
Under review as a conference paper at ICLR 2024

LEARNING DEEP IMPROVEMENT REPRESENTATION TO
ACCELERATE EVOLUTIONARY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Evolutionary algorithms excel at versatile optimization for complex (e.g., mul-
tiobjective) problems but can be computationally expensive, especially in high-
dimensional scenarios, and their stochastic nature of search may hinder swift con-
vergence to global optima in promising directions. In this study, we train a mul-
tilayer perceptron (MLP) to learn the improvement representation of transitioning
from poor-performing to better-performing solutions during evolutionary search,
facilitating the rapid convergence of the evolutionary population towards global
optimality along more promising paths. Then, through the iterative stacking of
the well-trained lightweight MLP, a larger model can be constructed, enabling it
to acquire deep improvement representations (DIR) of solutions. Conducting evo-
lutionary search within the acquired DIR space significantly accelerates the popu-
lation’s convergence speed. Finally, the efficacy of DIR-guided search is validated
by applying it to the two prevailing evolutionary operators, i.e., simulated binary
crossover and differential evolution. The experimental findings demonstrate its
capability to achieve rapid convergence in solving challenging large-scale multi-
objective optimization problems.

1 INTRODUCTION

Optimization serves as a fundamental component in numerous real-world applications and machine
learning algorithms. For instance, it plays an essential role in optimizing vehicle routes for cost-
efficiency in logistics (Thanh et al., 2023), forms the core of hyperparameter tuning in AutoML
(Zhang et al., 2023), defines and minimizes the multiple loss functions in multitask learning (Lin
et al., 2019), etc. The optimization problems in these applications may be challenging due to their
non-convex, multiobjective, evaluation-expensive, and/or large-scale nature. Addressing such chal-
lenges demands the use of well-designed optimizers, with evolutionary algorithms (EAs) standing
out as promising problem-solving tools (Liu, 2022). Nevertheless, EAs can be computationally de-
manding, which limits their adaptability to lightweight optimization requirements (Coello Coello
et al., 2020). In recent years, there has been a growing emphasis on conducting computations closer
to data sources, such as onboard or alongside a connected camera in a self-driving car, to enable
real-time optimization services (Gulotta, 2023). This shift has led to a transition of computing from
the centralized cloud to the edge devices, where computing resources are severely limited.

However, many existing EAs were developed without considering these resource limitations. In the
quest for lightweight optimization, EAs must enhance efficiency to address the growing complexity
of challenges (Del Ser et al., 2019), notably those related to large model and big data optimization
that are often computationally demanding, particularly in terms of function evaluations (Chugh et al.,
2019). Building on the observations outlined above, this study aims to enhance the efficiency of EAs
for solving large-scale multi-objective optimization problems (LMOPs). In the literature, extensive
efforts have been dedicated to improve EAs for solving LMOPs, which can be broadly classified
into three main categories:

Decomposition of Search Space: This approach employs a divide-and-conquer mechanism, where
decision variables are grouped or clustered by the developed variable decomposition methods (Zhao
et al., 2022), including linear, random, and differential based methods (Ou et al., 2022). Opti-
mization is then carried out collaboratively on each of these groups (subspaces), simplifying the
problem-solving process (Zhong et al., 2022). However, it typically relies on rich domain exper-

1

Under review as a conference paper at ICLR 2024

tise for problem decomposition which may not be available. Incorrect grouping of variables may
mislead evolutionary search and slow down population convergence (Duan et al., 2023). Analyzing
the importance (or contribution) of variables and their interrelationships before grouping requires a
substantial number of function evaluations (Liu et al., 2022).

Dimension Reduction of Search Space: This method transforms the original LMOP into smaller-
scale problems using existing dimensionality reduction technique, such as random embedding (Qian
& Yu, 2017), unsupervised neural networks (Tian et al., 2020), problem transformation (Zille et al.,
2016), and principal component analysis (Liu et al., 2020). This conversion allows optimization to
take place in a simplified representation space, leading to a substantial reduction in the volume of the
high-dimensional search space. Nevertheless, it does not guarantee the preservation of the original
global or near-global optimum when operating within the compressed search space, and thus it may
potentially miss certain optimal regions, making populations susceptible to local optima entrapment.
The dimensionality reduction process often overlooks constraints related to computational resources.

Design of Novel Search Strategy: In contrast to the preceding methods that alleviate problem com-
plexity before optimization, this category of algorithms tackles LMOPs directly, taking all decision
variables into account. It achieves this by designing new, powerful evolutionary search strategies for
offspring reproduction, such as competitive learning-based search (Liu et al., 2021), bidirectional-
guided adaptive search (He et al., 2020a), adversarial learning-aided search (Wang et al., 2021b),
and fuzzy-controlled search (Yang et al., 2021). Without proper guidance towards the correct search
direction, there’s a likelihood of venturing into the misleading areas during optimization, result-
ing in a wasteful consumption of computing resources (Omidvar et al., 2021). These novel search
strategies still fall considerably short of meeting the demands for lightweight optimization.

Despite these efforts, their search capabilities often fall short of effectively handling the exponential-
ly expanded search space within the constraints of acceptable computational resources. In pursuit
of accelerated evolutionary optimization, researchers have investigated online innovization progress
operators aimed at guiding offspring towards learned promising directions (Deb & Srinivasan, 2006).
These operators involve training machine learning models online to get performance improvement
representations of solutions (Gaur & Deb, 2017). This process encompasses three primary steps:
gathering solutions from previous generations, training the model to identify patterns, and utilizing
it to rectify newly generated offspring (Mittal et al., 2020). However, existing innovization opera-
tors are only developed for small-scale optimization. In addition, the online training of deep models
introduces computational overhead, particularly in the context of large-scale optimization, and the
resulting acceleration in convergence still falls short of expectations. In response, to expedite the
optimization of LMOPs, this work introduces a deep accelerated evolutionary search strategy driven
by an inexpensive large model, which is stacked repeatedly by multiple lightweight models. This
study presents three main contributions: 1) Development of a lightweight model capable of learn-
ing both compressed and performance improvement representations of solutions. 2) Analysis of the
varying impacts of evolutionary search in the learned representation space. 3) Design of a large
model for acquiring deep improvement representations (DIR) of solutions, aimed at enabling effi-
cent optimization of LMOPs. The relevant background, technical details, and specific experimental
design and verification are respectively elaborated in sections 2, 3, and 4 below.

2 PRELIMINARIES AND MOTIVATIONS

2.1 LARGE-SCALE MULTIOBJECTIVE OPTIMIZATION

We exclusively assess the performance of EAs on continuous LMOPs. These LMOPs involve multi-
ple conflicting objectives defined over high-dimensional solution vectors with a considerable number
of interrelated variables. For simplicity and generalization, an LMOP is defined as follows:

Minimize F (x) = (f1(x), . . . , fm(x)) , x ∈ Ω (1)

where x = (x1, x2, . . . , xn) is a solution vector with n variables from the search space, and F (x)
defines m objective functions f1(x), . . . , fm(x), m ≥ 2 and n is a relatively large value (e.g.,
n ≥ 1000). Due to the inherent conflicts among these objectives, finding a single optimal solution
for LMOPs is often unattainable. Instead, LMOPs typically yield a set of trade-off solutions known
as the Pareto set (PS). Moreover, the projection of this PS onto the objective space is termed the
Pareto front (PF). Consequently, the primary goal when addressing an LMOP with EAs is to discover

2

Under review as a conference paper at ICLR 2024

Selector

Parent
population

Offspring
population

Elites

Poor
solutions

Next Generation

Reproduce novel solutions to approximate the unknown optimal

MOEA

Iteratively

Fitn
ess

Generator

Crossover Mutation

Survival of
 the fittest

Evolutionary
Search

Environmental
Selection

(a) An MOEA with a generator and a selector, the generator produces novel solutions using

traditional evolutionary search strategies in the original large-scale variable space of LMOPs.

Selector

Parent
population

Offspring
population

Elites

Poor
solutions

Next Generation

Reproduce novel solutions to approximate the unknown optimal

Generator

Learnable
Evolutionary

Search

rand < Ɛ

Search in
the original

space

Search in the
representation

space

(b) The proposed learnable MOEA framework with a generator

that can search in the learned representation space.

LMOEA

Figure 1: Illustration of the main process in an MOEA and the proposed Learnable MOEA.

a set of solutions that effectively and evenly approximate the PS/PF. To facilitate a comprehensive
understanding of solving LMOPs, we introduce two key definitions:

Definition 1 (Pareto Dominance): given two solutions x and y. we say x dominates y, termed as
x ≺ y, if fi(x) ≤ fi(y) for ∀i ∈ {1, 2, . . . ,m} and fj(x) < fj(y) that for ∃j ∈ {1, 2, . . . ,m}.
Definition 2 (Pareto Optimal Solution): we say solution x∗ is a Pareto optimal if and only if x∗

cannot be dominated by any solution x ∈ Ω.

2.2 MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

Multiobjective evolutionary algorithms (MOEAs) have gained widespread popularity in tackling
complex multiobjective optimization problems (Guliashki et al., 2009). As shown in Figure 1(a),
an MOEA begins with an initial parent population and generates novel offspring using a genera-
tive model equipped with evolutionary operators, such as crossover and mutation. These parent and
offspring solutions are then evaluated by a selective model, which retains only the elite solutions i-
dentified as superior for survival into the next generation. Interestingly, this MOEA approach shares
common traits with other problem-solving models like generative adversarial networks (Goodfellow
et al., 2014) and reinforcement learning (Wang et al., 2021a). Specifically, an MOEA’s generator
aims to produce offspring with higher quality than their parents, while its selector classifies solutions
based on their quality, subsequently filtering out poorly performing ones. Together, the generator
and selector constitute a synergistic mechanism driving the search for diverse and increasingly con-
vergent solutions to approximate elusive optima.

Despite significant development over the years, MOEAs still face limitations in effectively address-
ing LMOPs. The challenges can be attributed to several factors. As the number of variables
increases, the search space grows exponentially, demanding that the generator exhibit enhanced
search capabilities, such as accelerated convergence, while working within limited computational
resources. Moreover, the intricate structural and property characteristics of LMOPs, including fac-
tors like separability and nonlinearity, complicate matters further. Consequently, effective search
strategies employed by the generator must be scalable to combat the “curse of dimensionality” in-
herent in extensive search spaces (Liu, 2022). Unfortunately, conventional evolutionary operators
like simulated binary crossover (SBX), polynomial mutation (PM), particle swarm optimization, d-
ifferential evolution (DE), and evolutionary strategy have been proven ineffective when confronted
with the challenges posed by large-scale search spaces (Omidvar et al., 2021).

2.3 LEARNABLE EVOLUTIONARY SEARCH

Evolutionary optimization and incremental learning are innate methods humans employ to enhance
their problem-solving capabilities (Michalski, 2000a). Relying solely on traditional evolutionary
search strategies to solve LMOPs may be inadequate and inefficient (Wu et al., 2023), as the gener-
ator lacks the adaptability needed to grasp the precise characteristics of the LMOP they encounter
(Bonissone et al., 2006). Consequently, it struggle to flexibly address the challenges posed by such
black-box LMOPs. This is underscored by the fact that biological evolution can take thousands of

3

Under review as a conference paper at ICLR 2024

y

x1, x2, , xn-1, xn

Vs.

