields the desired bound. O

Using Lemma[B.T] we can bound the regret for each episode in the following lemma.

Lemma B.2. Consider the optimistic update in (3). Then for k = 1 and any u* such that |[ut|| < D,
we have

T 2D2 T T 1
Z(gn,An—u1> < T+ 77||gn—hn||2—z47]HAn—An—1||2- (14)

n=1 n=1 n=2

14
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For k > 2 and any u* such that |u*|| < D, we have

kT kT

4D? r]
Z (8n: A, —u") < — §Hgk T — he- ITH Z 1lgn — hn|?
n=(k—1)T+1 n n=(k—-1)T
kT 1
D DR 1 VP SRt (15)
n=(k—1)T+1

Proof. To prove (T4), we set u = u® and sum the inequality in Lemmafrom n=1ton=T-1:

T
1 1
(gn,Ap —u') < %||A1 —u'|? - %”AT —u'|?+ (gr —hy, Ap —u')

n=2
T-1 1
- —h;, Ay — ! n*hnzfiAn *Anz .
R M (R M
Moreover, recall that A; = arg min 5 < p(h1, A). Thus, this implies that (h;, A; —u') <0.
1
(gr —hr. Ar — ') < ller ~hrll|Ar — o' < Jler — el + 5[ Ar — '

Combining all the inequalities, we obtain that

T T—1
> A} < o [Ar-ut 4 L fr-hr |+ Y (il — 0l = 1A = Al )
n=1 n=1

. T—1
Using llgr — hrll? < nllgr — hrll? and 770 LAy — Aul = X7, LA, — Ay
lead to:

T T
1
> g, B ) < Al Sl — b= 3 80— A
n=1 n=1 n=2
Finally, since we have ||A|| = D and |[u}|| < D, this leads to (T4).
Now we move to (T3). To simplify the notation, we let AY := Ay 1yrie, 8 = Go1)T+t

and h¥ = h(;,_1)74¢- Then by setting u = u* and summing the inequality in Lemmaﬂfrom
n=(k—1)Tton=kT — 1, we obtain:

T
Ak_uk 2 Ak_uk 2
Sk af -ty < A WIE AT W g g Ak - uf)

t=1 2n 21
kT—1 1
AR e Y (ol Bl - A - A
n=(k—1)T gl

Following a similar argument as in the proof of (I4), we have the following inequalities:
2
* (gF — b, AL —u¥) < Jlgf — b+ 5 | AF —ub|?.
k— k— k— k—1)2 k— ;
*(gr ' -hp LAT —uf) < dlgh byl + 5,1 A7 bk,
kT—1 kT
* Yo (h—1)T 4»,7||An+1 Al = T 4UHA — A,
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Thus, combining all the inequalities above, we obtain:

T
: n 77 k—12 1 k— .
So(eh At —uh) < oA — b+ b~ nb + ] b —nh 5 AR
t=1 n
kT—1 kT 1
T 1 O S N
n=(k—1)T n=(k—1)T+1 g
2
Ak _ k2 n gkfl — hkt ”Ak—l _ uk||2
< || 02 ” H T 5 T H + T 5 + Z ,'7||gn_hn||2
77 g n=(k—-1)T
kT 1 ,
- Z *HAn - An—IH :
4
n=(k—1)T+1
k k k—1__ k, 2
Finally, since we have || Af|| < D, ||u|| < D, and || A% < D, we get ”Algnu I” | 1Az T " <
%. This completes the proof of (I3).
O

Now we are ready to prove Lemma [3.1]

