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Abstract

Generative modeling of discrete variabl
in natural language processing and b

es is challenging yet crucial for applications
iological sequence design. We introduce

the Shortlisting Model (SLM), a novel simplex-based diffusion model inspired
by progressive candidate pruning. SLM operates on simplex centroids, reducing
generation complexity and enhancing scalability. Additionally, SLM incorporates
a flexible implementation of classifier-free guidance, enhancing unconditional
generation performance. Extensive experiments on DNA promoter and enhancer
design, protein design, character-level and large-vocabulary language modeling
demonstrate the competitive performance and strong potential of SLM. Our code

can be found at https://github.com

1 Introduction

Autoregressive models such as large language
models (LLMs), although having achieved re-
markable success in text generation [Achiam
et al., 2023| |Brown et al.} [2020], struggle over
tasks that lack an intrinsic sequential-ordering
inductive bias, such as DNA design [Avdeyev.
et al.| [2023| [Stark et al.| [2024]], protein sequence
design [Wang et al.,[2024, [Lin et al.| 2023|] and
molecular graph generation [Vignac et al.}|2022].
Consequently, there is growing interest in de-
veloping new paradigms for discrete variable
generation, such as diffusion-based [Lou et al.|
Sahoo et al., 2024} Shi et al., 2024] and flow-
matching-based [Gat et al.| [2024] |Davis et al.|
2024 |Cheng et al.| |2024] methods.

Recent discrete generative models are generally
classified into two main categories based on their
operational spaces: discrete-space models and
continuous-space models. The former, specifi-
cally discrete diffusion model [Lou et al., |Xu e
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Figure 1: SLM’s forward and reverse pro-
cess. Comparisons between MDLM and DP3M-
Uniform is located in Appendix

t al., 2024, mimics continuous diffusion processes

using substitution or masking operations to decompose information, which has shown impressive
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performance for discrete generative modeling. However, these discrete counterparts differ funda-
mentally from original continuous diffusion models [Ho et al.,|2020], where the smooth and gradual
information transitions intrinsic to the generation process are key to their success. On the other hand,
continuous-space models map discrete data into continuous representations. While benefiting from
continuous properties, capturing the geometric structure and adhering to constraints via continuous
generative models introduces new challenges. In this context, simplex-based approaches [Cheng
et al.} 2024, [Davis et al., 2024, |Graves et al., |2023|] offer a balanced solution by representing discrete
data on the probability simplex, which naturally adheres to the fundamental properties of categorical
distributions.

However, existing simplex-based approaches often rely on intricate operations to define trajectories
over the entire continuous space. For instance, Statistical Flow Matching(SFM) [Cheng et al.| [2024]]
and Fisher Flow Matching [Davis et al., 2024] define geodesics based on sphere map and the Fisher-
Rao metric. The training also incorporates Riemannian optimal transport. Similarly, Bayesian Flow
Networks (BFNs) involve heavy mathematical derivations and change-of-variable techniques to
define simplex trajectories through Gaussian-formed count variables. Despite mathematical rigor,
their demanding complexity limits scalability in large-scale generative tasks.

In this paper, we aim to preserve the core principle of simplex-based methods, gradual information
growth, while exploring simpler yet effective alternatives. We propose viewing discrete variable
generation as progressive candidate pruning, starting from the full category set and iteratively
narrowing down to a single choice. We term this approach ShortListing Models(SLM). Formally,
shortlisting models reside within the diffusion framework, trainable via the variational lower bound
(VLB). In contrast to existing simplex-based methods using vocabulary-level MSE loss [Graves
et al., 2023, |Cheng et al.} 2024, |Davis et al., [2024]], our approach employs a simplified cross-entropy
objective, effectively mitigating vanishing gradient issues and better handling large-vocabulary
settings. As illustrated in Figures |1} and |2 our model effectively reduces degrees of freedom by
modeling transitions among the simplex centroids rather than the entire simplex. Additionally,
shortlisting models offer flexibility for adaptations such as classifier-free guidance.

We comprehensively evaluate the proposed approach over various discrete generation tasks and
benchmarks, including char-level language modeling, large-scale language modeling, DNA promoter
and enhancer design, and Protein sequence design. Specifically, we achieve strong performance
among non-autoregressive methods on text8 and obtain competitive results on OpenWebText, where
previous simplex-based approaches had difficulty generating reasonable outputs. In DNA design tasks,
our non-guided variants achieve state-of-the-art (SOTA) results. Furthermore, with classifier-free
guidance, our model attains stronger performance while remaining less sensitive to hyperparameters.
Additionally, our 38M-parameter shortlisting model can design proteins with enhanced foldability,
fitness, self-consistency and diversity, surpassing the larger, well-known ESM2-150M model [Lin
et al.,[2022].

2 Preliminary

2.1 Definition and Notations

We encode a discrete variable with K distinct categories using one-hot vectors € = [eg, e, ..., € K]T
In each vector, only the i-th element e(:) = 1 signifies the inclusion of the i-th category, while all
other elements are zero.

Definition 2.1. A candidate set for K categories is defined as a binary-valued vector ¢ =

[c1,¢a,...,ck]", where each ¢; € {0,1}, and the vector has at least one non-zero entry, i.e.,
17c > 0.

The candidate-set variable ¢ encodes the selection status of each category: c(i) = 1 indicates that the
i-th category is included, while c(i) = 0 denotes its exclusion. Specifically, there are two distinct
instances of the candidate variable: c is an all-one vector ([1,--- ,1]) that represents maximum
candidates setting, i.e. all K categories are selected; one-hot vector is another special case which
represents minimum candidates setting, with only one category included.