Solution (Input)

High-dimensional
representation

y1, y2, , yn-1, yn

Improved
by evolution

Learned
representation

... ... A new
solution

Predicted

x1, x2, , xn-1, xn

Vs.

Solution
(Input)

... ...

High-dimensional
representation

A new
solution

y1, y2, , yn-1, yn

Predicted

Learning to reconstruct the input solution from its code representation

Code layer

Learned
representation

(a) Autoencoder-based learning to get compressed representation (b) Innovization progress learning to get improvement representation

Figure 2: Illustration of the autoencoder-based learning and the innovization progress learning.

years to optimize a species (Miikkulainen & Forrest, 2021), whereas cumulative learning can dra-
matically accelerate this optimization process (Li et al., 2023). Moreover, the generator conducts
iterative search of the variable space, generating a substantial dataset of feasible solutions. Em-
ploying machine learning (ML) techniques for the systematic analysis of these data enhances the
understanding of search behavior and improves future search capabilities (Zhang et al., 2011).

Inspired by this, an intriguing research question emerges: Can we merge an evolutionary search
with ML, creating learnable evolutionary search, to develop a more potent EA-based optimizer for
efficiently addressing the scalability of LMOPs? Relevant existing attempts in this regard are given
in the appendix A.1 and A.2. In an ideal scenario, a lightweight model M(A) is trained using
existing feasible solutions (i.e., data D) to enable one-shot or few-shot optimization. Precisely, after
a generation or a few generations of evolutionary search, the trained model can directly output the
target LMOP’s Pareto optimal representation x∗ corresponding to each candidate solution x in the
current population. It can be expressed in the following mathematical form:

x∗ = Θ(x;A∗, θ∗, D∗)← (A∗, θ∗, D∗) = argmin
D
{M(A), L(θ)} (2)

where three key components need to be identified for getting x∗: the well-prepared training da-
ta D∗, the lightweight architecture A∗, and the optimal model parameters θ∗ to minimize the loss
L(θ). Even if x∗ is not the Pareto optimal representation of x, its superior performance significantly
contributes to accelerating the evolutionary optimization. Thus, rapid population convergence can
be guaranteed theoretically. This is obviously a meaningful but very challenging multi-layer op-
timization problem. Nevertheless, this work seeks breakthroughs along this research direction to
improve the performance and efficiency of EAs for solving complex LMOPs.

Similar initiatives include autoencoder-based learning (Tian et al., 2020), as depicted in Figure 2(a),
which aims to obtain compressed representations in the code layer, and innovization progress learn-
ing (Mittal et al., 2021a), illustrated in Figure 2(b), which focuses on acquiring improvement repre-
sentations. The autoencoder is primarily employed to reconstruct explored non-dominated solutions,
lacking the ability to enhance solution quality, thus falling short in accelerating the convergence of
the evolutionary search. The innovization progress model is mainly designed for repairing newly
generated solutions (Mittal et al., 2021b), as indicated in formula (2), and may not fully exploit the
potential of evolutionary search. Moreover, their reliance on relatively large models necessitates a
substantial amount of training data, which can be inefficient and less adaptable as the optimization
progresses. Typically, they draw data from extensive past populations. However, as the optimiza-
tion progresses, the promising directions of improvement change, and past populations may mislead
model training. Therefore, contemporary populations often provide a more accurate reflection of
the path towards optimal future solutions. Building upon these insights, this study aims to train
a lightweight MLP model that effectively leverages the current population. This trained model is
then iteratively stacked to create a larger model, with the goal of capturing deep improvement rep-
resentations of solutions. Subsequently, an evolutionary search is conducted within this learned
representation space to maximize the potential for discovering high-quality solutions.

3 ACCELERATED EVOLUTIONARY OPTIMIZATION

The learnable MOEA (LMOEA) framework presented in this work closely resembles a standard
MOEA, with the primary distinction residing in the generator component, as shown in Figure 1(b).

4

Under review as a conference paper at ICLR 2024

The pseudocode for the LMOEA process is given in the appendix, which consists of three funda-
mental steps: initialize a start parent population P with N random solutions, reproduce an offspring
population Q composed of N child solutions by the generator, and filter half of the underperforming
solutions from the combined population of P +Q with the selector. This generator-selector iteration
continues until a predefined stopping condition is met, typically when the total number of func-
tion evaluations reaches the maximum budget FEmax. What plays a major role in the generator is
how to do effective evolutionary search. In this study, we design new learnable evolutionary search
strategies in the learned representation space to acclerate the optimization for LMOPs.

3.1 BUILD A LIGHTWEIGHT MODEL

Architecture A∗: In our MLP design, both the input and output layers have the same number of
neurons, aligning with the LMOP’s variable size (n). We’ve carefully considered the computation-
al cost of integrating a ML model into an EA, opting for a single hidden layer with K neurons to
manage computational overhead (where K << n). The computational complexity of running this
model is akin to traditional evolutionary search operators. The activation is the sigmoid function.
Training the MLP involves iteratively updating its parameters (weights and biases) using backprop-
agation with gradient descent. Specifically, we calculate the steepest descent direction by evaluating
the loss relative to the current parameters and iteratively adjust the parameters along this gradient
descent direction to minimize the loss. For evaluation, the mean-square error (MSE) is used as the
loss function to be minimized.

Training Data D∗: Given the training dataset D =
{(

xi, x
l
i

)}M
i=1

, consisting of M input-label
examples, the goal is to adjust the MLP’s parameters so that the actual output yi closely matches
its corresponding label for all i = 1, 2, . . . ,M , following statistical principles. The MLP undergoes
supervised learning, guided by the labels xl, with the ultimate expectation of acquiring knowledge
about the performance improvement representation of a given input solution x. To ensure this repre-
sentation is effective, it’s essential that the label xl corresponds to a solution vector that surpasses x
according to predefined criteria. Furthermore, to ensure diversity within the dataset and encompass
a broad range of scenarios for solving the target LMOP (i.e., generalization), we decompose it into
N subproblems, leveraging a set of uniformly distributed reference vectors (r1, r2, . . . , rN) in the
objective space. The classical Penalty-based Boundary Intersection (PBI) approach is used to define
each subproblem, which can be expressed mathematically as follows:

Minimize g (x | ri) = di1 + di2, where di1 = F ′(x)T ri/ |ri| , di2 =
∣∣F ′(x)−

(
di1/ |ri|

)
ri
∣∣ (3)

PBI is a balanceable scalarizing function, which consists of two components, i.e., a convergence
distance di1 and a diversity distance di2, where di1 is the projection distance of F ′(x) on the ri and di2
is the perpendicular distance between F ′(x) and ri. The procedure for selecting an input-label pair
of the ith subproblem is as follows: Locate the two solutions from the current population P with
the smallest di2, and designate the solution with the higher g (x | ri) value as the input x, with the
other serving as its label xl. Both objectives and variable values in the training data are normalized,
with xi and fj(x) of solution x normalized as follows:

Normalization: x′
i =

xi − Li

Ui − Li
, i = 1, . . . , n; f ′

j(x) =
fj(x)− zmin

j

zmax
j − zmin

j

, j = 1, . . . ,m (4)

where zmin
j and zmax

j are, respectively, the minimum and maximum values of the ith objective for
all solutions in P ; Li and Ui are the lowest and uppest bound of the ith variable. These N PBI
subproblem-guided solution pairs form D∗. Thus, we start by initializing the MLP with random
parameters and train it on D∗ using a learning rate of 0.1, momentum of 0.9, and 2 epochs.

3.2 DEEP ACCELERATED EVOLUTIONARY SEARCH

After training the MLP, new offspring of the target LMOP can be generated in four ways: 1) Tradi-
tional evolutionary search in the original space. 2) Inputting newly generated offspring into the MLP
to obtain improvement representations directly. 3) Creating compressed representations, conduct-
ing an evolutionary search in the compressed space to generate new codes, and decoding them for
improvement representations. 4) Obtaining improvement representations first and then evolutionary
search in the improvement representation space. Expanding on the foundations laid by NSGA-II

5

Under review as a conference paper at ICLR 2024

x1, x2, , xn-1, xn

Vs.

Solution (Input)

Original
representation

New
solution

y1, y2, , yn-1, yn

Predicted

Improvement
representation

Improved by
evolution

Code representation

Code layer

Original
representation

Deep improvement
representation

...

(a) Preparing of the training data D (b) Training of the created lightweight MLP model

(c) Stacking the learned MLP model without training to get a deep learning model for the improvement representation

f1

f2
r1 r2

r3

r4

r5

r6

Solutions

x

Subproblem guided
pairing of solutions

x

D

...

(x1,)

(x2,)

(xN,)

Figure 3: Illustration of the main process of the proposed deep improvement representation learning.

(Deb et al., 2002) and MOEA/D (Zhang & Li, 2007), we will delve into these four scenarios. In the
first scenario, SBX and DE serve as the evolutionary search operators respectively in NSGA-II and
MOEA/D. In the subsequent three scenarios, three distinct learnable MOEA variants are proposed
for both NSGA-II (termed LNSGAV1-3) and MOEA/D (referred to as LMOEADV1-3). These vari-
ants improve upon the SBX and DE strategies by incorporating the MLP (see appendix A.3).

To further boost efficiency, we stack the trained MLP t times to create a larger model. This expanded
model provides a deeper improvement representation of solutions, as shown in Figure 3. Then, we
can repair new generated solutions to get their DIRs or carry out evolutionary search within the DIR
space, with the goal of substantially accelerating the optimization process and achieving few-shot
optimization of LMOPs. Combining these two search strategies, another two new learnable MOEA
variants for both NSGA-II (termed LNSGAV4-5) and MOEA/D (referred to as LMOEADV4-5)
are developed. In addition, completely avoiding search in the original space carries the risk of
losing crucial information, potentially leading to slow growth of the MLP model and a decline
in overall optimization performance. To mitigate this concern, LNSGAV1-5 and LMOEADV1-5
balance between original and learnable evolutionary search with an adptive probability for each to
generate offspring solutions at each generation. Their pseudo-code is provided in the appendix A.3.

4 EXPERIMENTAL STUDIES

The source codes for all the EA solvers and test LMOPs in our experimental studies are imple-
mented on PlatEMO (Tian et al., 2023). We conduct all experiments on a personal computer with
an Intel(R) Core(TM) i5-10505 CPU (3.2 GHz) and 24GB RAM. To ensure a statistically sound
comparison, the proposed optimizers and their competitors run 20 times independently on each test
problem. In each run, we set the termination condition as FEmax = 105. The population size (N)
is fixed at 100 for 2-objective LMOPs and 150 for 3-objective LMOPs. To assess the performance
of an EA on LMOPs, we use two well-established metrics: inverted generational distance (IGD)
(Ishibuchi et al., 2015) and hypervolume (HV) (Boelrijk et al., 2022). They gauge convergence and
diversity in the final population. IGD is computed using 104 points from the true Pareto front, while
normalized HV employs a reference point (1, 1, . . . , 1). Smaller IGD and larger HV values signal
better performance, indicating effective coverage of the true PF by the obtained final population.

