

000 001 002 003 004 005 MEGA: MESSAGE PASSING NEURAL NETWORKS FOR 006 MULTIGRAPHS WITH EDGE ATTRIBUTES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Many real-world graphs, such as financial transaction networks, are edge-
012 attributed multigraphs that feature multiple edges between the same pair of nodes,
013 each with distinct edge attributes. State-of-the-art neural network solutions op-
014 erating on such edge-attributed multigraphs either preprocess the multigraph by
015 collapsing its multi-edges into a single edge or introduce auxiliary edge features
016 that compromise permutation equivariance. We introduce MEGA-GNN, a graph
017 neural network (GNN) for edge-attributed multigraphs, which overcomes these
018 limitations by employing a two-stage aggregation process in its message passing
019 layers: first, features of the multi-edges between the same two nodes are aggre-
020 gated, and then messages from distinct neighbors are combined. We show that
021 MEGA-GNN computes a richer set of statistical features than the GNNs that im-
022 plement only single-stage aggregation in their message passing layers. We eval-
023 uate MEGA-GNN on seven financial transaction network datasets and three tem-
024 poral user-item interaction datasets, demonstrating significant improvements in
025 minority-class F1 scores for illicit transaction detection and ROC-AUC scores for
026 user state-change prediction, respectively, compared to state-of-the-art methods.
027

1 INTRODUCTION

030 A multigraph is a graph that allows multiple edges, *multi-edges*, between the same pair of nodes.
031 Multigraphs naturally arise in domains such as transportation, cybersecurity and finance, where
032 repeated interactions between entities are common. Financial transaction networks, in particular,
033 capture the flow of money between entities such as individuals or companies and have emerged as a
034 primary application area of edge-attributed multigraphs, where nodes represent accounts, and edges
035 represent transactions carrying rich numerical and categorical information between the accounts.

036 There has been a growing interest in applying Graph Neural Networks (GNNs) to financial crime
037 analysis (Hiroki Kanezashi & Hirofuchi, 2022; Cardoso et al., 2022; Nicholls et al., 2021; Weber
038 et al., 2019; Egressy et al., 2024; Lin et al., 2024), driven by the impressive success of GNNs in
039 diverse domains, including biology (Xu et al., 2019; Gilmer et al., 2017), social networks (Veličković
040 et al., 2018; Corso et al., 2020; Hamilton et al., 2017), and knowledge bases (Schlichtkrull et al.,
041 2018; Vashishth et al., 2020; Chen et al., 2021b). Nevertheless, financial crime detection remains
042 a challenging task due to a scarcity of datasets with labeled examples, extreme class imbalance in
043 available datasets, with only a tiny fraction of transactions being illicit, and constantly evolving
044 crime patterns resulting from increasingly complex customer interactions.

045 The directed and edge-attributed multigraph structure of financial transaction networks presents ad-
046 ditional challenges. The limitations of popular GNNs (Xu et al., 2019; Gilmer et al., 2017; Corso
047 et al., 2020; Schlichtkrull et al., 2018) on edge-attributed multigraphs have been clearly demon-
048 strated by Egressy et al. (2024). Multi-GNN (Egressy et al., 2024) is a message passing GNN
049 designed specifically to address the challenges posed by directed multigraphs with edge attributes.
050 It accurately detects complex financial crime patterns in large transaction networks without any fea-
051 ture engineering. Notably, Multi-GNN achieves state-of-the-art performance on both anti-money-
052 laundering (Altman et al., 2023) and phishing-detection tasks (Chen et al., 2021a), significantly
053 outperforming IBM’s Graph Feature Preprocessor used in combination with tree-based classifiers
(Blanuša et al., 2024). However, the *multigraph port numbering* adaptation of Multi-GNN compro-
mises permutation equivariance because it uses pre-computed port numbers as edge features.

Figure 1: MEGA-GNN performs two-stage aggregation: first, features of multi-edges between the same node pair are aggregated; second, the resulting messages from distinct neighbors are aggregated at the node level. In contrast, standard GNNs (center) perform single-stage aggregation.

ADAMM (Sotiropoulos et al., 2023) is another GNN solution for multigraphs, which aggregates multi-edges into a single edge before message passing, thereby preserving permutation equivariance. However, the message passing layers can no longer utilize the original multigraph and edge features, which limits the effectiveness of ADAMM and its applicability in edge-classification tasks.

While multi-relational GNNs (Schlichtkrull et al., 2018; Vashisht et al., 2020) are highly effective on labeled multigraphs, where each edge corresponds to a well-defined relation type, they are less suitable for financial transaction networks and other edge-attributed multigraphs, where such relations are not explicitly defined. These models apply distinct transformations based on edge types, but lack mechanisms to differentiate between multi-edges (i.e., multiple edges between the same pair of nodes) and edges originating from distinct neighbors. See Appendix A.1 for further details.

To address the aforementioned shortcomings of existing methods, we propose MEGA-GNN, a novel message passing framework designed for edge-attributed multigraphs. MEGA-GNN introduces a **two-stage aggregation mechanism** in its message passing layers: first, attributes of the multi-edges originating from the same neighbor are aggregated; second, the aggregated messages from distinct neighbors are aggregated at the node level. Figure 1 illustrates MEGA-GNN’s two-stage message aggregation scheme. Importantly, MEGA-GNN also supports bi-directional message passing, distinguishing incoming and outgoing edges without treating them as undirected. In addition, MEGA-GNN is permutation equivariant because it does not rely on any precomputed features.

The **main contributions** of our work are as follows:

1. We introduce MEGA-GNN, a permutation-equivariant GNN architecture for edge-attributed multigraphs, which performs a two-stage message aggregation based on the given multigraph topology without eliminating multi-edges or using precomputed port identifiers.
2. We prove that MEGA-GNN is more powerful than standard message passing GNNs on edge-attributed multigraphs because its two-stage message aggregation mechanism can compute per-neighbor statistics that cannot be captured by a single-stage aggregation.
3. We show that MEGA-GNN integrates seamlessly with diverse GNN baselines, including GIN (Xu et al., 2019), PNA (Corso et al., 2020), GenAgg (Kortvelesy et al., 2023), and R-GCN (Schlichtkrull et al., 2018), consistently enhancing their performance while maintaining the same asymptotic complexity as baseline GNNs augmented with edge updates.
4. We show that MEGA-GNN establishes a new state of the art across multiple tasks. On anti-money laundering tasks, MEGA-GNN outperforms Multi-GNN Egressy et al. (2024) by up to 10.9% and FraudGT Lin et al. (2024) by 4.8% in minority-class F1 score. For phishing detection on Ethereum blockchain data, it surpasses FraudGT by 7.4% and ADAMM (Sotiropoulos et al., 2023) by over 20%. In user state-change prediction over temporal networks, MEGA-GNN achieves up to 9% improvement over JODIE (Kumar et al., 2019).

2 RELATED WORK

The expressive power of GNNs is essential for evaluating their capabilities and has been widely studied (Xu et al., 2019; Barceló et al., 2021; Morris et al., 2023; Bevilacqua et al., 2024; Frasca et al., 2022). Xu et al. (2019) demonstrated that the standard message passing GNNs are limited by the 1-WL (Weisfeiler-Lehman) test for distinguishing isomorphic graphs, and introduced the Graph

108 Isomorphism Network (GIN), which is provably the most expressive among standard message passing
 109 GNNs. Several works have proposed models with expressive power beyond 1-WL, including
 110 k-WL-based GNNs (Maron et al., 2019; Morris et al., 2019), randomized node initializations (Ab-
 111 boud et al., 2021; Sato et al., 2021), and particle-filtering-based approaches like PF-GNN (Duptey
 112 et al., 2022). The expressiveness of GNNs is closely linked to their universality, as more expressive
 113 models can approximate a larger class of graph functions. Sato et al. (2021) showed that unique node
 114 identifiers can make GNNs universal but at the cost of losing permutation invariance. On the other
 115 hand, Abboud et al. (2021); Loukas (2020) demonstrated that partially randomized node features
 116 can achieve universality while preserving permutation invariance. Set functions, like those in Za-
 117 heer et al. (2017), have also been shown to be universal under certain input constraints, and Fuchs*
 118 & Veličković* (2023) made the connection between a universal set and graph functions. Corso et al.
 119 (2020) introduced the PNA model, which improves empirical performance by combining diverse
 120 aggregation functions. In Kortvelesy et al. (2023), a learnable aggregation function (GenAgg) is
 121 proposed, which improves sample efficiency compared to PNA- and DeepSet-based aggregations in
 122 multiset neighborhoods, and can learn to approximate all standard aggregators.

123 Research on GNNs addressing the challenges of multigraphs, particularly multi-edges with edge
 124 attributes, is still in its early stages. ADAMM (Sotiropoulos et al., 2023) proposes collapsing multi-
 125 edges into a single super-edge using DeepSet-based aggregation (Zaheer et al., 2017) prior to mes-
 126 sage passing layers. Although collapsing followed by a message passing layer results in a two-stage
 127 aggregation, it occurs only in the first layer. Subsequent message passing layers operate on a mod-
 128 ified graph with collapsed multi-edges. Multi-GNN (Egressy et al., 2024) introduces three adap-
 129 tions: reverse message passing, port numbering, and ego IDs, which together transform baseline
 130 GNNs to provably powerful multigraph neural networks. DIAM (Ding et al., 2024) models cryp-
 131 toocurrency transaction networks as directed, edge-attributed multigraphs and focuses on learning
 132 node representations that capture temporal transaction patterns (see Appendix A.2 for details).

133 Multi-level message aggregation schemes have also been proposed in other settings that are not
 134 directly applicable to multigraphs. For instance, Hypergraph GNNs (Feng et al., 2019; Huang &
 135 Yang, 2021) first aggregate node features within each hyperedge to compute latent hyperedge fea-
 136 tures, which are then used to aggregate node features. Similarly, P-GNN (You et al., 2019) computes
 137 position-aware node embeddings via multi-level message aggregation, first within anchor-sets and
 138 then across all anchor-sets. In contrast, our MEGA-GNN architecture directly handles multi-edges,
 139 representing multiple different connections between the same pair of nodes.

140 3 MULTIGRAPH MESSAGE PASSING WITH TWO-STAGE AGGREGATION

141
 142 This section introduces our notation as well as our two-stage aggregation scheme. We theoreti-
 143 cally prove that the two-stage approach is strictly more powerful than single stage approaches on
 144 multigraphs with edge attributes. Next, we present our MEGA-GNN architecture, which integrates
 145 two-stage aggregation into its message passing layers. We further enhance MEGA-GNN with bi-
 146 directional message passing for directed multigraphs. Finally, we provide additional theoretical
 147 properties of our method, such as permutation equivariance, universality, and inference complexity.

148 3.1 NOTATION

149
 150 **Definition 1** (Multiset). *A multiset is a 2-tuple $X = (S, m)$ where S is the underlying set of X
 151 formed from its distinct elements, and $m : S \rightarrow \mathbb{N}_{\geq 1}$ gives the multiplicity of the elements.*

152
 153 **Definition 2** (Multiset Sum \uplus). *Let $A = (S_A, m_A)$ and $B = (S_B, m_B)$ be multisets over a common
 154 universe U . Their sum $A \uplus B$ is the multiset $C = (S_C, m_C)$ defined by*

$$155 \quad S_C = S_A \cup S_B, \quad m_C(x) = m_A(x) + m_B(x) \quad \text{for all } x \in U.$$

156
 157 *Here, the operator $+$ denotes standard integer addition of multiplicities.*

158 We denote multisets with $\{\cdot\}$ and sets with $\{\cdot\}$. $[n]$ stands for the set $\{1, 2, \dots, n\}$ for $n \in \mathbb{N}$. Let
 159 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed multigraph with node set \mathcal{V} and edge multiset $\mathcal{E} = \{(i, j) \mid i, j \in \mathcal{V}\}$,
 160 where each (i, j) represents a directed edge from node i to node j . Let $\mathcal{E}^{\text{supp}} \subseteq \mathcal{E}$ denote the support
 161 set of \mathcal{E} . We define the edge multiplicity $P_{ij} := m_{\mathcal{E}}(i, j)$, i.e. the number of edges from node i to
 node j . For a node $j \in \mathcal{V}$, the incoming and outgoing neighbors are defined as $N_{\text{in}}(j) = \{i \in \mathcal{V} \mid$

($i, j \in \mathcal{E}^{\text{supp}}$) and $N_{\text{out}}(j) = \{i \in \mathcal{V} \mid (j, i) \in \mathcal{E}^{\text{supp}}\}$. We consider attributed multigraphs with feature dimensions $d_n, d_e, d \in \mathbb{N}$. Each node has an initial feature vector $\mathbf{x}_i^{(0)} \in \mathbb{R}^{d_n}$, and each p -th edge from i to j has a feature vector $\mathbf{e}_{ijp}^{(0)} \in \mathbb{R}^{d_e}$ and $p \in [P_{ij}]$. At the l -th layer where $l \in [L]$ and L is the total number of layers, the latent node and edge features are denoted $\mathbf{x}_i^{(l)} \in \mathbb{R}^d$ and $\mathbf{e}_{ijp}^{(l)} \in \mathbb{R}^d$.