Proof of Lemma[3.1] Summing the inequality in (I4) and the inequality in (I3) for k = 2,3, ..., K
in Lemma|[B.2] we have:
K T
RegT(ulﬂ"' ZZ ng >
k=1n=1
AKD? & n et rein? oA SO
< > T e =B+ Y wllgn — Bl = D A — Ay
N k=1 n=1 n=2 n
K
+> nlght —nh?
k=1
AKD® N30 b1 k12 e USR]
= +> 5 et =hr T+ D nllen —hal* =D AL — Anoy?
N k=1 2 n=1 n=2 477
AKD? 5y &% KT
S —+t = Z Hgn - hnH2 - Z 7||An - An—1H2~
2 n=1 n=2 477
Where in the last inequality we use the fact that Zi{:l 3—2" Hg§71 —hi! H2 < f,il 37”“&1 —h,|%.
This completes the proof. O

B.2 PROOF OF LEMMA[3.2]

To prepare for the proof of Lemma[3.2] we first prove an auxiliary result.

Lemma B.3. Let h,, be defined as in (6). Then the following bound holds
3L?2
E [llgn = ha*] < 60% + =2 E[An = Ap .
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Proof. To bound E||g,, — h,|?, we begin by recalling the definitions of the respective vectors:
n = vf(wnafn) and h,, = vf(zn—ﬁgn—l)o Thus,
E [llgn —hal®] = E |V (Waién) = V(213 €n1)”

=E ”vf(wn;gn) - vf(zn—1§€n—1)
+VF(2p—1) — VF(2n_1)

+VF(wy,) — VF(w,)|?,

where the last equality comes from adding and subtracting its deterministic counterparts. Applying
Young’s inequality

E [lgn — hall’] < 3E |94 (@n-1:€n-1) = VF (20|
+3E [V f(wni &) = VF(w)]

+3E[IVF(Wa) = VF(z0-1)|]
312
4
The last inequality follows from Assumption [2.3] that allows us to bound the vari-
ance of the first two terms, and the last term comes from leveraging Assumption

||VF(X7L_1 + %An) - VF(Xn—l + %An—l)H? < L% H%A" - %A"’L_lHQ‘ J

< 60% + E|A, — A, 1]

To prove Lemma|[3.2] we first analyze the case k& > 2 and subsequently show that the bound also holds
for k = 1. Our analysis focuses on the stochastic setting. However, by Lemma [B.2] inequality (T3) is
valid in both the deterministic and stochastic cases. Therefore, we have:

kT kT

4D?> g 2
Y. lewAn—uh) < =+ lgg-nr —he-nr| Y allga —hal?
n=(k—1)T+1 n n=(k—1)T
kT 1
- Z ZliHAn_An—lng
n=(k—1)T+1
Taking expectations on both sides yields
kT kT
4D? 2
Z E(gn, A, —u") < — + g]E lgw-1r —hg—nr|” + Z nE|gn — hyl?
n=(k—1)T+1 K n=(k—1)T
kT 1
- Y TElA - A (16)
n=(k—1)T+1
Leveraging Lemma [B.3|
kT
4D? 3L2
> Elgn,An—uf) < —+ g (602 + Tl El|Ag-1r — A(k—l)T—1||2>
n=(k—1)T+1 n

kT 3L2
2 bt ¥ _ 2
+ Y n<6a + 5 Ela, An1|>
n=(k—-1)T
kT 1
- Z ZE”AH_ATL—lHQ'
n=(k—1)T+1

17
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Rearranging the terms leads to

kT
4D? 9L2
E E(gn, A, —u") < —— +30%n + 78177 El|Ag-1r — Ag-nr-1l?
n=(k—1)T+1 "

kT kT 32y 1

2 1 2

+ Y. 6P+ ) (4_477>E”An_An1” :
n=(k—1)T n=(k—1)T+1

Note that as long as n < fL , it holds that Zn (h—1)T41 (31'1177 n) E|A, — A, 1]? <0.
Finally, since ||A,,|| < D for all n, we have:

kT
X 4D? 91.2D2 3
> Elgn A uty < T 2T <T+ 2) 602
n=(k—1)T+1 n
4D? L2D?2
< AD7 | 9D 120 1 180T, (17)
n

where the last inequality follows from the fact that 7" > 1, completing the proof.