4.1 EFFECTIVENESS VALIDATION OF PROPOSED ACCELERATED EVOLUTIONARY SEARCH

We commence the validation of the proposed accelerated evolutionary search strategies (NSGA-II
vs. LNSGAV1-V5 and MOEA/D vs. LMOEADV1-V5) by optimizing synthetic LMOPs widely
studied in the related literature. We focus on 2-objective DTLZ1 to DTLZ4 problems (Deb et al.),

6

Under review as a conference paper at ICLR 2024

Figure 4: Illustration of the evolutionary process in solving DTLZ2 and DTLZ4 problems.

with the number of variables (n) varying from 1000 to 10000. The used MLP model’s hidden layer
consists of 10 neurons, and the MLP is stacked three times during the DIR learning process.

Figure 4 depicts the evolutionary process based on IGD results for comparisons involving 2-
objective DTLZ2 and DTLZ4 problems with 1000 variables. These convergence graphs highlight
the notable superiority of the improved versions (LNSGAV1-V5 and LMOEADV1-V5) over their
respective original versions (NSGA-II and MOEA/D), particularly in terms of convergence speed.
Specifically, when compared to NSGA-II (and likewise MOEA/D), most of its accelerated variants
require only one-tenth of the computational resources to achieve near-Pareto optimal results for
solving these two benchmarks. Furthermore, optimizers that explore the DIR space (LNSGAV4-5
and LMOEADV4-5) exhibit superior acceleration effects and final population performance.

Detailed IGD and HV results for solving 2-objective DTLZ1 to DTLZ4 problems with 1000 vari-
ables are given in Table 1, while the results for solving other DTLZ cases are presented in Tables
4 to 8 of the appendix. These results demonstrate the effectiveness of our proposed accelerated
search strategies in improving evolutionary optimization efficiency. Nevertheless, several notewor-
thy observations can be drawn from these results: 1) The overall performance of all optimizers
falls short when tackling DTLZ1 and DTLZ3, both of which are multimodal optimization problems,
in which the number of local optima increases exponentially with the search space dimension. 2)
The DIR-based search methods (LNSGAV4-5 and LMOEADV4-5) exhibit superior performance
compared to their non-MLP stacking counterparts (LNSGAV1, LNSGAV3, LMOEADV1, and L-
MOEADV3) in solving DTLZ2 and DTLZ4, but the results show the opposite trend for DTLZ1 and
DTLZ3. 3) Solvers that rely on searching in the compressed representation space (LNSGAV2 and
LMOEADV2) exhibit slightly less stability and are not as effective in accelerating convergence. 4)
The learned model typically provides a short-term acceleration effect on evolutionary optimization,
and its fundamental utility becomes less evident in the later stages of evolution.

Table 1: Average IGD and HV results of MOEA/D and its five accelerated versions on DTLZ1-4
with m = 2, n = 1000, FEmax = 105. The standard deviation indicated in parentheses following.

Metric Problem MOEA/D LMOEADV1 LMOEADV2 LMOEADV3 LMOEADV4 LMOEADV5

IGD

n=1000

m=2

DTLZ1
3.805e+3
(1.5e+3)

1.114e+0
(2.8e+0)

5.949e+0
(2.9e+2)

4.947e+0
(1.9e+2)

1.966e+1
(2.9e+2)

5.903e+2
(1.8e+3)

DTLZ2
1.945e+0
(5.5e-1)

1.223e-2
(1.1e-2)

8.074e-2
(7.4e-2)

5.419e-2
(6.2e-2)

1.127e-2
(1.6e-1)

4.916e-3
(5.1e-3)

DTLZ3
1.172e+4
(3.6e+3)

1.240e+1
(2.6e+2)

3.047e+2
(8.3e+2)

7.887e+2
(7.7e+2)

1.273e+2
(6.8e+2)

1.059e+3
(6.1e+3)

DTLZ4
1.510e+0
(7.2e-2)

1.288e-1
(1.3e-1)

1.599e-2
(3.4e-1)

5.569e-2
(8.9e-1)

1.480e-2
(2.3e-2)

8.609e-3
(2.7e-2)

HV

n=1000

m=2

DTLZ1
0.00e+0
(0.0e+0)

4.289e-2
(1.0e-1)

1.605e-2
(1.1e-1)

3.325e-2
(5.1e-1)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

DTLZ2
0.00e+0
(0.0e+0)

3.340e-1
(1.7e-2)

2.169e-1
(1.4e-1)

2.583e-1
(1.4e-1)

3.355e-1
(1.2e-1)

3.506e-1
(1.7e-1)

DTLZ3
0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.000e+0
(0.0e+0)

DTLZ4
0.00e+0
(0.0e+0)

1.695e-1
(1.3e-1)

3.026e-1
(1.5e-1)

2.611e-1
(1.5e-1)

3.174e-1
(1.5e-1)

3.287e-1
(2.0e-1)

There are several reasons for these observations. Firstly, the effectiveness of learning the improve-
ment representation of solutions depends heavily on the quality of training data. Our training data

7

Under review as a conference paper at ICLR 2024

Figure 5: Illustration of the final solutions obtained by our proposed accelerated solvers on DTLZ2,
DTLZ4, DTLZ5, and DTLZ7 with m = 3, n = 104, FEmax = 105.

is constructed based on how well solutions perform in the objective space. If there isn’t a straight-
forward one-to-one correspondence between the search space and the objective space, such as in
multi-modal problems, the learned MLP may not accurately capture the promising directions for
improvement, and stacking pre-trained MLPs could potentially hinder the optimization process.
Secondly, as the evolutionary process continues, the distinctions between different solutions tend to
diminish, making the learned models progressively less helpful in aiding the optimization process.

4.2 COMPARISON WITH STATE-OF-THE-ART LMOEAS

To further evaluate the effectiveness of our DIR-based algorithms, namely LNSGAV4-V5 and
LMOEADV4-5, we do a comparative analysis against five state-of-the-art LMOEAs (CCGDE3 (An-
tonio & Coello, 2013), LMOCSO (Tian et al., 2019), DGEA (He et al., 2020a), FDV (Yang et al.,
2021), and MOEA/PSL (Tian et al., 2020)) representing different categories in solving 3-objective
DTLZ1 to DTLZ7 problems. These competitors span a range of existing LMOEA approaches.
The Table 9 in appendix contains the average IGD results for all considered solvers tackling these
seven problems. These results clearly highlight the struggles most existing LMOEA competitors
face when dealing with these large-scale DTLZ benchmarks. In contrast, our proposed optimiz-
ers, LNSGAV4-V5 and LMOEADV4-5, which employ deep accelerated evolutionary search with
stacked MLP models, consistently outperform the five competitors when solving six out of seven
DTLZ problems, although they do not achieve the best IGD results for DTLZ7. Additionally, Figure
5 illustrates the final solutions obtained by our algorithms for the 104-dimensional DTLZ2, DTLZ4,
DTLZ5, and DTLZ7 problems. These solutions (represented by blue points) closely approximate
the true PF (red lines) of the target LMOP.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Average runing times (seconds: s) of the EA solvers in solving DTLZ problems with (m=3, n=10000, FEmax=105)

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

Figure 6: Illustration of the average running time (s) that each solver cost.

4.3 COMPARISON OF ACTUAL RUNNING TIMES

The practical runtimes of accelerated NSGA-II variants and their six competitors are evaluated for
computational complexity. Figure 6 displays the average runtime (in seconds: s) for all ten optimiz-
ers over 20 runs on the 3-objective DTLZ1 to DTLZ7 problems with n = 104, FEmax = 105. No-

8

Under review as a conference paper at ICLR 2024

Figure 7: Illustration of the sensitivity analysis for two parameters t and K.

Table 2: Average HV results of selected algorithms in solving real-world TREE problems
Solvers TREE1-3000 TREE2-3000 TREE3-6000 TREE4-6000 TREE5-6000
NSGAII 6.095e-1(5.4e-3) 6.691e-1(4.6e-3) NaN(NaN) NaN(NaN) NaN(NaN)

MOEA/D 7.523e-1(3.0e-3) 7.788e-1(3.6e-3) 7.268e-1(8.5e-3) 1.045e-1(6.8e-2) 6.807e-1(3.9e-3)
CCGDE3 NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN)
LMOCSO 8.063e-1(8.3e-3) 7.876e-1(3.6e-3) NaN(NaN) 0.00e+0(0.0e+0) NaN(NaN)

DGEA 7.928e-1(3.6e-2) 7.999e-1(1.2e-2) 6.543e-1(2.6e-1) 4.719e-1(4.0e-1) 7.457e-1(2.4e-1)
FDV 7.117e-1(5.0e-2) 7.720e-1(4.8e-3) NaN(NaN) NaN(NaN) NaN(NaN)

MOEA/PSL 8.141e-1(1.7e-2) 8.096e-1(5.3e-2) 8.744e-1(2.3e-2) 7.942e-1(1.86e-1) 8.853e-1(5.19e-2)
LNSGAV5 8.115e-1(3.2e-2) 8.34e-1(9.5e-2) 8.745e-1(1.5e-2) 9.525e-1(1.9e-2) 8.967e-1(2.3e-2)
LNSGAV6 8.36e-1(1.8e-2) 8.164e-1(3.9e-2) 8.86e-1(1.5e-4) 9.212e-1(5.7e-2) 9.21e-1(2.5e-3)

LMEADV5 8.153e-1(5.9e-2) 7.954e-1(4.3e-2) 8.736e-1(1.6e-2) 9.57e-1(2.8e-3) 8.834e-1(7.8e-2)
LMEADV6 7.824e-1(6.6e-2) 8.058e-1(3.8e-2) 8.828e-1(4.5e-3) 9.021e-1(3.8e-1) 9.116e-1(1.3e-2)

tably, LNSGAV1 to LNSGAV5 exhibit similar runtimes to NSGA-II and most compared LMOEAs,
suggesting that the lightweight MLP model’s computational overhead in these learnable EAs is
manageable. In contrast, MOEAPSL, utilizing a larger model and more training epochs, not on-
ly performs suboptimally but also incurs a higher computational cost. The underperformance of
MOEA/PSL may also stem from its reliance on autoencoder-based learning, which limits its ability
to acquire improvement representations of solutions.

4.4 PARAMETER SENSITIVITY ANALYSIS

We do sensitivity analysis on the number of stacked MLP models (t) for LNSGAV4 and LMOEAD-
V4. Average IGD results in Figure 7 show that t = 3 yields best overall performance, with dimin-
ishing returns beyond this value. Additionally, we analyze the number of hidden layer nodes (K) in
the MLP model for LNSGAV1 and LMOEADV1, revealing that K = 5 and K = 10 perform well,
except for DTLZ7, where larger K values more are advantageous. This is likely because lighter
models are easier to train and perform better.

