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Abstract

Node equivalence is common in graphs, such as
computing networks, encompassing automorphic
equivalence (preserving adjacency under node per-
mutations) and attribute equivalence (nodes with
identical attributes). Despite their importance
for learning node representations, these equiva-
lences are largely ignored by existing graph mod-
els. To bridge this gap, we propose a GrAph self-
supervised Learning framework with Equivalence
(GALE) and analyze its connections to existing
techniques. Specifically, we: 1) unify automor-
phic and attribute equivalence into a single equiva-
lence class; 2) enforce the equivalence principle to
make representations within the same class more
similar while separating those across classes; 3)
introduce approximate equivalence classes with
linear time complexity to address the NP-hardness
of exact automorphism detection and handle node-
feature variation; 4) analyze existing graph en-
coders, noting limitations in message passing neu-
ral networks and graph transformers regarding
equivalence constraints; 5) show that graph con-
trastive learning are a degenerate form of equiva-
lence constraint; and 6) demonstrate that GALE
achieves superior performance over baselines.

1. Introduction
Node equivalence (Lorrain & White, 1971; Bafai, 1977) is
common in real-world graphs such as computing networks,
where resources form nodes, and their dependencies form
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Figure 1. An example of automorphic equivalence. Hollow double
arrows indicate node permutations in graph G, shown in cycle
notation (e.g., (1, 2, 3) means 2→1, 3→2, 1→3).

edges. In terms of graph structure, automorphic equivalence
represents a strict form of equivalence: there exists a global
permutation that maps nodes within the same equivalence
class to each other (Cameron & Mary, 2004). As shown
in Figure 1, we perform permutations on the nodes of the
original graph G. Here, G(i,j,...,k) represents a permuted
graph under the cycle notation of permutation, For instance,
G(1,2,3) means nodes 1, 2, and 3 are cyclically permuted
(node 2 is mapped to node 1, node 3 to node 2, and node
1 to node 3). We can observe that G = G(6,7) = G(1,2,3),
indicating that these nodes are structurally equivalent with
respect to the graph topology. In contrast, nodes 4 and 5 are
not equivalent, as swapping them would not preserve their
adjacency relations.

Automorphic equivalence (AE) is a fundamental concept in
various scientific domains such as chemistry and network
analysis (Faulon, 1998; Friedkin & Johnsen, 1997). For in-
stance, AE is a key indicator of similarity in social status and
behavior in social networks (Everett, 1985). Furthermore,
for graphs with node attributes, another type of equivalence
can be defined based on attribute similarity. Specifically,
a new equivalence class can be constructed by measuring
the distance between attribute vectors: nodes with a close
distance are grouped into the same equivalence class.

Naturally, we would expect graph representation models to
preserve and reflect these node equivalences in their encoded
node representations. However, we find that few studies ex-
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plicitly consider these equivalences in graph representation
learning, particularly in the widely studied paradigm of
self-supervised graph learning, such as graph contrastive
learning (Thakoor et al., 2022; Liu et al., 2024a; Wan et al.,
2024). This method typically augments the original graph
(e.g., by randomly removing edges) to generate two con-
trasting views. Contrastive constraints are then applied to
encourage the representations of the same node (positive
views) in both augmented graphs to be as similar as possi-
ble, while ensuring that representations of different nodes
(negative views) become dissimilar. However, this paradigm
overlooks the equivalence relations in terms of graph struc-
ture and node attributes. Existing methods focus solely on
aligning the representations of the same node across aug-
mented views, pushing apart those of different nodes, while
often neglecting the fact that nodes similar to a given node
are not limited to that node alone. Consequently, certain
similarities between different nodes are frequently ignored.

To address these issues, we propose a novel equivalence-
based self-supervised graph representation learning frame-
work (GALE) grounded in the equivalence principle: node
representations within the same equivalence class should be
more similar, while those in different equivalence classes
should be as dissimilar as possible. Specifically, 1) we de-
fine two equivalence relations—automorphic equivalence
based on graph structure and attribute equivalence based on
node attributes—and combine them into a unified equiva-
lence class; 2) Then we enforce the equivalence principle,
ensuring the node representations within the same equiva-
lence class are similar, while those in different classes are
dissimilar; 3) We introduce approximate equivalence classes
with linear time complexity to address the NP-hard nature
of exact automorphism detection and handle practical chal-
lenges such as attribute noise or slight variations that still
indicate similarity, which make strict equivalence impracti-
cal in real-world graphs; 4) We note that message passing
neural networks (MPNNs) make equivalent nodes similar
but risk over-similarity for non-equivalent nodes, while most
position encoding methods in graph transformers fail to in-
corporate the automorphic equivalence constraint; 5) From
the equivalence perspective, we show that the current graph
contrastive learning paradigm is a degenerate form of equiva-
lence constraint, where each equivalence class is limited to a
single node; 6) We demonstrate that GALE surpasses SOTA
algorithms through experiments on benchmark datasets.

2. Related Work

Equivalence in Graphs. The concept of node equivalence
traces its roots to structural sociology and algebraic graph
theory (Wasserman & Faust, 1994). In social network anal-
ysis, Lorrain and White’s structural equivalence (Lorrain
& White, 1971; Fortunato, 2010) formalized the idea that

nodes sharing identical connectivity patterns occupy equiv-
alent roles, forming the basis for role discovery in net-
works. However, its strict definition limits its applicability
in complex networks. A broader concept of equivalence,
automorphic equivalence (AE) (Lauri & Scapellato, 2016),
emerged from graph automorphism theory, where two nodes
are equivalent if there exists a permutation of the graph’s
vertices such that adjacency relations are preserved (Bafai,
1977). AE has proven fundamental across scientific do-
mains, e.g., in social networks, AE identifies individuals
with identical social statuses or influence patterns (Everett,
1985; Friedkin & Johnsen, 1997). In chemistry, symmetric
atoms in molecules (e.g., carbon atoms in benzene rings)
are automorphically equivalent, explaining their identical
chemical properties (Faulon, 1998).

Self-supervised Graph Learning. Graph learning has at-
tracted significant attention in recent years (Koh et al., 2024;
Wang et al., 2024a;b; Liu et al., 2024b; Wang et al., 2024c).
Graph self-supervised learning has emerged as a dominant
paradigm for learning representations from unlabeled graph
data (Wang et al., 2023; Zhao et al., 2025). Early approaches
focused on preserving structural proximities through matrix
factorization (Belkin & Niyogi, 2001), random walk objec-
tives (Grover & Leskovec, 2016), or deep autoencoders (Cao
et al., 2016). The recent surge in graph contrastive learning
(GCL) methods (Cai et al., 2023; Li et al., 2022; Thakoor
et al., 2022) has centered around maximizing agreement
between positive views of the same node while repelling
negative samples. Contrastive loss encourages similar rep-
resentations for the same node across augmented views,
while separating different nodes. However, it treats each
node as only equivalent to itself, overlooking structural or
attribute-based equivalence.

3. Background

Notations. Let G = (V,E) be a graph with n nodes and m
edges, where V denotes the set of nodes and E represents
the set of edges. If node attributes are available, we denote
the node feature matrix as X ∈ Rn×d, where d represents
the dimension of the node attributes.

