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ABSTRACT

Many real-world graphs, such as financial transaction networks, are edge-
attributed multigraphs that feature multiple edges between the same pair of nodes,
each with distinct edge attributes. State-of-the-art neural network solutions op-
erating on such edge-attributed multigraphs either preprocess the multigraph by
collapsing its multi-edges into a single edge or introduce auxiliary edge features
that compromise permutation equivariance. We introduce MEGA-GNN, a graph
neural network (GNN) for edge-attributed multigraphs, which overcomes these
limitations by employing a two-stage aggregation process in its message passing
layers: first, features of the multi-edges between the same two nodes are aggre-
gated, and then messages from distinct neighbors are combined. We show that
MEGA-GNN computes a richer set of statistical features than the GNNs that im-
plement only single-stage aggregation in their message passing layers. We eval-
uate MEGA-GNN on seven financial transaction network datasets and three tem-
poral user-item interaction datasets, demonstrating significant improvements in
minority-class F1 scores for illicit transaction detection and ROC-AUC scores for
user state-change prediction, respectively, compared to state-of-the-art methods.

1 INTRODUCTION

A multigraph is a graph that allows multiple edges, multi-edges, between the same pair of nodes.
Multigraphs naturally arise in domains such as transportation, cybersecurity and finance, where
repeated interactions between entities are common. Financial transaction networks, in particular,
capture the flow of money between entities such as individuals or companies and have emerged as a
primary application area of edge-attributed multigraphs, where nodes represent accounts, and edges
represent transactions carrying rich numerical and categorical information between the accounts.

There has been a growing interest in applying Graph Neural Networks (GNNs) to financial crime
analysis (Hiroki Kanezashi & Hirofuchi, 2022; Cardoso et al., 2022; Nicholls et al., 2021; Weber
et al., 2019; Egressy et al., 2024; Lin et al., 2024), driven by the impressive success of GNNs in
diverse domains, including biology (Xu et al., 2019; Gilmer et al., 2017), social networks (Veličković
et al., 2018; Corso et al., 2020; Hamilton et al., 2017), and knowledge bases (Schlichtkrull et al.,
2018; Vashishth et al., 2020; Chen et al., 2021b). Nevertheless, financial crime detection remains
a challenging task due to a scarcity of datasets with labeled examples, extreme class imbalance in
available datasets, with only a tiny fraction of transactions being illicit, and constantly evolving
crime patterns resulting from increasingly complex customer interactions.

The directed and edge-attributed multigraph structure of financial transaction networks presents ad-
ditional challenges. The limitations of popular GNNs (Xu et al., 2019; Gilmer et al., 2017; Corso
et al., 2020; Schlichtkrull et al., 2018) on edge-attributed multigraphs have been clearly demon-
strated by Egressy et al. (2024). Multi-GNN (Egressy et al., 2024) is a message passing GNN
designed specifically to address the challenges posed by directed multigraphs with edge attributes.
It accurately detects complex financial crime patterns in large transaction networks without any fea-
ture engineering. Notably, Multi-GNN achieves state-of-the-art performance on both anti-money-
laundering (Altman et al., 2023) and phishing-detection tasks (Chen et al., 2021a), significantly
outperforming IBM’s Graph Feature Preprocessor used in combination with tree-based classifiers
(Blanuša et al., 2024). However, the multigraph port numbering adaptation of Multi-GNN compro-
mises permutation equivariance because it uses pre-computed port numbers as edge features.
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(b) Standard GNN Update (c) MEGA-GNN Update(a) Edge-attributed Multigraph

Figure 1: MEGA-GNN performs two-stage aggregation: first, features of multi-edges between the
same node pair are aggregated; second, the resulting messages from distinct neighbors are aggre-
gated at the node level. In contrast, standard GNNs (center) perform single-stage aggregation.

ADAMM (Sotiropoulos et al., 2023) is another GNN solution for multigraphs, which aggregates
multi-edges into a single edge before message passing, thereby preserving permutation equivariance.
However, the message passing layers can no longer utilize the original multigraph and edge features,
which limits the effectiveness of ADAMM and its applicability in edge-classification tasks.

While multi-relational GNNs (Schlichtkrull et al., 2018; Vashishth et al., 2020) are highly effective
on labeled multigraphs, where each edge corresponds to a well-defined relation type, they are less
suitable for financial transaction networks and other edge-attributed multigraphs, where such rela-
tions are not explicitly defined. These models apply distinct transformations based on edge types,
but lack mechanisms to differentiate between multi-edges (i.e., multiple edges between the same
pair of nodes) and edges originating from distinct neighbors. See Appendix A.1 for further details.

To address the aforementioned shortcomings of existing methods, we propose MEGA-GNN, a novel
message passing framework designed for edge-attributed multigraphs. MEGA-GNN introduces a
two-stage aggregation mechanism in its message passing layers: first, attributes of the multi-
edges originating from the same neighbor are aggregated; second, the aggregated messages from
distinct neighbors are aggregated at the node level. Figure 1 illustrates MEGA-GNN’s two-stage
message aggregation scheme. Importantly, MEGA-GNN also supports bi-directional message pass-
ing, distinguishing incoming and outgoing edges without treating them as undirected. In addition,
MEGA-GNN is permutation equivariant because it does not rely on any precomputed features.

The main contributions of our work are as follows:

1. We introduce MEGA-GNN, a permutation-equivariant GNN architecture for edge-
attributed multigraphs, which performs a two-stage message aggregation based on the given
multigraph topology without eliminating multi-edges or using precomputed port identifiers.

2. We prove that MEGA-GNN is more powerful than standard message passing GNNs on
edge-attributed multigraphs because its two-stage message aggregation mechanism can
compute per-neighbor statistics that cannot be captured by a single-stage aggregation.

3. We show that MEGA-GNN integrates seamlessly with diverse GNN baselines, including
GIN (Xu et al., 2019), PNA (Corso et al., 2020), GenAgg (Kortvelesy et al., 2023), and
R-GCN (Schlichtkrull et al., 2018), consistently enhancing their performance while main-
taining the same asymptotic complexity as baseline GNNs augmented with edge updates.

4. We show that MEGA-GNN establishes a new state of the art across multiple tasks. On anti-
money laundering tasks, MEGA-GNN outperforms Multi-GNN Egressy et al. (2024) by up
to 10.9% and FraudGT Lin et al. (2024) by 4.8% in minority-class F1 score. For phish-
ing detection on Ethereum blockchain data, it surpasses FraudGT by 7.4% and ADAMM
(Sotiropoulos et al., 2023) by over 20%. In user state-change prediction over temporal
networks, MEGA-GNN achieves up to 9% improvement over JODIE (Kumar et al., 2019).

2 RELATED WORK

The expressive power of GNNs is essential for evaluating their capabilities and has been widely
studied (Xu et al., 2019; Barceló et al., 2021; Morris et al., 2023; Bevilacqua et al., 2024; Frasca
et al., 2022). Xu et al. (2019) demonstrated that the standard message passing GNNs are limited by
the 1-WL (Weisfeiler-Lehman) test for distinguishing isomorphic graphs, and introduced the Graph
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Isomorphism Network (GIN), which is provably the most expressive among standard message pass-
ing GNNs. Several works have proposed models with expressive power beyond 1-WL, including
k-WL-based GNNs (Maron et al., 2019; Morris et al., 2019), randomized node initializations (Ab-
boud et al., 2021; Sato et al., 2021), and particle-filtering-based approaches like PF-GNN (Dupty
et al., 2022). The expressiveness of GNNs is closely linked to their universality, as more expressive
models can approximate a larger class of graph functions. Sato et al. (2021) showed that unique node
identifiers can make GNNs universal but at the cost of losing permutation invariance. On the other
hand, Abboud et al. (2021); Loukas (2020) demonstrated that partially randomized node features
can achieve universality while preserving permutation invariance. Set functions, like those in Za-
heer et al. (2017), have also been shown to be universal under certain input constraints, and Fuchs*
& Veličković* (2023) made the connection between a universal set and graph functions. Corso et al.
(2020) introduced the PNA model, which improves empirical performance by combining diverse
aggregation functions. In Kortvelesy et al. (2023), a learnable aggregation function (GenAgg) is
proposed, which improves sample efficiency compared to PNA- and DeepSet-based aggregations in
multiset neighborhoods, and can learn to approximate all standard aggregators.

Research on GNNs addressing the challenges of multigraphs, particularly multi-edges with edge
attributes, is still in its early stages. ADAMM (Sotiropoulos et al., 2023) proposes collapsing
multi-edges into a single super-edge using DeepSet-based aggregation (Zaheer et al., 2017) prior
to message passing layers. Although collapsing followed by a message passing layer results in a
two-stage aggregation, it occurs only in the first layer. Subsequent message passing layers oper-
ate on a modified graph with collapsed multi-edges. Multi-GNN (Egressy et al., 2024) introduces
three adaptations: reverse message passing, port numbering, and ego IDs, which together transform
baseline GNNs to provably powerful multigraph neural networks (see Appendix A.2 for details).

Multi-level message aggregation schemes have also been proposed in other settings that are not
directly applicable to multigraphs. For instance, Hypergraph GNNs (Feng et al., 2019; Huang &
Yang, 2021) first aggregate node features within each hyperedge to compute latent hyperedge fea-
tures, which are then used to aggregate node features. Similarly, P-GNN (You et al., 2019) computes
position-aware node embeddings via multi-level message aggregation, first within anchor-sets and
then across all anchor-sets. In contrast, our MEGA-GNN architecture directly handles multi-edges,
representing multiple different connections between the same pair of nodes.

3 MULTIGRAPH MESSAGE PASSING WITH TWO-STAGE AGGREGATION

This section introduces our notation as well as our two-stage aggregation scheme. We theoreti-
cally prove that the two-stage approach is strictly more powerful than single stage approaches on
multigraphs with edge attributes. Next, we present our MEGA-GNN architecture, which integrates
two-stage aggregation into its message passing layers. We further enhance MEGA-GNN with bi-
directional message passing for directed multigraphs. Finally, we provide additional theoretical
properties of our method, such as permutation equivariance, universality, and inference complexity.