4.5 OPTIMIZATION OF REAL-WORLD LMOPS

We also tested our proposed algorithms on practical LMOPs, particularly the time-varying ratio error
estimation (TREE) problems related to voltage transformers (He et al., 2020b). The results, summa-
rized in Table 2, indicate that our algorithms with deep accelerated evolutionary search outperform
the competitors across all five TREE problems in terms of HV scores.

5 CONCLUSIONS

This study proposes novel strategies to enhance evolutionary algorithms for LMOPs. Key contribu-
tions involve creating a lightweight model for learning improvement representations, assessing the
impact of learnable evolutionary search, and designing a large model for deep improvement repre-
sentation, all with the goal of efficient LMOP optimization. However, the method has limitations,
including reliance on training data, limited effectiveness in multimodal problems, optimization in-
stability, and short-term speed improvements.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Luis Miguel Antonio and Carlos A Coello Coello. Use of cooperative coevolution for solving large
scale multiobjective optimization problems. In 2013 IEEE Congress on Evolutionary Computa-
tion, pp. 2758–2765. IEEE, 2013.

Sunith Bandaru and Kalyanmoy Deb. Automated discovery of vital knowledge from pareto-optimal
solutions: First results from engineering design. In Ieee congress on evolutionary computation,
pp. 1–8. IEEE, 2010.

Jim Boelrijk, Bernd Ensing, and Patrick Forré. Multi-objective optimization via equivariant deep
hypervolume approximation. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Piero P Bonissone, Raj Subbu, Neil Eklund, and Thomas R Kiehl. Evolutionary algorithms+ domain
knowledge= real-world evolutionary computation. IEEE Transactions on Evolutionary Compu-
tation, 10(3):256–280, 2006.

Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, and Kaisa Miettinen. A survey on handling com-
putationally expensive multiobjective optimization problems with evolutionary algorithms. Soft
Computing, 23:3137–3166, 2019.

Carlos A Coello Coello et al. Evolutionary multiobjective optimization: open research areas and
some challenges lying ahead. Complex & Intelligent Systems, 6:221–236, 2020.

Kalyanmoy Deb and Aravind Srinivasan. Innovization: Innovating design principles through opti-
mization. In Proceedings of the 8th annual conference on Genetic and evolutionary computation,
pp. 1629–1636, 2006.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test problems for
evolutionary multiobjective optimization. In Evolutionary multiobjective optimization: theoreti-
cal advances and applications, pp. 105–145. Springer.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

Javier Del Ser, Eneko Osaba, Daniel Molina, Xin-She Yang, Sancho Salcedo-Sanz, David Camacho,
Swagatam Das, Ponnuthurai N Suganthan, Carlos A Coello Coello, and Francisco Herrera. Bio-
inspired computation: Where we stand and what’s next. Swarm and Evolutionary Computation,
48:220–250, 2019.

Qiqi Duan, Chang Shao, Guochen Zhou, Haobin Yang, Qi Zhao, and Yuhui Shi. Cooperative coevo-
lution for non-separable large-scale black-box optimization: Convergence analyses and distribut-
ed accelerations. arXiv preprint arXiv:2304.05020, 2023.

Abhinav Gaur and Kalyanmoy Deb. Effect of size and order of variables in rules for multi-objective
repair-based innovization procedure. In 2017 IEEE Congress on Evolutionary Computation
(CEC), pp. 2177–2184. IEEE, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Vassil Guliashki, Hristo Toshev, and Chavdar Korsemov. Survey of evolutionary algorithms used
in multiobjective optimization. Problems of engineering cybernetics and robotics, 60(1):42–54,
2009.

Dario Paolo Gulotta. Real time, dynamic cloud offloading for self-driving vehicles with secure
and reliable automatic switching between local and edge computing. PhD thesis, Politecnico di
Torino, 2023.

Cheng He, Ran Cheng, and Danial Yazdani. Adaptive offspring generation for evolutionary large-
scale multiobjective optimization. IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, 52(2):786–798, 2020a.

10

Under review as a conference paper at ICLR 2024

Cheng He, Ran Cheng, Chuanji Zhang, Ye Tian, Qin Chen, and Xin Yao. Evolutionary large-scale
multiobjective optimization for ratio error estimation of voltage transformers. IEEE Transactions
on Evolutionary Computation, 24(5):868–881, 2020b.

Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Modified distance calcula-
tion in generational distance and inverted generational distance. In Evolutionary Multi-Criterion
Optimization: 8th International Conference, EMO 2015, Guimarães, Portugal, March 29–April
1, 2015. Proceedings, Part II 8, pp. 110–125. Springer, 2015.

Nazan Khan, David E Goldberg, and Martin Pelikan. Multi-objective bayesian optimization algo-
rithm. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation,
pp. 684–684, 2002.

Bin Li, Ziping Wei, Jingjing Wu, Shuai Yu, Tian Zhang, Chunli Zhu, Dezhi Zheng, Weisi Guo,
Chenglin Zhao, and Jun Zhang. Machine learning-enabled globally guaranteed evolutionary com-
putation. Nature Machine Intelligence, pp. 1–11, 2023.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning.
Advances in neural information processing systems, 32, 2019.

Ruochen Liu, Rui Ren, Jin Liu, and Jing Liu. A clustering and dimensionality reduction based
evolutionary algorithm for large-scale multi-objective problems. Applied Soft Computing, 89:
106120, 2020.

Songbai Liu. A survey on learnable evolutionary algorithms for scalable multiobjective optimiza-
tion. arXiv preprint arXiv:2206.11526, 2022.

Songbai Liu, Qiuzhen Lin, Qing Li, and Kay Chen Tan. A comprehensive competitive swarm
optimizer for large-scale multiobjective optimization. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 52(9):5829–5842, 2021.

Songbai Liu, Min Jiang, Qiuzhen Lin, and Kay Chen Tan. Evolutionary large-scale multiobjective
optimization via self-guided problem transformation. In 2022 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8. IEEE, 2022.

Lianbo Ma, Nan Li, Yinan Guo, Xingwei Wang, Shengxiang Yang, Min Huang, and Hao Zhang.
Learning to optimize: reference vector reinforcement learning adaption to constrained many-
objective optimization of industrial copper burdening system. IEEE Transactions on Cybernetics,
2021.

Ryszard S Michalski. Learnable evolution model: Evolutionary processes guided by machine learn-
ing. Machine learning, 38:9–40, 2000a.

Ryszard S Michalski. Learning and evolution: An introduction to non-darwinian evolutionary
computation. In International Symposium on Methodologies for Intelligent Systems, pp. 21–30.
Springer, 2000b.

Ryszard S Michalski, Janusz Wojtusiak, and Kenneth Kaufman. Progress report on the learnable
evolution model. 2007.

Risto Miikkulainen and Stephanie Forrest. A biological perspective on evolutionary computation.
Nature Machine Intelligence, 3(1):9–15, 2021.

Sukrit Mittal, Dhish Kumar Saxena, and Kalyanmoy Deb. Learning-based multi-objective optimiza-
tion through ann-assisted online innovization. In Proceedings of the 2020 genetic and evolution-
ary computation conference companion, pp. 171–172, 2020.

Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb, and Erik D Goodman. Enhanced innovized
progress operator for evolutionary multi-and many-objective optimization. IEEE Transactions on
Evolutionary Computation, 26(5):961–975, 2021a.

Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb, and Erik D Goodman. A learning-based
innovized progress operator for faster convergence in evolutionary multi-objective optimization.
ACM Transactions on Evolutionary Learning and Optimization (TELO), 2(1):1–29, 2021b.

11

Under review as a conference paper at ICLR 2024

Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. A review of population-based metaheuristics
for large-scale black-box global optimization-part i. IEEE Transactions on Evolutionary Compu-
tation, 26(5):802–822, 2021.

Wen-Jie Ou, Xuan-Li Shi, and Wei-Neng Chen. A distributed cooperative co-evolutionary algorith-
m based on ring network for distributed large-scale optimization. In 2022 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 3018–3025. IEEE, 2022.

Hong Qian and Yang Yu. Solving high-dimensional multi-objective optimization problems with
low effective dimensions. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 31, 2017.

Bui Tien Thanh, Dinh Van Tuan, Tuan Anh Chi, Nguyen Van Dai, Nguyen Tai Quang Dinh, and
Nguyen Thu Thuy. Multiobjective logistics optimization for automated atm cash replenishment
process. arXiv preprint arXiv:2304.13671, 2023.

Ye Tian, Xiutao Zheng, Xingyi Zhang, and Yaochu Jin. Efficient large-scale multiobjective opti-
mization based on a competitive swarm optimizer. IEEE Transactions on Cybernetics, 50(8):
3696–3708, 2019.

Ye Tian, Chang Lu, Xingyi Zhang, Kay Chen Tan, and Yaochu Jin. Solving large-scale multiobjec-
tive optimization problems with sparse optimal solutions via unsupervised neural networks. IEEE
transactions on cybernetics, 51(6):3115–3128, 2020.

Ye Tian, Weijian Zhu, Xingyi Zhang, and Yaochu Jin. A practical tutorial on solving optimization
problems via platemo. Neurocomputing, 518:190–205, 2023.

Yutong Wang, Ke Xue, and Chao Qian. Evolutionary diversity optimization with clustering-based
selection for reinforcement learning. In International Conference on Learning Representations,
2021a.

Zhenzhong Wang, Haokai Hong, Kai Ye, Guang-En Zhang, Min Jiang, and Kay Chen Tan. Mani-
fold interpolation for large-scale multiobjective optimization via generative adversarial networks.
IEEE Transactions on Neural Networks and Learning Systems, 2021b.

Kai Wu, Penghui Liu, and Jing Liu. Lea: Beyond evolutionary algorithms via learned optimization
strategy. arXiv preprint arXiv:2304.09599, 2023.

Xu Yang, Juan Zou, Shengxiang Yang, Jinhua Zheng, and Yuan Liu. A fuzzy decision variables
framework for large-scale multiobjective optimization. IEEE Transactions on Evolutionary Com-
putation, 2021.

Jun Zhang, Zhi-hui Zhan, Ying Lin, Ni Chen, Yue-jiao Gong, Jing-hui Zhong, Henry SH Chung,
Yun Li, and Yu-hui Shi. Evolutionary computation meets machine learning: A survey. IEEE
Computational Intelligence Magazine, 6(4):68–75, 2011.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt:
Automatic machine learning with gpt. arXiv preprint arXiv:2305.02499, 2023.

Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partitions. In International Conference on Learning
Representations (ICLR’22), 2022.

Rui Zhong, Enzhi Zhang, and Masaharu Munetomo. Accelerating the genetic algorithm for large-
scale traveling salesman problems by cooperative coevolutionary pointer network with reinforce-
ment learning. arXiv preprint arXiv:2209.13077, 2022.