Problem Formulation. In this work, we focus on learning
the representation zv ∈ Rq for each node v in an unsuper-
vised manner, where q denotes the output dimension.

Equivalence Relation and Equivalence Class. Let S be
a non-empty set (in this paper, the set of interest is the
node set V ), and let R be a relation on S. We say that R
is an equivalence relation on S if and only if R satisfies
the following properties: 1) Reflexivity: Every element is
related to itself under R (i.e., x 'R x for all x ∈ S). 2)
Symmetry: If x ∈ S is related to y ∈ S under R, then
y is related to x under R (i.e., x 'R y ⇒ y 'R x). 3)
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Figure 2. Overview of GALE, combining an encoder and equiv-
alence constraints from structural and attribute-based partitions.
The constraints regularize the encoder’s node representations.

Transitivity: If x ∈ S is related to y ∈ S and y is related
to z ∈ S under R, then x is related to z under R (i.e.,
x 'R y ∧ y 'R z ⇒ x 'R z). For example, the identity
relation (=) on a set S is an equivalence relation. For each
x ∈ S, the equivalence class of x determined by R, denoted
as [x], is defined as [x] = {y ∈ S : x 'R y}.

Partition and Induced Partition. Let P be a family of
subsets of S. We say that P is a partition of S if and only
if the following conditions are satisfied: 1) If X ∈ P , then
X 6= ∅ (i.e., no subset in the partition is empty); 2) If
X ∈ P and Y ∈ P , then either X = Y or X ∩ Y =
∅ (i.e., subsets in the partition are pairwise disjoint); 3)⋃
X∈P X = S (i.e., the union of all subsets in the partition

covers the entire set S). It can be proven that the equivalence
classes determined by any equivalence relation on a set form
a partition of that set. This partition is referred to as the
induced partition from the equivalence relation.

Automorphism and Orbit. A permutation π on a set V
rearranges its elements as Vπ = {vπ}. We use cycle no-
tation to represent permutations. All permutations of V
form a symmetric group Sn. A graph automorphism of a
graph G is a permutation π ∈ Sn that preserves the edge
relations of G, i.e., E = Eπ , {(uπ, vπ) | (u, v) ∈ E}.
Every graph has a trivial automorphism, the so-called iden-
tity automorphism, which maps each vertex to itself. The
set of all automorphisms of a graph forms a group, called
the automorphism group of the graph, denoted as Aut(G).
The elements (permutations) in the automorphism group of
a graph define an equivalence relation on the node set V :

u 'auto v ⇐⇒ ∃π ∈ Aut(G), uπ = v (1)

This equivalence relation, also known as a symmetry rela-
tion, partitions the node set V into non-overlapping equiva-
lence classes called orbits.

4. Learning with Equivalence Classes
In this Section, we introduce a novel equivalence-based self-
supervised graph learning framework (GALE), as shown in
Figure 2. GALE consists of a dual-branch structure. One

branch involves a graph encoder, which encodes the graph
to obtain node representations; we use a graph neural net-
work (GNN) for this purpose. The other branch focuses on
inducing equivalence-class partitions of the node set. Based
on the equivalence principle—nodes within the same equiv-
alence class are considered similar, while nodes in different
classes are considered dissimilar—we impose regularization
constraints on the node representations and optimize the en-
coder with an equivalence loss. In our work, we construct
two types of equivalence-class partitions: 1) Group I: Calcu-
lated based on the graph’s adjacency information, capturing
the graph’s structural automorphism. 2) Group II: Calcu-
lated based on the attribute information of nodes, capturing
feature equality. We fuse these partitions into a unified node
constraint network, ensuring the learned representations
capture both structural and attribute-based equivalences.

4.1. Automorphic Equivalence from Structure

A graph typically encompasses two components: the rela-
tionships between nodes (edges) and the properties asso-
ciated with each node. We establish equivalence relations
and their corresponding partitions on both of these aspects.
First, we focus on adjacency. As discussed earlier, auto-
morphic equivalence represents a strict node equivalence
relation based on the graph’s structure. Indeed, real-world
graph data often exhibits a substantial number of nodes with
automorphic equivalence.

To verify this, we present statistics on the proportion of
nodes/graphs with automorphic equivalence in 3 bench-
mark network datasets (Kipf & Welling, 2017) and 3 graph
datasets (Morris et al., 2020). For network data (single
graph), we calculate the ratio of nodes in non-singleton
orbits (the number of nodes is greater than one) to the to-
tal number of nodes. For graph datasets (multiple graphs),
we compute the ratio of graphs with non-trivial automor-
phisms. The results, shown in Table 1, demonstrate that a
significant proportion of nodes/graphs exhibit non-trivial
automorphic equivalence, highlighting its prevalence in real-
world datasets.

Table 1. Proportions of automorphically equivalent nodes (left
three) and graphs (right four) in network and graph-level datasets.

Data Cora Citeseer PubMed MUTAG DD IMDB-B COLLAB

Ratio 18.4% 46.2% 45.7% 100% 96.3% 100% 99.9%

To compute the exact automorphisms of a graph, we adopt
classical algorithms such as bliss or nauty (Junttila & Kaski,
2011; McKay & Piperno, 2014). For example, bliss is an
efficient method for computing the automorphism group
of real-world graphs by leveraging symmetry-breaking and
backtracking search. Once the automorphism orbits are ob-
tained, we construct the automorphic equivalence partition
Pauto = {Ci}, where Ci represents an orbit.
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4.2. Attribute Equivalence from Nodes

To construct a partition of the graph based on node attributes,
we define an equivalence relation among nodes such that
nodes with identical attributes are grouped into the same
equivalence class:

u 'attr v ⇐⇒ xu = xv, ∀u, v ∈ V (2)

which ensures that the partition reflects the inherent equation
of nodes in terms of their attributes. This equivalence rela-
tion induces a partition Pattr = {Di}, where each subset
Di ⊆ V contains all nodes with the same attribute values.

4.3. Fusion of Equivalences

With the two partitions established, we aim to create a re-
fined node partition by fusion. Generally, both the structural
role and the attributes of a node are equally important for its
characterization. For example, consider a citation network
(where nodes represent papers and edges represent cita-
tions): two papers might be cited by similar papers (graph
structure), yet their topics (attributes) could be different.
Therefore, we seek a refined partition that preserves the
equivalence relationships from both perspectives. To accom-
plish this, we construct the fused partition by intersecting
the structure-based and attribute-based partition:

Pfuse = {Ci ∩Dj | Ci ∈ Pauto, Dj ∈ Pattr, Ci ∩Dj 6= ∅}
(3)

It inherits characteristics from both partitions, ensuring con-
sistency with both graph structure and node attributes. Each
fused equivalence class F = Ci ∩Dj contains nodes that
are equivalent under both graph automorphisms and node
attribute equivalence. The resulting partition satisfies: 1)⋃
F∈Pfuse

F = V ; 2) Fk ∩ Fl = ∅ for k 6= l. We now prove
that the relation 'fuse, which induces the fused partition
Pfusion, satisfies the properties of an equivalence relation.
Theorem 4.1. The fusion relation defined as u 'fuse v is
an equivalence relation.