Let \mathcal{M}_d denote the space of multisets over \mathbb{R}^d , and let $\mathcal{M}(\mathcal{M}_d)$ denote the space of multisets of such multisets. Let $j \in \mathcal{V}$ be a target node and, $X_{ij} = \{\{\mathbf{e}_{ijp} \mid p \in [P_{ij}]\}\} \in \mathcal{M}_d$, denote the multiset of edge feature vectors from node i to node j . The neighborhood of j is then given as $\mathcal{X}_j = \{\{X_{ij} \mid i \in N_{\text{in}}(j)\}\} \in \mathcal{M}(\mathcal{M}_d)$.

Let $g_1, \dots, g_k : \mathcal{M}_d \rightarrow \mathbb{R}^d$ be a collection of coordinate-wise aggregators. Analogous to PNA (Corso et al., 2020), we define an aggregation function, f_θ , that applies each aggregator to the input, concatenates the results, and processes the concatenated vector through an MLP:

$$f_\theta : \mathcal{M}_d \rightarrow \mathbb{R}^{d'}, \quad f_\theta(X) := \text{MLP}_\theta([g_1(X) \parallel \dots \parallel g_k(X)]), \quad (1)$$

where $X \in \mathcal{M}_d$, \parallel is concatenation, $\text{MLP}_\theta : \mathbb{R}^{kd} \rightarrow \mathbb{R}^{d'}$ is a feedforward network and d' denotes the output dimension of the MLP.

3.2 SINGLE-STAGE VS TWO-STAGE AGGREGATION

In many real-world graphs, such as financial transaction networks, multiple edges may connect the same pair of nodes, each with distinct attributes. Standard GNNs, however, typically ignore this edge multiplicity and apply *single-stage aggregation*, which aggregates all incoming edges at once.

Definition 3 (Single-stage Aggregation). A *single-stage aggregation function* $\mathcal{T}_{\text{single-stage}} : \mathcal{M}(\mathcal{M}_d) \rightarrow \mathbb{R}^d$ aggregates all edge features in the neighborhood \mathcal{X}_j , treating it as a single multiset.

$$\mathcal{T}_{\text{single-stage}}(\mathcal{X}_j) := f_\theta \left(\biguplus_{X_{ij} \in \mathcal{X}_j} X_{ij} \right). \quad (2)$$

In standard GNNs, f_θ is commonly implemented using a single aggregation function g , i.e., $k = 1$ in Equation 1, where g is typically chosen as SUM, MEAN, or MAX.

Crucially, in multigraphs, single-stage aggregation fails to distinguish between edges from the same neighbor and those from different neighbors. To address this, we propose a *two-stage aggregation* scheme: first, features of multi-edges between the same node pair are aggregated; second, the resulting messages from distinct neighbors are aggregated at the node level.

Definition 4 (Two-stage Aggregation). A *two-stage aggregation function* $\mathcal{T}_{\text{two-stage}} : \mathcal{M}(\mathcal{M}_d) \rightarrow \mathbb{R}^d$ first aggregates each $X_{ij} \in \mathcal{X}_j$ individually, and then aggregates the resulting multiset of vectors.

$$\mathcal{T}_{\text{two-stage}}(\mathcal{X}_j) := f_{\theta_2} \left(\{\{f_{\theta_1}(X_{ij}) \mid X_{ij} \in \mathcal{X}_j\}\} \right), \quad (3)$$

This two-stage aggregation scheme naturally distinguishes edges based on their source nodes, enabling the computation of per-neighbor statistics. By applying multiple aggregators at both stages, as defined in Equation 1, we can extract more nuanced statistical information, capturing both per-neighbor and overall neighborhood characteristics. We formalize the enhanced representational capacity of this approach under a class of moment-based aggregators, inspired by (Corso et al., 2020). Specifically, we employ the sum and raw moments to capture rich distributional features of multisets.

Theorem 1. *Two-stage aggregation induces a strictly larger image than single-stage aggregation, if both schemes use the same set of k aggregators: the sum and the raw moments of orders 2 through k , defined as*

$$g_1(X) := \sum_{x \in X} x, \quad g_r(X) := \frac{1}{|X|} \sum_{x \in X} x^r, \quad 2 \leq r \leq k,$$

where $X \in \mathcal{M}_d$ and x^r is element-wise r -th power.

The proof of Theorem 1 is in Appendix B.1. We first show that two-stage aggregation can replicate single-stage aggregation by computing neighborhood moments from per-neighbor moments. Furthermore, we show that single-stage aggregation fails to capture per-neighbor moments, whereas two-stage aggregation inherently does, allowing the extraction of more nuanced statistical information from the neighborhood.

Figure 2: **Illustration of Two-stage Aggregation with artificial nodes.** (a) A multigraph with multi-edges $e_{ij1}, e_{ij2}, e_{ij3}$ between nodes i and j . (b) Illustration of *artificial nodes*, which helps us to compute latent features of aggregated multi-edges between adjacent node pairs. First, features of multi-edges are aggregated at the artificial nodes; next, each destination node aggregates messages from its neighboring artificial nodes. (c) The bi-directional message passing mechanism. In directed multigraphs, reverse edges are added in the opposite direction of the original edges. Separate message computations are performed to handle the original and reversed edges.

3.3 THE MEGA-GNN ARCHITECTURE

This section introduces a novel message passing architecture for multigraphs with edge attributes that implements the two-stage aggregation scheme outlined in Section 3.2. For notational convenience, we introduce *artificial nodes*, which help us compute latent features of aggregated multi-edges between adjacent node pairs (see Figure 2(b)): $\mathcal{V}^{art} = \{v_{ij}^{art} \mid (i, j) \in \mathcal{E}^{supp}\}$.

Artificial nodes serve as temporary computational intermediates during aggregation and do not alter the graph topology as shown in Figure 3. Let $\mathbf{h}_{ij}^{(l-1)} \in \mathbb{R}^d$ be the d -dimensional latent feature vector of the artificial node v_{ij}^{art} . Recall that $X_{ij} \in \mathcal{M}_d$ denotes the multiset of edge features between node i and node j . At layer $(l-1)$, the corresponding multiset of latent edge features are $X_{ij}^{(l-1)} = \{\{\mathbf{e}_{ijp}^{(l-1)} \mid p \in [P_{ij}]\}\}$.

In the first aggregation stage, latent features of multi-edges are aggregated at the artificial nodes.

$$\mathbf{h}_{ij}^{(l-1)} = f_{\theta_1}^{(l-1)}(X_{ij}^{(l-1)}), \quad (4)$$

where $f_{\theta_1}^{(l-1)} : \mathcal{M}_d \rightarrow \mathbb{R}^d$. In the second stage, node-level aggregation is performed over messages from artificial nodes :

$$\mathbf{a}_j^{(l-1)} = f_{\theta_2}^{(l-1)}(\{\{[\mathbf{x}_i^{(l-1)} \parallel \mathbf{h}_{ij}^{(l-1)}] \mid i \in N_{in}(j)\}\}), \quad (5)$$

$$\mathbf{x}_j^{(l)} = \phi_n^{(l-1)}([\mathbf{x}_j^{(l-1)} \parallel \mathbf{a}_j^{(l-1)}]), \quad (6)$$

where \parallel is concatenation, $f_{\theta_2}^{(l-1)} : \mathcal{M}_{2d} \rightarrow \mathbb{R}^d$ and $\phi_n^{(l-1)} : \mathbb{R}^{2d} \rightarrow \mathbb{R}^d$ is the node update function at layer $(l-1)$. Here, the destination node j receives a single (aggregated) message from each of its distinct incoming neighbors. Then, the latent features of each edge are updated:

$$\mathbf{e}_{ijp}^{(l)} = \phi_e^{(l-1)}([\mathbf{x}_i^{(l-1)} \parallel \mathbf{e}_{ijp}^{(l-1)} \parallel \mathbf{h}_{ij}^{(l-1)}]), \quad (7)$$

where \parallel is concatenation and $\phi_e^{(l-1)} : \mathbb{R}^{3d} \rightarrow \mathbb{R}^d$ is the edge update function.

Notably, MEGA-GNN preserves the original multigraph topology while enabling joint propagation of node and edge latent features at each layer. Unlike ADAMM (Sotiropoulos et al., 2023), it maintains distinct edges through individual updates. A detailed architecture diagram of the proposed method is provided in Figure 3.

3.4 MEGA-GNN WITH BI-DIRECTIONAL MESSAGE PASSING

Bi-directional message passing improves model capacity by aggregating messages from incoming and outgoing neighbors separately. For example, it enables the computation of both the in-degree and the out-degree of a node, which is not possible using only incoming messages or by treating the graph as undirected (Egressy et al., 2024). This subsection describes the way MEGA-GNN implements bi-directional message passing in combination with two-stage aggregations.

Figure 3: Overview of the MEGA-GNN layer. $g_1(\cdot), \dots, g_k(\cdot)$ are aggregation functions.

Formally, we define reversed edges (j, i) for each original edge $(i, j) \in \mathcal{E}$, and initialize their features as $\hat{\mathbf{e}}_{ijp}^{(0)} := \mathbf{e}_{ijp}^{(0)}$, where $p \in [P_{ji}]$. Similarly to Section 3.3, we use the notion of *artificial nodes* to compute latent features of aggregated reversed multi-edges between adjacent node pairs (Figure 2(c)): $\hat{\mathcal{V}}^{art} = \{\hat{v}_{ij}^{art} \mid (j, i) \in \mathcal{E}^{supp}\}$.

Let $\hat{\mathbf{h}}_{ij}^{(l-1)} \in \mathbb{R}^d$ be the d -dimensional latent feature vector of the artificial node \hat{v}_{ij}^{art} . At layer $(l-1)$, we denote the multiset of latent edge features from node j to i as $\hat{X}_{ij}^{(l-1)} = \{\{\hat{\mathbf{e}}_{ijp}^{(l-1)} \mid p \in [P_{ji}]\}\}$.

In the first stage, the latent features of outgoing multi-edges from node j to i are aggregated.

$$\hat{\mathbf{h}}_{ij}^{(l-1)} = \hat{f}_{\theta_1}^{(l-1)}(\hat{X}_{ij}^{(l-1)}), \quad (8)$$

where $\hat{f}_{\theta_1}^{(l-1)} : \mathcal{M}_d \rightarrow \mathbb{R}^d$. In the second stage, node-level aggregation is performed.

$$\hat{\mathbf{a}}_j^{(l-1)} = \hat{f}_{\theta_2}^{(l-1)}(\{[\mathbf{x}_i^{(l-1)} \parallel \hat{\mathbf{h}}_{ij}^{(l-1)}] \mid i \in N_{out}(j)\}) \quad (9)$$

$$\mathbf{x}_j^{(l)} = \hat{\phi}_n^{(l-1)}\left([\mathbf{x}_j^{(l-1)} \parallel \mathbf{a}_j^{(l-1)} \parallel \hat{\mathbf{a}}_j^{(l-1)}]\right), \quad (10)$$

where \parallel is concatenation, $\hat{f}_{\theta_2}^{(l-1)} : \mathcal{M}_{2d} \rightarrow \mathbb{R}^d$, $\hat{\phi}_n^{(l-1)} : \mathbb{R}^{3d} \rightarrow \mathbb{R}^d$ is the node update function at layer $(l-1)$ and $\mathbf{a}_j^{(l-1)}$ is computed using Equation 5. Thus, messages from incoming and outgoing neighbors are aggregated separately, and combined to update the destination node j . Similarly, the latent features of the reverse edges are updated with function $\hat{\phi}_e^{(l-1)} : \mathbb{R}^{3d} \rightarrow \mathbb{R}^d$:

$$\hat{\mathbf{e}}_{ijp}^{(l)} = \hat{\phi}_e^{(l-1)}([\mathbf{x}_i^{(l-1)} \parallel \hat{\mathbf{e}}_{ijp}^{(l-1)} \parallel \hat{\mathbf{h}}_{ij}^{(l-1)}]), \quad (11)$$

A detailed architecture diagram of the proposed method with bi-directional message passing capability is provided in Appendix C.1.

3.5 ADDITIONAL PROPERTIES OF MEGA-GNN

3.5.1 PERMUTATION EQUIVARIANCE

Definition 5 (Permutation Equivariance). *A function ψ is permutation equivariant with respect to node and edge permutations if, for any permutation ρ acting on the nodes and edges of a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, the following holds: $\psi(\rho \circ \mathcal{G}(\mathcal{V}, \mathcal{E})) = \rho \circ \psi(\mathcal{G}(\mathcal{V}, \mathcal{E}))$.*

Proposition 1 (Permutation Equivariance). *Given aggregation functions f_{θ_1} and f_{θ_2} that are permutation invariant over multisets, MEGA-GNN is permutation equivariant with respect to arbitrary permutations of nodes and edges in the input multigraph, including permutations over multi-edges.*

Proposition 1 (proof in Appendix B.3) shows MEGA-GNN maintains permutation equivariance at both node and edge levels, a property not shared by Multi-GNN (Egressy et al., 2024), as stated in Proposition 2 of Appendix A.2.