Heiner Zille, Hisao Ishibuchi, Sanaz Mostaghim, and Yusuke Nojima. Weighted optimization frame-
work for large-scale multi-objective optimization. In Proceedings of the 2016 on genetic and
evolutionary computation conference companion, pp. 83–84, 2016.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

We provide more discussion, details on the proposed methods, experimental results and analysis in
this appendix.

A.1 LEARNABLE MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

The conventional evolutionary generator and discriminator (or selector) in a typical MOEA are con-
structed using fixed genetic operators, such as crossover, mutation, and selection. Consequently,
they lack the capability to learn and adapt to the specific characteristics of the optimization problem
they are tasked with. As a result, they cannot effectively respond to the potential challenges posed
by solving such a black-box optimization problem. In the context of evolutionary computation,
research studies focused on learnable Multi-Objective Evolutionary Algorithms (MOEAs) have gar-
nered substantial attention. Machine learning (ML) techniques are leveraged to support and enhance
various modules within learnable MOEAs, including the generator, and discriminator (or selector).

Specifically, the MOEA’s generator iteratively explores the variable space, generating a significant
volume of data comprising feasible solutions. ML techniques systematically analyze this data to gain
insights into the search behavior and enhance its future search capabilities. By traversing promising
directions learned within the search space, the MOEA’s generator efficiently identifies solutions with
high potential (Michalski, 2000b; Michalski et al., 2007).

The MOEA’s discriminator benefits from online predictions of Pareto Front (PF) shapes, enabling
it to adeptly filter out underperforming solutions when dealing with MOPs featuring irregular PFs.
Prior to tackling these problems, dimension reduction and spatial transformation techniques simplify
both the objective and search spaces.

Furthermore, reinforcement learning (RL) techniques come into play in determining suitable evolu-
tionary operators (i.e., actions) based on the current parent state. These actions guide the generator
in producing high-quality offspring. Domain adaptation techniques are employed to learn domain-
invariant feature representations across different optimization problems, enabling the analysis of
distribution divergence. This knowledge transfer facilitates the sequential or simultaneous solution
of these problems (Ma et al., 2021).

Bayesian optimization is an optimization technique that uses probabilistic models, like Gaussian
Processes, to efficiently optimize complex, expensive functions. It sequentially samples the func-
tion, updates the surrogate model, and selects the next sampling point using an acquisition function
(Khan et al., 2002). This process balances exploration and exploitation to find the global optimum.
However, Bayesian optimization has limitations: it can be computationally expensive, struggles with
high-dimensional spaces, assumes smooth functions, depends on the quality of the initial model, and
may converge to local optima for multimodal functions.

A.2 ONLINE INNOVIZATION OPERATORS

To enhance the search capability when addressing LMOPs, certain MOEAs have developed compet-
itive learning-based search strategies. In these strategies, the population is divided into two groups:
winners and losers, and the search process is guided so that the losers move closer to the winners.
Typically, these competitions occur within the objective space. The effectiveness of these strategies
heavily relies on the quality of the winners, as losers are guided towards them through competitive
learning. If the winners encounter difficulties, such as falling into local optima, the entire evolution-
ary population may experience slow convergence. Furthermore, winners, often subjected to genetic
operators, may only exhibit slight improvements. Consequently, the challenge lies in determining
how these higher-quality winners can further evolve with a faster convergence rate.

To address this challenge and expedite the search process, efforts have been made through the design
of online innovization operators (Deb & Srinivasan, 2006). The term “innovization” is derived from
”innovation via optimization” and was originally defined as a post-optimality analysis of optimal
solutions to provide valuable design principles to engineering designers. In the context of MOEAs,
offspring generated by genetic operators are further refined by innovization operators to progress
along the learned directions of performance improvement (Gaur & Deb, 2017). In the innovization
process, various data-mining and machine learning techniques are employed to automatically uncov-

13

Under review as a conference paper at ICLR 2024

er innovative and crucial design principles within optimal solutions. These principles may include
inter-variable relationships, commonalities among optimal solutions, and distinctions that set them
apart from one another (Mittal et al., 2020). These operators enable the population to converge faster
without consuming additional function evaluations compared to traditional local search methods.

Expanding on the concept of innovization, the notion of knowledge-driven optimization is intro-
duced (Bandaru & Deb, 2010). In this approach, MOEAs assimilate knowledge, such as latent
patterns shared by high-quality solutions, learned from intermediate solutions to guide their search
away from mediocre solutions and toward potentially promising regions. This constitutes an online
learning process that involves deciphering what makes one solution optimal (or near-optimal) within
the final solution set and understanding what causes one solution to outperform another during the
optimization process. Online innovization aims to accelerate evolutionary search and enhance the
efficiency of generators.

In an online innovization operator, a supervised learning model is typically constructed and trained
online with the aim of implicitly learning historical directional improvements, such as transitioning
from dominated to non-dominated solutions, within the previously explored search space. A solution
x = (x1, x2, . . . , xn) is identified as performing poorly, while x∗ represents a high-quality solution.
Throughout the evolutionary process, various solution pairs (x, x∗) can be collected. Subsequently,
the selected model, which can be a multilayer perceptron, a random forest, or a deep neural network,
is trained using this labeled data. In this context, x serves as the input, and x∗ serves as its label
or expected target output. The trained model is believed to have the capacity to capture underlying
patterns that reflect the directional improvement of solutions within the search space.

Ideally, a newly generated offspring solution, xnew, produced by genetic operators can be enhanced
(or progressed) by inputting it into the well-trained model to obtain an improved version, ynew, as
the output. This process of repairing offspring is also referred to as innovized progress. It holds
the potential to enhance the search capability of generators when tackling scalable MOPs, primarily
due to the following four merits: 1) Incorporation of all conflicting objective information during the
learning process. 2) Elimination of the need for additional function evaluations during the innovized
progress of solutions. 3) Adaptability of the learned directional improvement of solutions as gen-
erations progress. 4) The potential for a substantial leap in the objective space when transitioning
from xnew to ynew in the search space, which can expedite the search process. However, it’s crucial
to consider four key considerations when customizing such an innovization progress:

Selection of the learning model: The choice of the learning model is flexible and can align with
available supervised learning models that meet the requirements. However, it’s essential to take into
account the computational cost associated with training the selected model.

Collection of training data: The process of collecting training data involves gathering paired data
based on the performance of available solutions, either from previous generations or the current one.
Therefore, when selecting a pair (x, x∗), it is crucial to consider that x∗ outperforms x. For example,
in a Pareto-based MOEA, x∗ should dominate x, in a decomposition-based MOEA, the aggregation
fitness of x∗ should be superior to that of x, or x∗ should have the potential to guide x towards rapid
convergence.

Training of the adopted model: The process of training a model is itself an optimization problem,
involving numerous hyperparameters such as model architecture, learning rate, and training epochs,
which often require manual tuning. This can lead to various challenges, including the risk of over-
fitting the model. Additionally, it’s essential to investigate whether the model should be updated
regularly, such as every generation, and whether training should be conducted online or offline.

Advancement of the search capability with the learned model: The expectation is that the gener-
ator’s search capability can be enhanced with the assistance of this well-trained model. Specifically,
subpar and average solutions within the population can be repaired, facilitating rapid convergence
in the learned promising direction. Simultaneously, high-quality solutions can be further improved
to explore a broader range of elite solutions. However, two important considerations arise: Is it nec-
essary to repair all newly generated solutions? Is it necessary to perform the innovization progress
in every generation?

Autoencoder-based representation learning: The concept of representation learning has been pre-
viously introduced in MOEA/PSL, where it focuses on acquiring a compressed representation of the

14

Under review as a conference paper at ICLR 2024

input solution, referred to as Pareto Subspace Learning (PSL). This approach involves training a
Denoise Autoencoder (DAE), a specific type of artificial neural network with equal nodes in the
input and output layers. The DAE comprises two main components: an encoder and a decoder. The
encoder learns to create a representation (or code) of the partially corrupted input, while the decoder
maps this representation back to a reconstructed input. Through this process, the DAE can extract
higher-level features from the input distribution.

During training, the DAE iteratively minimizes the reconstruction error, which measures the dispar-
ity between the output and the input. This training process resembles that of a feedforward neural
network. To elaborate, each input undergoes perturbation via the mutation operator, and the non-
dominated solutions within the current population serve as the training data.

Following training, each solution can be mapped between the original search space and the code
representation space. Subsequently, a new offspring, denoted as y, can be generated through the
following process:

Step 1: select two random parents x1 and x2 from the current population.

Step 2: map x1 and x2 to the code space to get their corresponding representations c1 and c2. The
value of each c1i ∈ c1 (the same as c1) in the code layer can be computed as follows,

ci = σ

(
bi +

∑
i

xiwij

)
(5)

Step 3: run evolutionary search (e.g., SBX, DE, PM) on c1 and c2 to generate a new code c;

Step 4: map c back to the original space for getting the new solution y and the value of each yj ∈ y
can be computed by

yj = σ

b′j +
∑
j

ciw
′
ji

 (6)

where b and w are respectively the bias and the weight of this DAE with only one hidden layer,
while σ represents the sigmoid function.

A.3 PSEUDOCODE FOR THIS TO WORK

Here is the pseudo-code of the algorithms designed in this paper, including the general MOEA
algorithm framework and our two proposed improved learnable MOEA algorithm frameworks.

Algorithm 1 is the basic MOEA algorithm framework. It differs from Algorithms 2 and 3 in the
way solutions are generated.

Algorithm 2 corresponds to our proposed algorithms LNSGAV1, LNSGAV4, LMOEADV1, L-
MOEADV4. Algorithm 3 corresponds to our proposed algorithms LNSGAV2, LNSGAV3, LNS-
GAV5, LMOEADV2, LMOEADV3, LMOEADV5. Among these variants, LNSGAV2 and L-
MOEADV2 utilize the learned compressed representation space for searching, employing SBX and
DE, respectively. Variants (LNSGAV1, LNSGAV3) and (LMOEADV1, LMOEADV3) leverage the
learned improvement representation space for their search operations, employing SBX and DE, re-
spectively. Finally, variants (LNSGAV4, LNSGAV5) and (LMOEADV4, LMOEADV5) utilize the
learned deep improvement representation space for their search, employing SBX and DE, respec-
tively. The detailed configuration is listed in Table 3.

In this study, the process of using SBX to generate a child solution is as follows:

Step 1: Randomly select two different parent solutions: x1 =
(
x1
1, · · · , x1

n

)
and x2 =

(
x2
1, · · · , x2

n

)
from the current population P ;

Step 2: generate a child solution c = (c1, · · · , cn), where ci is computed as follows:

ci = 0.5×
[
(1 + β) · x1

i + (1− β) · x2
i

]
(7)

where β is dynamically computed as follows:

β =

{
(rand × 2)1/(1+η) rand ≤ 0.5

(1/(2− rand × 2))1/(1+η) otherwise.
(8)

15

Under review as a conference paper at ICLR 2024

where η is a hyperparameter (the spread factor distribution index), which is set as 20. The greater
the value of η, the greater the probability that the resulting child solution will be close to the parent.