For completeness, we analyze the case k = 1. As will be shown, the upper bound also holds in
this case. From Lemma B.2] inequality gives

T T T

2D? 1
Z<gn7An - u1> < T + Zn”gn - hn”2 - Z %HAH - An—1||2'

n=1 n=1 n=2
Taking expectations on both sides yields

T op? T T
Z]E<gn7An - u1> S T + ZUE ||gn - hnH2 - Z ZUE HAn - An—1||2- (18)
= n=1 n=2
Leveraging Lemma
T T o
2 2
> B A, <f+z (60° A, - A )- S g EIA - Al

Rearranging terms (with the convention Ay = 0) leads to

2

T T T

2D 3Ly 3L3n 1

Z 1 Z 2 1 2 Z 1 2
E<gnaAn —u > < T +n:160' T]+ TEHAln +n:2 <4 - % E HATI — An—l” .
Note that as long as n < f , it holds that Zn (h—1)T42 (31'2577 ﬁ) E|A, — A, 1]? <0.
Finally, since ||A,,|| < D for all n, we have:

iz 2D?  3L2D%

> E(gnAn-uf)<—+ 714 + 6T’y
n=(k—1)T+1 n
4D?  9L2D?
S | S T 18021,
"

where the last inequality simply enlarges constants. This confirms that (T7) also holds when k = 1.

B.3 PROOF OF THEOREM[3.3]

According to Proposition[2.1] attaining the final convergence rate necessitates bounding the K -shifting

regret. We obtain the following result as a direct consequence of Lemma[3.2]

4K D? n 9L3nK D?
n 2

E[RegT(ul,...,uK)] < +18nKTo>.

18
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Integrating the aforementioned regret bound with Proposition[2.1] we arrive at

K
1 _ F(xo)— F* 4D 9L2yD 18y , Lo Ly o
il F(wF i S e Wl 2 2p2 —T2D2 )
K;W WAl = —pgT T 2t "D Tt T VT
Rearranging terms
K
1 _ F(xo)— F* 4D (912D 18 o
E|-— F(wt Sl o2 LT?D* + . (19
lK;”V WOl = —Dk7 Ty ( or t D7)t g 19

From the upper bound in (T9), we must select the hyperparameters 1, D, K, T, subject to the constraint
KT < M, where M denotes the total iteration budget and K, T € N. To obtain the tightest possible
bound, we will first choose 7, then determine 7" and K, and finally set D.

To proceed, we balance the two - dependent terms to determine the optimal 7, and scale it appro-
priately so that the condition < f o required by Lemma is satisfied. This yields the choice

1 Substituting this expression into the bound gives

77_ 2, 12T °
\/3Li+ 5502
F(x¢) — F* 11D 12T
< 313 + =02 + LyT?°D?* + ——
=~ Dprr  Tar\ +D20+ +ﬁ.

K
Applying the inequality va + b < /a + Vb for a,b > 0, and simplifying yields

1 _
k=1

K
1 _ F(Xo) —F* 1OL1D 200 2 2
=Y IVEw")| < + ==+ L, T°D?. (20)
K Pt DKT T VT
Note that the bound involves four terms dependent on 7. If we set T' =

min (max ( RiOEQ ) 5—‘ ) [( 1L()2LD1 ) ﬂ > , > and K = | 2L, we can bound the first three terms
of the inequality (20) as follows:

« KT > (% - 1)T > M — T > M/2 which implies £ < 9 X0l I,

¢ 104D < max (10817 L] D¥, 2042,
1
» 22 < max (20415 Diot, 2042

The max terms arise from the fact that the second and third terms in (20 are inversely proportional

to T'. Since T is clipped by M /2, these terms become inversely proportional to min (D_%, % and
\/ min ((%)% , %), respectively.