3.1 NOTATION

Definition 1 (Multiset). A multiset is a 2-tuple X = (S,m) where S is the underlying set of X
formed from its distinct elements, and m : S → N≥1 gives the multiplicity of the elements.

Definition 2 (Multiset Sum
⊎

). LetA = (SA,mA) andB = (SB ,mB) be multisets over a common
universe U . Their sum A

⊎
B is the multiset C = (SC ,mC) defined by:

SC = SA ∪ SB , mC(x) = mA(x) +mB(x)

We denote multisets with {{·}} and sets with {·}. [n] stands for the set {1, 2, . . . , n}. Let G = (V, E)
be a directed multigraph with node set V and edge multiset E = {{(i, j) | i, j ∈ V}}, where each
(i, j) represents a directed edge from node i to node j. Let Esupp ⊆ E denote the support set of E .
We define the edge multiplicity Pij := mE(i, j), i.e. the number of edges from node i to node j.
For a node j ∈ V , the incoming and outgoing neighbors are defined as Nin(j) = {i ∈ V | (i, j) ∈
Esupp} and Nout(j) = {i ∈ V | (j, i) ∈ Esupp}. We consider attributed multigraphs with feature
dimensions dn, de, d ∈ N. Each node has an initial feature vector x(0)

i ∈ Rdn , and each p-th edge
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from i to j has a feature vector e(0)ijp ∈ Rde and p ∈ [Pij ]. At the l-th layer where l ∈ [L] and L is

the total number of layers, the latent node and edge features are denoted x
(l)
i ∈ Rd and e

(l)
ijp ∈ Rd.

Let Md denote the space of multisets over Rd, and let M(Md) denote the space of multisets of
such multisets. Let j ∈ V be a target node and, Xij = {{eijp | p ∈ [Pij ]}} ∈ Md, denote the
multiset of edge feature vectors from node i to node j. The neighborhood of j is then given as
Xj = {{Xij | i ∈ Nin(j)}} ∈ M(Md).

Let g1, . . . , gk : Md → Rd. be a collection of coordinate-wise aggregators. Analogous to
PNA (Corso et al., 2020), we define an aggregation function, fθ, that applies each aggregator to
the input, concatenates the results, and processes the concatenated vector through an MLP:

fθ :Md → Rd′
, fθ(X) := MLPθ([g1(X) ∥ . . . ∥ gk(X)]), (1)

where X ∈ Md, ∥ is concatenation, MLPθ : Rkd → Rd′
is a feedforward network and d

′
denotes

the output dimension of the MLP.

3.2 SINGLE-STAGE VS TWO-STAGE AGGREGATION

In many real-world graphs, such as financial transaction networks, multiple edges may connect the
same pair of nodes, each with distinct attributes. Standard GNNs, however, typically ignore this
edge multiplicity and apply single-stage aggregation, which aggregates all incoming edges at once.
Definition 3 (Single-stage Aggregation). A single-stage aggregation function Tsingle-stage :
M(Md)→ Rd aggregates all edge features in the neighborhood Xj , treating it as a single multiset.

Tsingle-stage(Xj) := fθ
( ⊎
Xij∈Xj

Xij

)
. (2)

In standard GNNs, fθ is commonly implemented using a single aggregation function g, i.e., k = 1
in Equation 1, where g is typically chosen as SUM, MEAN, or MAX.

Crucially, in multigraphs, single-stage aggregation fails to distinguish between edges from the same
neighbor and those from different neighbors. To address this, we propose a two-stage aggrega-
tion scheme: first, features of multi-edges between the same node pair are aggregated; second, the
resulting messages from distinct neighbors are aggregated at the node level.
Definition 4 (Two-stage Aggregation). A two-stage aggregation function Ttwo-stage : M(Md) →
Rd first aggregates eachXij ∈ Xj individually, and then aggregates the resulting multiset of vectors.

Ttwo-stage(Xj) := fθ2 ({{fθ1(Xij) | Xij ∈ Xj}}) , (3)

This two-stage aggregation scheme naturally distinguishes edges based on their source nodes, en-
abling the computation of per-neighbor statistics. By applying multiple aggregators at both stages,
as defined in Equation 1, we can extract more nuanced statistical information, capturing both per-
neighbor and overall neighborhood characteristics. We formalize the enhanced representational
capacity of this approach under a class of moment-based aggregators, inspired by (Corso et al.,
2020). Specifically, we employ the sum and raw moments to capture rich distributional features of
multisets.
Theorem 1. Two-stage aggregation induces a strictly larger image than single-stage aggregation,
if both schemes use the same set of k aggregators: the sum and the raw moments of orders 2 through
k, defined as

g1(X) :=
∑
x∈X

x, gr(X) :=
1

|X|
∑
x∈X

xr, 2 ≤ r ≤ k,

where X ∈Md and xr is element-wise r-th power.

The proof of Theorem 1 is in Appendix B.1. We first show that two-stage aggregation can replicate
single-stage aggregation by computing neighborhood moments from per-neighbor moments. Fur-
thermore, we show that single-stage aggregation fails to capture per-neighbor moments, whereas
two-stage aggregation inherently does, allowing the extraction of more nuanced statistical informa-
tion from the neighborhood.
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(a) (b) (c)

Figure 2: Illustration of Two-stage Aggregation with artificial nodes. (a) A multigraph with
multi-edges eij1, eij2, eij3 between nodes i and j. (b) Illustration of artificial nodes, which helps us
to compute latent features of aggregated multi-edges between adjacent node pairs. First, features of
multi-edges are aggregated at the artificial nodes; next, each destination node aggregates messages
from its neighboring artificial nodes. (c) The bi-directional message passing mechanism. In directed
multigraphs, reverse edges are added in the opposite direction of the original edges. Separate mes-
sage computations are performed to handle the original and reversed edges.

3.3 THE MEGA-GNN ARCHITECTURE

This section introduces a novel message passing architecture for multigraphs with edge attributes
that implements the two-stage aggregation scheme outlined in Section 3.2. For notational conve-
nience, we introduce artificial nodes, which help us compute latent features of aggregated multi-
edges between adjacent node pairs (see Figure 2(b)): Vart = {vartij | (i, j) ∈ Esupp}.
Artificial nodes serve as temporary computational intermediates during aggregation and do not alter
the graph topology. Let h(l−1)

ij ∈ Rd be the d-dimensional latent feature vector of the artificial node
vartij . Recall that Xij ∈ Md denotes the multiset of edge features between node i and node j. At

layer (l−1), the corresponding multiset of latent edge features are X(l−1)
ij = {{e(l−1)

ijp | p ∈ [Pij ]}}.
In the first aggregation stage, latent features of multi-edges are aggregated at the artificial nodes.

h
(l−1)
ij = f

(l−1)
θ1

(
X

(l−1)
ij

)
, (4)

where f (l−1)
θ1

:Md → Rd. In the second stage, node-level aggregation is performed over messages
from artificial nodes :

a
(l−1)
j = f

(l−1)
θ2

(
{{[x(l−1)

i ∥ h(l−1)
ij ] | i ∈ Nin(j)}}

)
, (5)

x
(l)
j = ϕ(l−1)

n

(
[x

(l−1)
j ∥ a(l−1)

j ]
)
, (6)

where ∥ is concatenation, f (l−1)
θ2

:M2d → Rd and ϕ(l−1)
n : R2d → Rd is the node update function

at layer (l−1). Here, the destination node j receives a single (aggregated) message from each of its
distinct incoming neighbors. Then, the latent features of each edge are updated:

e
(l)
ijp = ϕ(l−1)

e

(
[x

(l−1)
i ∥ e(l−1)

ijp ∥ h(l−1)
ij ]

)
, (7)

where ∥ is concatenation and ϕ(l−1)
e : R3d → Rd is the edge update function.

Notably, MEGA-GNN preserves the original multigraph topology while enabling joint propagation
of node and edge latent features at each layer. Unlike ADAMM (Sotiropoulos et al., 2023), it
maintains distinct edges through individual updates. A detailed architecture diagram of the proposed
method is provided in Appendix C.1.

3.4 MEGA-GNN WITH BI-DIRECTIONAL MESSAGE PASSING

Bi-directional message passing improves model capacity by aggregating messages from incoming
and outgoing neighbors separately. For example, it enables the computation of both the in-degree
and the out-degree of a node, which is not possible using only incoming messages or by treating
the graph as undirected (Egressy et al., 2024). This subsection describes the way MEGA-GNN
implements bi-directional message passing in combination with two-stage aggregations.

5
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Formally, we define reversed edges (j, i) for each original edge (i, j) ∈ E , and initialize their
features as ê(0)ijp := e

(0)
jip, where p ∈ [Pji]. Similarly to Section 3.3, we use the notion of artificial

nodes to compute latent features of aggregated reversed multi-edges between adjacent node pairs
(Figure 2(c)): V̂art = {v̂artij | (j, i) ∈ Esupp}.

Let ĥ(l−1)
ij ∈ Rd be the d-dimensional latent feature vector of the artificial node v̂artij . At layer (l−1),

we denote the multiset of latent edge features from node j to i as X̂(l−1)
ij = {{ê(l−1)

ijp | p ∈ [Pji]}}.
In the first stage, the latent features of outgoing multi-edges from node j to i are aggregated.

ĥ
(l−1)
ij = f̂

(l−1)
θ1

(
X̂

(l−1)
ij

)
, (8)

where f̂ (l−1)
θ1

:Md → Rd. In the second stage, node-level aggregation is performed.