Proof. To show that 'fuse is an equivalence relation, we
verify the three properties: 1) Reflexivity: For any node
u ∈ V , we have u 'auto u (since automorphic equivalence
is reflexive) and u 'attr u (since attribute equivalence is
reflexive), Therefore, u 'fuse u, satisfying reflexivity. 2)
Symmetry: If u 'fuse v, then u 'auto v and u 'attr v. By the
symmetry of 'auto and 'attr, we have v 'auto u and v 'attr
u, proving symmetry. 3) Transitivity: If u 'fuse v and
v 'fuse w, then u 'auto v, v 'auto w, and u 'attr v, v 'attr
w. By the transitivity of 'auto and 'attr, we have u 'auto w
and u 'attr w. Hence, transitivity is established.

4.4. Equivalence Loss

To encourage nodes within the same fused equivalence class
to have similar representations and nodes from different

equivalence classes to have dissimilar representations, we
define a loss function based on the similarity between node
embeddings.

Intra-class Loss. Let Pfuse = {Fi} represent the fused
equivalence partition, and let zu denote the embedding of
node u. The intra-class loss is defined to encourage the
embeddings of nodes within the same equivalence class Fi
to be similar:

Lintra =
∑
i

∑
u,v∈Fi

−D(zu, zv) (4)

where D : Rq × Rq → R is a discriminator that maps
two views to an agreement score. In this work, we use the
standard inner product D (zi, zj) = zTi zj .

Inter-class Loss. The inter-class loss is designed to ensure
that embeddings of nodes from different equivalence classes
are dissimilar. For nodes s ∈ Fi and t ∈ Fj with i 6= j,
we penalize high similarity between their embeddings. The
inter-class loss is defined as:

Linter =
∑
i 6=j

∑
s∈Fi,t∈Fj

D(zs, zt) (5)

Finally, the equivalence loss is defined as:

Lequiv = Lintra + Linter (6)

5. Approximate Equivalence Classes
In real-world graphs, strict equivalence relationships, such
as automorphic or exact attribute-based equivalence, are of-
ten impractical due to the computational cost of determining
exact automorphisms and the rarity of complete attribute
equality caused by noise or data variations. To overcome the
challenges, we introduce approximate equivalence classes,
which relax the strict requirements of exact equivalence.

5.1. Approximate Automorphic Equivalence

Determining the exact automorphism group of a graph is
computationally intractable, as it is the NP-hard problem. To
overcome this, we propose an efficient approximation using
PageRank vectors, which leverage their inherent relationship
to approximate automorphic equivalence effectively.

The PageRank algorithm (Langville & Meyer, 2004) as-
signs a score to each node in a graph, measuring its relative
importance based on the graph structure. Let P ∈ Rn×n
denote the Markov transition matrix of the graph, where
Pij = 1/deg(i) if (i, j) ∈ E, and Pij = 0 otherwise, with
deg(i) representing the degree of node i. The PageRank
vector r ∈ Rn is the stationary distribution of a random
walk with teleportation, based on the transition probabilities
P, computed as:

r = αP>r+ (1− α)v (7)
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where α ∈ (0, 1) is the teleportation probability, v ∈ Rn is
a personalization vector (typically uniform). The PageRank
vector assigns a score ri to each node i ∈ V , reflecting its
importance based on local connectivity and global graph
structure. The following lemma establishes the relationship
between automorphisms and PageRank.

Lemma 5.1 (Ghorbani et al. (2021)). If two vertices u, v ∈
V are automorphically equivalent in G, then u and v have
the same PageRank score:

u 'auto v =⇒ ru = rv (8)

We leverage this property to approximate automorphic
equivalence by grouping nodes with similar PageRank
scores. While nodes with equal PageRank scores are not nec-
essarily automorphically equivalent, they often exhibit struc-
tural similarity in terms of their importance within the graph,
providing an efficient approximation. To verify this, we
conduct experiments on 8 benchmark datasets: Cora, Cite-
seer, Pubmed (Kipf & Welling, 2017), Wiki-CS, Amazon-
Computers, Amazon-Photo, Coauthor-CS, and Coauthor-
Physics (Shchur et al., 2018). Empirical results show the
alignment between the true and approximate equivalence
partitions, measured by the Variation of Information (Meilă,
2007) (with values closer to 0 indicating better alignment
and 0 indicating perfect alignment). The detailed results are
presented in Table 2, where we find that for all the data, the
approximate partitions closely match the true ones, validat-
ing the effectiveness of our approximation. Here, we use
α = 0.85; for an analysis of different parameter settings,
please refer to the Appendix.

Table 2. Variation of Information (VI) for alignment between
equivalences 'auto and 'PR on eight benchmark data. Lower VI
values (0 indicating perfect alignment) are shaded in darker green.

Data Cora CiteSeer PubMed WikiCS Amz-Comp. Amz-Photo Co-CS Co-Phy.

VI(↓) 0.021 0.047 0 0.001 0.003 0.004 0 0.001

Computing PageRank has a time complexity of O(m) for
graphs, where m denotes the number of edges, which is
significantly more efficient than exact automorphism com-
putation (Kondaveeti et al., 2024).

5.2. Approximate Attribute Equivalence

In real-world networks, nodes often exhibit attributes that
are not perfectly identical but are instead only slightly differ-
ent. Strictly enforcing exact equality of node attributes when
defining equivalence classes can lead to overly fragmented
partitions, as even minor differences in attributes result in
nodes being classified into different equivalence classes.
To address this issue, we propose relaxing the equivalence
constraint by using a similarity threshold based on the Eu-
clidean distance between node attribute vectors. This allows

nodes with sufficiently similar attributes to be grouped into
the same equivalence class. For nodes u, v ∈ V , we define
the approximate attribute equivalence relation 'εattr as:

u 'εattr v ⇐⇒ ‖xu − xv‖2 ≤ ε (9)

where ε ≥ 0 is a small positive threshold that controls the
degree of similarity required for nodes to be considered
equivalent. The relaxed partition allows nodes with similar
attributes (within the threshold ε) to be grouped together,
even if their attributes are not exactly identical. Clearly,
when ε = 0, it reduces to strict equivalence. When ε > 0,
it is not a strict equivalence, though the resulting node sets
may be called similarity groups.

5.3. Complexity Analysis

The time complexity of the GALE involves four compo-
nents: 1) Automorphic equivalence can be approximated
using PageRank, which runs in O(m); 2) Attribute-based
equivalence requires grouping nodes by attributes, with a
complexity of O(n2); 3) Fusion of equivalences involves
intersecting equivalence classes, scaling asO(n) in practice
due to the typically small number and size of partitions. 4)
Equivalence loss computation with a worst-case complexity
of O(n2). Overall, the dominant term is O(n2 +m).

6. Equivalence and Graph Encoders
In this section, we discuss how mainstream graph encoders,
message passing neural networks (MPNNs) and graph trans-
formers, interact with the concept of equivalence.

6.1. MPNNs and Automorphic Equivalence

MPNNs (Wu et al., 2020) and their variants, such as Graph
Convolutional Networks (GCNs), rely on the principle of
neighborhood aggregation to learn node representations.
The neighborhood aggregation mechanism of MPNNs in-
herently aligns with the goal of making automorphically
equivalent nodes have similar representations. For example,
consider two automorphically equivalent nodes u and v and
their adjacency structures are identical. During the message-
passing process, u and v will aggregate similar information
from their neighbors. This property ensures that MPNNs
can naturally preserve the similarity of node representations
within the same equivalence class.