We upper bound Lo72D? as follows:
20 AN
3
L,T?D? < L =7 L D?
2 >~ QmaX<’7<L2D2) -‘,’V(LQD
20 ’ 10L,\%]
o 1 3
<Ly ||+ D*+ L D?.
< 2{<L2D2) —‘ + 2{(L2D) —‘

Using the fact that [2]% < (z + 1)? < 222 + 2 for any 2 > 0, we obtain

i

SIS}

19
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2
9 5 10L,\ ?
—ory (229 ) p2yop, (25 p2 oy, p2
LoD

1 4 2 2 1 4
<22L305D5 + 10L7 L3 D3 + 4Ly D?

Substituting the above inequalities into the bound in (20) yields
K

1 _ F(Xo)—F* 22 1 4 20L1D
E ?;HVF(w’“)H <2 +max (109 L{ L D3, =2
L 201/2 s A
+ max <20§L§D§a§, ?}%‘T) +22L30%D? £ 1007 L3 D +4L,D.

Using max(a, b) < a + b, and after rounding constants, we get:

K *
1 - 2F(x0) - F +20L1D+20\/§a

gl v =

1 4 2 2 1 4
E +33L5 05 D5 +15L7 L3 D3 +4Ly D,

“\ B/T N\ 3/7
— mi 2(F(x0)—F") 2(F(x0)=F") ; : ; :
IfwesetD = mm{ (33L§/5o4/5M> , ( M1 Ll ) } Given this selection of D, the resulting

upper bounds are as follows:

4
agT;

1 5_2 2 1 w2 1
33L§D§a% < 33727 (F(xq)—F*)7 Lgaé < 15(F(>;C34);F )7 L]
T

2 14 15%2% (F(xo)=F")? _ B(F(x0)—F*)7 ;2,2
5L} L3 D3 < T < 0 LiL3;

M7 - M7
* 3 w4 5 2 1 2 2 1
. 2F(X[c;)]\;F < 27.57(F§;0%)—F )7 + 216.57(F](Vj:§)—p )7L270$ < 5(F(xj(:4)%F )7L17L27 +
2 1
—F*\7 = 4
MIEU?;
M7

5 3 5 3
20L,D - 20L{ (F(x0)=F")7 - gL{ (F(x0)=F")7.
M = oyt = TR
) s Ly "M7

5 6 3 6
AL (F(x0)=F")7 _ L (F(xo)=F")7

2
* 4L, D* < 6 6 2 = N
7T57TM7LT LTM7

1N

Substituting these inequalities into the bound yields

]:l(i HVF(W]C)” S 10(F(X0) — F*)%
k=1

4
7

E L

2 1 F(xo) — F*)?
; LELQ%—FE}O( (Xo) )7 ”

ki M3

BN =

LT (F(xo) — F*)} . L3 (F(xo) — F*)% L 20V

+9 v
LY Mm% LiM$ VM

This final bound confirms the convergence rate stated in the main theorem, as the last three terms are
of higher order and thus do not influence the rate.

C PROOFS FOR ONLINE DOUBLY OPTIMISTIC GRADIENT METHOD WITH
ADAPTIVE STEP SIZE

In this section, we provide detailed proofs corresponding to Sectiond where the Online Doubly
Optimistic Gradient method with an adaptive step size was introduced, along with its complexity
analysis. The section is organized into several subsections, presenting useful inequalities and lemmas
that build up to the proofs of the two main results from Sectiond] namely Lemma[4.T]and Theorem4.2]
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C.1 HELPFUL INEQUALITIES

Lemma C.1. Let a; > 0 Vi, and that there exists at least one index j € [1,T] with a; > 0. Then
the following inequality holds

Proof. We prove the lower and upper bounds separately.
Lower bound: We observe that

T T i T T
Z_j:l J Zj:l a;
E az:g a; _ SE a; : ;
1 1
i=1 i=1 D=1y i=1 D=1y

where the second inequality follows from the fact that a; > 0 V. Dividing both sides by 4/ ZJT=1 a;
gives the desired bound.