â
(l−1)
j = f̂

(l−1)
θ2

(
{{[x(l−1)

i ∥ ĥ(l−1)
ij ] | i ∈ Nout(j)}}

)
(9)

x
(l)
j = ϕ̂(l−1)

n

(
[x

(l−1)
j ∥ a(l−1)

j ∥ â(l−1)
j ]

)
, (10)

where ∥ is concatenation, f̂ (l−1)
θ2

:M2d → Rd, ϕ̂(l−1)
n : R3d → Rd is the node update function at

layer (l−1) and a
(l−1)
j is computed using Equation 5. Thus, messages from incoming and outgoing

neighbors are aggregated separately, and combined to update the destination node j. Similarly, the
latent features of the reverse edges are updated with function ϕ̂(l−1)

e : R3d → Rd:

ê
(l)
ijp = ϕ̂(l−1)

e

(
[x

(l−1)
i ∥ ê(l−1)

ijp ∥ ĥ(l−1)
ij ]

)
, (11)

3.5 ADDITIONAL PROPERTIES OF MEGA-GNN

3.5.1 PERMUTATION EQUIVARIANCE

Definition 5 (Permutation Equivariance). A function ψ is permutation equivariant with respect to
node and edge permutations if, for any permutation ρ acting on the nodes and edges of a graph
G = (V, E), the following holds: ψ(ρ ◦ G(V, E)) = ρ ◦ ψ(G(V, E)).
Proposition 1 (Permutation Equivariance). Given aggregation functions fθ1 and fθ2 that are per-
mutation invariant over multisets, MEGA-GNN is permutation equivariant with respect to arbitrary
permutations of nodes and edges in the input multigraph, including permutations over multi-edges.

Proposition 1 (proof in Appendix B.3) shows MEGA-GNN maintains permutation equivariance at
both node and edge levels, a property not shared by Multi-GNN (Egressy et al., 2024), as stated in
Proposition 2 of Appendix A.2.

3.5.2 UNIVERSALITY

Definition 6 (Strict Total Order). Strict total order is a binary relation < on a setA, which satisfies
the following conditions for all a,b,c ∈ A: (1) if a ̸= b, either a < b or b < a, (2) not a < a, (3) if
a < b and b < c, then a < c (see (Munkres, 2000), p. 22).
Definition 7 (Universality). An MPNN is universal if it can approximate every invariant or equiv-
ariant continuous function defined on graphs (Keriven & Peyré, 2019; Loukas, 2020).
Theorem 2. MEGA-GNN can compute unique node IDs in connected multigraphs given a strict
total ordering of the edges.

The proof of Theorem 2 is given in Appendix B.4. In practice, edge features such as high-precision
timestamps (e.g., in financial transaction networks) can induce the required strict total ordering.
Corollary 1 (Universality). Given enough layers with sufficient expressiveness and width as well as
a strict total ordering of the edges, the MEGA-GNN is universal.

Proof. As outlined by Loukas (2020), the following conditions must be met to achieve universality:
a sufficient number of layers, layers with adequate expressive power and width, and the ability for
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nodes to uniquely distinguish one another. Theorem 2 shows that MEGA-GNN can uniquely distin-
guish nodes in connected multigraphs. In addition, MEGA-GNN can be configured to incorporate a
sufficient number of linear and nonlinear layers with adequate expressive power and width. There-
fore, MEGA-GNN satisfies all the necessary conditions and is universal based on Definition 7.

3.5.3 INFERENCE COMPLEXITY

Theorem 3. The asymptotic complexity of a single MEGA-GNN layer is:

O
(
(|E|+ |V|)d2 + (|E|+ |V|)d

)
.

In Theorem 3 (proof is in Appendix B.5), the first term arises from linear layers used in feature
transformations, while the second term accounts for neighborhood aggregation and element-wise
nonlinearities. This shows that the two-stage aggregation does not increase the asymptotic complex-
ity: MEGA-GNN matches the complexity of standard message-passing GNNs with edge updates.

4 EXPERIMENTS

This section presents experiments to evaluate the accuracy of MEGA-GNN across multiple tasks.
We focus on two key applications in financial crime analysis: money laundering detection via edge
classification and phishing account detection via node classification. Additionally, we evaluate
MEGA-GNN on three temporal user-item interaction datasets for the user state-change prediction
task. In total, we assess the performance of MEGA-GNN on ten distinct datasets spanning three dif-
ferent tasks, as described below. Further dataset statistics and details are provided in Appendix C.4.

Anti-Money Laundering (AML): We use IBM’s realistic synthetic financial transaction datasets
for the money laundering detection task (Altman et al., 2023). There are six AML datasets in total:
small, medium, and large variants, each available in two versions, LI (low illicit ratio) and HI (high
illicit ratio). The small, medium, and large datasets contain approximately 6 million, 30 million,
and 180 million transactions, respectively. The LI versions have an illicit transaction rate of around
0.05%, while the HI versions have a slightly higher rate of approximately 0.1%. The task is framed
as edge classification, where each transaction must be labeled as either illicit or non illicit. Edges in
the transaction graph include four attributes: timestamp, amount, currency, and payment format.

Ethereum Phishing Transaction Network (ETH): Since access to real financial transaction data
from banks is limited, cryptocurrencies provide an alternative data source. In our study, we use a
real-world transaction graph extracted from the Ethereum blockchain (Chen et al., 2021a), where
accounts are treated as nodes and transactions as edges. Each node has a label that indicates whether
it is a phishing node. The edges have two attributes: timestamp and amount.

User State-Change Prediction: We use three temporal user-item interaction datasets from JODIE
(Kumar et al., 2019) for this task: Reddit bans, Wikipedia bans, and MOOC dropouts. Each interac-
tion is labeled 0 until a user is banned or drops out; their final interaction is labeled 1.

Implementation: We implement our solutions using PyTorch Geometric (Fey & Lenssen, 2019).
For the AML datasets, we use the same temporal splits as Multi-GNN. For ETH, we use a 65/15/20
temporal split. For the JODIE datasets, we follow the experimental setup in (Kumar et al., 2019)
and use a 60/20/20 temporal split. We adopt ego IDs (You et al., 2021) only in edge classification
experiments (Figure 3, Table 4) and incorporate bi-directional message passing in both edge and
node classification experiments (Figure 3, Tables 4 and 1). To ensure statistical significance, each
experiment is repeated at least five times with different random seeds and the mean and standard
deviation of these runs are reported. Additional implementation details are given in Appendix C.

Evaluation: We evaluate four baseline architectures (GIN, PNA, GenAgg, R-GCN) in combina-
tion with three multigraph adaptations (Multi-GNN Egressy et al. (2024), ADAMM Sotiropoulos
et al. (2023), and MEGA-GNN). The Base models do not use multigraph adaptations, but leverage
edge updates by default. GIN provides a basic GNN architecture with expressiveness guarantees.
PNA exhibits strong empirical performance on multigraphs (Egressy et al., 2024). GenAgg uses a
learnable aggregator that can parameterize common aggregators (Kortvelesy et al., 2023). In addi-
tion to these GNN baselines, we evaluate Multi-FraudGT (Lin et al., 2024), a graph-transformer that
incorporates multigraph adaptations of Multi-GNN (Egressy et al., 2024).
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Figure 3: Minority class F1 scores (%) for six AML datasets using four different GNN baselines
(GIN, PNA, GenAgg, and R-GCNE) and two different multigraph adaptations (Multi and MEGA).

Table 1: ETH node classification: minority-class F1 scores (%). The best result is given in boldface.
ADAMM Multi MEGA (ours)

GIN GenAgg PNA GIN GenAgg PNA FraudGT GIN GenAgg PNA
F1 34.73 ± 15.75 33.10 ± 19.32 37.99 ± 5.41 51.34 ± 3.92 44.60 ± 21.50 64.61 ± 1.40 57.40 ± 0.91 57.45 ± 1.14 61.12 ± 2.55 64.84 ± 1.73

R-GCNE is an extension of R-GCN (Schlichtkrull et al., 2018) that uses edge attributes and edge
updates. R-GCNE helps assess the performance of models designed for labeled multigraphs on
edge-attributed multigraphs. To use R-GCNE on AML datasets, we assign edge types based on the
currency of the transactions. However, this conversion is not always feasible. For example, the ETH
dataset lacks categorical features that can be used to define such relations. MEGA-GNN can be
paired with any baseline, including R-GCNE. Further details are available in Appendix C.5.

AML Edge Classification: Figure 3 presents minority-class F1 scores across six synthetic AML
datasets, comparing GNN baselines with their multigraph adaptations (see Appendix E for more
detailed results). Note that we extended R-GCNE to support only MEGA adaptations. In addition,
Multi-GenAgg and MEGA-GenAgg experiments exceeded GPU memory size for Large datasets.

In all 22 cases, MEGA-GNNs significantly outperform baseline GNNs. In 15 of the 16 comparison
points, MEGA-GNNs also outperform Multi-GNNs. On average, MEGA-GNNs improve minority-
class F1 scores by 4.75% on HI datasets and by 6.77% on LI datasets compared to Multi-GNNs, es-
tablishing new state-of-the-art results. These results demonstrate the effectiveness of MEGA-GNN
in detecting complex financial crime patterns in large-scale transaction networks. Moreover, our
consistent gains across different baseline architectures indicate that MEGA-GNN’s improvements
are not architecture dependent, but stem from its novel two-stage message aggregation mechanism,
which enables computation of more nuanced statistics on multigraphs, as shown in Theorem 1.

ETH Node Classification: Table 1 presents our experiments on the ETH dataset (Chen et al.,
2021a), where MEGA-GNNs again achieve consistent improvements over the alternatives. For in-
stance, MEGA-GIN improves the minority class F1 score by 6.11% over Multi-GIN, while MEGA-
GenAgg surpasses Multi-GenAgg by 16.52%. The best-performing model, MEGA-PNA, delivers
the highest F1 score, achieving a slight improvement over Multi-PNA (Egressy et al., 2024). When
compared to the ADAMM (Sotiropoulos et al., 2023) adaptations, our MEGA-GNN variants exhibit
a striking improvement, consistently delivering over 20% higher performance for different base-
line architectures (GIN, PNA, GenAgg). Furthermore, compared to Multi-FraudGT, MEGA-PNA
achieves a 7.44% higher performance. These results confirm the effectiveness of MEGA-GNN’s
two-stage message aggregation mechanism and its bi-directional message passing capabilities.