324 3.5.2 UNIVERSALITY
325326 **Definition 6** (Universality). *An MPNN is universal if it can approximate every invariant or equiv-
327 ariant continuous function defined on graphs (Keriven & Peyré, 2019; Loukas, 2020).*328 **Theorem 2.** *Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a connected directed multigraph with $m = |\mathcal{E}|$. Given an injective
329 edge-labeling function $L : \mathcal{E} \rightarrow [M]$ for some $M \geq m$ that assigns a unique label to each edge,
330 MEGA-GNN can compute unique node IDs on \mathcal{G} .*331 The proof of Theorem 2 is given in Appendix B.4. The proof relies on the existence of an injective
332 edge-labeling function $L : \mathcal{E} \rightarrow [M]$, derived from the edge features. We demonstrate that MEGA-
333 GNN can leverage these distinct edge labels to generate unique node identifiers.
334335 **Corollary 1** (Universality). *Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a connected directed multigraph with $m = |\mathcal{E}|$.
336 Assume that there exists an injective edge-labeling function, $L : \mathcal{E} \rightarrow [M]$ for some $M \geq m$, that
337 assigns a unique label to each edge. Then, given enough layers with sufficient expressiveness and
338 width, MEGA-GNN is universal.*339 *Proof.* As outlined by Loukas (2020), the following conditions must be met to achieve universality:
340 a sufficient number of layers, layers with adequate expressive power and width, and the ability for
341 nodes to uniquely distinguish one another. Theorem 2 shows that MEGA-GNN can uniquely distin-
342 guish nodes in connected multigraphs. In addition, MEGA-GNN can be configured to incorporate a
343 sufficient number of linear and nonlinear layers with adequate expressive power and width. There-
344 fore, MEGA-GNN satisfies all the necessary conditions and is universal based on Definition 6. \square
345346 Crucially, MEGA-GNN’s ability to assign unique node IDs does not conflict with its permutation
347 equivariance property (see Proposition 1). In Theorem 2, we assume the existence of injective edge-
348 labeling function, which serves as foundation for our theoretical analysis in Corollary 1. In practice,
349 MEGA-GNN treats edge features as static inputs, without enforcing any canonical ordering.
350351 3.5.3 INFERENCE COMPLEXITY
352353 **Theorem 3.** *The asymptotic complexity of a single MEGA-GNN layer is:*

354
$$O((|\mathcal{E}| + |\mathcal{V}|)d^2 + (|\mathcal{E}| + |\mathcal{V}|)d).$$

355

356 In Theorem 3 (proof is in Appendix B.5), the first term arises from linear layers used in feature
357 transformations, while the second term accounts for neighborhood aggregation and element-wise
358 nonlinearities. This shows that the two-stage aggregation does not increase the asymptotic complex-
359 ity: MEGA-GNN matches the complexity of standard message-passing GNNs with edge updates.
360361 4 EXPERIMENTS
362363 This section presents experiments to evaluate the accuracy of MEGA-GNN across multiple tasks.
364 We focus on two key applications in financial crime analysis: money laundering detection via edge
365 classification and phishing account detection via node classification. Additionally, we evaluate
366 MEGA-GNN on three temporal user-item interaction datasets for the user state-change prediction
367 task. In total, we assess the performance of MEGA-GNN on ten distinct datasets spanning three dif-
368 ferent tasks, as described below. Further dataset statistics and details are provided in Appendix C.4.
369370 **Anti-Money Laundering (AML):** We use IBM’s realistic synthetic financial transaction datasets
371 for the money laundering detection task (Altman et al., 2023). There are six AML datasets in total:
372 small, medium, and large variants, each available in two versions, LI (low illicit ratio) and HI (high
373 illicit ratio). The small, medium, and large datasets contain approximately 6 million, 30 million,
374 and 180 million transactions, respectively. The LI versions have an illicit transaction rate of around
375 0.05%, while the HI versions have a slightly higher rate of approximately 0.1%. The task is framed
376 as edge classification, where each transaction must be labeled as either illicit or non illicit. Edges in
377 the transaction graph include four attributes: timestamp, amount, currency, and payment format.
378379 **Ethereum Phishing Transaction Network (ETH):** Since access to real financial transaction data
380 from banks is limited, cryptocurrencies provide an alternative data source. In our study, we use a
381

Figure 4: Minority-class F1 scores (%) for six AML datasets using four different GNN baselines (GIN, PNA, GenAgg, and R-GCNE) and two different multigraph adaptations (Multi and MEGA).

real-world transaction graph extracted from the Ethereum blockchain (Chen et al., 2021a), where accounts are treated as nodes and transactions as edges. Each node has a label that indicates whether it is a phishing node. The edges have two attributes: timestamp and amount.

User State-Change Prediction: We use three temporal user-item interaction datasets from JODIE (Kumar et al., 2019) for this task: Reddit bans, Wikipedia bans, and MOOC dropouts, all derived from social and collaborative platforms. Each interaction is labeled 0 until a user is banned or drops out; their final interaction is labeled 1.

Implementation: We implement our solutions using PyTorch Geometric (Fey & Lenssen, 2019). For the AML datasets, we use the same temporal splits as Multi-GNN. For ETH, we use a 65/15/20 temporal split. For the JODIE datasets, we follow the experimental setup in (Kumar et al., 2019) and use a 60/20/20 temporal split. We adopt ego IDs (You et al., 2021) only in edge classification experiments (Figure 4, Table 4) and incorporate bi-directional message passing in both edge and node classification experiments (Figure 4, Tables 4 and 1). To ensure statistical significance, each experiment is repeated at least five times with different random seeds and the mean and standard deviation of these runs are reported. Additional implementation details are given in Appendix C.

Evaluation: We evaluate four baseline architectures (GIN, PNA, GenAgg, R-GCN) in combination with three multigraph adaptations (Multi-GNN Egressy et al. (2024), ADAMM Sotiropoulos et al. (2023), and MEGA-GNN). The *Base* models do not use multigraph adaptations, but leverage edge updates by default. GIN provides a basic GNN architecture with expressiveness guarantees. PNA exhibits strong empirical performance on multigraphs (Egressy et al., 2024). GenAgg uses a learnable aggregator that can parameterize common aggregators (Kortvelesy et al., 2023). In addition to these GNN baselines, we evaluate Multi-FraudGT (Lin et al., 2024), a graph-transformer that incorporates multigraph adaptations of Multi-GNN (Egressy et al., 2024) and DIAM (Ding et al., 2024) a specialized solution for the ETH benchmark.

In our experiments we first extend R-GCN to incorporate edge attributes and edge updates, referring to this variant as R-GCNE (see Appendix C.6). To apply R-GCNE to the AML datasets, we assign edge types based on transaction currency, and resulting edges carry both relation types and attributes. However, such a conversion is not always possible; for instance, the ETH dataset lacks categorical features suitable for defining relation types. When both forms of information are present (relation types and attributes), MEGA-GNN can be combined with R-GCNE to construct MEGA-R-GCNE (see Appendix C.5), although MEGA can be paired with any GNN baseline.

AML Edge Classification: Figure 4 presents minority-class F1 scores across six synthetic AML datasets, comparing GNN baselines with their multigraph adaptations (see Appendix E for more detailed results). Note that we extended R-GCNE to support only MEGA adaptations. In addition, Multi-GenAgg and MEGA-GenAgg experiments exceeded GPU memory size for Large datasets.

In all 22 cases, MEGA-GNNs significantly outperform baseline GNNs. In 15 of the 16 comparison points, MEGA-GNNs also outperform Multi-GNNs. On average, MEGA-GNNs improve minority-class F1 scores by 4.75% on HI datasets and by 6.77% on LI datasets compared to Multi-GNNs, es-

432 Table 1: ETH node classification: minority-class F1 scores (%). The best result is given in **boldface**.
433

	ADAMM		Multi			DIAM	MEGA (ours)	
	GIN	PNA	GIN	PNA	FraudGT		GIN	PNA
F1	34.73 \pm 15.75	37.99 \pm 5.41	51.34 \pm 3.92	64.61 \pm 1.40	57.40 \pm 0.91	64.43 \pm 1.07	57.45 \pm 1.14	64.84 \pm 1.73

437
438 establishing new state-of-the-art results. These results demonstrate the effectiveness of MEGA-GNN
439 in detecting complex financial crime patterns in large-scale transaction networks. Moreover, our
440 consistent gains across different baseline architectures indicate that MEGA-GNN’s improvements
441 are not architecture dependent, but stem from its novel two-stage message aggregation mechanism,
442 which enables computation of more nuanced statistics on multigraphs, as shown in Theorem 1.

443 Notably, we also observe that MEGA adaptations consistently improve the R-GCNE results as well.
444 This shows that two techniques are orthogonal yet complementary. While R-GCNE is designed
445 for labeled multigraphs with predefined relation types, MEGA-GNN targets edge-attributed multi-
446 graphs with high-dimensional features. When edge relation types and attributes are both available,
447 MEGA-R-GCNE effectively leverages them, combining the strengths of both techniques.

448
449 **ETH Node Classification:** Table 1 presents our experiments on the ETH dataset (Chen et al.,
450 2021a). MEGA-GIN improves the minority class F1 score by 6.11% over Multi-GIN and MEGA-
451 PNA delivers the highest F1 score, achieving a slight improvement over Multi-PNA (Egressy et al.,
452 2024) and DIAM (Ding et al., 2024). When compared to ADAMM (Sotiropoulos et al., 2023),
453 our MEGA-GNN variants exhibit a striking improvement, consistently delivering over 20% higher
454 performance. Furthermore, compared to Multi-FraudGT, MEGA-PNA achieves a 7.44% higher per-
455 formance. These results confirm the effectiveness of MEGA-GNN’s two-stage message aggregation
456 mechanism and its bi-directional message passing capabilities.

457 Table 2: Impact of permuting port numbers on the F1 scores (%) of Multi-FraudGT and Multi-PNA.
458

Ablation	AML Small HI	AML Small LI	AML Medium HI	AML Medium LI	AML Large HI	AML Large LI	ETH
Multi-PNA	67.35 \pm 2.89	35.40 \pm 3.93	76.13 \pm 0.69	43.82 \pm 0.51	72.35 \pm 1.14	33.54 \pm 2.04	64.61 \pm 1.40
Multi-PNA (permuted)	63.77 \pm 2.47	31.48 \pm 0.72	73.36 \pm 0.83	43.24 \pm 0.24	70.93 \pm 0.69	32.18 \pm 1.72	62.71 \pm 2.73
Multi-FraudGT	75.81 \pm 0.75	45.69 \pm 1.14	75.97 \pm 0.18	44.66 \pm 0.58	73.04 \pm 0.59	35.49 \pm 0.52	57.40 \pm 0.91
Multi-FraudGT (permuted)	61.74 \pm 1.68	30.15 \pm 2.67	65.89 \pm 5.61	32.05 \pm 1.35	63.33 \pm 1.35	29.95 \pm 1.18	49.59 \pm 1.83
MEGA-PNA	74.01 \pm 1.55	46.32 \pm 2.07	78.26 \pm 0.11	49.40 \pm 0.54	76.95 \pm 0.44	38.31 \pm 1.53	64.84 \pm 1.73

464
465 **Permutation Equivariance:** Architectures using Multi-GNN adaptations, such as Multi-PNA and
466 Multi-FraudGT, are not permutation equivariant, as they rely on precomputed port numbers. Table
467 2, shows that MEGA-PNA outperforms both architectures in most scenarios. Notably, Table 2
468 shows that permuting port numbers during testing decreases the F1 scores of Multi-PNA and Multi-
469 FraudGT considerably and further increases the gap between MEGA-PNA and these two models.

470
471 **Ablations:** Table 3 evaluates the standalone impact
472 of two-stage aggregation
473 mechanism of our proposed
474 approach (Sec. 3.3) on
475 top of different baseline
476 architectures (GIN,PNA),
477 then analyzes the effects
478 of adding bi-directional
479 message passing (Sec. 3.4)
480 and ego IDs (You et al.,

481 2021). The results indicate that the primary performance improvements of MEGA-GNN are driven
482 by the two-stage aggregation itself. Bi-directional MP provides further gains, particularly on the
483 ETH dataset, while ego IDs offer selective improvements.

484
485 **User State-Change Prediction:** Table 4 compares MEGA-PNA with JODIE, PNA, and Multi-
PNA on three temporal user-item interaction datasets. On MOOC, MEGA-PNA slightly outper-

470 Table 3: Impact of bi-directional message passing (MP) and ego IDs:
471 minority-class F1 scores (%) of MEGA-GNN.

Ablation	AML Small HI	AML Small LI	ETH
GIN	46.50 \pm 4.11	19.93 \pm 3.55	42.33 \pm 3.70
MEGA-GIN (GIN with Two-stage Agg.)	69.98 \pm 2.02	41.45 \pm 2.13	43.56 \pm 2.67
MEGA-GIN w/ Bi-directional MP	72.50 \pm 3.26	41.67 \pm 1.51	57.45 \pm 1.14
MEGA-GIN w/ ego IDs & Bi-directional MP	70.83 \pm 2.18	43.66 \pm 0.54	55.19 \pm 2.33
PNA	62.96 \pm 1.43	21.02 \pm 4.05	53.93 \pm 2.45
MEGA-PNA (PNA with Two-stage Agg.)	73.65 \pm 0.36	43.77 \pm 1.53	59.13 \pm 0.51
MEGA-PNA w/ Bi-directional MP	74.98 \pm 1.59	45.36 \pm 1.18	64.84 \pm 1.73
MEGA-PNA w/ ego IDs & Bi-directional MP	74.01 \pm 1.55	46.32 \pm 2.07	60.02 \pm 5.10

486 forms JODIE; on Wikipedia, it achieves the highest ROC-AUC, surpassing all baselines; and on Reddit,
 487 a highly imbalanced benchmark with only 366 positives among 672,447 interactions, MEGA-
 488 GNN delivers a clear gain. These results demonstrate the applicability of MEGA-GNN beyond the
 489 analysis of financial transaction networks.
 490

491
 492 Table 4: User state-change prediction performance (ROC-AUC, %) on three temporal user-item
 493 interaction datasets Kumar et al. (2019) derived from social and collaborative platforms.