The DE/rand/1 operator is used in this study. For each solution x ∈ P , the process of using DE to
generate a child solution of x is as follows:

Step 1: Pick two solutions x1 and x2 from the population P at random, they must be distinct from
each other as well as from the base vector x.

Step 2: The mutated individual v is obtained according to the following formula:

vi = xi + F (x1
i − x2

i) (9)

Step 3: The final individual c is obtained by crossover according to the following formula

ci =

{
vi if randi[0, 1] ≤ CR or i = k

xi Otherwise
(10)

In this study, we set F = 0.5 and CR = 0.75.

Algorithm 1: The general framework of an MOEA
Input: the LMOP with m objectives and n variables, the function evaluation budget FEmax

Output: the final population P to approximate the PF/PS
initialize P with N random solutions;
initialize the function evaluation counter FE = 0;
while FE ≤ FEmax do

Q = Generator(P); //evolutionary search in variable space to find new offspring solutions.
P = Selector(P, Q); //environmental selection in objective space to filter poor solutions.
FE = FE +N ;

end
return P

Algorithm 2: The general framework of the proposed LMOEA-V1
Input: the LMOP with m objectives and n variables, the function evaluation budget FEmax

Output: the final population P to approximate the PF/PS
initialize P with N random solutions;
initialize a set of N uniformly distributed reference vectors R = (r1, r2, . . . , rN);
initialize the function evaluation counter FE = 0;
while FE ≤ FEmax do

initialize an MLP model M(A∗) with random parameters;
D∗ = TrainingDataPreparation(P, R); //PBI subproblem-guided pairing of solutions.
update the parameters of M(A∗) via backpropagation with gradient descent;
for i = 1 to N do

search in the original variable space to generate an offspring solution;
if rand > FE/FEmax then

repair the new generated solution by M(A∗) to be its improvement representation;
end
add the new generated offspring solution into Q;

end
P = Selector(P, Q); //environmental selection in the objective space.
FE = FE +N ;

end
return P

A.4 TIME-VARYING RATIO ERROR ESTIMATION

The precise estimation of voltage transformers’ (VTs) ratio error (RE) holds significant importance
in modern power delivery systems. Existing RE estimation methods predominantly revolve around

16

Under review as a conference paper at ICLR 2024

Algorithm 3: The general framework of the proposed LMOEA-V2 to LMOEA-V5
Input: the LMOP with m objectives and n variables, the function evaluation budget FEmax

Output: the final population P to approximate the PF/PS
initialize P with N random solutions;
initialize a set of N uniformly distributed reference vectors R = (r1, r2, . . . , rN);
initialize the function evaluation counter FE = 0;
while FE ≤ FEmax do

initialize an MLP model M(A∗) with random parameters;
D∗ = TrainingDataPreparation(P, R); //PBI subproblem-guided pairing of solutions.
update the parameters of M(A∗) via backpropagation with gradient descent;
for i = 1 to N do

if rand < FE/FEmax then
search in the original variable space to generate an offspring solution;

end
else

search in the learned representation space by M(A∗) to generate a solution;
end
add the new generated offspring solution into Q;

end
P = Selector(P, Q); //environmental selection in the objective space.
FE = FE +N ;

end
return P

Table 3: The search and selection strategy configuration of our proposed algorithms

Algorithms Evolutionary search of the Generator Environmental selection
NSGA-II SBX in the original space Pareto-based selection

LNSGA-V1
SBX-based search in the original space followed by

reparing part of offspring with MLP
Pareto-based selection

LNSGA-V2
SBX-based search in the original space + SBX in

the compressed representation space
Pareto-based selection

LNSGA-V3
SBX-based search in the original space + SBX in

the improvement representation space
Pareto-based selection

LNSGA-V4
SBX-based search in the original space followed by

repairing part of offspring with stacked MLP
Pareto-based selection

LNSGA-V5
SBX-based search in the original space + SBX in

the deep improvement representation space
Pareto-based selection

MOEA/D DE in the original space Decomposition-based selection

LMOEAD-V1
DE-based search in the original space followed by

reparing part of offspring with MLP
Decomposition-based selection

LMOEAD-V2
DE-based search in the original space + DE in

the compressed representation space
Decomposition-based selection

LMOEAD-V3
DE-based search in the original space + DE in

the improvement representation space
Decomposition-based selection

LMOEAD-V4
DE-based search in the original space followed by

repairing part of offspring with stacked MLP
Decomposition-based selection

LMOEAD-V5
DE-based search in the original space + DE in

the deep improvement representation space
Decomposition-based selection

periodic calibration, disregarding the time-varying aspect. This oversight presents challenges in
achieving real-time VT state estimation. To address this concern, the formulation of a time-varying
RE estimation (TREE) problem as a large-scale multiobjective optimization problem is proposed
in (He et al., 2020b). Multiple objectives and inequality constraints are defined based on statistical
and physical rules extracted from power delivery systems. Additionally, a benchmark test suite is

17

Under review as a conference paper at ICLR 2024

Table 4: Average IGD and HV results of NSGA-II and its five accelerated versions on DTLZ1-4
with m = 2, n = 1000, FEmax = 105. The standard deviation indicated in parentheses following.

Metric Problem NSGA-II LNSGA-V1 LNSGA-V2 LNSGA-V3 LNSGA-V4 LNSGA-V5

IGD

n=1000

m=2

DTLZ1
4.477e+3
(5.3e+1)

7.366e+0
(9.6e+0)

6.010e+1
(5.8e+1)

4.143e+2
(1.2e+2)

1.957e+1
(2.0e+1)

1.913e+3
(5.3e+3)

DTLZ2
2.004e+0
(1.8e-1)

1.291e-2
(4.7e-2)

9.554e-2
(3.2e-2)

4.820e-2
(2.6e-2)

4.985e-3
(7.8e-3)

4.849e-3
(3.0e-3)

DTLZ3
1.144e+4
(3.9e+2)

7.236e-1
(7.6e-1)

5.786e-1
(4.5e-1)

1.767e+2
(1.2e+2)

2.453e+2
(7.4e+2)

1.258e+3
(5.0e+3)

DTLZ4
2.935e+0
(1.2e-1)

1.652e-1
(3.4e-1)

7.123e-1
(2.9e-1)

8.984e-2
(1.9e-1)

1.286e-2
(2.6e-2)

6.248e-3
(8.4e-3)

HV

n=1000

m=2

DTLZ1
0.00e+0
(0.0e+0)

2.938e-1
(3.0e-1)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

DTLZ2
0.00e+0
(0.0e+0)

3.230e-1
(1.6e-1)

1.830e-1
(4.6e-2)

2.760e-1
(1.4e-1)

3.429e-1
(1.2e-1)

3.457e-1
(1.0e-1)

DTLZ3
0.00e+0
(0.0e+0)

9.807e-2
(4.4e-2)

1.197e-1
(6.3e-1)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

DTLZ4
0.00e+0
(0.0e+0)

1.716e-1
(1.2e-1)

9.751e-2
(1.2e-1)

2.134e-1
(1.4e-1)

1.659e-1
(1.4e-1)

3.046e-1
(1.4e-1)

systematically created, encompassing various TREE problems from different substations to depict
their distinct characteristics. This formulation not only transforms a costly RE estimation task into a
more economical optimization problem but also contributes to the advancement of research in large-
scale multiobjective optimization by providing a real-world benchmark test suite featuring intricate
variable interactions and objective correlations. The source code for these optimization problems
can be found on the PlatEMO.

A.5 SUPPLEMENTARY EXPERIMENTAL STUDIES

Due to space limitations, a supplement of some experimental data from this work is provided here.
Mainly are the average IGD and HV results of each algorithm in solving the DTLZ problem with
different settings.

Table 5: Average IGD and HV results of NSGA-II and its five accelerated versions on DTLZ1-4
with m = 2, n = 5000, FEmax = 105. The standard deviation indicated in parentheses following.

Metric Problem NSGA-II LNSGA-V1 LNSGA-V2 LNSGA-V3 LNSGA-V4 LNSGA-V5

IGD

n=5000

m=2

DTLZ1
7.274e+4
(1.7e+3)

1.823e+0
(4.4e+0)

5.372e+0
(7.2e+0)

1.149e+2
(9.3e+3)

1.647e+2
(4.0e+3)

2.706e+2
(3.3e+3)

DTLZ2
1.514e+2
(6.3e+0)

1.919e-2
(3.2e-2)

7.376e+0
(1.7e+1)

1.403e-2
(2.9e-2)

1.017e-2
(4.0e-2)

8.503e-3
(6.2e-3)

DTLZ3
1.931e+5
(6.6e+3)

3.447e+3
(8.0e+3)

9.285e+3
(2.0e+4)

1.261e+4
(2.5e+4)

4.499e+3
(9.5e+3)

3.675e+3
(8.4e+3)

DTLZ4
1.712e+2
(1.1e+1)

2.107e-1
(2.9e-1)

2.799e-1
(3.7e-1)

1.304e-1
(2.0e-1)

1.980e-1
(2.5e-1)

7.511e-2
(1.8e-1)

HV

n=5000

m=2

DTLZ1
0.00e+0
(0.0e+0)

4.607e-1
(2.3e-1)

1.916e-1
(2.9e-1)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

DTLZ2
0.00e+0
(0.0e+0)

3.253e-1
(4.6e-2)

2.302e-1
(1.7e-1)

3.150e-1
(1.7e-1)

3.264e-1
(1.7e-1)

3.465e-1
(1.6e-1)

DTLZ3
0.00e+0
(0.0e+0)

1.153e-1
(1.7e-1)

5.784e-2
(1.4e-1)

1.153e-1
(1.7e-1)

9.413e-2
(1.8e-1)

1.141e-1
(1.3e-1)

DTLZ4
0.00e+0
(0.0e+0)

2.181e-1
(1.4e-1)

2.198e-1
(1.4e-1)

2.692e-1
(1.8e-1)

2.472e-1
(1.3e-1)

2.851e-1
(1.4e-1)

A.5.1 FUTURE RESEARCH DIRECTIONS

Enhancing Evolutionary Selectors or Discriminators Through Machine Learning: In the con-
text of Many-Objective Optimization Problems (MaOPs), the application of machine learning tech-

18

Under review as a conference paper at ICLR 2024

niques serves as a subtle yet powerful augmentation to the environmental selection process. This
augmentation proves invaluable when confronted with the escalating complexity of objective spaces
within MaOPs. As the number of objectives in MaOPs increases, the efficacy of traditional envi-
ronmental selection strategies in distinguishing subpar solutions from elite ones diminishes signif-
icantly. More precisely, the convergent pressure of the discriminator falls short, and its ability to
maintain solution diversity becomes inadequate. Consequently, it becomes imperative to explore
methods for augmenting the discriminative capabilities of environmental selection strategies when
tackling MaOPs.