Table 2: Impact of permuting port numbers on the F1 scores (%) of Multi-FraudGT and Multi-PNA.

Ablation AML Small HI AML Small LI AML Medium HI AML Medium LI AML Large HI AML Large LI ETH
Multi-PNA 67.35 ± 2.89 35.40 ± 3.93 76.13 ± 0.69 43.82 ± 0.51 72.35 ± 1.14 33.54 ± 2.04 64.61 ± 1.40
Multi-PNA (permuted) 63.77 ± 2.47 31.48 ± 0.72 73.36 ± 0.83 43.24 ± 0.24 70.93 ± 0.69 32.18 ± 1.72 62.71 ± 2.73

Multi-FraudGT 75.81 ± 0.75 45.69 ± 1.14 75.97 ± 0.18 44.66 ± 0.58 73.04 ± 0.59 35.49 ± 0.52 57.40 ± 0.91
Multi-FraudGT (permuted) 61.74 ± 1.68 30.15 ± 2.67 65.89 ± 5.61 32.05 ± 1.35 63.33 ± 1.35 29.95 ± 1.18 49.59 ± 1.83

MEGA-PNA 74.01 ± 1.55 46.32 ± 2.07 78.26 ± 0.11 49.40 ± 0.54 76.95 ± 0.44 38.31 ± 1.53 64.84 ± 1.73
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Permutation Equivariance: Architectures using Multi-GNN adaptations, such as Multi-PNA and
Multi-FraudGT, are not permutation equivariant, as they rely on precomputed port numbers. Table
2, shows that MEGA-PNA outperforms both architectures in most scenarios. Notably, Table 2
shows that permuting port numbers during testing decreases the F1 scores of Multi-PNA and Multi-
FraudGT considerably and further increases the gap between MEGA-PNA and these two models.

Table 3: Impact of bi-directional message passing (MP) and
ego IDs: minority-class F1 scores (%) of MEGA-GNN.

Ablation AML Small HI AML Small LI ETH
GIN 46.50 ± 4.11 19.93 ± 3.55 42.33 ± 3.70
MEGA-GIN (GIN with Two-stage Agg.) 69.98 ± 2.02 41.45 ± 2.13 43.56 ± 2.67
MEGA-GIN w/ Bi-directional MP 72.50 ± 3.26 41.67 ± 1.51 57.45 ± 1.14
MEGA-GIN w/ ego IDs & Bi-directional MP 70.83 ± 2.18 43.66 ± 0.54 55.19 ± 2.33

PNA 62.96 ± 1.43 21.02 ± 4.05 53.93 ± 2.45
MEGA-PNA (PNA with Two-stage Agg.) 73.65 ± 0.36 43.77 ± 1.53 59.13 ± 0.51
MEGA-PNA w/ Bi-directional MP 74.98 ± 1.59 45.36 ± 1.18 64.84 ± 1.73
MEGA-PNA w/ ego IDs & Bi-directional MP 74.01 ± 1.55 46.32 ± 2.07 60.02 ± 5.10

Ablations: Table 3 evaluates the
standalone impact of two-stage ag-
gregation mechanism of our pro-
posed approach (Sec. 3.3) on top
of different baseline architectures
(GIN,PNA), then analyzes the ef-
fects of adding bi-directional mes-
sage passing (Sec. 3.4) and ego IDs
(You et al., 2021). The results indi-
cate that the primary performance im-
provements of MEGA-GNN are driven by the two-stage aggregation itself. Bi-directional MP pro-
vides further gains, particularly on the ETH dataset, while ego IDs offer selective improvements.

Table 4: User state-change prediction perfor-
mance (ROC-AUC, %) on three temporal user-
item interaction datasets Kumar et al. (2019).

Method MOOC Wikipedia Reddit
JODIE 75.6 ± na 83.1 ± na 59.9 ± na
PNA 66.3 ± 3.3 76.7 ± 2.5 63.5 ± 5.9
Multi-PNA 70.1 ± 3.6 90.4 ± 1.3 61.6 ± 5.7
MEGA-PNA 76.1 ± 1.8 92.1 ± 0.9 67.6 ± 2.8

User State-Change Prediction: Table 4 com-
pares MEGA-PNA with JODIE, PNA, and Multi-
PNA on three temporal user-item interaction
datasets. On MOOC, MEGA-PNA slightly out-
performs JODIE; on Wikipedia, it achieves the
highest ROC-AUC, surpassing all baselines; and
on Reddit, a highly imbalanced benchmark with
only 366 positives among 672,447 interactions,
MEGA-GNN delivers a clear gain. These results
demonstrate the applicability of MEGA-GNN beyond the analysis of financial transaction networks.

Inference Throughput Rate: Table 10 of Appendix D compares the inference throughput rate of
MEGA-GNN and Multi-GNN variants. These results indicate that the runtime overhead of MEGA-
GNN’s two-stage aggregation is minimal compared to Multi-GNN’s single-stage aggregation.

5 CONCLUSION

We introduce MEGA-GNN, a GNN architecture that leverages a novel two-stage message aggre-
gation mechanism for edge-attributed multigraphs. MEGA-GNN is built on a rigorous theoretical
foundation: its two-stage aggregation is strictly more expressive than standard single-stage aggre-
gation schemes. Furthermore, MEGA-GNN ensures permutation equivariance: unlike the prior
methods Egressy et al. (2024); Lin et al. (2024), MEGA-GNN does not rely on pre-computed multi-
graph port identifiers. Additionally, MEGA-GNN achieves universality when a strict total order-
ing of edges (e.g., via timestamps) is provided. We show that MEGA-GNN integrates seamlessly
with diverse GNN baselines such as GIN, PNA, GenAgg, and R-GCN. Importantly, MEGA-GNN’s
asymptotic inference complexity matches that of the baseline GNNs that incorporate edge updates.

The effectiveness of MEGA-GNN is validated by empirical evaluations on data sets combining
multigraph structure, complex topological patterns, edge attributes, and extreme class imbalance. On
financial crime datasets, MEGA-GNNs achieve, on average, 16.57% higher minority-class F1 scores
than baseline GNNs, 4.98% higher than Multi-GNNs, and 2.86% higher than Multi-FraudGT. When
port numbers are permuted at test time, the performance gap widens: MEGA-GNNs outperform
Multi-GNNs by 7.2% and Multi-FraudGT by 13.62% in minority-class F1 score. Lastly, on temporal
user-item interaction datasets, MEGA-PNA outperforms JODIE Kumar et al. (2019) by 5.73% and
Multi-PNA by 4.56% in ROC-AUC score, demonstrating MEGA-GNN’s broader applicability.

Limitations & Future Work: MEGA-GNN has so far been applied only to financial transaction
and temporal user–item interaction datasets. In future work, we plan to extend our approach to
knowledge graphs with edge attributes, transportation networks, and cybersecurity datasets.
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REPRODUCIBILITY STATEMENT

We include the source code in the supplementary materials to enable reproduction of all experimen-
tal results. The codebase provides clear instructions for downloading and preprocessing datasets,
setting up the environment, and running experiments. For each model variant considered in the ex-
periments, we supply a separate configuration file that specifies the corresponding hyperparameter
settings. Additional details on model architectures, training procedures, and evaluation protocols
are given in Section 4 and Appendix C.
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A LIMITATIONS OF EXISTING SOLUTIONS

A.1 MULTI-RELATIONAL GNNS

Relational Edge-attributed Multigraph

$

€

$

€

$

Standard MEGA-GNN Update R-GCNE Update

Figure 4: Comparison of MEGA-GNN and R-GCNE architectures. MEGA-GNN performs a two-
stage aggregation: it first aggregates multiple edges between the same node pair (edge-level ag-
gregation) and then applies node-level aggregation. In contrast, R-GCNE performs single stage
aggregation, and it applies relation-specific transformations by multiplying each edge feature with
a learnable weight matrix based on its relation type (currency in the example graph). For clarity,
inverse relations and self-loops are omitted in the R-GCNE illustration.

Relational Graph Convolutional Networks (R-GCNs) Schlichtkrull et al. (2018) are specifically de-
signed for labeled multigraphs, where each edge is assigned a relation type from a fixed, finite set of
discrete labels. R-GCNE (see Appendix C.6) is an extension of R-GCN Schlichtkrull et al. (2018)
that uses edge attributes and edge updates. R-GCNE achieves relation-aware message passing by
applying distinct learnable weight matrices for each relation type. However, despite this relational
specificity, R-GCNE performs a single-stage aggregation: messages from all neighbors are summed,
optionally scaled by a problem-specific normalization constant. With single-aggregation scheme R-
GCNE cannot distinguish between edges originating from the same neighbor (i.e. multi-edges) and
edges originating from different neighbors. By contrast, MEGA-GNN introduces a novel two-stage
aggregation mechanism. First, it aggregates the attributes of multiple edges connecting the same pair
of nodes (edge-level aggregation), capturing intra-pair interactions and edge-specific statistics. Sec-
ond, the resulting per-neighbor representations are aggregated across distinct neighbors (node-level
aggregation). As shown in Theorem 1, this hierarchical design allows MEGA-GNN to compute de-
tailed per-neighbor statistics that standard message-passing GNNs, including R-GCNE, inherently
overlook. Such capability is critical in financial transaction networks. A visual comparison of these
two architectures is provided in Figure 4, where inverse relations and self-loops are omitted from
the R-GCNE diagram for simplicity.

MEGA-R-GCN Update

Figure 5: Illustration of MEGA-R-
GCN.