However, MPNNs cannot guarantee that dissimilarity be-
tween different equivalence classes remains valid. As the
number of layers increases, the representations of all nodes
in the graph tend to converge, leading to the over-smoothing
problem. This phenomenon reduces the discriminative
power of the learned node embeddings. Common over-
smoothing mitigations, like residual connections or dynamic
neighborhoods, typically overlook node equivalence.
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To address this, explicit constraints based on equivalence
classes can be incorporated into MPNN models. These con-
straints enforce inter-class dissimilarity while preserving
intra-class similarity, helping to alleviate the over-smoothing
problem. To demonstrate this, Figure 3 shows the classi-
fication results of GCN and GALE with increasing depth
on the Cora and CiteSeer dataset. GCN’s performance de-
clines sharply with more layers, but GALE with equivalence
constraints significantly mitigates the over-smoothing issue.
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Figure 3. Accuracy of GCN and GALE with increasing depth.

6.2. Graph Transformers and Equivalence

Graph transformers (Min et al., 2022) take a fundamentally
different approach to learning node representations com-
pared to MPNNs. Instead of relying on neighborhood ag-
gregation based on adjacency structure, graph transformers
use node positional embeddings to inject structural infor-
mation and infer relationships between nodes through their
positions and attributes. The node representations are then
updated using a fully-connected self-attention mechanism.

While graph transformers can capture global relationships,
they do not inherently ensure that automorphically equiva-
lent nodes are represented similarly. The effectiveness of
capturing automorphic equivalence depends on the qual-
ity of the positional embeddings, which may not always
align with the graph’s symmetries. Moreover, the global
nature of the attention mechanism, which lacks local con-
straints, means that nodes within the same equivalence class
might not remain sufficiently similar, and there’s no in-
herent mechanism to ensure dissimilarity between nodes
in different equivalence classes. As a result, while graph
transformers excel at encoding global structures, they may
struggle to consistently respect automorphic equivalence
without additional constraints or interventions.

Positional Encoding and AE. Therefore, node positional
embeddings, which are solely based on the graph’s struc-
ture, are essential for reflecting the equivalence relationships
within that structure. To evaluate whether common posi-
tional encoding (PE) methods align with automorphic equiv-
alence, we propose a validation procedure that compares
the ground truth automorphic equivalence with those de-
rived from positional embeddings, using a distance threshold
εpe = 10−4 to construct equivalence classes. Specifically,

we conduct experiments on 8 benchmark graph datasets
using 5 PE methods: Laplace positional encoding (LapPE)
(Kreuzer et al., 2021), Random walk positional encoding
(RWSE) (Dwivedi et al., 2022), SignNet (Lim et al., 2023),
ElstaticSE, and HKdiagSE (Rampášek et al., 2022). We
compute the Variation of Information (VI) (Meilă, 2007),
and the results are shown in Table 3. Our findings indi-
cate that most existing PE methods do not truly adhere to
automorphic equivalence, and in some cases, deviate signif-
icantly. This may be because these methods focus primarily
on ensuring that neighboring nodes are assigned similar po-
sitions (locally), while neglecting the global equivalences
within the graph.

Table 3. Variation of Information between automorphic and posi-
tional encoding-based equivalence (lower is better, 0 is perfect).

Methods Cora CiteSeer PubMed WikiCS Amz-Comp. Amz-Photo Co-CS Co-Phy

LapPE 7.309 6.201 0.063 9.101 9.368 8.808 0.147 1.804
RWSE 0.073 0.345 0.138 0.238 0.158 0.050 0.035 0.023
SignNet 7.547 6.966 0.669 4.879 5.068 4.508 0.963 0.932
HKdiagSE 0.007 0.037 0.002 3.446 3.590 2.025 0.048 1.308
ElstaticSE 0.345 1.533 0.096 0.764 0.483 0.182 0.004 -

7. Equivalence in Graph Contrastive
In this section, we analyze how equivalence classes play a
role in graph contrastive learning (GCL).

7.1. Analysis of Graph Contrastive Learning

GCL starts by creating two views of the original graph G1

through small perturbations, such as edge deletion, resulting
in an augmented graph G2. These two views, G1 and G2,
are assumed to have minimal differences and preserve label
invariance. For each node i, the goal of the contrastive loss
is to make the node’s representations across the two views
z1i (fromG1) and z2i (fromG2) more similar (positive pairs),
while ensuring that the representations of different nodes
z1j (from G1, j 6= i) and z2i (from G2) are as dissimilar
as possible (negative pairs). The contrastive loss can be
formulated as follows:

Lcon = − 1

n

n∑
i=1

log
exp(sim(z1i , z

2
i )/τ)∑n

j=1 exp(sim(z1i , z
2
j )/τ)

(10)

where sim(·, ·) is a similarity function, τ is a temperature.

From the perspective of equivalence classes, current GCL
methods implicitly assume a trivial equivalence class struc-
ture, where each node is treated as its own equivalence class.
Specifically, the contrastive loss enforces that each node’s
representation remains consistent across views (within the
same trivial equivalence class) while being distinct from the
representations of all other nodes (across different classes).

Clearly, the assumption of trivial equivalence classes limits
the ability of GCL to capture richer graph structures. Treat-
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ing each node as a separate equivalence class ignores simi-
larities between nodes, such as automorphic equivalence or
attribute-based similarity.

7.2. Role of Augmentation and Contrastive

GCL primarily relies on two mechanisms: graph augmen-
tation and a contrastive loss that implicitly enforces equiv-
alence class constraints. To disentangle their respective
contributions, we conduct ablation studies on the loss in
Eq. (10) using five benchmark datasets (Kipf & Welling,
2017). In the first ablation (w/o aug), we remove graph aug-
mentations and perform contrastive learning on two iden-
tical views of the graph (i.e., G1 = G2), using a single
shared encoder (instead of two). This design isolates the
effect of augmentation by ensuring there is no variation in
the contrastive loss other than the inherent randomness in
training. In the second ablation (w/o Pos), we modify the
contrastive loss by removing positive pairs—i.e., the term
encouraging the similarity of z1i and z2i—and retain only the
negative sample term. This effectively disrupts the equiv-
alence class constraint, as nodes are no longer required to
maintain consistent representations across views. Table 4
presents the corresponding results.

Table 4. Node classification accuracy (%) without augmentation.
Dataset Cora Citeseer PubMed Amz-Comp. Coa-CS.

Aug+Pos 83.26 ± 0.56 73.20 ± 0.37 81.33 ± 0.58 88.85 ± 0.30 92.71 ± 0.33

w/o Aug 82.12 ± 0.60 72.79 ± 0.21 80.86 ± 0.72 88.42 ± 0.44 92.22 ± 0.29

w/o Pos 76.10 ± 0.39 64.47 ± 0.48 80.37 ± 0.51 86.27 ± 0.21 89.38 ± 0.36

The results in the table show that removing graph augmen-
tations has minor impact on performance, indicating that
augmentations are not the primary driver of GCL’s effec-
tiveness. In contrast, removing positive pairs significantly
reduces performance across most data, highlighting the im-
portance of equivalence constraints in the contrastive loss.