Method	MOOC	Wikipedia	Reddit
JODIE	$75.6 \pm \text{na}$	$83.1 \pm \text{na}$	$59.9 \pm \text{na}$
PNA	66.3 ± 3.3	76.7 ± 2.5	63.5 ± 5.9
Multi-PNA	70.1 ± 3.6	90.4 ± 1.3	61.6 ± 5.7
MEGA-PNA	76.1 ± 1.8	92.1 ± 0.9	67.6 ± 2.8

494
 495 Table 5: Inference runtime analysis on AML Small HI dataset.
 496

Model	F1	Original Model Sizes	Matched Parameters (~160k)
		Inference Time / Epoch (s)	Inference Time / Epoch (s)
GIN	46.50 ± 4.11	1.21	2.01
MEGA-GIN (GIN with Two-stage Agg.)	69.98 ± 2.02	1.51	2.23
MEGA-GIN w/ Bi-directional MP	72.50 ± 3.26	6.77	6.77
MEGA-GIN w/ ego IDs & Bi-directional MP	70.83 ± 2.18	6.82	6.82

501 **Inference Runtime Analysis:** Table 5 presents the inference runtimes of the models investigated
 502 in our ablation study in Table 3. While the addition of two-stage aggregation to the GIN baseline
 503 increases the inference time per epoch by 24.7%, it yields a substantial 50.4% gain in F1-score.
 504 Furthermore, this overhead drops to 10.9% when we match the parameter counts. As expected, bi-
 505 directional message passing incurs a higher cost because it requires propagation over both original
 506 and reversed edges. Conversely, the inclusion of ego IDs adds negligible overhead. In addition,
 507 Table 11 of Appendix D compares the inference throughput rate of MEGA-GNN and Multi-GNN
 508 variants, showing that the runtime overhead of MEGA-GNN’s two-stage aggregation is minimal
 509 compared to Multi-GNN’s single-stage aggregation.
 510

5 CONCLUSION

511 We introduce MEGA-GNN, a GNN architecture that leverages a novel two-stage message ag-
 512 gregation mechanism for edge-attributed multigraphs. MEGA-GNN is built on a rigorous theoretical
 513 foundation: its two-stage aggregation is strictly more expressive than standard single-stage ag-
 514 gregation schemes. Furthermore, MEGA-GNN ensures permutation equivariance: unlike the prior
 515 methods Egressy et al. (2024); Lin et al. (2024), MEGA-GNN does not rely on pre-computed multi-
 516 graph port identifiers. Additionally, MEGA-GNN achieves universality when there exists a bijective
 517 edge-labeling (e.g., via timestamps). We show that MEGA-GNN integrates seamlessly with diverse
 518 GNN baselines such as GIN, PNA, GenAgg, and R-GCN. Importantly, MEGA-GNN’s asymptotic
 519 inference complexity matches that of the baseline GNNs that incorporate edge updates.

520 The effectiveness of MEGA-GNN is validated by empirical evaluations on data sets combining
 521 multigraph structure, complex topological patterns, edge attributes, and extreme class imbalance.
 522 On financial crime datasets, MEGA-GNNs achieve substantial improvements on average: 16.57%
 523 higher minority-class F1 scores than baseline GNNs, 4.98% higher than Multi-GNNs, and 2.86%
 524 higher than Multi-FraudGT. When port numbers are permuted at test time, the performance gap
 525 widens: MEGA-GNNs outperform Multi-GNNs by 7.2% and Multi-FraudGT by 13.62% on av-
 526 erage in minority-class F1 score. Lastly, on temporal user-item interaction datasets, MEGA-PNA
 527 outperforms JODIE Kumar et al. (2019) by 5.73% and Multi-PNA by 4.56% on average in ROC-
 528 AUC score, demonstrating MEGA-GNN’s broader applicability.
 529

530 **Limitations & Future Work:** MEGA-GNN has so far been applied only to financial transaction
 531 datasets and temporal user-item interaction datasets from social platforms. In future work, we
 532 plan to extend our approach to property graphs with edge properties, transportation networks, and
 533 cybersecurity datasets.
 534

540 REPRODUCIBILITY STATEMENT
541

542 We include the source code in the supplementary materials to enable reproduction of all experimen-
543 tal results. The codebase provides clear instructions for downloading and preprocessing datasets,
544 setting up the environment, and running experiments. For each model variant considered in the ex-
545 periments, we supply a separate configuration file that specifies the corresponding hyperparameter
546 settings. Additional details on model architectures, training procedures, and evaluation protocols
547 are given in Section 4 and Appendix C.

548
549 REFERENCES
550

- 551 Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
552 of graph neural networks with random node initialization. In *Proceedings of the Thirtieth Inter-
553 national Joint Conference on Artificial Intelligence (IJCAI)*, 2021.
- 554 Erik Altman, Jovan Blanuša, Luc Von Niederhäusern, Beni Egressy, Andreea Anghel, and Kubilay
555 Atasu. Realistic synthetic financial transactions for anti-money laundering models. In *Thirty-
556 seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*,
557 2023.
- 558 Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
559 local graph parameters. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
560 Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 25280–
561 25293. Curran Associates, Inc., 2021.
- 562 Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, and Haggai Maron. Efficient
563 subgraph GNNs by learning effective selection policies. In *The Twelfth International Conference
564 on Learning Representations*, 2024.
- 565 Jovan Blanuša, Maximo Cravero Baraja, Andreea Anghel, Luc von Niederhäusern, Erik Altman,
566 Haris Pozidis, and Kubilay Atasu. Graph feature preprocessor: Real-time extraction of subgraph-
567 based features from transaction graphs. In *Proceedings of the 5th ACM International Conference
568 on AI in Finance*, ICAIF ’24, pp. 222–230. Association for Computing Machinery, 2024.
- 569 Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
570 Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.
- 571 Mário Cardoso, Pedro Saleiro, and Pedro Bizarro. Laundrograph: Self-supervised graph repre-
572 sentation learning for anti-money laundering. In *Proceedings of the Third ACM International
573 Conference on AI in Finance*, ICAIF ’22, pp. 130–138, 2022.
- 574 Liang Chen, Jiaying Peng, Yang Liu, Jintang Li, Fenfang Xie, and Zibin Zheng. Phishing scams de-
575 tection in Ethereum transaction network. *ACM Trans. Internet Technol.*, 21(1):1–16, Feb. 2021a.
576 doi: 10.1145/3398071.
- 577 Meiqi Chen, Yuan Zhang, Xiaoyu Kou, Yuntao Li, and Yan Zhang. r-gat: Relational graph atten-
578 tion network for multi-relational graphs, 2021b. URL <https://arxiv.org/abs/2109.05922>.
- 579 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
580 neighbourhood aggregation for graph nets. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
581 and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 13260–
582 13271. Curran Associates, Inc., 2020.
- 583 Zhihao Ding, Jieming Shi, Qing Li, and Jiannong Cao. Effective illicit account detection on large
584 cryptocurrency multigraphs. In *Proceedings of the 33rd ACM International Conference on In-
585 formation and Knowledge Management*, CIKM ’24, pp. 457–466, 2024. doi: 10.1145/3627673.
586 3679707.
- 587 Mohammed Haroon Dupty, Yanfei Dong, and Wee Sun Lee. PF-GNN: Differentiable parti-
588 cle filtering based approximation of universal graph representations. In *International Confer-
589 ence on Learning Representations*, 2022. URL <https://openreview.net/forum?id=oh4TirnfSem>.

- 594 Béni Egressy, Luc von Niederhäusern, Jovan Blanusa, Erik Altman, Roger Wattenhofer, and Kubilay
 595 Atasu. Provably powerful graph neural networks for directed multigraphs. In *Proceedings of the*
 596 *AAAI Conference on Artificial Intelligence (AAAI)*. Underline Science Inc., 2024. doi: 10.48448/
 597 p6r4-c103.
- 598 Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural net-
 599 works. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):3558–3565, Jul.
 600 2019. doi: 10.1609/aaai.v33i01.33013558. URL <https://ojs.aaai.org/index.php/AAAI/article/view/4235>.
- 601 Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
 602 *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019.
- 603 Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding
 604 and extending subgraph GNNs by rethinking their symmetries. In Alice H. Oh, Alekh Agar-
 605 wal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing*
 606 *Systems*, 2022.
- 607 Fabian B. Fuchs* and Petar Veličković*. Universality of neural networks on sets vs. graphs.
 608 In *ICLR Blogposts 2023*, 2023. URL <https://iclr-blogposts.github.io/2023/blog/2023/sets-and-graphs/>.
- 609 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
 610 message passing for quantum chemistry. In *Proceedings of the 34th International Conference on*
 611 *Machine Learning - Volume 70*, ICML’17, pp. 1263–1272. JMLR.org, 2017.
- 612 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 613 In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
 614 (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 615 2017.
- 616 Xin Liu Hiroki Kanezashi, Toyotaro Suzumura and Takahiro Hirofuchi. Ethereum fraud detection
 617 with heterogeneous graph neural networks. In *Proceedings of the 17th International Workshop*
 618 *on Mining and Learning with Graphs (MLG)*, 2022.
- 619 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
 620 universal approximators. *Neural Networks*, 2(5):359–366, 1989. ISSN 0893-6080. doi:
 621 [https://doi.org/10.1016/0893-6080\(89\)90020-8](https://doi.org/10.1016/0893-6080(89)90020-8).
- 622 Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
 623 In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*,
 624 pp. 2563–2569. International Joint Conferences on Artificial Intelligence Organization, 8 2021.
 625 doi: 10.24963/ijcai.2021/353.
- 626 Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
 627 In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.),
 628 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
- 629 Ryan Kortvelesy, Steven Morad, and Amanda Prorok. Generalised f-mean aggregation for graph
 630 neural networks. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- 631 Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
 632 poral interaction networks. In *Proceedings of the 25th ACM SIGKDD international conference*
 633 *on Knowledge discovery and data mining*. ACM, 2019.
- 634 Junhong Lin, Xiaojie Guo, Yada Zhu, Samuel Mitchell, Erik Altman, and Julian Shun. Fraudgt:
 635 A simple, effective, and efficient graph transformer for financial fraud detection. In *Proceedings*
 636 *of the 5th ACM International Conference on AI in Finance, ICAIF ’24*, pp. 292–300, New York,
 637 NY, USA, 2024. Association for Computing Machinery. ISBN 9798400710810. doi: 10.1145/
 638 3677052.3698648.
- 639 Andreas Loukas. What graph neural networks cannot learn: depth vs width. In *International Con-
 640 ference on Learning Representations*, 2020.

- 648 Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
 649 networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
 650 (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 651 2019.
- 652 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
 653 Rattan, and Martin Grohe. Weisfeiler and leman go neural: higher-order graph neural networks.
 654 In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First*
 655 *Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Ed-*
 656 *ucational Advances in Artificial Intelligence*, 2019. doi: 10.1609/aaai.v33i01.33014602.
- 657
- 658 Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe,
 659 Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so
 660 far, 2023. URL <https://arxiv.org/abs/2112.09992>.
- 661 James R Munkres. *Topology* (2nd edn), 2000.
- 662
- 663 Jack Nicholls, Aditya Kuppa, and Nhien-An Le-Khac. Financial cybercrime: A comprehensive
 664 survey of deep learning approaches to tackle the evolving financial crime landscape. *IEEE Access*,
 665 9:163965–163986, 2021. doi: 10.1109/ACCESS.2021.3134076.
- 666 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
 667 networks. In *Proceedings of the 2021 SIAM International Conference on Data Mining, SDM*,
 668 2021.
- 669
- 670 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
 671 Welling. Modeling relational data with graph convolutional networks. In *The semantic web: 15th*
 672 *international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings*
 673 15, pp. 593–607. Springer, 2018.
- 674 Konstantinos Sotiropoulos, Lingxiao Zhao, Pierre Jinghong Liang, and Leman Akoglu. Adamm:
 675 Anomaly detection of attributed multi-graphs with metadata: A unified neural network ap-
 676 proach. In *2023 IEEE International Conference on Big Data (BigData)*, 2023. doi: 10.1109/
 677 BigData59044.2023.10386245.
- 678 Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
 679 relational graph convolutional networks. In *International Conference on Learning Representa-*
 680 *tions*, 2020.
- 681
- 682 P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention net-
 683 works. In *International Conference on Learning Representations*, 2018.
- 684
- 685 Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele, Claudio Bellei, Tom Robin-
 686 son, and Charles E. Leiserson. Anti-money laundering in bitcoin: Experimenting with graph con-
 687 volutional networks for financial forensics, 2019. URL <https://arxiv.org/abs/1908.02591>.
- 688
- 689 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 690 networks? In *International Conference on Learning Representations*, 2019.
- 691
- 692 Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Kamalika
 693 Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on*
 694 *Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 7134–7143.
 695 PMLR, 09–15 Jun 2019.
- 696
- 697 Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
 698 networks. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2021.
- 699
- 700 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 701 Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
 702 S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*,
 703 volume 30. Curran Associates, Inc., 2017.