Upper bound: Define S; = Zgzl a;, with the convention that Sy = 0. For each 4, it holds that

a; a; S — Si1
< = =S —/Si—1,
2VSi T VS +/Sic1 VS +/Sic
where the first inequality uses S;_; < S, the first equality uses a; = S; — S;_1, and the last equality
follows from the difference of squares. Summing both sides of the inequality fromi =1toi =T,
yields:

T T
a;
Z SZ\/Si_\/Si—lz\/STa
i=1 2v/S; i=1
where the first equality follows from telescoping the series, and note that by definition Sy = 0.
Multiplying both sides by 2 gives the desired inequality. [

Lemma C.2. Let a,b € R, and define M = min {(a +b)?, aQ}. Then the following inequality
holds:
(a+b)* <2M + 2%,

Proof. We have both (a + b)? < 2a? + 2b% and (a + b)? < 2(a + b)? + 2b. Combining these two
gives us the desired inequality. O

C.2 PROOF OF LEMMA [4.1]

Prior to proving Lemmad.1] we state the following proposition, which is an immediate consequence
of Lemma[B.1l

Proposition C.3. Consider the update in (3), with an adaptive step size n,,. Then for any u such that
|[u]| < D, it holds that

1 1
(8nt1,Any1 —u) < ﬁHAn - u||2 - ﬁHAnH - u|\2 +(8nt1 —hni1, Apyr — 1)
1
- <gn - hnvAn - 11> + nn”gn - hn”2 - HHAn-ﬁ-l - AnH2

Remark C.1. To simplify the notation in the remainder of the proof, we define g,, := VF(w,,) and
h, :=VF(z,_1).

We are now prepared to present the proof of Lemmad.1]
Proof of Lemma The first step in proving Lemma[.T]is to bound the regret within the episode.

Analogously to Lemma [B.2] we can formulate the following lemma for the first episode using an
adaptive step size.
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Lemma C.4. Consider the optimistic update in (B) with an adaptive step size 1,,. Then for k = 1
and any u' such that |ul|| < D, we have

T T

3D2 1
S g A, —ul)y < 22 <nn||gn Chf? - A, - An1||2) .
nel nr 47777,

n=1

The proof of this lemma is provided in Appendix [C.3] Furthermore, the following lemma allows us to

upper bound the sum Zle Nnl|gn — hy||? in terms of 22:1 llgn
the product of random variables. The proof can be found in Apendix [C.3]

2, effectively decoupling

Lemma C.5. Using the definition of n,, from (8), we can derive the following bound

3D 3D
777T+Zn"”gn hn”2 < 2\[ <+7D> (X+Z||gn_ n

n=1

In addition, define 1, = min (||gn — hyl|?, |, — hyl?). Applying Lemma [C.2] we obtain the
inequality ||g, — hy[|? < 24, + 4/|gn — &n|* + 4/h,, — by, ||, This allows us to upper bound the
right-hand side of the expression as follows

T

T T
ot S llgn — a2 <2, S (lgn — gall2 + B — Bol2) + V3, | a+ 3 o

n=1 n=1 n=1

This effectively decouples the noise in ||g, — h,|| into separate, more manageable com-

ponents. We now focus on bounding the expectation of the first term in the preced-

ing inequality. By applying Jensen’s inequality and invoking Assumption [2.3] we ob-
. T _ - T _ -

tain: E[2y/S7_ (Ign — &all2 + b — Ba[2)] < 20/ Blllgn — gall2 + b — B2 <

2v/20\/T. Therefore, it only remains to upper bound

3D d G|
4(+vD) at Y =y A=A @1)
27 n=1 n=1 477”
Note that by the definition of 7, in (), we have 7, < —2P____ Also, by the definition
\/OHrX:7 1 M
LT = maxi<p<ym % we have 1[|A, — A, > (L* ~|lgn — h,||? > (fﬁ)ﬂ“‘”' Hence,