8. Comparison with the SOTA Methods
8.1. Experimental Setup

Datasets. We evaluate the proposed model on both node
classification and graph classification tasks. For node
classification, we use 8 benchmark datasets: Cora, Cite-
seer, Pubmed (Kipf & Welling, 2017), Wiki-CS, Amazon-
Computers, Amazon-Photo, Coauthor-CS, and Coauthor-
Physics (Shchur et al., 2018). For graph classification, we
evaluate on 8 datasets from the TUDataset benchmark (Mor-
ris et al., 2020), including NCI1, PROTEINS, DD, MUTAG,
COLLAB, RDT-B, RDT-M5K, and IMDB-B.

Baselines. We compare our method against a wide range
of baseline methods across both node-level and graph-
level tasks. For graph-level task: 1) two supervised learn-

ing methods, including GCN (Kipf & Welling, 2017) and
GIN (Xu et al., 2018); 2) four kernel-based methods,
including SP (Borgwardt & Kriegel, 2005), GK (Sher-
vashidze et al., 2009), WL (Shervashidze et al., 2011),
DGK (Yanardag & Vishwanathan, 2015); 3) three unsuper-
vised methods, including NODE2VEC (Grover & Leskovec,
2016), SUB2VEC (Adhikari et al., 2018), GRAPH2VEC
(Narayanan et al., 2017); 4) five self-supervised graph con-
trastive learning, including INFOGRAPH (Sun et al., 2020),
GRAPHCL (You et al., 2020), AD-GCL (Suresh et al., 2021),
JOAOv2 (You et al., 2021), RGCL (Li et al., 2022), SIM-
GRACE (Xia et al., 2022), SEGA (Wu et al., 2023), and
AUTOGCL (Yin et al., 2022); For node-level tasks: 1) Su-
pervised learning methods, including MLP and GCN (Kipf
& Welling, 2017); 2) Graph embedding methods, including
DEEPWALK (Perozzi et al., 2014) and NODE2VEC (Grover
& Leskovec, 2016); 3) Graph contrastive learning methods,
including VGAE (Kipf & Welling, 2016) , DGI (Velickovic
et al., 2019), GMI (Peng et al., 2020), MVGRL (Hassani
& Khasahmadi, 2020), GRACE (Zhu et al., 2020), GCA
(Zhu et al., 2021), BGRL (Thakoor et al., 2022), CCA-SSG
(Zhang et al., 2021) and SUGRL(Mo et al., 2022).

Protocol. We follow the standard evaluation protocol of pre-
vious state-of-the-art self-supervised learning methods. For
node classification, we report the mean accuracy on the test
set after 50 runs of training. Pretrained node embeddings
are used to train a linear neural network for classification.
The dataset is split into 10%/10%/80% for training, vali-
dation, and testing, respectively. For graph classification,
we evaluate the learned graph representations using a linear
SVM classifier. We report the mean 10-fold cross-validation
accuracy across 5 runs. For each training fold, the linear
SVM is tuned using cross-validation, and the best mean
accuracy is reported. The dataset is split into 80%/10%/10%
for training, validation, and testing, respectively.

Implementation Details. We implement both GALE and
its variant GALE-APR using PyTorch Geometric. The key
difference is that GALE uses Nauty (McKay & Piperno,
2014) for exact automorphisms, while GALE-APR em-
ploys PageRank equivalence with α = 0.85. For node
attributes, both rely on 'εattr with ε∈{0, 10−7, . . . , 10−1}.
We adopt the Adam optimizer, tuning learning rates
{0.0001, 0.001, 0.01}, batch sizes {16, 64, 128, 256, 512}.
As iterations increase, Intra-class loss (4) dominates, caus-
ing the total loss (6) to become imbalanced and too small.
We can add Softplus after the discriminator to mitigate this.

8.2. Results and Analysis
Performance on Graph-level Tasks. We evaluate whether
GALE and its variant GALE-APR can outperform state-of-
the-art methods on multiple graph-level benchmarks. Table
5 summarizes the results for both supervised and unsuper-
vised baselines. Overall, GALE achieves top-tier perfor-
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Table 5. Supervised and unsupervised classification accuracy (%) on TU datasets. The highest unsupervised performance is shaded in
green, and the second-highest performance is shaded in light green. ‘–’ means that the results are unavailable.

Model NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

GCN 80.20 ± 0.14 74.92 ± 0.33 76.24 ± 0.14 85.63 ± 0.24 79.01 ± 0.18 50.00 ± 0.10 20.00 ± 0.10 70.45 ± 0.37
GIN 82.75 ± 0.19 76.28 ± 0.28 78.91 ± 0.13 89.47 ± 0.16 80.23 ± 0.19 92.44 ± 0.25 56.50 ± 0.24 73.70 ± 0.60

SP 73.53 ± 0.16 75.07 ± 0.54 >1d 85.25 ± 0.24 – 64.13 ± 0.04 39.64 ± 0.02 55.62 ± 0.02
GK 66.06 ± 0.12 71.67 ± 0.55 78.53 ± 0.03 81.71 ± 0.21 71.81 ± 0.31 77.32 ± 0.02 41.06 ± 0.08 65.93 ± 0.10
WL 80.01 ± 0.50 72.92 ± 0.56 79.78 ± 0.36 80.76 ± 0.30 69.30 ± 0.42 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 0.44
DGK 79.98 ± 0.36 73.21 ± 0.61 74.79 ± 0.32 87.51 ± 0.65 64.43 ± 0.48 78.35 ± 0.43 41.49 ± 0.32 67.09 ± 0.37

NODE2VEC 54.93 ± 0.16 57.58 ± 0.36 – 72.62 ± 1.02 56.12 ± 0.02 – – 50.25 ± 0.09
SUB2VEC 52.82 ± 0.15 53.06 ± 0.56 54.33 ± 0.24 61.17 ± 1.59 55.26 ± 0.15 71.48 ± 0.42 36.68 ± 0.42 55.34 ± 0.15
GRAPH2VEC 73.21 ± 0.18 73.33 ± 0.21 79.32 ± 0.29 83.28 ± 0.93 71.10 ± 0.54 75.78 ± 0.96 46.86 ± 0.26 71.16 ± 0.05

INFOGRAPH 76.33 ± 0.79 74.27 ± 0.43 73.02 ± 1.31 88.65 ± 1.09 70.41 ± 0.34 83.06 ± 0.82 53.45 ± 1.10 72.97 ± 0.49
GRAPHCL 77.54 ± 0.34 74.41 ± 0.35 78.49 ± 0.36 86.62 ± 1.23 71.28 ± 1.16 89.50 ± 0.73 55.85 ± 0.33 71.29 ± 0.38
AD-GCL 74.15 ± 0.62 73.33 ± 0.36 75.74 ± 0.68 88.70 ± 1.66 72.01 ± 0.53 90.04 ± 0.76 54.55 ± 0.40 70.35 ± 0.59
JOAOV2 78.36 ± 0.21 74.02 ± 0.53 77.36 ± 0.29 87.23 ± 1.12 69.05 ± 0.22 86.36 ± 0.30 55.77 ± 0.23 70.12 ± 0.25
RGCL 78.14 ± 0.89 75.11 ± 0.58 78.77 ± 0.52 87.62 ± 1.16 70.85 ± 0.63 90.27 ± 0.54 56.39 ± 0.37 71.67 ± 0.76
SIMGRACE 79.06 ± 0.15 75.26 ± 0.24 77.13 ± 0.88 89.23 ± 1.25 71.26 ± 0.51 89.41 ± 0.33 55.91 ± 0.23 71.22 ± 0.30
SEGA 79.15 ± 0.52 76.00 ± 0.68 78.81 ± 0.33 90.23 ± 0.89 74.10 ± 0.62 90.12 ± 0.46 56.08 ± 0.40 73.60 ± 0.33
AUTOGCL 78.39 ± 0.58 69.80 ± 0.38 75.76 ± 0.93 85.22 ± 1.43 71.40 ± 0.26 86.56 ± 1.31 55.68 ± 0.23 72.26 ± 0.34