702
703
704
705
706
A LIMITATIONS OF EXISTING SOLUTIONS707
708
709
710
711
712
713
714
A.1 MULTI-RELATIONAL GNNs

715
716
717 Figure 5: Comparison of MEGA-GNN and R-GCNE architectures. MEGA-GNN performs a two-
718 stage aggregation: it first aggregates multiple edges between the same node pair (edge-level ag-
719 gregation) and then applies node-level aggregation. In contrast, R-GCNE performs single stage
720 aggregation, and it applies relation-specific transformations by multiplying each edge feature with
721 a learnable weight matrix based on its relation type (currency in the example graph). For clarity,
722 inverse relations and self-loops are omitted in the R-GCNE illustration.

723
724 Relational Graph Convolutional Networks (R-GCNs) Schlichtkrull et al. (2018) are specifically de-
725 signed for *labeled* multigraphs, where each edge is assigned a relation type from a fixed, finite set of
726 discrete labels. R-GCNE (see Appendix C.6) is an extension of R-GCN Schlichtkrull et al. (2018)
727 that uses edge attributes and edge updates. R-GCNE achieves relation-aware message passing by
728 applying distinct learnable weight matrices for each relation type. However, despite this relational
729 specificity, R-GCNE performs a *single-stage aggregation*: messages from all neighbors are summed,
730 optionally scaled by a problem-specific normalization constant. With single-aggregation scheme R-
731 GCNE cannot distinguish between edges originating from the same neighbor (i.e. multi-edges) and
732 edges originating from different neighbors. By contrast, MEGA-GNN introduces a novel two-stage
733 aggregation mechanism. First, it aggregates the attributes of multiple edges connecting the same pair
734 of nodes (edge-level aggregation), capturing intra-pair interactions and edge-specific statistics. Sec-
735 ond, the resulting per-neighbor representations are aggregated across distinct neighbors (node-level
736 aggregation). As shown in Theorem 1, this hierarchical design allows MEGA-GNN to compute de-
737 tailed per-neighbor statistics that standard message-passing GNNs, including R-GCNE, inherently
738 overlook. Such capability is critical in financial transaction networks. A visual comparison of these
739 two architectures is provided in Figure 5, where inverse relations and self-loops are omitted from
the R-GCNE diagram for simplicity.

740 To apply R-GCN to Anti-Money Laundering (AML)
741 datasets in our experiments in Section 4, we con-
742 verted the multigraph into a multi-relational graph
743 by assigning edge types based on transaction cur-
744 rency. However, this transformation is not always
745 feasible; for example, in the ETH dataset (see Sec-
746 tion 4), multigraphs often lack well-defined relation
747 types, limiting the applicability of standard relational
748 GNNs. Importantly, our work is orthogonal to ex-
749 isting relational GNN approaches and naturally ex-
750 tends to multi-relational multigraphs—that is, graphs
751 where multiple edges of the same type exist between
752 the same node pair. This extension enables the de-
753 velopment of a hybrid model, MEGA-R-GCNE, which
754 integrates our multi-edge aggregation strategy with
755 R-GCNE-like architectures, combining the strengths
of both approaches. An illustration of the hybrid method
is shown in Figure 6, with experimental
results presented in Section 4.

Figure 6: Illustration of MEGA-R-GCNE.
An illustration of the hybrid method is shown in Figure 6, with experimental
results presented in Section 4.

Figure 7: (a) Directed multigraph port numbering of Multi-GNN Egressy et al. (2024). (b) Illustration of multigraph to simple graph transformation by ADAMM Sotiropoulos et al. (2023)

A.2 MULTI-GNN, ADAMM AND DIAM

Table 6: Related work vs. MEGA-GNN. MP refers to Message Passing, Aggr. stands for Aggregation.

Features	Multi-GNN	ADAMM	DIAM	MEGA-GNN
Proof of Universality	✓			✓
Bi-directional MP	✓		✓	✓
Edge Embeddings	✓			✓
Node Embeddings	✓		✓	✓
Permutation Equivariance		✓	✓	✓
Two-stage Aggr.		✓		✓
Two-stage Aggr. in MP				✓
Proof of Two-stage is more powerful				✓

In the literature, two key works specifically address multigraphs: Multi-GNN Egressy et al. (2024) and ADAMM Sotiropoulos et al. (2023).

Multi-GNN introduced a provably powerful GNN architecture for directed multigraphs, incorporating simple adaptations such as reverse message passing, port numbering, and ego IDs You et al. (2021). A notable contribution of Multi-GNN is the multigraph port numbering, which enables the model to distinguish between edges originating from the same neighbor and those from different neighbors (see Figure A.2 (a)). These three adaptations make it possible to assign unique node IDs in connected directed multigraphs, making the Multi-GNN solution universal. However, augmenting edge features with port numbers results in the loss of permutation equivariance (see Proposition 2 and the proof in Appendix B.2). This loss is significant because permutation equivariance is a crucial property for ensuring that the model’s predictions remain consistent under arbitrary permutations of nodes or edges in graph learning tasks. Empirical evaluation on the impact of permuting port numbers during inference is presented in Table 2.

Definition 7 (Strict Total Order). *Strict total order* is a binary relation $<$ on a set \mathcal{A} , which satisfies the following conditions for all $a, b, c \in \mathcal{A}$: (1) if $a \neq b$, either $a < b$ or $b < a$, (2) not $a < a$, (3) if $a < b$ and $b < c$, then $a < c$ (see (Munkres, 2000), p. 22).

Proposition 2. *The multigraph port numbering Egressy et al. (2024), is not permutation equivariant in the absence of a strict total ordering of edges.*

ADAMM aggregates multi-edges between two nodes into a single undirected super-edge (see Figure A.2 (b)), before message passing layers. The initial features for this super-edge are computed using DeepSet Zaheer et al. (2017), incorporating the direction of the edge as an additional edge feature to differentiate between original and augmented reverse edges. The subsequent message passing layers then operate on these aggregated features. However, this approach loses critical structural information inherent in the multigraph by failing to preserve individual edge features, making it unsuitable for tasks such as edge classification.

810 Additionally, since ADAMM does not compute latent features for the original edges, it cannot perform
 811 multi-edge aggregations repeatedly across multiple message passing layers. Another limitation
 812 of ADAMM is its lack of support for bi-directional message passing beyond merely incorporating
 813 edge direction as a feature. Previous works have shown that explicit bi-directional message passing
 814 improve accuracy for directed multigraphs Egressy et al. (2024).

815 **DIAM** Ding et al. (2024) models cryptocurrency transaction networks as directed, edge-attributed
 816 multigraphs and focuses on learning node representations that capture both temporal transaction
 817 patterns and structural discrepancies between illicit and benign accounts. The method introduces
 818 Edge2Seq, which constructs sequences from a node’s incoming and outgoing edges separately and
 819 encodes them with GRUs to produce node-level embeddings. Although this sequence-based pro-
 820 cessing yields informative node-level representations, it does not update edge representations, as all
 821 edge information is immediately merged into node embeddings. DIAM further employs a Multi-
 822 graph Discrepancy (MGD) module that performs directed message passing using both neighbor fea-
 823 tures and their differences from the target node, a design meant to emphasize behavioral deviations
 824 of illicit nodes rather than rely on homophily.

825 Despite achieving strong results on standard node classification benchmarks like ETH (see Table 1),
 826 the original DIAM model only computes node embeddings and does not support edge classification.
 827 However, we have extended it to include an edge classification head that leverages DIAM’s node
 828 embeddings and the original edge features, which enabled us to apply DIAM also to AML datasets
 829 (Altman et al., 2023) which we include the results to Appendix E. The results in Table 15 show
 830 that on the AML task, DIAM outperformed by our method (MEGA-PNA), clearly reflecting the
 831 importance of our edge-attributed multigraph modeling approach in effectively capturing complex
 832 transaction patterns.

833 B PROOFS

834 B.1 PROOF OF THEOREM 1

835 For any function $f : \mathcal{X} \rightarrow \mathcal{Y}$, we write $\text{Im}(f)$ to denote its image, i.e., the set $\{f(x) \mid x \in \mathcal{X}\} \subseteq \mathcal{Y}$.

836 *Proof.* We assume that each edge feature vector is equipped with a constant, i.e., $1 \in \mathbb{R}$. Hence, we
 837 can note that by using g_1 , the model can compute the cardinality of the multiset.

838 We prove the claim by establishing two parts: (i) $\text{Im}(\mathcal{T}_{\text{single-stage}}) \subseteq \text{Im}(\mathcal{T}_{\text{two-stage}})$, (ii)
 839 $\text{Im}(\mathcal{T}_{\text{single-stage}}) \neq \text{Im}(\mathcal{T}_{\text{two-stage}})$.

840 **Part (i)** As stated in the Definition 3, $\mathcal{T}_{\text{single-stage}}$ aggregates all edge features in the neighborhood
 841 \mathcal{X}_j , treating the neighborhood as a single multiset,

$$842 \mathcal{X}_{\text{flat}} := \biguplus_{X_{ij} \in \mathcal{X}_j} X_{ij}.$$

843 Then the output of the single-stage aggregation is given by,

$$844 \mathcal{T}_{\text{single-stage}}(\mathcal{X}_j) = f_{\theta}(\mathcal{X}_{\text{flat}}) = \text{MLP}_{\theta}([g_1(\mathcal{X}_{\text{flat}}) \parallel \dots \parallel g_k(\mathcal{X}_{\text{flat}})]).$$

845 Two-stage aggregation scheme first applies f_{θ_1} to each multiset X_{ij} *separately*, then f_{θ_2} is applied
 846 to resulting multiset of vectors in the second stage:

$$847 f_{\theta_1}(X_{ij}) = \text{MLP}_{\theta_1}([g_1(X_{ij}) \parallel \dots \parallel g_k(X_{ij})]),$$

848 and

$$849 \mathcal{T}_{\text{two-stage}}(\mathcal{X}_j) = f_{\theta_2}(\{\{f_{\theta_1}(X_{ij}) \mid X_{ij} \in \mathcal{X}_j\}\}).$$

850 Now we show that $\mathcal{T}_{\text{two-stage}}$ can compute what $\mathcal{T}_{\text{single-stage}}$ can compute.

851 We first consider the case $r = 1$, corresponding to the sum aggregator:

$$852 g_1(\mathcal{X}_{\text{flat}}) = \sum_{i \in N_{\text{in}}(j)} g_1(X_{ij})$$

864 Thus, by applying g_1 in both stages, the model can compute $g_1(\mathcal{X}_{\text{flat}})$.
 865

866 Now for $2 \leq r \leq k$, the raw moments of the flattened multiset $\mathcal{X}_{\text{flat}}$, can be expressed as a weighted
 867 average of the raw moments of the individual multisets X_{ij} :

$$868 \quad g_r(\mathcal{X}_{\text{flat}}) = \frac{1}{n} \sum_{X_{ij} \in \mathcal{X}_j} P_{ij} \cdot g_r(X_{ij}), \quad 2 \leq r \leq k,$$

871 where $n := \sum_i P_{ij}$ is the total number of edges.
 872

873 Since each edge feature is equipped with a constant 1, the cardinality $P_{ij} = |X_{ij}|$ can be computed
 874 using the sum aggregator g_1 . Thus, f_{θ_1} can compute $P_{ij} \cdot g_r(X_{ij})$ for each r .

875 In the second stage, the multiset $\{\{f_{\theta_1}(X_{ij}) \mid X_{ij} \in \mathcal{X}_j\}\}$ contains all such terms, and the sum
 876 aggregator g_1 in f_{θ_2} can compute

$$877 \quad \sum_{X_{ij} \in \mathcal{X}_j} P_{ij} \cdot g_r(X_{ij}), \quad n = \sum_i P_{ij}$$

880 thus enabling f_{θ_2} to compute the raw moments $g_r(\mathcal{X}_{\text{flat}})$.
 881

882 Hence, we conclude that:

$$883 \quad \text{Im}(\mathcal{T}_{\text{single-stage}}) \subseteq \text{Im}(\mathcal{T}_{\text{two-stage}}).$$

885 **Part (ii):** We now show that $\text{Im}(\mathcal{T}_{\text{single-stage}}) \neq \text{Im}(\mathcal{T}_{\text{two-stage}})$.

886 We begin by defining a simple function that cannot be computed by any single-stage aggregation
 887 scheme.

$$888 \quad F_r(\mathcal{X}_j) := \sum_{X_{ij} \in \mathcal{X}_j} g_r(X_{ij}), \quad 2 \leq r \leq k$$

891 Such functions, F_r , are computable by $\mathcal{T}_{\text{two-stage}}$ since by design it preserves the partitioning over
 892 distinct neighbors of node j , allowing f_{θ_2} to operate on a multiset of per-neighbor representations.