Empowering Evolutionary Generators with Machine Learning: Within the realm of Large-Scale
Multi-Objective Problems (LMOPs), the integration of machine learning techniques plays a strategic
role in augmenting the evolutionary search process. This augmentation enables a dynamic response
to the formidable challenges posed by the expansive search spaces characteristic of LMOPs. In such
vast search spaces, the effectiveness of conventional genetic operators markedly declines, resulting
in the unfortunate consequence of generating suboptimal offspring by the generator. Hence, it be-
comes imperative to delve into methods aimed at elevating the search prowess of these generators
when tackling LMOPs.

Advancing Evolutionary Modules Through Learnable Transfer Techniques: In the realm of
multi-objective optimization problems (MOPs), we introduce evolutionary modules employing
transfer learning principles to facilitate the exchange of valuable optimization insights between
source and target MOPs. In essence, this approach serves as a shortcut to solving target MOPs
by leveraging the knowledge acquired from the optimization processes of related source problems.
The optimization of source MOPs can be accomplished either concurrently with or prior to ad-
dressing the target MOPs, leading to two distinct forms of transfer optimization: sequential and
multitasking. In the sequential form, the target MOPs are tackled one after another, benefiting from
the cumulative wisdom gleaned from prior optimization exercises. This approach ensures that the
experiences garnered from solving earlier problems are effectively applied to optimize subsequent
ones. In contrast, the multitasking form involves the simultaneous optimization of all MOPs from
the outset, with each problem drawing upon the knowledge cultivated during the optimization of
other MOPs. This collaborative optimization approach maximizes the utility of learned knowledge,
significantly enhancing the efficiency of solving multiple MOPs simultaneously.

Table 6: Average IGD and HV results of NSGA-II and its five accelerated versions on DTLZ1-4
with m = 2, n = 104, FEmax = 105. The standard deviation indicated in parentheses following.

Metric Problem NSGA-II LNSGA-V1 LNSGA-V2 LNSGA-V3 LNSGA-V4 LNSGA-V5

IGD

n=
10000

m=2

DTLZ1
1.993e+5
(3.8e+3)

3.055e+1
(6.8e+1)

2.068e+1
(2.3e+1)

7.163e+1
(1.5e+2)

4.098e+1
(9.7e+1)

4.805e+1
(8.5e+1)

DTLZ2
4.251e+2
(8.1e+0)

8.651e-3
(8.7e-3)

9.888e-3
(6.2e-3)

1.481e-2
(4.2e-2)

8.039e-3
(8.2e-3)

7.789e-3
(6.2e-3)

DTLZ3
5.616e+5
(8.7e+3)

5.040e+0
(1.1e+1)

6.319e+2
(1.5e+3)

1.415e+2
(1.6e+2)

1.115e+3
(2.7e+3)

2.994e+2
(4.6e+3)

DTLZ4
4.414e+2
(5.7e+0)

1.686e-1
(2.9e-1)

2.682e-1
(4.1e-1)

1.060e-1
(2.5e-1)

6.481e-2
(1.0e-2)

1.045e-2
(1.4e-2)

HV

n=
10000

m=2

DTLZ1
0.00e+0
(0.0e+0)

1.934e-1
(3.0e-1)

8.803e-2
(2.1e-1)

7.176e-2
(1.7e-1)

3.269e-1
(2.8e-1)

1.514e-1
(2.4e-1)

DTLZ2
0.00e+0
(0.0e+0)

3.407e-1
(1.3e-2)

3.425e-1
(4.4e-3)

3.152e-1
(1.9e-1)

3.385e-1
(1.2e-2)

3.438e-1
(1.6e-1)

DTLZ3
0.00e+0
(0.0e+0)

1.762e-1
(1.7e-1)

6.261e-2
(1.4e-1)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

5.786e-2
(1.4e-1)

DTLZ4
0.00e+0
(0.0e+0)

2.598e-1
(1.3e-1)

2.306e-1
(1.7e-1)

2.645e-1
(1.1e-1)

2.820e-1
(1.8e-1)

3.076e-1
(1.6e-1)

19

Under review as a conference paper at ICLR 2024

Table 7: Average IGD and HV results of MOEA/D and its five accelerated versions on DTLZ1-4
with m = 2, n = 5000, FEmax = 105. The standard deviation indicated in parentheses following.

Metric Problem MOEA/D LMOEADV1 LMOEADV2 LMOEADV3 LMOEADV4 LMOEADV5

IGD

n=5000

m=2

DTLZ1
2.645e+4
(8.4e+3)

3.449e+0
(7.5e+0)

5.419e+2
(1.3e+2)

1.126e+2
(1.2e+2)

1.072e+2
(2.6e+2)

5.725e+2
(1.3e+3)

DTLZ2
2.106e+1
(4.1e+0)

9.524e-3
(7.7e-4)

8.157e-3
(1.8e-4)

1.151e-2
(1.9e-2)

6.612e-3
(6.4e-3)

6.442e-3
(4.9e-3)

DTLZ3
7.016e+4
(1.1e+4)

1.703e+2
(4.1e+2)

4.303e+1
(5.3e+1)

3.896e+3
(4.5e+3)

2.942e+3
(4.4e+3)

3.054e+3
(4.7e+3)

DTLZ4
1.433e+1
(3.5e+0)

5.325e-1
(6.6e-1)

5.145e+0
(8.6e+0)

4.159e-1
(1.7e+0)

3.105e-1
(3.5e-1)

2.053e-1
(4.4e-1)

HV

n=5000

m=2

DTLZ1
0.00e+0
(0.0e+0)

2.036e-1
(1.3e-1)

0.00e+0
(0.0e+0)

0.00e+0
(0.0e+0)

9.560e-2
(1.4e-1)

1.508e-2
(3.7e-2)

DTLZ2
0.00e+0
(0.0e+0)

3.041e-1
(1.6e-2)

3.149e-1
(4.9e-2)

2.269e-1
(1.7e-1)

3.471e-1
(8.4e-2)

3.449e-1
(1.7e-1)

DTLZ3
0.00e+0
(0.0e+0)

8.548e-2
(6.2e-2)

2.126e-2
(5.1e-2)

0.00e+0
(0.0e+0)

4.454e-2
(6.4e-2)

0.00e+0
(0.0e+0)

DTLZ4
0.00e+0
(0.0e+0)

1.996e-1
(1.5e-1)

2.153e-1
(1.7e-1)

2.670e-1
(1.3e-1)

2.749e-1
(1.4e-1)

2.815e-1
(1.2e-1)

Table 8: Average IGD and HV results of MOEA/D and its five accelerated versions on DTLZ1-4
with m = 2, n = 104, FEmax = 105. The standard deviation indicated in parentheses following.

Metric Problem MOEA/D LMOEADV1 LMOEADV2 LMOEADV3 LMOEADV4 LMOEADV5

IGD

n=
10000

m=2

DTLZ1
5.122e+4
(1.1e+4)

1.692e-1
(1.8e-2)

1.670e+0
(3.4e+0)

6.430e+1
(1.2e+2)

1.294e+1
(2.3e+1)

2.858e+1
(3.1e+1)

DTLZ2
4.815e+1
(6.8e+0)

5.108e-3
(2.2e-4)

6.582e-2
(1.4e-1)

4.342e-2
(1.0e-2)

2.127e-2
(3.2e-1)

7.635e-3
(9.5e-3)

DTLZ3
1.517e+5
(6.2e+4)

2.812e+1
(6.7e+1)

3.389e+2
(8.3e+2)

2.201e+1
(6.5e+1)

6.353e+2
(8.6e+2)

5.255e+2
(8.2e+2)

DTLZ4
3.573e+1
(3.3e+0)

3.554e-1
(3.7e-1)

1.276e+0
(1.2e+0)

2.646e-1
(7.3e-1)

3.396e-1
(4.9e-1)

1.796e-1
(4.0e-1)

HV

n=
10000

m=2

DTLZ1
0.00e+0
(0.0e+0)

3.050e-1
(1.7e-2)

2.452e-1
(2.9e-1)

1.434e-1
(2.4e-1)

1.384e-1
(1.5e-1)

1.909e-1
(2.2e-1)

DTLZ2
0.00e+0
(0.0e+0)

3.452e-1
(2.3e-4)

2.919e-1
(1.2e-1)

2.840e-1
(1.3e-1)

3.008e-1
(1.7e-1)

3.229e-1
(1.7e-1)

DTLZ3
0.00e+0
(0.0e+0)

1.062e-1
(5.2e-2)

4.207e-2
(6.5e-2)

1.209e-1
(1.2e-1)

2.087e-2
(5.1e-2)

6.192e-2
(6.8e-2)

DTLZ4
0.00e+0
(0.0e+0)

2.347e-1
(1.3e-1)

1.278e-1
(1.6e-1)

2.703e-1
(1.3e-1)

2.360e-1
(1.5e-1)

2.713e-1
(1.7e-1)

20

Under review as a conference paper at ICLR 2024

Ta
bl

e
9:

A
ve

ra
ge

IG
D

re
su

lts
of

de
ep

ac
ce

le
ra

te
d

L
N

SG
AV

4-
5,

L
M

O
E

A
D

V
4-

5
an

d
th

ei
r

fiv
e

st
at

e-
of

-t
he

-a
rt

L
M

O
E

A
co

m
pe

tit
or

s
on

D
T

L
Z

1
to

D
T

L
Z

7
w

ith
m

=
3,
n
∈
(1
00
0
,5
00
0,
10
00
0)
,F

E
m

a
x
=

10
5
.T

he
st

an
da

rd
de

vi
at

io
n

in
di

ca
te

d
in

pa
re

nt
he

se
s

fo
llo

w
in

g.
Pr

ob
le

m
s

n
C

C
G

D
E

3
L

M
O

C
SO

D
G

E
A

FD
V

M
O

E
A

PS
L

L
N

SG
AV

4
L

N
SG

AV
5

L
M

O
E

A
D

V
4

L
M

O
E

A
D

V
5

D
T

L
Z

1

10
00

1.
72

17
e+

4(
1.

00
e+

3)
3.

23
12

e+
3(

7.
24

e+
2)

2.
33

44
e+

3(
1.

53
e+

3)
1.

61
34

e+
2(

8.
56

e+
0)

7.
29

91
e+

3(
5.

32
e+

1)
1.

54
51

e+
2(

1.
64

e+
2)

3.
82

13
e+

1(
1.

00
e+

2)
3.

27
85

e+
1(

5.
45

e+
1)

8.
38

10
e+

1(
1.

88
e+

2)

50
00

9.
04

65
e+

4(
6.

36
e+

3)
1.

53
74

e+
4(

3.
71

e+
3)

1.
31

47
e+

4(
3.

22
e+

3)
1.

17
90

e+
3(

1.
85

e+
2)

3.
64

79
e+

4(
3.

18
e+

2)
4.

48
94

e-
1(

8.
61

e-
1)

3.
11

24
e-

1(
2.

44
e-

1)
2.

30
59

e-
1(

5.
23

e-
2)

1.
14

70
e+

0(
7.

73
e+

0)

10
00

0
1.

84
14

e+
5(

1.
15

e+
4)

3.
17

59
e+

4(
9.

53
e+

3)
1.

72
38

e+
4(

1.
79

e+
4)

2.
39

49
e+

3(
2.