GALE 80.04 ± 0.43 81.15 ± 0.31 80.63 ± 0.78 91.12 ± 0.93 75.95 ± 0.21 90.10 ± 0.49 56.56 ± 0.40 77.66 ± 0.11
GALE-APR 79.07 ± 0.30 81.11 ± 0.55 80.04 ± 0.48 90.52 ± 1.20 75.11 ± 0.29 90.03 ± 0.78 55.89 ± 0.29 76.78 ± 0.27

Table 6. Mean node classification accuracy for supervised and unsupervised models. The highest unsupervised performance is shaded in
green, and the second-highest performance is shaded in light green. OOM indicates Out-Of-Memory on a 24GB GPU.

Model Cora CiteSeer PubMed WikiCS Amz-Comp. Amz-Photo Coauthor-CS Coauthor-Phy.

MLP 47.92 ± 0.41 49.31 ± 0.26 69.14 ± 0.34 71.98 ± 0.42 73.81 ± 0.21 78.53 ± 0.32 90.37 ± 0.19 93.58 ± 0.41
GCN 81.54 ± 0.68 70.73 ± 0.65 79.16 ± 0.25 93.02 ± 0.11 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

DEEPWALK 70.72 ± 0.63 51.39 ± 0.41 73.27 ± 0.86 74.42 ± 0.13 85.68 ± 0.07 89.40 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
NODE2VEC 71.08 ± 0.91 47.34 ± 0.84 66.23 ± 0.95 71.76 ± 0.14 84.41 ± 0.14 89.68 ± 0.19 85.16 ± 0.04 91.23 ± 0.07

VGAE 77.27 ± 0.86 67.46 ± 0.20 76.02 ± 0.52 75.55 ± 0.22 86.40 ± 0.30 92.13 ± 0.12 92.10 ± 0.31 94.43 ± 0.20
DGI 82.24 ± 0.63 71.82 ± 0.61 76.80 ± 0.30 75.42 ± 0.17 84.05 ± 0.42 91.62 ± 0.37 92.14 ± 0.55 94.54 ± 0.52
GMI 82.40 ± 0.57 71.74 ± 0.12 79.28 ± 0.94 74.79 ± 0.16 82.24 ± 0.39 90.81 ± 0.15 OOM OOM
MVGRL 83.37 ± 0.65 73.29 ± 0.36 80.33 ± 0.61 77.55 ± 0.06 87.45 ± 0.17 91.77 ± 0.21 92.24 ± 0.31 95.30 ± 0.13
GRACE 81.88 ± 0.84 71.13 ± 0.42 80.88 ± 0.13 79.37 ± 0.24 86.48 ± 0.24 92.20 ± 0.16 92.90 ± 0.27 95.25 ± 0.26
GCA 82.41 ± 0.55 71.56 ± 0.19 80.73 ± 0.23 78.26 ± 0.39 87.92 ± 0.33 92.35 ± 0.53 92.65 ± 0.32 95.52 ± 0.21
BGRL 81.86 ± 0.32 72.10 ± 0.31 80.65 ± 0.42 79.28 ± 0.45 89.21 ± 0.47 92.28 ± 0.44 92.73 ± 0.41 95.31 ± 0.26
SUGRL 83.29 ± 0.38 73.11 ± 0.22 81.96 ± 0.49 78.88 ± 0.35 88.98 ± 0.20 92.87 ± 0.19 92.84 ± 0.24 94.80 ± 0.24
CCA-SSG 84.17 ± 0.44 73.27 ± 0.30 81.91 ± 0.41 77.67 ± 0.29 88.88 ± 0.22 93.14 ± 0.43 93.23 ± 0.16 95.29 ± 0.11

GALE 85.36 ± 0.15 74.58 ± 0.18 85.06 ± 0.27 82.15 ± 0.22 90.60 ± 0.19 94.51 ± 0.34 93.46 ± 0.28 95.91 ± 0.38
GALE-APR 85.14 ± 0.26 75.35 ± 0.10 84.57 ± 0.11 82.07 ± 0.36 90.27 ± 0.20 94.38 ± 0.46 93.45 ± 0.32 95.86 ± 0.23

mance: for instance, on PROTEINS it outperforms the best
self-supervised baseline SEGA by 5.15%, and on IMDB-B
it surpasses GIN by 3.96%. Meanwhile, GALE-APR ex-
hibits a similar pattern, slightly underperforming GALE on
a few datasets but still outperforming most baselines. In
summary, both GALE and GALE-APR demonstrate superior
performance across a wide range of graph-level tasks.

Performance under Node-level. Table 6 summarizes our
results on eight node-level benchmarks, showing that both
GALE and GALE-APR not only outperform the strongest
unsupervised models but also exceed the supervised base-
line GCN across most datasets. For instance, on PubMed,
GALE achieves 85.06%, surpassing the best unsupervised
method SUGRL by over 3.1% and supervised method GCN
by 5.9%. Meanwhile, GALE-APR stays highly competitive,
for example on Coauthor-CS it closely matching GALE,
thus confirming the effectiveness of our approach.

9. Conclusion
This paper proposes a unified self-supervised graph rep-
resentation framework, GALE, which integrates structural
automorphism and attribute equivalence to construct joint
equivalence classes. Such combined equivalences are fre-
quently encountered in real-world scenarios, including com-
puting networks. To address computational bottlenecks
and noise interference, we design an efficient approxima-
tion strategy with linear complexity. GALE preserves the
similarity of equivalent nodes while enforcing separation
between representations of non-equivalent nodes. Analysis
reveals the inherent limitations of mainstream graph mod-
els, including over-smoothing in MPNNs, failure to respect
automorphism constraints in Transformer positional encod-
ings, and the degeneration of graph contrastive learning into
single-node equivalence. Experimental results demonstrate
the superiority of GALE.

8



Equivalence is All: A Unified View for Self-supervised Graph Learning

Acknowledgments and Disclosure of Funding
This project was in part supported by the following
projects: the National Natural Science Foundation of China
(No.62432003, No.92267206).

Impact Statement
This paper aims to advance Graph Learning, with potential
societal impacts that don’t require specific highlighting here.

References
Adhikari, B., Zhang, Y., Ramakrishnan, N., and Prakash,

B. A. Sub2vec: Feature learning for subgraphs. In Pacific-
Asia Conference on KDDM, pp. 170–182. Springer, 2018.

Bafai, L. Isomorphism problem for a class of point-
symmetric structures. Acta Mathematica Hungarica, 29
(3-4):329–336, 1977.