893 In contrast, any function computed by $\mathcal{T}_{\text{single-stage}}$ is in the form:

$$895 \quad \mathcal{T}_{\text{single-stage}}(\mathcal{X}_j) = f_{\theta}(\mathcal{X}_{\text{flat}}) = \text{MLP}_{\theta}([g_1(\mathcal{X}_{\text{flat}}) \parallel \dots \parallel g_k(\mathcal{X}_{\text{flat}})]).$$

896 Let $n := |\mathcal{X}_{\text{flat}}|$, we now analyze two distinct cases:

897 **Case 1:** $k \geq n$ When $k \geq n$, the number of aggregators in f_{θ} is sufficient to reconstruct the entire
 898 neighborhood multiset $\mathcal{X}_{\text{flat}}$ without loss of information, as established in Theorem 1 of Corso et al.
 899 (2020). However, since $\mathcal{X}_{\text{flat}}$ does not contain any information about which neighbor i each edge
 900 originates from, even a full reconstruction of the neighborhood does not allow the recovery of per-
 901 neighbor partitions. Therefore, the function F_r is incomputable by $\mathcal{T}_{\text{single-stage}}$.
 902

903 **Case 2:** $k < n$ In this case $\mathcal{T}_{\text{single-stage}}$ cannot even reconstruct the full multiset $\mathcal{X}_{\text{flat}}$, as the
 904 number of aggregators k is insufficient to discriminate between multisets of size n , as stated in
 905 Theorem 1 in Corso et al. (2020). As a result, the function F_r remains incomputable by $\mathcal{T}_{\text{single-stage}}$.
 906

907 Therefore, we have proven that two-stage aggregation induces a strictly larger image than single-
 908 stage aggregation,

$$910 \quad \text{Im}(\mathcal{T}_{\text{single-stage}}) \subsetneq \text{Im}(\mathcal{T}_{\text{two-stage}}).$$

911 \square

913 B.2 PROOF OF PROPOSITION 2

914 For consistency we use the same notation introduced in Section 3.1. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a multigraph
 915 with node features $\mathbf{x}_i \in \mathbb{R}^D$ and edge features $\mathbf{e}_{ijp} \in \mathbb{R}^K$. We assume that each edge carries a
 916 distinct feature vector. Each edge $e \in \mathcal{E}$ is assigned a port number $\rho(e)$ by a given port numbering
 917 scheme, and these port numbers are incorporated into the edge features, as proposed by Egressy

Figure 8: Illustration of counter example for the permutation equivariance of Multi-GNN Egressy et al. (2024). The left panel shows the graph \mathcal{G} with one permutation of the port numbering, while the right panel illustrates a different permutation of the assigned port numbers. Assume each edge has distinct features, i.e. $e_2 \neq e_4$.

et al. (2024). We further assume that the initial edge feature vectors $\mathbf{e}_{ijp}^{(0)} < \mathbf{e}_{i'j'p'}^{(0)}$, induce a strict total order over the edges, which permits a deterministic port assignment.

Now consider a scenario where there is no strict total ordering of the edges. As a result, the assignment of port numbers is arbitrary. For a node i with d incoming edges, there are $d!$ possible port numbering, corresponding to all possible permutations.

The latent feature of the node i at layer l is computed as:

$$\mathbf{x}_i^{(l)} = \sum_{j \in N(i)} \sum_{p \in P_{ji}} \phi(\mathbf{x}_j^{(l-1)}, [\mathbf{e}_{jip}^{(l-1)} \parallel \rho(j, i)]). \quad (12)$$

where ϕ is the message function, and $\rho(j, i) \in \mathbb{R}^2$ is the port numbers assigned to the edge between node j and node i , as shown in Figure A.2(a)

We proceed by proof by contradiction. Suppose that the GNN with port numbering is permutation equivariant at the graph level, that is, permuting the node and edge indices results in an equivalent permutation of the output given as in Definition 5. This property requires the model to be permutation invariant over each node's neighborhood: reordering the incoming edges (i.e., permuting the port numbers) should not affect a node's representation.

Let σ be a permutation of the port numbers. Applying this permutation to the port numbers of the edges yields a new port assignment $\rho_\sigma(e)$. The updated representation of node i at layer l under this permuted port assignment is:

$$\hat{\mathbf{x}}_i^{(l)} = \sum_{j \in N(i)} \sum_{p \in P_{ji}} \phi(\mathbf{x}_j^{(l-1)}, [\mathbf{e}_{jip}^{(l-1)} \parallel \rho_\sigma(j, i)]). \quad (13)$$

By assumption:

$$\mathbf{x}_i^{(l)}(\rho) = \hat{\mathbf{x}}_i^{(l)}(\rho_\sigma) \quad (14)$$

However, since ϕ explicitly depends on the port number $\rho(j, i)$, permuting the port numbers alters the input to ϕ via concatenated feature $[\mathbf{e}_{jip}^{(l-1)} \parallel \rho_\sigma(j, i)]$. Assuming that each edge carries a distinct feature vector, as is typical in settings like financial transaction networks, this change affects the resulting messages and, consequently, the updated representation of node i . Hence permuting assigned port numbers leads to $\mathbf{x}_i^{(l)}(\rho) \neq \hat{\mathbf{x}}_i^{(l)}(\rho_\sigma)$, violating permutation invariance over the neighborhood of i , contradicting the assumption of GNN being permutation equivariant.

Figure 8 illustrates this contradiction: node i has four incoming edges, and permuting their port numbers leads to different messages and a different update. We thus conclude that arbitrary port numbering breaks permutation equivariance.

972 B.3 PROOF OF PROPOSITION 1
973974 We adopt the notation and terminology introduced in Section 3.1 of this paper to ensure consistency
975 and ease of reference.976 *Proof:* The proposed message passing layer performs two aggregations over the neighborhood of a
977 target node j . The first is the multi-edge aggregation, in which the latent features of the multi-edges
978 are aggregated at artificial nodes. The multiset of such features are denoted as,
979

980
$$X_{ij} = \{\{\mathbf{e}_{ijp} \mid p \in [P_{ij}]\}\} \quad (15)$$

981 The vectors in the multiset X_{ij} are aggregated on artificial nodes,
982

983
$$\mathbf{h}_{ij} = f_{\theta_1}(X_{ij}). \quad (16)$$

984 Since aggregators in f_{θ_1} are assumed to be permutation invariant, for any permutation function ρ
985 acting on multi-edges, we have $f_{\theta_1}(\rho \cdot X_{ij}) = f_{\theta_1}(X_{ij})$.986 The second aggregation is then performed over the neighborhood of the target nodes, all of which
987 happen to be artificial nodes associated with distinct neighbors in the original graph (see Figure 2).
988

989
$$H_{N_{in}(j)} = \{\{\mathbf{h}_{ij} \mid (i, j) \in N_{in}(j)\}\} \in \mathcal{M}_d. \quad (17)$$

990 Hence, the second aggregation operates over the multiset $H_{N_{in}(j)}$,
991

992
$$\mathbf{x}_j = f_{\theta_2}(H_{N_{in}(j)}) \in \mathcal{M}_d. \quad (18)$$

993 Again since the aggregators in f_{θ_2} are assumed to be permutation invariant for any permutation
994 function π acting on the neighbors of a target node j , we have $f_{\theta_2}(\pi \cdot H_{N_{in}(j)}) = f_{\theta_2}(H_{N_{in}(j)})$.995 Our framework MEGA-GNN, integrates the two-stage aggregation scheme (as defined in Definition
996 4) using aggregation functions f_{θ_1} and f_{θ_2} within a single message passing layer, as detailed
997 in Section 3.3. Since the composition of permutation invariant functions remains permutation in-
1000 variant, our message passing layer ($f_{\theta_1} \circ f_{\theta_2}$) is invariant to the permutations of neighboring nodes
1001 and edges. Unlike simple graphs, node permutations do not directly imply edge permutations in
1002 multigraphs due to the presence of multi-edges. Thus, we explicitly define the permutation of multi-
1003 edges, ρ , ensuring that our message passing layer remains permutation-invariant to both nodes and
1004 edges in the neighborhood of the target node.1005 Finally, as demonstrated by Bronstein et al. (2021), the composition of permutation invariant layers
1006 ($f = f_{\theta_1} \circ f_{\theta_2} \circ f_{\theta_1} \circ f_{\theta_2} \dots$) allows the construction of functions f that are equivariant to symmetry
1007 group actions. In the multigraph domain, this symmetry group includes permutations of both nodes
1008 and edges. The overall permutation equivariance of the MEGA-GNN model follows from the fact
1009 that each permutation invariant message passing layer operates independently on each node’s neigh-
1010 borhood, regardless of the ordering of nodes or edges. Specifically, for any permutation $g \in \sum_n$
1011 acting on the set of node and edges, the model’s output satisfies $f(g \cdot X) = g \cdot f(X)$.1012 B.4 PROOF OF THEOREM 2
10131014 *Proof:* Given a connected directed multigraph $G(V, E)$ with n nodes and m edges, assume that
1015 there exists an injective edge-labeling function $L : \mathcal{E} \rightarrow [M]$ for some $M \geq m$ that assigns a unique
1016 labels to each edge. We will prove that MEGA-GNN can compute unique node IDs under these
1017 assumptions.1018 Egressy et al. (2024) showed that a GNN can mimic a Breadth-First Search (BFS) algorithm to
1019 compute unique node IDs given pre-computed port numbers for the edges. We follow the same
1020 BFS-based approach and derive unique node ids without relying on pre-computed port numbers. In-
1021 stead of the pre-computed port numbers, we use the unique edge labels provided by $L(e)$ to guide the
1022 node ID assignment process. As in Egressy et al. (2024), we use the Universal Approximation The-
1023 orem Hornik et al. (1989) for MLPs, to avoid explicit construction of the MEGA-GNN layers. We
1024 also assume that the MEGA-GNN aggregates the multi-edges by computing their minimum, which
1025 is followed by a node-level aggregation, where an MLP is applied element-wise to the incoming
messages, followed by another minimum computation.

Algorithm 1 BFS Node ID Assignment

1026
 1027 **Input:** Connected directed multigraph $G = (V, E)$ with n nodes and m edges, diameter D , and
 1028 root node $r \in V$. Active nodes $X \subseteq V$ and finished nodes $F \subseteq V$. Edge Labeling $L : E \rightarrow [M]$
 1029 for some $M \geq m$.
 1030 **Output:** Unique node IDs $h(v)$ for all $v \in V$ (in base $2n$)
 1031 1: $h(r) \leftarrow 1$; $h(v) \leftarrow 0$ for all $v \in V \setminus \{r\}$
 1032 2: $F \leftarrow \emptyset$; $X \leftarrow \{r\}$
 1033 3: **for** $k \leftarrow 1$ **to** D **do**
 1034 4: **for** $v \in V$ **do**
 1035 5: **if** $v \in X$ **then**
 1036 6: send $h(v) \parallel \min\{L((v, u))_{\text{out}}\}$ to $u \in N_{\text{out}}(v)$
 1037 7: send $h(v) \parallel M + \min\{L((u, v))_{\text{in}}\}$ to $u \in N_{\text{in}}(v)$
 1038 8: $F \leftarrow F \cup \{v\}$; $X \leftarrow X \setminus \{v\}$
 1039 9: **end if**
 1040 10: **if** $v \notin F$ **then**
 1041 11: **if** Incoming messages $M(v) \neq \emptyset$ **then**
 1042 12: $h(v) \leftarrow \min\{M(v)\}$
 1043 13: $X \leftarrow X \cup \{v\}$
 1044 14: **end if**
 1045 15: **end if**
 1046 16: **end for**
 17: **end for**
 1047
 1048

1049 Following the approach of Egressy et al. (2024), the node ID assignment algorithm starts from a root
 1050 node (also called the ego node) and assigns IDs to all the other nodes connected to it via message
 1051 passing. We are not going to reiterate the setup of the entire proof and focus on the differences.
 1052 Specifically, instead of pre-computed port numbers, we assume the existence of a injective edge-
 1053 labeling function, $L : E \rightarrow [M]$, which is induced by the original edge features. This injective
 1054 mapping naturally defines a strict total order over the edges, allowing MEGA-GNN to deterministically
 1055 select, among multi-edges, the edge with the minimum label during aggregation. This ensures
 1056 a consistent and unique node ID assignment while relying solely on intrinsic edge features.

1057 Our MEGA-GNN model, which mimics Algorithm 1, assigns ids to each node connected to the
 1058 root node. What remains to be shown is that those assigned node IDs are unique. First, note that
 1059 nodes at different distances from the root cannot end up with the same node ID. A node at distance
 1060 k will receive its first proposal in round k and, therefore, it will have an ID with exactly $k + 1$
 1061 digits. Furthermore, an inductive argument shows that active nodes (nodes at the same distance)
 1062 cannot have the same node IDs. Certainly, the argument is also true at the start when $X = \{r\}$.
 1063 Now assuming all active nodes from the previous round ($k - 1$) had distinct node IDs, then the
 1064 only way two active nodes (in round k) can have the same ID is if they accept a proposal from the
 1065 same neighboring node. This is because, based on the induction hypothesis, proposals from different
 1066 nodes will already differ in their first $k - 1$ digits. If two active nodes accepted a proposal from the
 1067 same node, then they would have received different edge labels, a strict total ordering among the
 1068 edges enables assignment of distinct edge labels. In addition, because m is added to all incoming
 1069 labels, incoming labels cannot be the same as the outgoing labels. Therefore the active nodes always
 1070 accept unique proposals.