A, — A, 1]?*> Z 7Mun Hence, the term in (ZT)) can be

we obtain that 37 D)

n14n

upper bounded by 4(% +yD)Wa+ X - 7“’?;;(2“1“1””, which in turn is bounded

in the following lemma. Its proof can be found in Appendix [C.5]

Lemma C.6. Given the previously defined quantities (i, and IAf{ , we have the following

4 <3D + 7D>
2y

Combining all the pieces together yields

T 3
a+ i= NJZ 2 N 4
a+Zun Z” Z L= i < ( +v) Liy2D?,

3
2

T
3 3
> [lgn, An - ) <8(249) DVTor16( 2 +q) Hin2
— gl v
and this completes the proof. [
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C.3 PROOF OF LEMMA[C.4]
Setting u = u!, we sum the inequality from Propositionover n=1ton=T-1

T T-1

Z<gn7An - u1> < <gT - hTaAT - ul> - <g1 - h17A1 - lll> + Z nn”gn - hn||2
n=2 n=1
+Z( 1) A — w2 4 A — a2 = S Ay — a2
=\ 20011 2, 2m 2nr

- Z HAn+1 An||2

n=1

First, note that by the definitions of h; and Ay, we have A; = arg mina<p(h, A). This implies
that (hy, A; — u') < 0. Therefore

T T—1 T—1 1 1
S (g An ) < {gr —hr, Ar—u') + 3 g — by ||2+Z( Qn) 1A — ul|P?

n=1 n=1 27]
+i||A1—u1||2—i||AT—u1||2—TZ_1i||A — AL
27]1 27]’1” — 47]n n+1 n .

Additionally, applying the Cauchy-Schwarz and Young’s inequalities, we can bound

IN

(gr —hy,Ap —u') < |gr — he||Ar — u'||

IN

nr 2 1 112
— —h — || A7 — .
5 lgr —hr|”+ 277TH r—u

Combining all the inequalities, we obtain

!

T —1
nr 1
S (e A~ < Py el + 3 (mlsa Bl g

n+1 — An||2>

T-1 1 1
— ) A P+ — A —ul%
+3 (G = o ) M =P 4 5 A= ]

n=1 Tn
As 7, is a decreasing sequence, by definition () , we have (27771“ — ﬁ) > 0. Additionally,
|A,.|| < D and |[ul|| < D. Therefore, we have Zn 1 (2";1 - 27”) A —u|?+ gm A —
ulll2 2 1 1 4D? _ 2D?
2 < 40> 500 (ks = ) + i = 37 Hene
T T—1 9?2
(0 A ) < Tlgr Bl + 3 (mll Bl — 8w ) + 20
n=1 =
T—1
2D?
=+ g —hrlf + Y (nn|gn —ha? = —|A, - An1||2)
nr n—2 Tn—1

- AT = AriP 4w lg — bl
T —
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Note that Z||gr — hr||* < nr|lgr — hr||?. Therefore, we can state the following upper bound

T T
2D?
<gna A, — > < + (77n||gn - hn”2 -
2

n=1 n=

2D2

. An_u?) T mllg: - ha?

T
1
37 (nllen = l? = 18 = Aval) e P
2 n

n=

1« 1
oS (= - A, — A,
4;(% el N
2D? ( 1
<—+ 77n||gn - hn”2 - 7||An - A111”2) + 771||g1 - hl”2
nr ngQ 4ny,
D? D?
+ _
nr m
Here, the first equality follows by adding and subtracting the term Zn 5 4?7 A, — A, _1]|?, while
the final 1nequahty uses the facts that (— - 1_1> > 0and [|A,, — A,,_1* < 4D?. Moreover,
we observe that — 2> < ——||A1 — Ay||?. Therefore
= 3D? | 1
> A - ) < 524 Y (bl = A - AP,
n=1 T n=1 Tn

This completes the proof.