To apply R-GCN to Anti-Money Laundering (AML)
datasets in our experiments in Section 4, we converted
the multigraph into a multi-relational graph by assigning
edge types based on transaction currency. However, this
transformation is not always feasible; for example, in the
ETH dataset (see Section 4), multigraphs often lack well-
defined relation types, limiting the applicability of stan-
dard relational GNNs. Importantly, our work is orthogo-
nal to existing relational GNN approaches and naturally
extends to multi-relational multigraphs—that is, graphs
where multiple edges of the same type exist between the
same node pair. This extension enables the development
of a hybrid model, MEGA-R-GCN, which integrates our
multi-edge aggregation strategy with R-GCN-like archi-
tectures, combining the strengths of both approaches. An
illustration of the hybrid method is shown in Figure 5,
with experimental results presented in Section 4.
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Augmented Reverse Edges

Original Edges of Multigraph

Flattened Edge Representation

DeepSet

(1,1)

(2,1)

(2,1)

(a) (b)

Figure 6: (a) Directed multigraph port numbering of Multi-GNN Egressy et al. (2024). (b) Illustra-
tion of multigraph to simple graph transformation by ADAMM Sotiropoulos et al. (2023)

A.2 MULTI-GNN AND ADAMM

Table 5: Related work vs. MEGA-GNN. MP refers to Message Passing, Aggr. stands for Aggrega-
tion.

Features Multi-GNN ADAMM MEGA-GNN
Proof of Universality ✓ ✓
Bi-directional MP ✓ ✓
Edge Embeddings ✓ ✓
Node Embeddings ✓ ✓ ✓
Permutation Equivariance ✓ ✓
Two-stage Aggr. ✓ ✓
Two-stage Aggr. in MP ✓
Proof of Two-stage is more powerful ✓

In the literature, two key works specifically address multigraphs: Multi-GNN Egressy et al. (2024)
and ADAMM Sotiropoulos et al. (2023).

Multi-GNN introduced a provably powerful GNN architecture for directed multigraphs, incorpo-
rating simple adaptations such as reverse message passing, port numbering, and ego IDs You et al.
(2021). A notable contribution of Multi-GNN is the multigraph port numbering, which enables the
model to distinguish between edges originating from the same neighbor and those from different
neighbors (see Figure A.2 (a)). These three adaptations make it possible to assign unique node IDs
in connected directed multigraphs, making the Multi-GNN solution universal. However, augment-
ing edge features with port numbers results in the loss of permutation equivariance (see Proposition
2 and the proof in Appendix B.2). This loss is significant because permutation equivariance is a
crucial property for ensuring that the model’s predictions remain consistent under arbitrary permu-
tations of nodes or edges in graph learning tasks. Empirical evaluation on the impact of permuting
port numbers during inference is presented in Table 2.
Proposition 2. The multigraph port numbering Egressy et al. (2024), is not permutation equivariant
in the absence of a strict total ordering of edges.

ADAMM aggregates multi-edges between two nodes into a single undirected super-edge (see Figure
A.2 (b)), before message passing layers. The initial features for this super-edge are computed using
DeepSet Zaheer et al. (2017), incorporating the direction of the edge as an additional edge feature
to differentiate between original and augmented reverse edges. The subsequent message passing
layers then operate on these aggregated features. However, this approach loses critical structural
information inherent in the multigraph by failing to preserve individual edge features, making it
unsuitable for tasks such as edge classification.

Additionally, since ADAMM does not compute latent features for the original edges, it cannot per-
form multi-edge aggregations repeatedly across multiple message passing layers. Another limitation

14
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of ADAMM is its lack of support for bi-directional message passing beyond merely incorporating
edge direction as a feature. Previous works have shown that explicit bi-directional message passing
improve accuracy for directed multigraphs Egressy et al. (2024).

B PROOFS

B.1 PROOF OF THEOREM 1

For any function f : X → Y , we write Im(f) to denote its image, i.e., the set {f(x) | x ∈ X} ⊆ Y .

Proof. We assume that each edge feature vector is equipped with a constant, i.e., 1 ∈ R. Hence, we
can note that by using g1, the model can compute the cardinality of the multiset.

We prove the claim by establishing two parts: (i) Im(Tsingle-stage) ⊆ Im(Ttwo-stage), (ii)
Im(Tsingle-stage) ̸= Im(Ttwo-stage).

Part (i) As stated in the Definition 3, Tsingle-stage aggregates all edge features in the neighborhood
Xj , treating the neighborhood as a single multiset,

Xflat :=
⊎

Xij∈Xj

Xij .

Then the output of the single-stage aggregation is given by,

Tsingle-stage(Xj) = fθ(Xflat) = MLPθ ([g1(Xflat) ∥ . . . ∥ gk(Xflat)]) .

Two-stage aggregation scheme first applies fθ1 to each multiset Xij separately, then fθ2 is applied
to resulting multiset of vectors in the second stage:

fθ1(Xij) = MLPθ1 ([g1(Xij) ∥ . . . ∥ gk(Xij)]) ,

and
Ttwo-stage(Xj) = fθ2 ({{fθ1(Xij) | Xij ∈ Xj}}) .

Now we show that Ttwo-stage can compute what Tsingle-stage can compute.

We first consider the case r = 1, corresponding to the sum aggregator:

g1(Xflat) =
∑

i∈Nin(j)

g1(Xij)

Thus, by applying g1 in both stages, the model can compute g1(Xflat).

Now for 2 ≤ r ≤ k, the raw moments of the flattened multiset Xflat, can be expressed as a weighted
average of the raw moments of the individual multisets Xij :

gr (Xflat) =
1

n

∑
Xij∈Xj

Pij · gr(Xij), 2 ≤ r ≤ k,

where n :=
∑

i Pij is the total number of edges.

Since each edge feature is equipped with a constant 1, the cardinality Pij=|Xij | can be computed
using the sum aggregator g1. Thus, fθ1 can compute Pij · gr(Xij) for each r.

In the second stage, the multiset {{fθ1(Xij) | Xij ∈ Xj}} contains all such terms, and the sum
aggregator g1 in fθ2 can compute∑

Xij∈Xj

Pij · gr(Xij), n =
∑
i

Pij

thus enabling fθ2 to compute the raw moments gr(Xflat).

Hence, we conclude that:
Im(Tsingle-stage) ⊆ Im(Ttwo-stage).
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Part (ii): We now show that Im(Tsingle-stage) ̸= Im(Ttwo-stage).

We begin by defining a simple function that cannot be computed by any single-stage aggregation
scheme.

Fr(Xj) :=
∑

Xij∈Xj

gr(Xij), 2 ≤ r ≤ k

Such functions, Fr, are computable by Ttwo-stage since by design it preserves the partitioning over
distinct neighbors of node j, allowing fθ2 to operate on a multiset of per-neighbor representations.

In contrast, any function computed by Tsingle-stage is in the form:

Tsingle-stage(Xj) = fθ(Xflat) = MLPθ ([g1(Xflat) ∥ . . . ∥ gk(Xflat)]) .

Let n := |Xflat|, we now analyze two distinct cases:

Case 1: k ≥ n When k ≥ n, the number of aggregators in fθ is sufficient to reconstruct the entire
neighborhood multiset Xflat without loss of information, as established in Theorem 1 of Corso et al.
(2020). However, since Xflat does not contain any information about which neighbor i each edge
originates from, even a full reconstruction of the neighborhood does not allow the recovery of per-
neighbor partitions. Therefore, the function Fr is incomputable by Tsingle-stage.

Case 2: k < n In this case Tsingle-stage cannot even reconstruct the full multiset Xflat, as the
number of aggregators k is insufficient to discriminate between multisets of size n, as stated in
Theorem 1 in Corso et al. (2020). As a result, the function Fr remains incomputable by Tsingle-stage.

Therefore, we have proven that two-stage aggregation induces a strictly larger image than single-
stage aggregation,

Im(Tsingle-stage) ⊊ Im(Ttwo-stage).

B.2 PROOF OF PROPOSITION 2

(1,1)

(2,1)

(3,1)

(4,1)

(1,1)

(4,1)

(3,1)

(2,1)

Figure 7: Illustration of counter example for the permutation equivariance of Multi-GNN Egressy
et al. (2024). The left panel shows the graph G with one permutation of the port numbering, while
the right panel illustrates a different permutation of the assigned port numbers. Assume each edge
has distinct features, i.e e2 ̸= e4.

For consistency we use the same notation introduced in Section 3.1. Let G = (V, E) be a multigraph
with node features xi ∈ RD and edge features eijp ∈ RK . We assume that each edge carries a
distinct feature vector. Each edge e ∈ E is assigned a port number ρ(e) by a given port numbering
scheme, and these port numbers are incorporated into the edge features, as proposed by Egressy
et al. (2024). We further assume that the initial edge feature vectors e(0)ijp < e

(0)
i′j′p′ , induce a strict

total order over the edges, which permits a deterministic port assignment.

Now consider a scenario where there is no strict total ordering of the edges. As a result, the assign-
ment of port numbers is arbitrary. For a node i with d incoming edges, there are d! possible port
numbering, corresponding to all possible permutations.
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The latent feature of the node i at layer l is computed as:

x
(l)
i =

∑
j∈N(i)

∑
p∈Pji

ϕ
(
x
(l−1)
j , [e

(l−1)
jip || ρ(j, i)]

)
. (12)

where ϕ is the message function, and ρ(j, i) ∈ R2 is the port numbers assigned to the edge between
node j and node i, as shown in Figure A.2(a)

We proceed by proof by contradiction. Suppose that the GNN with port numbering is permutation
equivariant at the graph level, that is, permuting the node and edge indices results in an equivalent
permutation of the output given as in Definition 5. This property requires the model to be permu-
tation invariant over each node’s neighborhood: reordering the incoming edges (i.e., permuting the
port numbers) should not affect a node’s representation.

Let σ be a permutation of the port numbers. Applying this permutation to the port numbers of the
edges yields a new port assignment ρσ(e). The updated representation of node i at layer l under this
permuted port assignment is:

x̂
(l)
i =

∑
j∈N(i)

∑
p∈Pji

ϕ
(
x
(l−1)
j , [e

(l−1)
jip || ρσ(j, i)]

)
. (13)

By assumption:

x
(l)
i (ρ) = x̂

(l)
i (ρσ) (14)

However, since ϕ explicitly depends on the port number ρ(j, i), permuting the port numbers alters
the input to ϕ via concatenated feature [e(l−1)

jip || ρσ(j, i)]. Assuming that each edge carries a distinct
feature vector, as is typical in settings like financial transaction networks, this change affects the re-
sulting messages and, consequently, the updated representation of node i. Hence permuting assigned
port numbers leads to x

(l)
i (ρ) ̸= x̂

(l)
i (ρσ), violating permutation invariance over the neighborhood

of i, contradicting the assumption of GNN being permutation equivariant.