Belkin, M. and Niyogi, P. Laplacian eigenmaps and spectral
techniques for embedding and clustering. Advances in
Neural Information Processing Systems, 14, 2001.

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels
on graphs. In International Conference on Data Mining,
pp. 8 pp.–. IEEE, 2005.

Cai, X., Huang, C., Xia, L., and Ren, X. LightGCL: Simple
yet effective graph contrastive learning for recommenda-
tion. In International Conference on Learning Represen-
tations, 2023.

Cameron, P. J. and Mary, Q. Automorphisms of graphs.
Topics in algebraic graph theory, 102:137–155, 2004.

Cao, S., Lu, W., and Xu, Q. Deep neural networks for
learning graph representations. In Proceedings of the
AAAI Conference on Artificial Intelligence, number 1,
2016.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In International Confer-
ence on Learning Representations, 2022.

Everett, M. G. Role similarity and complexity in social
networks. Social Networks, 7(4):353–359, 1985.

Faulon, J.-L. Isomorphism, automorphism partitioning, and
canonical labeling can be solved in polynomial-time for
molecular graphs. Journal of Chemical Information and
Computer Sciences, 38(3):432–444, 1998.

Fortunato, S. Community detection in graphs. Physics
reports, 486(3-5):75–174, 2010.

Friedkin, N. E. and Johnsen, E. C. Social positions in influ-
ence networks. Social networks, 19(3):209–222, 1997.

Ghorbani, M., Dehmer, M., Lotfi, A., Amraei, N., Mow-
showitz, A., and Emmert-Streib, F. On the relationship
between pagerank and automorphisms of a graph. Infor-
mation Sciences, 579:401–417, 2021.

Grover, A. and Leskovec, J. Node2vec: Scalable fea-
ture learning for networks. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864, 2016.

Hassani, K. and Khasahmadi, A. H. Contrastive multi-view
representation learning on graphs. In Proceedings of
the International Conference on Machine Learning, pp.
4116–4126. PMLR, 2020.

Junttila, T. and Kaski, P. Conflict propagation and com-
ponent recursion for canonical labeling. In Theory and
Practice of Algorithms in (Computer) Systems, volume
6595, pp. 151–162. Springer, 2011.

Kipf, T. and Welling, M. Variational graph auto-encoders.
Bayesian Deep Learning, NIPS 2016 Workshop, 2016.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Koh, H. Y., Nguyen, A. T., Pan, S., May, L. T., and Webb,
G. I. Physicochemical graph neural network for learn-
ing protein–ligand interaction fingerprints from sequence
data. Nature Machine Intelligence, 6(6):673–687, 2024.

Kondaveeti, D., Inampudi, R. K., and Kurkute, M. V. Time
complexity analysis of graph algorithms in big data: Eval-
uating the performance of pagerank and shortest path
algorithms for large-scale networks. Journal of Science
and Technology, 5(4):159–204, Aug. 2024.

Kondor, R. and Trivedi, S. On the generalization of equivari-
ance and convolution in neural networks to the action of
compact groups. In Proceedings of the International Con-
ference on Machine Learning, pp. 2747–2755. PMLR,
2018.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Langville, A. N. and Meyer, C. D. Deeper inside pagerank.
Internet Mathematics, 1(3):335–380, 2004.

Lauri, J. and Scapellato, R. Topics in graph automorphisms
and reconstruction, volume 432. Cambridge University
Press, 2016.

9



Equivalence is All: A Unified View for Self-supervised Graph Learning

Li, S., Wang, X., Zhang, A., Wu, Y., He, X., and Chua, T.-S.
Let invariant rationale discovery inspire graph contrastive
learning. In Proceedings of the International Conference
on Machine Learning, pp. 13052–13065, 2022.

Lim, D., Robinson, J. D., Zhao, L., Smidt, T., Sra, S., Maron,
H., and Jegelka, S. Sign and basis invariant networks for
spectral graph representation learning. In International
Conference on Learning Representations, 2023.

Liu, J., Tang, H., and Liu, Y. Perfect alignment may be
poisonous to graph contrastive learning. In Proceedings
of the International Conference on Machine Learning,
2024a.

Liu, Y., Li, S., Zheng, Y., Chen, Q., Zhang, C., and Pan, S.
Arc: A generalist graph anomaly detector with in-context
learning. In Globerson, A., Mackey, L., Belgrave, D.,
Fan, A., Paquet, U., Tomczak, J., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 37, pp. 50772–50804, 2024b.

Lorrain, F. and White, H. C. Structural equivalence of indi-
viduals in social networks. The Journal of mathematical
sociology, 1(1):49–80, 1971.

McKay, B. D. and Piperno, A. Practical graph isomorphism,
ii. Journal of Symbolic Computation, 60:94–112, 2014.
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A. Impact of α on PageRank Equivalence
To analyze the impact of different α values in PageRank on the resulting equivalence classes, we conduct experiments
on four benchmark datasets: Cora, Citeseer, Amz-Photo, and Coauthor-CS. The α values range from 0.1 to 0.9 with an
increment of 0.1, and for each dataset, we compute the Variation of Information (VI) (Meilă, 2007) between equivalence
partitions obtained under different α settings. This results in 9× 9 heatmaps for each data, which are visualized in Figure 4.

Our findings reveal that the differences between equivalence classes under varying α values are minimal across all datasets.
For instance, in the Cora dataset, the VI values are consistently in the range of 0.001, indicating negligible variation. Similarly,
in the Photo dataset, we observe 33 perfect matches (VI = 0) across different parameter pairs, further demonstrating the
robustness of PageRank equivalence classes to changes in α.

These results suggest that the choice of α has little effect on the overall structure of the equivalence classes derived from
PageRank scores. This stability highlights the reliability of using PageRank for approximating equivalence relations in
graphs, regardless of the specific damping factor chosen.
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Figure 4. Heatmaps showing the Variation of Information (VI) values between PageRank equivalence classes obtained under different α
values, for four datasets. Lighter colors indicate lower VI values, signifying greater similarity between equivalence partitions.

B. Related Work[Extended]
Equivalence in Graphs Neural Networks. There have been recent advancements in incorporating automorphic equivalence
(AE) (Kondor & Trivedi, 2018) into graph neural networks (GNNs). GRAPE (Xu et al., 2021) introduces ego-centered
automorphic equivalence to differentiate nodes within localized neighborhoods using subgraph template, while Autobahn
(Thiede et al., 2021) performs local equivariant convolutions over subgraph automorphism groups, improving adaptability for
tasks like molecular property prediction. Pearce-Crump & Knottenbelt (2024) primarily focuses on the theoretical analysis
and generalization of neural network design by characterizing learnable, linear, Aut(G)-equivariant neural layers, leveraging
bilabelled graphs to compute representations. In contrast, our work introduces a self-supervised learning framework that
not only considers structural equivalence but also incorporates node attribute information, enabling the joint learning of
structural roles and attribute semantics to offer a comprehensive perspective.