C.4 PRrROOF OF LEMMAI[C.3]

Using 7,, as defined in (§)), and noting that we are analyzing the first episode (so n mod T simplifies
to n), we have

T
3D vD||g, — h,|?

— + %Hgn—hn\|2<* a+ ) g —hil]*+
[ A— v Z Z\/O‘""Zz 1ng_h||2

Applying the inequality v/a + b < \/a 4+ /b for a,b > 0, we obtain

T
3D 3D
— + 77n||gn h ||2< 7\/74‘7
nr v

T
WDIIgn—h &
lgi — bl + :
Z Z >ic1 llgi —hif|?

n=1

Applying the upper bound corresponding to the lower bound from Lemma|[C.1] we get

T
3D 3D
— + 7]n||gn hn”2 < 7\/>+ —
nr Y

T T
S llgi — hill? + 29D, | Y llg: - bl
=1 =1

n=1

Utilizing the fact that (v/a + v/b)? < 2(a + b) leads to

T T
3D 3D
ot Nnllgn — ha* < 2v2 (27 +7D) at ) legn —hal2.

n=1 n=1
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C.5 PRrROOF OF LEMMAI[C.6

Proof. Applying Lemma|[C.T] we obtain

T
3D Va+y" ul
4 +7D> o+ E ! g Y=l
< 27 n=1 " n=1 ’)/D(L*) i

D D T o T AT
<4<3+7D>f+4<3+7D> anlfL —Z afrZ”luun.
2 Vat+Xiim = LD

Reorganizing the terms, we further have

n

(2r0) Jor S ¥V

— 14D
27+7 yD(L%)2

= n=1

§4<+vD>\F+Z< (2D D) a(zz)’vb’“) e @

Observe that the quantity (4 (% + 'yD) — %) defines a decreasing sequence with respect

to n. Define T as the smallest integer such that for all n > T™, the following holds

4<3D+7D> L
2y (L7)2yD

Remark C.2. For sufficiently small o, we can ensure that the following two inequalities hold, where
T* is an integer between 1 and T":

Then, the following two scenarios hold, depending on the value of n
3D o2 3 .
4 WJWD (Ly’AD<a+)y pwi Yn>T
i=1
3D . .
(g, +D (L)vD>a+Zuz Vn<T (23)
=1
Returning to equation (22)), with this definition of T*, we have

a+ZT:un Z\/a-FZ il oy (27 +7D)\f

n=1 n=1

Hn

T+
+Z 4(3D+,—}/D)a+21 llul )
n=1 2’}/ (LT) P)/D V o+ Z’L 1 Hi

T
3D NEED uz ( )
4= ++D a+ n A A LTS +~D | Va
<2v v) ZM ; DL 5 T Va

= fin
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Observing that 7 +E — < 7 “"" — , and applying Lemma|C.I|to this sequence, we obtain
3D - \/ a+ Z vy

n=1

Combining terms

3D \/oz—i— Z T*
4(27+7D) a—|—Z,Um Z ZZ 1M P < (27 +7D) OH'Z“”'
n=1

Invoking the upper bound for T™* from @,

4(3D+7D) a—i—zT:un Z”Wrz“‘“ i < (27+7D>\/4<:;S+7D)(ﬁ’{)27D

2y

3 LI
=16 ( + v) Liy2 D%
This concludes the proof. O

C.6 PROOF OF THEOREM [4.2]

Note that the algorithm restarts after every 7T iterations. Therefore, the bounds proven for the
first episode apply to each subsequent episode, and as a corollary of Lemma [4.1] we obtain

3.
E [Regp(u',...,uf)] <8 (% + 7) DK\To+16 (% + "/) ’ L1~z K D?. Together with Propo-
sition@ we can show that:

( )—F* g * D L2 2 L2 2 2 g
—ZHVF W< DX =2 e T 1608 iyt Tt gD+ ST+
DM VT 48 2 VT’
where C; = (% + w), also define Cy = (% + 8y + 1).
Equivalently
— F* 5. . D
% Z IVF(w")| < % + 02% +16C; Lh%f + L, T?D?. (24)

Based on the upper bound in ([24)), the hyperparameters D, K, T must be chosen under the constraint
KT < M, where M denotese the total iteration budget and K, T € N. To obtain the sharpest bound,
we will first determine 7" and K, and then specify D.