Figure 7 illustrates this contradiction: node i has four incoming edges, and permuting their port
numbers leads to different messages and a different update. We thus conclude that arbitrary port
numbering breaks permutation equivariance.

B.3 PROOF OF PROPOSITION 1

We adopt the notation and terminology introduced in Section 3.1 of this paper to ensure consistency
and ease of reference.

Proof: The proposed message passing layer performs two aggregations over the neighborhood of a
target node j. The first is the multi-edge aggregation, in which the latent features of the multi-edges
are aggregated at artificial nodes. The multiset of such features are denoted as,

Xij = {{eijp | p ∈ [Pij ]}} (15)

The vectors in the multiset Xij are aggregated on artificial nodes,

hij = fθ1(Xij). (16)

Since aggregators in fθ1 are assumed to be permutation invariant, for any permutation function ρ
acting on multi-edges, we have fθ1(ρ ·Xij) = fθ1(Xij).

The second aggregation is then performed over the neighborhood of the target nodes, all of which
happen to be artificial nodes associated with distinct neighbors in the original graph (see Figure 2).

HNin(j) = {{hij | (i, j) ∈ Nin(j))}} ∈ Md. (17)

Hence, the second aggregation operates over the multiset HNin(j),

xj = fθ2(HNin(j)) ∈Md. (18)
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Again since the aggregators in fθ2 are assumed to be permutation invariant for any permutation
function π acting on the neighbors of a target node j, we have fθ2(π ·HNin(j)) = fθ2(HNin(j)).

Our framework MEGA-GNN, integrates the two-stage aggregation scheme (as defined in Defini-
tion 4) using aggregation functions fθ1 and fθ2 within a single message passing layer, as detailed
in Section 3.3. Since the composition of permutation invariant functions remains permutation in-
variant, our message passing layer (fθ1 ◦ fθ2 ) is invariant to the permutations of neighboring nodes
and edges. Unlike simple graphs, node permutations do not directly imply edge permutations in
multigraphs due to the presence of multi-edges. Thus, we explicitly define the permutation of multi-
edges, ρ, ensuring that our message passing layer remains permutation-invariant to both nodes and
edges in the neighborhood of the target node.

Finally, as demonstrated by Bronstein et al. (2021), the composition of permutation invariant layers
(f = fθ1 ◦fθ2 ◦fθ1 ◦fθ2 · · · ) allows the construction of functions f that are equivariant to symmetry
group actions. In the multigraph domain, this symmetry group includes permutations of both nodes
and edges. The overall permutation equivariance of the MEGA-GNN model follows from the fact
that each permutation invariant message passing layer operates independently on each node’s neigh-
borhood, regardless of the ordering of nodes or edges. Specifically, for any permutation g ∈

∑
n

acting on the set of node and edges, the model’s output satisfies f(g ·X) = g · f(X).

B.4 PROOF OF THEOREM 2

Proof: Given a graph G(V,E) with n nodes and m edges, assume that there is a strict total ordering
among the graph edges represented by an edge labeling function L : E → N∩ [1,m], which assigns
unique labels to the edges. We will prove that MEGA-GNN can compute unique node IDs under
these assumptions.

Algorithm 1 BFS Node ID Assignment
Input: Connected directed multigraph G = (V,E) with n nodes and m edges, diameter D, and
root node r ∈ V . Active nodes X ⊆ V and finished nodes F ⊆ V . Edge Labeling L : E →
[1,m]
Output: Unique node IDs h(v) for all v ∈ V (in base 2n)

1: h(r)← 1; h(v)← 0 for all v ∈ V \ {r}
2: F ← ∅; X ← {r}
3: for k ← 1 to D do
4: for v ∈ V do
5: if v ∈ X then
6: send h(v) ∥ min{{L((v, u))out}} to u ∈ Nout(v)
7: send h(v) ∥ m+min{{L((u, v))in}} to u ∈ Nin(v)
8: F ← F ∪ {v}; X ← X \ {v}
9: end if

10: if v /∈ F then
11: if Incoming messages M(v) ̸= ∅ then
12: h(v)← min{M(v)}
13: X ← X ∪ {v}
14: end if
15: end if
16: end for
17: end for

Egressy et al. (2024) showed that a GNN can mimic a Breadth-First Search (BFS) algorithm to
compute unique node IDs given pre-computed port numbers for the edges. We follow the same
BFS-based approach and derive unique node ids without relying on pre-computed port numbers. In-
stead of the pre-computed port numbers, we use the unique edge labels provided byL(e) to guide the
node ID assignment process. As in Egressy et al. (2024), we use the Universal Approximation The-
orem Hornik et al. (1989) for MLPs, to avoid explicit construction of the MEGA-GNN layers. We
also assume that the MEGA-GNN aggregates the multi-edges by computing their minimum, which
is followed by a node-level aggregation, where an MLP is applied element-wise to the incoming
messages, followed by another minimum computation.
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Following the approach of Egressy et al. (2024), the node ID assignment algorithm starts from a root
node (also called the ego node) and assigns IDs to all the other nodes connected to it via message
passing . We are not going to reiterate the setup of the entire proof and focus on the differences.
Namely, instead of pre-computing port numbers, we use an edge labeling function, which assumes a
strict total ordering among the edges based on the original edge features. In addition, the multi-edges
are aggregated by selecting the edge with the minimum label.

Our MEGA-GNN model, which mimics Algorithm 1, assigns ids to each node connected to the
root node. What remains to be shown is that those assigned node IDs are unique. First, note that
nodes at different distances from the root cannot end up with the same node ID. A node at distance
k will receive its first proposal in round k and, therefore, it will have an ID with exactly k + 1
digits. Furthermore, an inductive argument shows that active nodes (nodes at the same distance)
cannot have the same node IDs. Certainly, the argument is also true at the start when X = {r}.
Now assuming all active nodes from the previous round (k − 1) had distinct node IDs, then the
only way two active nodes (in round k) can have the same ID is if they accept a proposal from the
same neighboring node. This is because, based on the induction hypothesis, proposals from different
nodes will already differ in their first k − 1 digits. If two active nodes accepted a proposal from the
same node, then they would have received different edge labels —a strict total ordering among the
edges enables assignment of distinct edge labels. In addition, because m is added to all incoming
labels, incoming labels cannot be the same as the outgoing labels. Therefore the active nodes always
accept unique proposals.

B.5 PROOF OF THEOREM 3

Proof. Let V denote the set of nodes, E the multiset of edges, and Esupp ⊆ E the set of unique (i, j)
pairs with multiplicity at least one. Let d be the dimensionality of node and edge embeddings, and
assume all linear transformations map Rd → Rd.

A single MEGA-GNN layer executes two-stage aggregation. In each stage, the three terms below
correspond to costs of aggregation, linear layer, and nonlinearity; the last two terms are the costs of
node and edge updates. The per-layer cost is

O
(
|E| d+ |Esupp| d2 + |Esupp| d︸ ︷︷ ︸

first aggregation stage

+ |Esupp| d+ |V| d2 + |V| d︸ ︷︷ ︸
second aggregation stage

+ |V| d2︸ ︷︷ ︸
node update

+ |E| d2︸ ︷︷ ︸
edge update

)
.

Since |Esupp| ≤ |E|, the total complexity simplifies to

O
(
(|E|+ |V|) d2 + (|E|+ |V|) d

)
.

For comparison, a standard message-passing GNN with edge updates (per layer) has

O
(

|E| d︸︷︷︸
neighborhood agg.

+ |V| d2︸ ︷︷ ︸
linear layer

+ |V| d︸︷︷︸
nonlinearity

+ |V| d2︸ ︷︷ ︸
node update

+ |E| d2︸ ︷︷ ︸
edge update

)
which sums to O

(
(|E|+ |V|)d2 + (|E|+ |V|)d

)
.

This shows that MEGA-GNN has the same asymptotic complexity as standard message-passing
GNNs that perform edge updates.

C IMPLEMENTATION DETAILS

C.1 ARCHITECTURE DIAGRAMS

Figure 8 illustrate a single layer of the MEGA-GNN architecture. Figure 9 shows the MEGA-GNN
layer equipped with bi-directional message-passing capabilities. The figures use the same notation
as in Sections 3.3 and 3.4 for clarity.

C.2 COMPARISON POINTS

Table 6 summarizes the baseline methods and multigraph adaptations evaluated in our experiments.
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MLPConcat MLP

Second Aggregation

Concat Concat

Concat MLP

First  Aggregation

MEGA-GNN Layer

Aggregated multi-edge 

representations on artificial nodes

 
MLPConcat

Edge Update

Figure 8: Overview of the MEGA-GNN layer. First, features of multi-edges between the same node
pair are aggregated; second, the resulting messages from distinct neighbors are aggregated at the
node level. The diagram illustrates the message-passing scheme described in Section 3.3, using
consistent notation.

 
MLPConcat

Edge Update

MLPConcat MLP

Second Aggregation

Concat Concat

Concat MLP

First  Aggregation

MEGA-GNN Layer with Bi-Directional Message Passing

Aggregated multi-edge 

representations on artificial nodes

MLPConcat

Edge Update

Aggregated multi-edge 

representations on artificial nodes

Concat MLP

Second Aggregation

Concat

Concat MLP

First  Aggregation

 

Figure 9: Overview of the MEGA-GNN layer with a bi-directional message passing. In directed
multigraphs, reverse edges are added opposite to the original edges. Separate message computations
are performed for original and reversed edges. The diagram illustrates the message passing scheme
described in Sections 3.3 and 3.4, using consistent notation.