1071 **B.5 PROOF OF THEOREM 3**

1072 *Proof.* Let \mathcal{V} denote the set of nodes, \mathcal{E} the multiset of edges, and $\mathcal{E}^{\text{supp}} \subseteq \mathcal{E}$ the set of unique (i, j)
 1073 pairs with multiplicity at least one. Let d be the dimensionality of node and edge embeddings, and
 1074 assume all linear transformations map $\mathbb{R}^d \rightarrow \mathbb{R}^d$.

1075 A single MEGA-GNN layer executes two-stage aggregation. In each stage, the three terms below
 1076 correspond to costs of aggregation, linear layer, and nonlinearity; the term is the cost of the edge
 1077 update. The per-layer cost is
 1078 1079
$$\mathcal{O}\left(\underbrace{|\mathcal{E}|d + |\mathcal{E}^{\text{supp}}|d^2 + |\mathcal{E}^{\text{supp}}|d}_{\text{first aggregation stage}} + \underbrace{|\mathcal{E}^{\text{supp}}|d + |\mathcal{V}|d^2 + |\mathcal{V}|d}_{\text{second aggregation stage}} + \underbrace{|\mathcal{E}|d^2 + |\mathcal{E}|d}_{\text{edge update with non-linearity}}\right).$$

1080 Since $|\mathcal{E}^{\text{supp}}| \leq |\mathcal{E}|$, the total complexity simplifies to
1081

$$1082 \mathcal{O}((|\mathcal{E}| + |\mathcal{V}|)d^2 + (|\mathcal{E}| + |\mathcal{V}|)d).$$

1083

1084

1085

1086

1087 For comparison, a standard message-passing GNN with edge updates (per layer) has

$$1088 \mathcal{O}(\underbrace{|\mathcal{E}|d}_{\text{neighborhood agg.}} + \underbrace{|\mathcal{V}|d^2}_{\text{node update}} + \underbrace{|\mathcal{V}|d}_{\text{nonlinearity}} + \underbrace{|\mathcal{E}|d^2}_{\text{edge update}} + \underbrace{|\mathcal{E}|d}_{\text{nonlinearity}})$$

1091

1092

which sums to $\mathcal{O}((|\mathcal{E}| + |\mathcal{V}|)d^2 + (|\mathcal{E}| + |\mathcal{V}|)d)$.

1093 This shows that MEGA-GNN has the same asymptotic complexity as standard message-passing
1094 GNNs that perform edge updates.

1095

1096

C IMPLEMENTATION DETAILS

1097

1098

C.1 ARCHITECTURE DIAGRAMS

1099

1100

Figure 3 illustrate a single layer of the MEGA-GNN architecture. Figure 9 shows the MEGA-GNN
layer equipped with bi-directional message-passing capabilities. The figures use the same notation
as in Sections 3.3 and 3.4 for clarity.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Figure 9: Overview of the MEGA-GNN layer with a bi-directional message passing. In directed multigraphs, reverse edges are added opposite to the original edges. Separate message computations are performed for original and reversed edges. The diagram illustrates the message passing scheme described in Sections 3.3 and 3.4, using consistent notation.

C.2 COMPARISON POINTS

Table 7 summarizes the baseline methods and multigraph adaptations evaluated in our experiments.

1134
1135
1136

Table 7: Backbone architectures and multigraph adaptations: checkmarks indicate which combinations are evaluated in our experiments.

1137
1138
1139
1140
1141

Multigraph Adaptations	GIN	PNA	GenAgg	R-GCN	FraudGT
Base (no adaptations)	✓	✓	✓	✓	✓
Multi Egressy et al. (2024)	✓	✓	✓		✓
ADAMM Sotiropoulos et al. (2023)	✓	✓	✓		
MEGA (ours)	✓	✓	✓	✓	

1142
11431144
1145

Table 8: Hyperparameter settings for AML and ETH datasets

1146
1147
1148
1149
1150
1151
1152
1153

	GIN		PNA		R-GCNE
	AML	ETH	AML	ETH	AML
<i>lr</i>	0.003	0.006	0.0008	0.0008	0.003
<i>hidden_dim</i>	64	32	20	20	32
<i>batch_size</i>	8192	4096	8192	4096	8192
<i>dropout</i>	0.1	0.1	0.28	0.1	0.1
<i>w_ce1, w_ce1</i>	1, 6.27	1, 6.27	1, 7	1, 3	1, 6.27

1154
1155

C.3 HYPERPARAMETERS

1156
1157
1158
1159
1160
1161
1162

For each base GNN model and dataset, we utilized a distinct set of hyperparameters, as detailed in Table 8. The MEGA-GenAgg and Multi-GenAgg models employed the aggregation function proposed by Kortvelesy et al. (2023). In all experiments involving GenAgg, we adopted the default layer sizes of (1, 2, 2, 4), and both the a and b parameters were made learnable, allowing the model to tailor the aggregation function to the specific downstream task. Additionally, for the GenAgg experiments, we applied the hyperparameters configured for GIN-based models as shown in Table 8.

1163
1164
1165

For the AML dataset, the model was operated on neighborhoods constructed around the seed edges, while for the ETH dataset, the neighborhoods were selected around the seed nodes. In both datasets, we sampled 2-hop neighborhoods, selecting 100 neighbors per hop.

1166
1167

C.4 AML AND ETH DATASETS

1168
1169
1170
1171

Table 9 provides an overview of the datasets used in our experiments. The AML dataset is available in three different scales (Small, Medium, and Large), each with High Illicit (HI) and Low Illicit (LI) versions.

1172

1173
1174

Table 9: Statistics of AML (Altman et al., 2023), ETH (Chen et al., 2021a) and JODIE (Kumar et al., 2019) datasets.

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

Dataset	# Nodes	# Edges	Illicit Rate	Split [%]
AML Small HI	515,088	5,078,345	0.102%	64/19/17
AML Small LI	705,907	6,924,049	0.051%	64/19/17
AML Medium HI	2,077,023	31,898,238	0.110%	61/17/22
AML Medium LI	2,032,095	31,251,483	0.051%	61/17/22
AML Large HI	2,116,168	179,702,229	0.124%	60/20/20
AML Large LI	2,070,980	176,066,557	0.057%	60/20/20
ETH	2,973,489	13,551,303	0.04%	65/15/20
MOOC	7,144	411,749	0.98%	60/20/20
Reddit	10,984	672,447	0.05%	60/20/20
Wikipedi	9,227	157,474	0.14%	60/20/20

1185
1186
1187

AML Data Split: We adopt the same temporal splitting strategy as proposed in Egressy et al. (2024), which follows train-validation-test split based on transaction timestamps. Specifically, we

sort all transactions and define two cut-off points, t_1 and t_2 , to partition the data as summarized in Table 9. Transactions occurring before t_1 are used for training, those between t_1 and t_2 for validation, and those after t_2 for testing. Since validation and test transactions may depend on patterns in earlier activity, we construct three dynamic graph snapshots at times t_1 , t_2 , and $t_3 = t_{\max}$, the latest timestamp in the dataset. The train graph includes only training transactions and their corresponding nodes. The validation graph includes both training and validation transactions but computes metrics only on the validation indices. Similarly, the test graph contains all transactions in the given dataset, with evaluation performed solely on the test indices. This dynamic setup mirrors real-world usage in financial institutions, where systems must detect anomalies in new batches of transactions while leveraging historical context.

ETH Data Split: Similar to AML we use a temporal train-validation-test split. We order the nodes by the first transaction they are involved in (either as sender or receiver) before splitting. Again this gives us threshold times t_1 and t_2 , and we use these times to create our train, validation, and test graphs.

C.5 MEGA VARIANTS

In this section, we provide detailed descriptions of the MEGA-GIN, MEGA-PNA, MEGA-GenAgg, and MEGA-RGCNE models used in our study.

As introduced in Sections 3.1 and 3.2, our framework employs a two-stage aggregation scheme with two aggregation functions, f_{θ_1} and f_{θ_2} , each constructed from a set of k aggregators $g_1, \dots, g_k : \mathcal{M}_d \rightarrow \mathbb{R}^d$. Specifically, we define:

$$f_{\theta}(X) := \text{MLP}_{\theta}([g_1(X) \parallel \dots \parallel g_k(X)]), \quad f_{\theta} : \mathcal{M}_d \rightarrow \mathbb{R}^{d'}. \quad (19)$$

The MEGA variants differ in the choice and number of aggregators used in the two-stage process.

MEGA-GIN. Following the Graph Isomorphism Network (GIN) model proposed by Xu et al. Xu et al. (2019), MEGA-GIN uses a single aggregator, namely SUM, in both f_{θ_1} and f_{θ_2} . That is, $k = 1$ and $g_1 = \text{SUM}$.

MEGA-PNA. The MEGA-PNA builds on the Principal Neighbourhood Aggregation (PNA) framework proposed by Corso et al. Corso et al. (2020), which combines multiple statistical aggregators. Accordingly, we use $k = 4$ aggregators: MEAN, MAX, MIN, and STD, applied in both f_{θ_1} and f_{θ_2} .

MEGA-GenAgg. The MEGA-GenAgg employs a single, learnable aggregator as introduced in the GenAgg framework Kortvelesy et al. (2023). Unlike fixed statistical functions, the aggregator in GenAgg is parameterized and trained end-to-end. Accordingly, we set $k = 1$, and use $g_1 = \text{GENAGG}$ in both f_{θ_1} and f_{θ_2} .

MEGA-RGCNE. The MEGA-RGCNE variant integrates the expressive multi-aggregator scheme of PNA Corso et al. (2020) in the first aggregation stage f_{θ_1} , where we use $k = 4$ aggregators: MEAN, MAX, MIN, and STD. In the second stage f_{θ_2} , we incorporate relation-specific transformation matrices $W_r^{(l)}$, applying distinct linear transformations for each relation type r , as shown in Figure 6. This design demonstrates the flexibility of the MEGA framework, which allows different aggregation strategies to be combined across stages.

C.6 EDGE-AUGMENTED R-GCN (R-GCNE)

To incorporate edge attributes, we extend the standard Relational Graph Convolutional Network (R-GCN) Schlichtkrull et al. (2018) by introducing the Relational Graph Convolutional Network with Edge features (R-GCNE). In this variant, edge features are also included in the message passing formulation.

Consider the notation introduced in Section 3.1. Building on that, we define the set of relation types \mathcal{R} , where each edge $(j, r, i) \in \mathcal{E}$ is labeled with a relation $r \in \mathcal{R}$. Each relation type r is

associated with a learnable transformation matrix $W_r^{(l)} \in \mathbb{R}^{d \times d}$, and we define $W_0^{(l)} \in \mathbb{R}^{d \times d}$ as the transformation matrix applied to a node's own features (i.e., self-loop) at layer l . For each node $i \in \mathcal{V}$, we define the relation-specific neighborhood as $N_i^r := \{j \in \mathcal{V} \mid (j, r, i) \in \mathcal{E}\}$, representing the set of incoming neighbors connected via relation r .

The message passing equations for both models are defined as follows:

- **R-GCN Message Passing Equation:**

$$x_i^{(l+1)} := \sigma \left(x_i^{(l)} W_0^{(l)} + \sum_{r \in \mathcal{R}} \sum_{j \in N_i^r} \frac{1}{|N_i^r|} x_j^{(l)} W_r^{(l)} \right), \quad x_i^{(l+1)} \in \mathbb{R}^d.$$

- **R-GCNE Message Passing Equation:**

$$x_i^{(l+1)} := \sigma \left(x_i^{(l)} W_0^{(l)} + \sum_{r \in \mathcal{R}} \sum_{j \in N_i^r} \frac{1}{|N_i^r|} \left(x_j^{(l)} W_r^{(l)} + e_{jip,r}^{(l)} W_r^{(l)} \right) \right), \quad x_i^{(l+1)} \in \mathbb{R}^d.$$

If R-GCNE is applied to multigraphs with edge relations, we must also account for multiple edges between the same pair of nodes with the same relation. To handle this, similar to Section 3.1, we define the multiset

$$X_{ij,r} = \{\{\mathbf{e}_{ijp,r} \mid p \in [P_{ij,r}]\}\}$$

denote the multiset of edge feature vectors from node j to node i under relation r , where $P_{ij,r}$ is the number of such edges. We denote the feature of the p -th such edge as $e_{jip,r}^{(l)} \in \mathbb{R}^d$.

Then the formulation of R-GCNE on multigraphs with relation types becomes:

$$x_i^{(l+1)} := \sigma \left(x_i^{(l)} W_0^{(l)} + \sum_{r \in \mathcal{R}} \sum_{j \in N_i^r} \sum_{p=1}^{P_{jri}} \frac{1}{|N_i^r|} (x_j^{(l)} W_r^{(l)} + e_{jip,r}^{(l)} W_r^{(l)}) \right) \in \mathbb{R}^d.$$

D COMPUTATION AND MEMORY COSTS

D.1 COMPUTATION COSTS

Table 10: Training time (seconds per epoch) and memory consumption on the AML Small HI dataset.