05
e+

2)
7.

26
11

e+
4(

3.
76

e+
2)

3.
09

43
e-

1(
4.

22
e-

1)
3.

73
18

e+
0(

4.
19

e+
0)

2.
08

36
e-

1(
9.

05
e-

11
)

5.
18

45
e+

0(
7.

19
e+

0)

D
T

L
Z

2

10
00

3.
54

89
e+

1(
5.

96
e+

0)
4.

37
29

e+
0(

3.
32

e-
1)

9.
72

21
e+

0(
1.

67
e+

0)
5.

47
15

e+
0(

7.
88

e-
1)

1.
31

63
e+

0(
4.

83
e-

1)
5.

93
51

e-
1(

1.
21

e+
0)

1.
03

05
e-

1(
4.

80
e-

2)
2.

11
42

e-
1(

2.
34

e-
1)

3.
20

14
e-

1(
3.

01
e-

1)

50
00

2.
03

55
e+

2(
1.

08
e+

1)
2.

56
86

e+
1(

2.
33

e+
0)

4.
82

58
e+

1(
6.

36
e+

0)
3.

97
53

e+
1(

2.
40

e+
0)

1.
35

35
e+

0(
3.

44
e-

1)
6.

29
89

e-
2(

2.
07

e-
3)

3.
89

28
e+

0(
9.

30
e+

0)
1.

90
77

e+
0(

4.
45

e+
0)

2.
42

42
e+

0(
5.

76
e+

0)

10
00

0
4.

07
05

e+
2(

1.
58

e+
1)

4.
72

10
e+

1(
4.

39
e+

0)
8.

59
65

e+
1(

1.
36

e+
1)

7.
89

84
e+

1(
8.

24
e+

0)
1.

78
44

e+
0(

3.
13

e-
1)

6.
12

72
e-

2(
3.

48
e-

3)
1.

84
69

e-
1(

2.
60

e-
1)

8.
69

39
e-

2(
2.

61
e-

2)
7.

32
35

e-
2(

1.
65

e-
2)

D
T

L
Z

3

10
00

5.
88

10
e+

4(
5.

99
e+

3)
9.

98
66

e+
3(

1.
51

e+
3)

6.
63

08
e+

3(
3.

05
e+

3)
5.

73
06

e+
2(

4.
30

e+
1)

2.
43

70
e+

4(
5.

20
e+

2)
1.

35
16

e+
3(

2.
39

e+
3)

1.
36

09
e+

3(
2.

65
e+

3)
2.

64
58

e+
2(

4.
31

e+
2)

2.
70

38
e+

2(
3.

13
e+

2)

50
00

2.
90

41
e+

5(
9.

79
e+

3)
4.

35
09

e+
4(

1.
27

e+
4)

3.
18

91
e+

4(
3.

22
e+

4)
3.

98
59

e+
3(

2.
17

e+
2)

1.
24

53
e+

5(
2.

24
e+

2)
2.

18
61

e+
3(

3.
10

e+
3)

1.
51

39
e+

3(
1.

68
e+

3)
6.

12
60

e-
1(

2.
00

e-
1)

5.
01

68
e+

0(
5.

79
e+

0)

10
00

0
5.

90
58

e+
5(

1.
07

e+
4)

6.
72

24
e+

4(
1.

33
e+

4)
4.

96
63

e+
4(

4.
35

e+
4)

8.
12

86
e+

3(
5.

26
e+

2)
2.

49
17

e+
5(

8.
08

e+
2)

2.
70

59
e-

1(
4.

77
e-

1)
4.

00
25

e-
1(

9.
64

e-
2)

5.
64

19
e-

1(
4.

02
e-

3)
2.

81
93

e-
1(

5.
35

e-
1)

D
T

L
Z

4

10
00

3.
67

51
e+

1(
6.

56
e+

0)
8.

79
89

e+
0(

4.
90

e+
0)

1.
31

20
e+

1(
5.

38
e+

0)
2.

79
78

e+
0(

1.
52

e+
0)

1.
79

43
e+

0(
1.

38
e+

0)
2.

98
49

e-
1(

3.
52

e-
1)

3.
02

49
e-

1(
2.

69
e-

1)
1.

22
55

e-
1(

5.
39

e-
2)

3.
45

78
e-

1(
6.

39
e-

1)

50
00

2.
02

98
e+

2(
2.

29
e+

1)
8.

04
50

e+
1(

2.
45

e+
1)

7.
78

25
e+

1(
1.

12
e+

1)
8.

25
70

e+
1(

2.
04

e+
1)

3.
13

96
e+

0(
2.

48
e+

0)
3.

82
38

e-
1(

3.
72

e-
1)

8.
44

89
e-

2(
2.

91
e-

2)
1.

17
12

e-
1(

2.
69

e-
2)

1.
32

42
e-

1(
4.

05
e-

2)

10
00

0
3.

84
42

e+
2(

8.
39

e+
0)

1.
51

48
e+

2(
2.

89
e+

1)
1.

34
50

e+
2(

1.
96

e+
1)

1.
88

45
e+

2(
3.

83
e+

1)
7.

42
36

e+
1(

1.
51

e+
2)

7.
22

82
e-

2(
1.

89
e-

2)
6.

30
01

e-
2(

5.
25

e-
3)

1.
13

55
e-

1(
3.

30
e-

2)
1.

19
71

e-
1(

2.
15

e-
2)

D
T

L
Z

5

10
00

3.
51

26
e+

1(
6.

65
e+

0)
3.

66
76

e+
0(

5.
48

e-
1)

9.
02

03
e+

0(
1.

74
e+

0)
4.

81
66

e+
0(

4.
32

e-
1)

9.
72

12
e-

1(
5.

92
e-

1)
3.

29
91

e-
1(

7.
55

e-
1)

1.
55

79
e-

1(
3.

27
e-

1)
2.

27
91

e-
2(

2.
55

e-
2)

5.
17

28
e-

1(
6.

25
e-

1)

50
00

1.
95

98
e+

2(
7.

66
e+

0)
2.

63
07

e+
1(

2.
98

e+
0)

4.
11

06
e+

1(
5.

84
e+

0)
4.

10
93

e+
1(

4.
26

e+
0)

1.
75

79
e+

0(
7.

64
e-

1)
6.

32
00

e-
3(

3.
44

e-
3)

1.
65

63
e-

2(
2.

83
e-

2)
4.

94
98

e-
1(

1.
52

e-
1)

3.
57

83
e+

1(
6.

54
e+

0)

10
00

0
4.

09
84

e+
2(

1.
33

e+
1)

5.
18

02
e+

1(
5.

67
e+

0)
8.

56
96

e+
1(

6.
97

e+
0)

7.
73

78
e+

1(
6.

35
e+

0)
2.

04
65

e+
0(

9.
38

e-
1)

5.
15

61
e-

3(
1.

08
e-

3)
4.

59
76

e-
3(

5.
98

e-
4)

1.
29

96
e-

2(
1.

00
e-

2)
5.

26
93

e-
3(

7.
55

e-
4)

D
T

L
Z

6

10
00

6.
72

54
e+

2(
3.

56
e+

1)
2.

69
19

e+
2(

6.
47

e+
1)

3.
21

03
e+

2(
1.

87
e+

2)
4.

40
08

e+
2(

4.
92

e+
1)

8.
08

47
e-

3(
6.

14
e-

3)
8.

04
27

e-
3(

3.
07

e-
3)

3.
55

09
e-

3(
1.

61
e-

4)
4.

59
64

e-
2(

9.
10

e-
3)

4.
55

87
e-

2(
1.

35
e-

3)

50
00

3.
34

58
e+

3(
6.

70
e+

1)
2.

20
42

e+
3(

1.
67

e+
2)

1.
77

73
e+

3(
6.

03
e+

2)
1.

98
79

e+
3(

4.
67

e+
2)

4.
32

10
e-

3(
2.

55
e-

3)
4.

31
88

e-
3(

3.
22

e-
3)

3.
46

26
e-

3(
1.

61
e-

4)
2.

54
15

e-
2(

1.
67

e-
2)

2.
54

20
e-

2(
1.

94
e-

2)

10
00

0
6.

81
75

e+
3(

2.
26

e+
2)

4.
82

54
e+

3(
6.

47
e+

1)
3.

30
37

e+
3(

1.
63

e+
3)

4.
65

17
e+

3(
2.

71
e+

2)
8.

69
14

e-
3(

1.
24

e-
3)

8.
69

81
e-

3(
1.

55
e-

3)
3.

45
65

e-
3(

6.
14

e-
5)

4.
92

26
e-

2(
3.

30
e-

3)
4.

93
57

e-
2(

3.
25

e-
2)

D
T

L
Z

7

10
00

7.
68

84
e+

0(
1.

14
e+

0)
9.

54
40

e+
0(

3.
35

e-
1)

9.
91

96
e+

0(
2.

93
e-

1)
7.

88
22

e+
0(

5.
09

e-
1)

1.
14

98
e-

1(
1.

15
e-

1)
2.

07
52

e-
1(

8.
20

e-
2)

2.
03

77
e-

1(
5.

91
e-

2)
6.

52
15

e-
1(

1.
70

e-
1)

6.
65

34
e-

1(
1.

93
e-

1)

50
00

9.
65

90
e+

0(
8.

82
e-

1)
1.

11
18

e+
1(

7.
16

e-
2)

1.
09

16
e+

1(
3.

29
e-

2)
1.

00
17

e+
1(

3.
73

e-
1)

2.
54

99
e-

1(
1.

44
e-

1)
6.

20
57

e-
1(

6.
31

e-
2)

6.
26

03
e-

1(
9.

97
e-

2)
1.

11
93

e+
0(

1.
59

e-
1)

1.
11

21
e+

0(
9.

66
e-

2)

10
00

0
1.

07
48

e+
1(

3.
13

e-
2)

1.
12

79
e+

1(
1.

04
e-

1)
1.

11
70

e+
1(

8.
66

e-
2)

1.
04

90
e+

1(
1.

73
e-

1)
4.

09
07

e-
1(

3.
34

e-
1)

8.
08

30
e-

1(
3.

39
e-

2)
8.

05
74

e-
1(

5.
30

e-
2)

1.
04

20
e+

0(
1.

14
e-

1)
1.

04
10

e+
0(

8.
64

e-
2)

21

	Introduction
	Preliminaries and Motivations
	large-scale multiobjective optimization
	multiobjective evolutionary algorithms
	learnable evolutionary search

	Accelerated Evolutionary Optimization
	build a lightweight model
	deep accelerated evolutionary search

	Experimental Studies
	Effectiveness validation of proposed accelerated evolutionary search
	Comparison with state-of-the-art LMOEAs
	Comparison of actual running times
	Parameter sensitivity analysis
	Optimization of real-world LMOPs

	Conclusions
	Appendix
	learnable multiobjective evolutionary algorithms
	online innovization operators
	Pseudocode for this to work
	Time-Varying Ratio Error Estimation
	Supplementary Experimental Studies
	Future research directions