C.3 HYPERPARAMETERS

For each base GNN model and dataset, we utilized a distinct set of hyperparameters, as detailed
in Table 7. The MEGA-GenAgg and Multi-GenAgg models employed the aggregation function
proposed by Kortvelesy et al. (2023). In all experiments involving GenAgg, we adopted the default
layer sizes of (1, 2, 2, 4), and both the a and b parameters were made learnable, allowing the model
to tailor the aggregation function to the specific downstream task. Additionally, for the GenAgg
experiments, we applied the hyperparameters configured for GIN-based models as shown in Table
7.
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Table 6: Backbone architectures and multigraph adaptations: checkmarks indicate which combina-
tions are evaluated in our experiments.

Multigraph Adaptations GIN PNA GenAgg R-GCN FraudGT
Base (no adaptations) ✓ ✓ ✓ ✓ ✓
Multi Egressy et al. (2024) ✓ ✓ ✓ ✓
ADAMM Sotiropoulos et al. (2023) ✓ ✓ ✓
MEGA (ours) ✓ ✓ ✓ ✓

Table 7: Hyperparameter settings for AML and ETH datasets

GIN PNA R-GCNE
AML ETH AML ETH AML

lr 0.003 0.006 0.0008 0.0008 0.003
hidden dim 64 32 20 20 32
batch size 8192 4096 8192 4096 8192
dropout 0.1 0.1 0.28 0.1 0.1

w ce1, w ce1 1, 6.27 1, 6.27 1, 7 1, 3 1, 6.27

For the AML dataset, the model was operated on neighborhoods constructed around the seed edges,
while for the ETH dataset, the neighborhoods were selected around the seed nodes. In both datasets,
we sampled 2-hop neighborhoods, selecting 100 neighbors per hop.

C.4 AML AND ETH DATASETS

Table 8 provides an overview of the datasets used in our experiments. The AML dataset is available
in three different scales (Small, Medium, and Large), each with High Illicit (HI) and Low Illicit (LI)
versions.

Table 8: Statistics of AML (Altman et al., 2023), ETH (Chen et al., 2021a) and JODIE (Kumar et al.,
2019) datasets.

Dataset # Nodes # Edges Illicit Rate Split [%]

AML Small HI 515,088 5,078,345 0.102% 64/19/17
AML Small LI 705,907 6,924,049 0.051% 64/19/17
AML Medium HI 2,077,023 31,898,238 0.110% 61/17/22
AML Medium LI 2,032,095 31,251,483 0.051% 61/17/22
AML Large HI 2,116,168 179,702,229 0.124% 60/20/20
AML Large LI 2,070,980 176,066,557 0.057% 60/20/20

ETH 2,973,489 13,551,303 0.04% 65/15/20

MOOC 7,144 411,749 0.98% 60/20/20
Reddit 10,984 672,447 0.05% 60/20/20
Wikipedi 9,227 157,474 0.14% 60/20/20

AML Data Split: We adopt the same temporal splitting strategy as proposed in Egressy et al.
(2024), which follows train-validation-test split based on transaction timestamps. Specifically, we
sort all transactions and define two cut-off points, t1 and t2, to partition the data as summarized
in Table 8. Transactions occurring before t1 are used for training, those between t1 and t2 for
validation, and those after t2 for testing. Since validation and test transactions may depend on
patterns in earlier activity, we construct three dynamic graph snapshots at times t1, t2, and t3 = tmax,
the latest timestamp in the dataset. The train graph includes only training transactions and their
corresponding nodes. The validation graph includes both training and validation transactions but
computes metrics only on the validation indices. Similarly, the test graph contains all transactions in
the given dataset, with evaluation performed solely on the test indices. This dynamic setup mirrors
real-world usage in financial institutions, where systems must detect anomalies in new batches of
transactions while leveraging historical context.
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ETH Data Split: Similar to AML we use a temporal train-validation-test split. We order the nodes
by the first transaction they are involved in (either as sender or receiver) before splitting. Again this
gives us threshold times t1 and t2, and we use these times to create our train, validation, and test
graphs.

C.5 MEGA VARIANTS

In this section, we provide detailed descriptions of the MEGA-GIN, MEGA-PNA, MEGA-GenAgg,
and MEGA-RGCNE models used in our study.

As introduced in Sections 3.1 and 3.2, our framework employs a two-stage aggregation scheme with
two aggregation functions, fθ1 and fθ2 , each constructed from a set of k aggregators g1, . . . , gk :
Md → Rd. Specifically, we define:

fθ(X) := MLPθ

(
[g1(X) ∥ . . . ∥ gk(X)]

)
, fθ :Md → Rd′

. (19)

The MEGA variants differ in the choice and number of aggregators used in the two-stage process.

MEGA-GIN. Following the Graph Isomorphism Network (GIN) model proposed by Xu et al.Xu
et al. (2019), MEGA-GIN uses a single aggregator, namely SUM, in both fθ1 and fθ2 . That is, k = 1
and g1 = SUM.

MEGA-PNA. The MEGA-PNA builds on the Principal Neighbourhood Aggregation (PNA)
framework proposed by Corso et al. Corso et al. (2020), which combines multiple statistical ag-
gregators. Accordingly, we use k = 4 aggregators: MEAN, MAX, MIN, and STD, applied in both fθ1
and fθ2 .

MEGA-GenAgg. The MEGA-GenAgg employs a single, learnable aggregator as introduced in
the GenAgg framework Kortvelesy et al. (2023). Unlike fixed statistical functions, the aggregator
in GenAgg is parameterized and trained end-to-end. Accordingly, we set k = 1, and use g1 =
GENAGG in both fθ1 and fθ2 .

MEGA-RGCNE. The MEGA-RGCNE variant integrates the expressive multi-aggregator scheme
of PNA Corso et al. (2020) in the first aggregation stage fθ1 , where we use k = 4 aggregators:
MEAN, MAX, MIN, and STD. In the second stage fθ2 , we incorporate relation-specific transforma-
tion matrices W (l)

r , applying distinct linear transformations for each relation type r, as shown in
Figure 5. This design demonstrates the flexibility of the MEGA framework, which allows different
aggregation strategies to be combined across stages.

C.6 EDGE-AUGMENTED R-GCN (R-GCNE)

To incorporate edge attributes, we extend the standard Relational Graph Convolutional Network (R-
GCN) Schlichtkrull et al. (2018) by introducing the Relational Graph Convolutional Network with
Edge features (R-GCNE). In this variant, edge features are also included in the message passing
formulation.

Consider the notation introduced in Section 3.1. Building on that, we define the set of relation
types R, where each edge (j, r, i) ∈ E is labeled with a relation r ∈ R. Each relation type r is
associated with a learnable transformation matrix W (l)

r ∈ Rd×d, and we define W (l)
0 ∈ Rd×d as

the transformation matrix applied to a node’s own features (i.e., self-loop) at layer l. For each node
i ∈ V , we define the relation-specific neighborhood as Nr

i := {j ∈ V | (j, r, i) ∈ E}, representing
the set of incoming neighbors connected via relation r.

The message passing equations for both models are defined as follows:

• R-GCN Message Passing Equation:

x
(l+1)
i := σ

x(l)i W
(l)
0 +

∑
r∈R

∑
j∈Nr

i

1

|Nr
i |
x
(l)
j W (l)

r

 , x
(l+1)
i ∈ Rd.
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• R-GCNE Message Passing Equation:

x
(l+1)
i := σ

x(l)i W
(l)
0 +

∑
r∈R

∑
j∈Nr

i

1

|Nr
i |

(
x
(l)
j W (l)

r + e
(l)
ji W

(l)
r

) , x
(l+1)
i ∈ Rd.

If R-GCNE is applied to multigraphs with edge relations, we must also account for multiple edges
between the same pair of nodes with the same relation. To handle this, similar to Section 3.1, we
define the multiset

Xij,r = {{eijp,r | p ∈ [Pij,r]}}
denote the multiset of edge feature vectors from node j to node i under relation r, where Pij,r is the
number of such edges. We denote the feature of the p-th such edge as e(l)jip,r ∈ Rd.

Then the formulation of R-GCNE on multigraphs with relation types becomes:

x
(l+1)
i := σ

x(l)i W
(l)
0 +

∑
r∈R

∑
j∈Nr

i

Pjri∑
p=1

1

|Nr
i |
(x

(l)
j W (l)

r + e
(l)
jip,rW

(l)
r )

 ∈ Rd.

D COMPUTATION AND MEMORY COSTS

D.1 COMPUTATION COSTS

Table 9 reports the training time per epoch (in seconds), memory usage, and number of parameters
for all evaluated models on the AML Small HI dataset, measured on the same hardware. While our
models were trained on an AI cluster, the results reported in this table were measured on a single
NVIDIA GeForce RTX 4090 GPU to ensure fair and consistent comparison across all models. The
reported training-time values were measured over 256 iterations per epoch, and the memory usage
represents the maximum GPU utilization. Table 10 reports the inference throughput rate in trans-
actions per seconds for AML Small HI, AML Small LI, and ETH datasets, measured on the same
NVIDIA GeForce RTX 4090 GPU. These results demonstrate that MEGA-GNNs are only slightly
slower than Multi-GNNs, confirming that the overhead of two-state aggregation is not significant.

Table 9: Training time (seconds per epoch) and memory consumption on the AML Small HI dataset.

Model # Params Train sec/ep Mem. Usage (GB)
GIN 69.6K 2.57 2.1
PNA 32.2K 8.19 5.09
GenAgg 69.7K 6.90 4.25
FraudGT 182.4K 28.63 11.59
R-GCNE 47.7K 11.67 13.78

Multi-GIN 128.3K 9.41 7.47
Multi-PNA 60.0K 26.46 21.08
Multi-GenAgg 128.4K 25.56 13.34
Multi-FraudGT 243.7K 85.85 18.2

MEGA-GIN 161.3K 9.08 8.47
MEGA-PNA 79.2K 28.58 19.73
MEGA-GenAgg 128.4K 30.55 16.22
MEGA-R-GCNE 138.3K 19.18 8.58

D.2 MEMORY OVERHEAD

In terms of memory, we assume that the multigraph is attributed, with feature vectors associated
with each edge. The memory required to store the edge embeddings is O(|E|d) in the standard case.