Model	# Params	Train sec/ep	Mem. Usage (GB)
GIN	69.6K	2.57	2.1
PNA	32.2K	8.19	5.09
GenAgg	69.7K	6.90	4.25
FraudGT	182.4K	28.63	11.59
R-GCNE	47.7K	11.67	13.78
Multi-GIN	128.3K	9.41	7.47
Multi-PNA	60.0K	26.46	21.08
Multi-GenAgg	128.4K	25.56	13.34
Multi-FraudGT	243.7K	85.85	18.2
MEGA-GIN	161.3K	9.08	8.47
MEGA-PNA	79.2K	28.58	19.73
MEGA-GenAgg	128.4K	30.55	16.22
MEGA-R-GCNE	138.3K	19.18	8.58

Table 10 reports the training time per epoch (in seconds), memory usage, and number of parameters for all evaluated models on the AML Small HI dataset, measured on the same hardware. While our models were trained on an AI cluster, the results reported in this table were measured on a single NVIDIA GeForce RTX 4090 GPU to ensure fair and consistent comparison across all models. The reported training-time values were measured over 256 iterations per epoch, and the memory usage

represents the maximum GPU utilization. Table 11 reports the inference throughput rate in transactions per seconds for AML Small HI, AML Small LI, and ETH datasets, measured on the same NVIDIA GeForce RTX 4090 GPU. These results demonstrate that MEGA-GNNs are only slightly slower than Multi-GNNs, confirming that the overhead of two-state aggregation is not significant.

Table 11: Inference performance: throughput rate in [trans/sec].

Model	AML Small HI	AML Small LI	ETH
Multi-GIN	30179	26945	222825
MEGA-GIN	28655	25617	197236
Multi-PNA	28389	21153	123692
MEGA-PNA	27012	20344	117354

D.2 MEMORY OVERHEAD

In terms of memory, we assume that the multigraph is attributed, with feature vectors associated with each edge. The memory required to store the edge embeddings is $O(|\mathcal{E}|d)$ in the standard case.

For the two-stage aggregation, additional memory is needed to store a tensor of size $|\mathcal{E}|$ that indexes parallel edges in the multiset. This tensor is computed during preprocessing and reused across batches, thus avoiding redundant calculations. Furthermore, a tensor of size $|\mathcal{E}^{supp}| \times d$ is created dynamically during the forward pass to store the features of the artificial nodes; there are temporary computational intermediates during the first aggregation stage, similar to how hidden states function within neural network layers. These nodes do not permanently expand the graph structure.

As a result, the additional memory overhead per batch is $|\mathcal{E}| + |\mathcal{E}^{supp}|d$, which is $O(|\mathcal{E}|d)$. Consequently, the two-stage aggregation does not asymptotically alter the overall memory complexity, meaning that the model remains efficient even as the size of the input graph increases.

E AML RESULTS AND ADDITIONAL PERFORMANCE METRICS

Table 12: Minority class F1 scores (%) for six AML datasets using different GNN baselines (GIN, PNA, GenAgg, FraudGT and R-GCNE) and multigraph adaptations (Multi and MEGA). We extended R-GCNE to support only MEGA adaptations. Furthermore, we were unable to obtain Multi-GenAgg and MEGA-GenAgg results for the Large datasets.

Model	Small HI	Small LI	Medium HI	Medium LI	Large HI	Large LI
GIN	46.50 ± 4.11	19.93 ± 3.55	58.65 ± 2.50	25.36 ± 1.49	49.80 ± 1.38	4.99 ± 3.66
PNA	62.96 ± 1.43	21.02 ± 4.05	66.87 ± 1.87	31.79 ± 2.30	55.01 ± 1.94	20.47 ± 1.93
GenAgg	56.45 ± 2.94	21.03 ± 2.23	54.21 ± 7.90	20.72 ± 2.60	52.23 ± 4.29	9.23 ± 3.07
FraudGT	69.68 ± 1.58	28.69 ± 2.05	63.38 ± 0.87	24.02 ± 0.52	54.35 ± 1.65	11.02 ± 2.65
R-GCNE	63.91 ± 3.18	37.40 ± 1.61	65.71 ± 0.61	35.70 ± 0.99	58.26 ± 1.08	23.32 ± 0.73
GFP+LightGBM	62.86 ± 0.25	20.83 ± 1.50	59.48 ± 0.15	20.85 ± 0.38	48.67 ± 0.24	17.09 ± 0.46
GFP+XGBoost	63.23 ± 0.17	27.30 ± 0.33	65.70 ± 0.26	28.16 ± 0.14	42.68 ± 12.93	24.23 ± 0.12
Multi-FraudGT	75.81 ± 0.75	45.69 ± 1.14	75.97 ± 0.18	44.66 ± 0.58	73.04 ± 0.59	35.49 ± 0.52
Multi-GIN	62.66 ± 1.73	32.21 ± 0.99	67.72 ± 0.94	31.24 ± 2.12	71.44 ± 1.25	9.46 ± 8.85
Multi-PNA	67.35 ± 2.89	35.39 ± 3.93	76.12 ± 0.69	43.81 ± 0.51	72.35 ± 1.14	33.54 ± 2.04
Multi-GenAgg	64.92 ± 3.85	36.36 ± 4.07	66.45 ± 1.30	37.72 ± 0.73	OOM	OOM
MEGA-RGCNE	70.65 ± 1.80	40.92 ± 2.69	74.48 ± 0.25	41.21 ± 0.45	67.41 ± 3.38	27.25 ± 0.82
MEGA-GIN	70.83 ± 2.19	43.67 ± 0.55	70.77 ± 2.76	39.03 ± 1.88	70.41 ± 2.74	11.64 ± 1.64
MEGA-PNA	74.01 ± 1.55	46.32 ± 2.07	78.26 ± 0.11	49.40 ± 0.54	76.95 ± 0.44	38.31 ± 1.53
MEGA-GenAgg	74.48 ± 0.84	46.30 ± 0.42	76.70 ± 0.32	44.90 ± 0.06	OOM	OOM

In this section, we present the results from Figure 4 in a tabular format with additional comparisons at Table 12. Additionally, we provide comprehensive evaluation results in Tables 13 and 14 which present Precision and Recall metrics for the AML edge classification task. These detailed metrics

1350

1351 Table 13: Precision scores (%) on AML edge classification task. Best result is indicated with **bold**.
1352

Model	Small HI	Small LI	Medium HI	Medium LI	Large HI	Large LI
GIN	43.78 \pm 6.41	17.90 \pm 4.92	63.19 \pm 6.11	29.00 \pm 2.45	47.32 \pm 2.79	32.07 \pm 22.91
PNA	66.92 \pm 4.06	20.47 \pm 6.80	69.29 \pm 3.23	49.01 \pm 4.75	50.32 \pm 3.14	46.19 \pm 7.38
GenAgg	55.68 \pm 4.98	22.55 \pm 9.02	50.50 \pm 12.18	23.01 \pm 4.95	51.15 \pm 10.55	35.16 \pm 10.81
RGCNE	76.08 \pm 3.55	68.90 \pm 3.86	75.37 \pm 2.64	55.26 \pm 5.91	72.43 \pm 3.93	39.52 \pm 1.59
Multi-FraudGT	80.04 \pm 1.36	68.07 \pm 3.34	81.18 \pm 1.08	73.24 \pm 1.42	80.00 \pm 3.49	63.38 \pm 3.39
Multi-GIN	61.02 \pm 2.60	33.61 \pm 3.44	69.77 \pm 3.89	36.43 \pm 6.98	76.68 \pm 4.55	47.78 \pm 33.73
Multi-PNA	66.16 \pm 6.59	43.99 \pm 8.72	78.32 \pm 5.42	67.22 \pm 3.31	74.46 \pm 3.07	72.68 \pm 6.25
Multi-GenAgg	64.66 \pm 5.54	49.55 \pm 12.38	67.45 \pm 0.78	48.35 \pm 1.73	OOM	OOM
MEGA-RGCNE	75.05 \pm 3.87	58.49 \pm 12.59	82.28 \pm 2.12	74.75 \pm 2.86	67.12 \pm 7.39	69.26 \pm 11.00
MEGA-GIN	70.11 \pm 4.23	63.95 \pm 4.29	74.16 \pm 4.91	67.32 \pm 11.24	70.35 \pm 6.59	38.35 \pm 5.36
MEGA-PNA	76.90 \pm 4.05	66.26 \pm 8.82	84.26 \pm 0.62	75.74 \pm 2.75	83.81 \pm 1.27	57.28 \pm 8.92
MEGA-GenAgg	78.27 \pm 2.46	66.16 \pm 1.22	85.57 \pm 1.29	72.09 \pm 0.68	OOM	OOM

1364

1365

1366 Table 14: Recall scores (%) on AML edge classification task. Best result is indicated with **bold**.
1367

Model	Small HI	Small LI	Medium HI	Medium LI	Large HI	Large LI
GIN	50.06 \pm 2.62	23.14 \pm 2.70	55.67 \pm 5.77	22.88 \pm 2.72	52.68 \pm 0.32	2.72 \pm 2.02
PNA	59.65 \pm 1.82	22.94 \pm 1.77	64.79 \pm 3.07	23.73 \pm 2.58	63.19 \pm 0.74	16.85 \pm 1.93
GenAgg	57.52 \pm 2.59	22.37 \pm 3.18	60.06 \pm 3.42	19.92 \pm 4.00	54.86 \pm 2.92	5.37 \pm 1.91
RGCNE	55.10 \pm 2.91	25.69 \pm 1.17	58.29 \pm 0.81	26.52 \pm 1.07	48.91 \pm 2.34	16.57 \pm 0.90
Multi-FraudGT	72.02 \pm 0.96	34.42 \pm 1.16	71.40 \pm 0.64	32.14 \pm 0.82	68.05 \pm 1.42	24.70 \pm 0.43
Multi-GIN	64.49 \pm 2.47	31.37 \pm 2.46	66.03 \pm 2.01	28.47 \pm 3.36	67.06 \pm 1.42	6.83 \pm 7.25
Multi-PNA	69.06 \pm 1.51	29.95 \pm 1.86	68.12 \pm 2.33	32.55 \pm 0.67	70.45 \pm 0.64	21.94 \pm 2.11
Multi-GenAgg	65.32 \pm 2.71	29.55 \pm 1.95	65.56 \pm 2.84	30.94 \pm 0.41	OOM	OOM
MEGA-RGCNE	66.83 \pm 0.96	32.14 \pm 0.97	68.09 \pm 1.37	28.48 \pm 0.76	68.26 \pm 1.42	17.09 \pm 0.76
MEGA-GIN	71.74 \pm 1.64	33.25 \pm 0.87	67.77 \pm 1.40	28.18 \pm 3.52	63.64 \pm 3.15	6.91 \pm 1.13
MEGA-PNA	71.48 \pm 1.32	35.89 \pm 0.65	73.07 \pm 0.39	36.69 \pm 0.72	71.15 \pm 0.43	29.10 \pm 0.74
MEGA-GenAgg	71.14 \pm 1.72	35.62 \pm 0.50	69.53 \pm 1.40	32.60 \pm 0.18	OOM	OOM

1380

1381

1382 offer deeper insights into the performance characteristics of our proposed methods across varying
1383 data regimes.
1384

1385 E.1 ADDITIONAL COMPARISONS

1386

1387

1388 Table 15: Comparison with DIAM on AML edge classification task.

Model	Small HI	Small LI
DIAM	51.82 \pm 6.09	9.80 \pm 1.50
MEGA-PNA	74.01 \pm 1.55	46.32 \pm 2.07

1393

1394 On the illicit transaction detection task, MEGA-PNA clearly outperforms DIAM (see Table 15),
1395 demonstrating the advantages of modeling edge-attributed multigraphs to capture complex transac-
1396 tion patterns. Unlike DIAM, which is a specialized solution for ETH node classification task Chen
1397 et al. (2021a), our model MEGA-GNN is a general-purpose architecture capable of both node and
1398 edge classification on multigraphs. It generates expressive edge embeddings and propagates them
1399 through the message passing process.
1400

1401 F BROADER IMPACT

1402

1403

This work contributes effective graph machine learning techniques for financial crime analysis by
addressing the specific challenges posed by multigraph structures in financial transaction networks.

1404 Our model learns to detect illicit behavior directly from data, rather than relying on predefined,
1405 rule-based systems. This end-to-end approach improves adaptability and detection performance.
1406

1407 By enabling more accurate detection of illicit activity, our model has the potential to support financial
1408 institutions and regulatory bodies in identifying and preventing illicit financial behavior, such
1409 as money laundering and fraud. This may lead to stronger financial oversight, reduced criminal
1410 financing, and overall societal benefit through enhanced economic transparency and security.
1411

1412 G LLM USAGE

1413 LLMs were used solely as a writing assistant to polish the language of this manuscript, such as
1414 checking grammar and improving clarity of expression. They were not used extensively.
1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457