C. Ablation Study
C.1. Contribution of Automorphic and Feature Equivalence

To evaluate the importance of incorporating both automorphic and node attributes equivalence in our framework, we conduct
ablation experiments on eight benchmark datasets: Cora, Citeseer, Pubmed, Wikics, Computers, Photo, CS, and Physics.
We compare the performance of the full model (origin) with two variants: 1) w/o auto: This variant removes automorphic
equivalence information, relying solely on node attributes for equivalence class partitioning. 2) w/o feat: This variant
removes node attribute equivalence, relying only on automorphic equivalence for equivalence class partitioning.

The results, summarized in Table 7, show that excluding either automorphic or node attributes equivalence leads to
performance degradation across all datasets. The experimental results reveal the following key observations. 1) Effect of
removing automorphic equivalence (w/o auto): When automorphic equivalence is excluded, the performance consistently
declines across all datasets. This is because solely relying on node attributes ignores the structural information that helps

12



Equivalence is All: A Unified View for Self-supervised Graph Learning

distinguish nodes with similar attributes but different structural roles in the graph. For example, in a social network, two
users may both have similar attributes, such as age, profession, or location, but one might be a central influencer (hub
node) while the other is a peripheral user with few connections. Ignoring automorphic equivalence would fail to capture the
distinct structural importance of these users. 2) Effect of removing feature equivalence(w/o feat): Excluding attributes
equivalence also leads to a performance drop, sometimes more significant than w/o auto, particularly in datasets like Citeseer.
Without feature equivalence, nodes with very different characteristics may be grouped together solely based on automorphic
equivalence, reducing the model’s discriminative power. For instance, in a social network, nodes with high structural
similarity (e.g., both being part of tightly connected communities) but vastly different attributes (e.g., different professions)
could be inappropriately treated as equivalent.

These findings underscore the importance of integrating both automorphic equivalence and node attribute information. The
combination of structural and attribute-based perspectives ensures a more comprehensive representation of node equivalence,
effectively capturing both the roles and features of nodes in the graph.

Table 7. Ablation study results on 8 datasets. origin represents the full model, while w/o auto and w/o feat represent the ablated models.
Methods Cora CiteSeer PubMed WikiCS Amz-Comp. Amz-Photo Co-CS Co-Phy

origin 85.36 ± 0.15 74.58 ± 0.18 85.06 ± 0.27 82.15 ± 0.22 90.60 ± 0.19 94.51 ± 0.34 93.46 ± 0.28 95.91 ± 0.38
w/o auto 82.25 ± 0.09 72.44 ± 0.12 83.63 ± 0.30 81.03 ± 0.34 88.30 ± 0.28 93.07 ± 0.36 92.37 ± 0.41 94.46 ± 0.13
w/o feat 80.42 ± 0.24 64.72 ± 0.30 83.22 ± 0.21 80.87 ± 0.27 88.84 ± 0.16 94.50 ± 0.29 91.98 ± 0.17 93.19 ± 0.44

C.2. Evaluation of Equivalence Fusion Operator

This section presents an ablation study to empirically evaluate and justify our choice of using the intersection operator for
fusing node equivalences in our proposed model (referred to as origin). An alternative fusion strategy, based on the union
operator, was implemented and compared. The primary goal is to assess how these different fusion methods impact overall
model performance, particularly in capturing meaningful node similarities derived from diverse equivalence criteria (e.g.,
those based on automorphic properties and node attributes).

Table 8 summarizes the performance results on the eight benchmark datasets when employing either the intersection-based
(origin) or union-based (union) fusion approach. The experimental results presented in Table 8 demonstrate that the proposed
model, which employs intersection fusion, consistently outperforms the union fusion approach. This is largely because
emphasizing one equivalence type (either automorphic equivalence or node attributes) by using the union tends to neglect the
contributions from the other. In contrast, the intersection method ensures that both types of equivalences jointly contribute,
leading to a more robust and comprehensive representation of node similarity. These findings justify our choice of the
intersection method for fusing equivalences.

Table 8. Ablation study results comparing intersection (origin model) and union (union model) for fusing equivalences on 8 datasets.
Methods Cora CiteSeer PubMed WikiCS Amz-Comp. Amz-Photo Co-CS Co-Phy

origin 85.36 ± 0.15 74.58 ± 0.18 85.06 ± 0.27 82.15 ± 0.22 90.60 ± 0.19 94.51 ± 0.34 93.46 ± 0.28 95.91 ± 0.38
union 77.21 ± 0.22 64.37 ± 0.12 83.22 ± 0.19 80.96 ± 0.34 87.86 ± 0.25 93.59 ± 0.28 91.55 ± 0.15 94.93 ± 0.36

D. Rand Index Results
In the main body of the paper, we evaluated the alignment between true automorphic equivalence classes ('auto) and our
PageRank-based approximation ('PR) using the Variation of Information (VI) metric (detailed in Table 2). To provide a
more comprehensive validation of this alignment, in this section we presents supplementary results using the Rand Index
(RI) (Rand, 1971). The RI is another widely recognized metric for comparing the similarity between two data partitions.

The Rand Index assesses agreement by considering all possible pairs of elements and checking if each pair is consistently
placed (i.e., either together in both partitions or separated in both partitions). It produces a score ranging from 0 to 1, where
1 signifies perfect agreement between the two partitions, and values closer to 1 indicate a high degree of similarity. Table 9
reports the RI scores for the alignment between 'auto and 'PR across the same eight benchmark datasets analysed in the
main text. The consistently high RI values, approaching 1 for nearly all datasets, strongly corroborate the findings obtained
with the VI metric.
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Table 9. Rand Index (RI) for alignment between equivalences 'auto and 'PR on eight benchmark datasets (higher is better, 1 is perfect).

Data Cora CiteSeer PubMed WikiCS Amz-Comp. Amz-Photo Co-CS Co-Phy

RI (↑) 0.99948 0.99687 0.99999 0.99999 0.99999 0.99998 0.99999 0.99999

E. Sensitivity Analysis of PageRank Teleportation
To evaluate the impact of hyperparameter choices on model performance, we conducted a sensitivity analysis on the Cora
dataset with respect to the PageRank teleportation parameter (α). The parameter α was varied from 0.1 to 0.9, and the
corresponding model performance is reported in Table 10.

Table 10. Sensitivity analysis of the PageRank teleportation parameter (α) on the Cora dataset.
Dataset 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cora 85.33 ± 0.19 85.35 ± 0.15 85.27 ± 0.20 85.38 ± 0.12 85.23 ± 0.19 85.36 ± 0.17 85.30 ± 0.09 85.35 ± 0.15 85.29 ± 0.24

As shown in Table 10, the model’s accuracy remains stable across a wide range of α values, indicating that the performance
is not sensitive to the choice of this hyperparameter.

F. Limitation and Futrue Work
While our core contribution focuses on static homogeneous graphs, we acknowledge two related limitations. First, GALE
currently assumes a static graph setting, meaning that for dynamic graphs with evolving structures or features, the equivalence
classes may change over time, necessitating incremental updates to partitions—a challenge common to equivalence-based
methods. Second, our present work targets homogeneous graphs; extending our equivalence definitions to heterogeneous
graphs (e.g., those with multi-typed nodes/edges) would require additional design considerations, such as type-specific
automorphism constraints. We consider these aspects as important directions for our future work.
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