For the two-stage aggregation, additional memory is needed to store a tensor of size |E| that indexes
parallel edges in the multiset. This tensor is computed during preprocessing and reused across
batches, thus avoiding redundant calculations. Furthermore, a tensor of size |Esupp| × d is created
dynamically during the forward pass to store the features of the artificial nodes; there are temporary
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Table 10: Inference performance: throughput rate in [trans/sec].

Model AML Small HI AML Small LI ETH
Multi-GIN 30179 26945 222825
MEGA-GIN 28655 25617 197236

Multi-PNA 28389 21153 123692
MEGA-PNA 27012 20344 117354

computational intermediates during the first aggregation stage, similar to how hidden states function
within neural network layers. These nodes do not permanently expand the graph structure.

As a result, the additional memory overhead per batch is |E| + |Esupp|d, which is O(|E|d). Con-
sequently, the two-stage aggregation does not asymptotically alter the overall memory complexity,
meaning that the model remains efficient even as the size of the input graph increases.

E AML RESULTS AND ADDITIONAL PERFORMANCE METRICS

Table 11: Minority class F1 scores (%) for six AML datasets using different GNN baselines
(GIN,PNA, GenAgg, FraudGT and R-GCNE) and multigraph adaptations (Multi and MEGA). We
extended R-GCNE to support only MEGA adaptations. Furthermore, we were unable to obtain
Multi-GenAgg and MEGA-GenAgg results for the Large datasets.

Model Small HI Small LI Medium HI Medium LI Large HI Large LI
GIN 46.50 ± 4.11 19.93 ± 3.55 58.65 ± 2.50 25.36 ± 1.49 49.80 ± 1.38 4.99 ± 3.66
PNA 62.96 ± 1.43 21.02 ± 4.05 66.87 ± 1.87 31.79 ± 2.30 55.01 ± 1.94 20.47 ± 1.93
GenAgg 56.45 ± 2.94 21.03 ± 2.23 54.21 ± 7.90 20.72 ± 2.60 52.23 ± 4.29 9.23 ± 3.07
FraudGT 69.68 ± 1.58 28.69 ± 2.05 63.38 ± 0.87 24.02 ± 0.52 54.35 ± 1.65 11.02 ± 2.65
R-GCNE 63.91 ± 3.18 37.40 ± 1.61 65.71 ± 0.61 35.70 ± 0.99 58.26 ± 1.08 23.32 ± 0.73

GFP+LightGBM 62.86 ± 0.25 20.83 ± 1.50 59.48 ± 0.15 20.85 ± 0.38 48.67 ± 0.24 17.09 ± 0.46
GFP+XGBoost 63.23 ± 0.17 27.30 ± 0.33 65.70 ± 0.26 28.16 ± 0.14 42.68 ± 12.93 24.23 ± 0.12

Multi-FraudGT 75.81 ± 0.75 45.69 ± 1.14 75.97 ± 0.18 44.66 ± 0.58 73.04 ± 0.59 35.49 ± 0.52
Multi-GIN 62.66 ± 1.73 32.21 ± 0.99 67.72 ± 0.94 31.24 ± 2.12 71.44 ± 1.25 9.46 ± 8.85
Multi-PNA 67.35 ± 2.89 35.39 ± 3.93 76.12 ± 0.69 43.81 ± 0.51 72.35 ± 1.14 33.54 ± 2.04
Multi-GenAgg 64.92 ± 3.85 36.36 ± 4.07 66.45 ± 1.30 37.72 ± 0.73 OOM OOM

MEGA-RGCNE 70.65 ± 1.80 40.92 ± 2.69 74.48 ± 0.25 41.21 ± 0.45 67.41 ± 3.38 27.25 ± 0.82
MEGA-GIN 70.83 ± 2.19 43.67 ± 0.55 70.77 ± 2.76 39.03 ± 1.88 70.41 ± 2.74 11.64 ± 1.64
MEGA-PNA 74.01 ± 1.55 46.32 ± 2.07 78.26 ± 0.11 49.40 ± 0.54 76.95 ± 0.44 38.31 ± 1.53
MEGA-GenAgg 74.48 ± 0.84 46.30 ± 0.42 76.70 ± 0.32 44.90 ± 0.06 OOM OOM

Table 12: Precision scores (%) on AML edge classification task. Best result is indicated with bold.

Model Small HI Small LI Medium HI Medium LI Large HI Large LI
GIN 43.78 ± 6.41 17.90 ± 4.92 63.19 ± 6.11 29.00 ± 2.45 47.32 ± 2.79 32.07 ± 22.91
PNA 66.92 ± 4.06 20.47 ± 6.80 69.29 ± 3.23 49.01 ± 4.75 50.32 ± 3.14 46.19 ± 7.38
GenAgg 55.68 ± 4.98 22.55 ± 9.02 50.50 ± 12.18 23.01 ± 4.95 51.15 ± 10.55 35.16 ± 10.81
RGCNE 76.08 ± 3.55 68.90 ± 3.86 75.37 ± 2.64 55.26 ± 5.91 72.43 ± 3.93 39.52 ± 1.59

Multi-FraudGT 80.04 ± 1.36 68.07 ± 3.34 81.18 ± 1.08 73.24 ± 1.42 80.00 ± 3.49 63.38 ± 3.39
Multi-GIN 61.02 ± 2.60 33.61 ± 3.44 69.77 ± 3.89 36.43 ± 6.98 76.68 ± 4.55 47.78 ± 33.73
Multi-PNA 66.16 ± 6.59 43.99 ± 8.72 78.32 ± 5.42 67.22 ± 3.31 74.46 ± 3.07 72.68 ± 6.25
Multi-GenAgg 64.66 ± 5.54 49.55 ± 12.38 67.45 ± 0.78 48.35 ± 1.73 OOM OOM

MEGA-RGCNE 75.05 ± 3.87 58.49 ± 12.59 82.28 ± 2.12 74.75 ± 2.86 67.12 ± 7.39 69.26 ± 11.00
MEGA-GIN 70.11 ± 4.23 63.95 ± 4.29 74.16 ± 4.91 67.32 ± 11.24 70.35 ± 6.59 38.35 ± 5.36
MEGA-PNA 76.90 ± 4.05 66.26 ± 8.82 84.26 ± 0.62 75.74 ± 2.75 83.81 ± 1.27 57.28 ± 8.92
MEGA-GenAgg 78.27 ± 2.46 66.16 ± 1.22 85.57 ± 1.29 72.09 ± 0.68 OOM OOM
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Table 13: Recall scores (%) on AML edge classification task. Best result is indicated with bold.

Model Small HI Small LI Medium HI Medium LI Large HI Large LI
GIN 50.06 ± 2.62 23.14 ± 2.70 55.67 ± 5.77 22.88 ± 2.72 52.68 ± 0.32 2.72 ± 2.02
PNA 59.65 ± 1.82 22.94 ± 1.77 64.79 ± 3.07 23.73 ± 2.58 63.19 ± 0.74 16.85 ± 1.93
GenAgg 57.52 ± 2.59 22.37 ± 3.18 60.06 ± 3.42 19.92 ± 4.00 54.86 ± 2.92 5.37 ± 1.91
RGCNE 55.10 ± 2.91 25.69 ± 1.17 58.29 ± 0.81 26.52 ± 1.07 48.91 ± 2.34 16.57 ± 0.90

Multi-FraudGT 72.02 ± 0.96 34.42 ± 1.16 71.40 ± 0.64 32.14 ± 0.82 68.05 ± 1.42 24.70 ± 0.43
Multi-GIN 64.49 ± 2.47 31.37 ± 2.46 66.03 ± 2.01 28.47 ± 3.36 67.06 ± 1.42 6.83 ± 7.25
Multi-PNA 69.06 ± 1.51 29.95 ± 1.86 68.12 ± 2.33 32.55 ± 0.67 70.45 ± 0.64 21.94 ± 2.11
Multi-GenAgg 65.32 ± 2.71 29.55 ± 1.95 65.56 ± 2.84 30.94 ± 0.41 OOM OOM

MEGA-RGCNE 66.83 ± 0.96 32.14 ± 0.97 68.09 ± 1.37 28.48 ± 0.76 68.26 ± 1.42 17.09 ± 0.76
MEGA-GIN 71.74 ± 1.64 33.25 ± 0.87 67.77 ± 1.40 28.18 ± 3.52 63.64 ± 3.15 6.91 ± 1.13
MEGA-PNA 71.48 ± 1.32 35.89 ± 0.65 73.07 ± 0.39 36.69 ± 0.72 71.15 ± 0.43 29.10 ± 0.74
MEGA-GenAgg 71.14 ± 1.72 35.62 ± 0.50 69.53 ± 1.40 32.60 ± 0.18 OOM OOM

In this section, we present the results from Figure 3 in a tabular format with additional comparisons
at Table 11. Additionally, we provide comprehensive evaluation results in Tables 12 and 13 which
present Precision and Recall metrics for the AML edge classification task. These detailed metrics
offer deeper insights into the performance characteristics of our proposed methods across varying
data regimes.

F BROADER IMPACT

This work contributes effective graph machine learning techniques for financial crime analysis by
addressing the specific challenges posed by multigraph structures in financial transaction networks.
Our model learns to detect illicit behavior directly from data, rather than relying on predefined,
rule-based systems. This end-to-end approach improves adaptability and detection performance.

By enabling more accurate detection of illicit activity, our model has the potential to support finan-
cial institutions and regulatory bodies in identifying and preventing illicit financial behavior, such
as money laundering and fraud. This may lead to stronger financial oversight, reduced criminal
financing, and overall societal benefit through enhanced economic transparency and security.

G LLM USAGE

LLMs were used solely as a writing assistant to polish the language of this manuscript, such as
checking grammar and improving clarity of expression. They were not used extensively.
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