2 l
If we set T = min <max (RL(’;%’Q) O—‘ {(16012 L{g) -D ,g) and K = |%], we can

bound the first three terms of the inequality (24) as follows:

« KT > (M _1)T > M — T > M/2 which implies ZC0) 21" < 9 FCxo) 1",

IN

1607 Ly 2 < max(16sL3( 9)35CiD4, 3207 L’m%%)
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We upper bound Lo72D? as follows:

Cyo
2 2
Ly;T*D* < Lymax ’7(L2D2>

1 2
7L1'72 ’ 2
w <1601 L2D> D
Oy \ 3] i\
5
<I 20 D%+ L, | [ 1602 i D2
< 2{<L2D2) —‘ + Lo ( U T.D

Using the fact that [2]? < (z + 1)? < 222 + 2 for any = > 0, we obtain

020'
L.T2D?* < L, [ 2
2 = 2( <L2D2>

SN

BIS

L 3
+2>D2+L2 (1602 1717) +2|p?
2

L*’y
1602 =2
66’1 95

2
3
> D? +4L,D?

\
2o
h
[\v]
A~
sl
Sf IS
~_—
I
)
[\
+
[\}
h
[V}
VR

Substituting these values into (24) yields

F(xq) — F* oz 1 4 5., 1D
KZHVF ||<21%7M + max <7L (L3)3 3C’1D3,32C’12L1’y2M)

4 L 2 4 o 4 1 4 2 NS R S 1
+ max (CngDf»os,CQ\/ﬁm) +2Cj Lyos D5 +13C(L7)3L3 D3

+4L,D2.

Using max(a, b) < a + b, and after rounding constants, we get:

K

F — F*
Z|VF ||<2L
K=

g
DiF CoV2——

Dy
M VM
+3C5 Lot D} + 200, (L)L) DY + 4L,D2.

3 A
+ 3207 L2

3

F(xo)—F* 7 ) )
) 13 eads to the following upper
10M(L¥)3L3~3Cy

ot

Setting D = min{ (2 Fxo)=F" )

bounds:

. SC§L§ Dios <3727MC7L707 <3(17("‘;\27F)702%L2%0%;

4
7

- 2L (L})373CuD} < 20 CF (1)} L7% <
2 L Ry F
677(}( )7L27(F(cj>\){7;)7;
C 2FEEE < 2 108 ()L EESEDE g 153 (el 0 ot
6y Oy (L) L] (F(X‘XI’%F*)% 4 3(El0)-F ﬁC’ijcr%,
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5 N 5 N
. 4L2D2 < 46 L (F(x0)—F )g < L27 (F(x0)—F )67 .
07 M2 (EnTyief T MEEnTaior

Finally, substituting this value into the bound yields

K \ )

1 1 3 .. 2 1(F — F¥)7 r _9E .

I E |IVF(w")| < 1277013 (L03L] (F(x0) ) ( (XOZQ% )7 i
k=1

4
7

N )=

g

1

o

\
e

N
o

~v 71 (F(xq) — F*) +L§(F(XO)—F*)$ 4oy

L] s iel

Cy(Ly)

i

+12

This final bound confirms the convergence rate stated in the main theorem, as the last three terms are
of higher order and thus do not influence the rate.

D USE OF LARGE LANGUAGE MODELS

Large Language models were used lightly to refine wording and correct grammatical errors in parts
of the paper.
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