Figure 2: Pathological behavior of SLM on one simplex with K = 5(A%). Each vertex represents
one of the categorical targets while the trajectory of the white point serves as a probability path in
sampling. Note that the trajectory of shortlisting model could be seen as jumping among the centroids
of subspaces in simplex space.

2.2 Diffusion Models

Shortlisting model is a variant of diffusion models, which can be viewed as latent variable models
where the latent variables form a Markov chain. Specifically, for a diffusion model with the sequence
latent variable 1.7 = @1, - - - &7, the implied density function py holds the following Markovness
by definition: py(xo, x1.7) = pe(xo|T1)pe(T1|T2) - Po(XT_1|2T). To learn this latent variable
model, a carefully designed constant variational distribution ¢ (1.7 | o) = HZ;I q (x| ©i—1),
referred to as the ‘forward process’, is involved. Based on the variational distribution, the diffusion

model is generally trained with the following variational lower bound [Austin et al.,|2021}, |Ho et al.,
2020]:

T
Lo =Eq(aq)[Dxr [q (T | o) [|p (x7)] + ZEq(m,\mU) [Dk1 g (Ti—1 | ¢, 20) ||po (i1 | )]
L =2 Li—1
—Eq (a1 |ao) [log po (xo | 21)]]- (1

Lo

Here ¢(xq) refers to the data distribution.

3 Shortlisting Models

Inspired by progressive candidate pruning, we effectively translate the generation of discrete variables
into a category selection process, which begins by considering all categories in the vocabulary
as potential candidates and progressively narrows down the options until reaching a final one-hot
representation, indicating a single category. This section introduces the detailed components of the
proposed shortlisting model as well as the training and sampling processes.

3.1 Forward Candidate Appending

We design a forward candidate appending process over the space of candidate set as introduced
in Definition. 2.1} For any discrete variable x, its one-hot representation (as a special case of the
candidate set) is considered as the initial step, denoted as x. For the last step, x%., we make it into
an all-one vector (1). Then we seek the following Markov chain interpolation x§ — x§{ — - - - — X%
between x§ and x%., which satisfies:

v0§i<j§T 1TX,(; S 1TX;, [X;]TX;: = 1TX;: (2)
Recall x€ is a binary-valued vector, hence the above condition essentially indicates the possible
categories implied by the candidate set of early steps are strictly scooped by later steps. We propose
using a multivariate Bernoulli distribution to model the forward process over the candidate-set
variable, denoted as x¢ ~ Bern(¢), where ¢ is a K dimensional vector representing the parameters
of the distribution. To control the noise level, we introduce n(t) as a scheduling function over the
candidate numbers, where 1 < n(t) < K. By our definition, n(t) is a monotonically increasing
function from time step O to 7', designed to gradually perturb the signal. Intuitively, n(¢) can be
viewed as controlling the number of ones in the vector x§f, representing the number of possible
categories at time ¢. To satisfy the condition in Eq. 2} we set n(0) = 1 and n(7T") = K, and define the



transition probabilities from ¢ — 1 to ¢ as:

n(t) —n(t — 1)) 3)

ol 1) = Bern (xt_y + (1 xS

Proposition 3.1. With Eq.[3|as the transition probability, the marginal distribution is defined as:

t)—1
q(xf|x5) = Bern (Xf_l +(1- X§—1)nl(<)_1> 4

and corresponding posterior distribution q(x§_, |x§,x§) also lies in the form of Bernoulli distribution,
the analytical form of which is (t > 2):

q(Xi-1[x¢,x5) = Bern <X8 + (1 = x5) © x7] ®)

n(t—1)—1
n(t) -1 >

Here ® stands for the Hadamard products between two vectors.

Detailed proof can be found in Appendix [A]

3.2 Reverse Candidate Pruning

The reverse process implied by pp(x$_|x§) corresponds to the progressive candidate pruning process.
We follow previous literature [Austin et al., 2021} |[Sahoo et al., 2024 to parameterize pp(x§_; |x§),
by combining a neural network(6) predicted x§ based on x; and the formulation of the posterior in

Eq.[3}

Po(Xi—1[x7) = q(xi_1|x7, NN (x7, 1))

=Bern ([NNg(xg, t) + (1 — NNp(xS, t))"(;(;)lzzl} ® xf) (6)

Here NNy (x§, t) refers to a probability distribution over K-dim, e.g., outputs after softmax. Each

parameter in py (xf_l | xf) can be viewed as an interpolation between the constant value "55(27)1:1

and 1, weighted by NNy (x§, t).

Moreover, we propose incorporating the property of the forward process where xf_; is strictly
contained within x§, expressed as [xf]T x¢_; = 1Tx¢ . This property is integrated into pa-
rameterization by ensuring that NNy (x§,¢) has non-zero values only for categories within x§,
satisfying [NNy (x¢,#)]7 (1 — x¢) = 0. Practically, such condition can be satisfied by ading —oco
to the logits before the softmax operation. The prior distribution is set as the all-one vector, i.e.,
po(x5) = Bern(1).

3.3 Training Procedure

We insert the formulation in Eq.[4 Eq.[5]and Eq.[6into the Variational lower bound in Eq.[I]to derive
the final objective for shortlisting models. We start with the first term L. As mentioned above,
po(x$) = Bern(1). We put the time step 7" into Eq. 4]

C |«C c c n(T) -1 c c K-1
q(x%|x§) = Bern (XO +(1- XO)Kl) = Bern (XO +(1- XO)Kl) = Bern(1)

The first term L in Eq. becomes: Ly = ]Eq(mc)DKL [Bern(1)|| Bern(1)] = 0. For the last term
0

Lo, with n(0) = 1 the pg(x§|x$) in Eq.[6] can be expressed as py(x§|x§) = Bern(NNy(x§,1)).

Then Ly is expressed as:

Lo = ~E, (g)5) log po (§ | 7))

log (1 — NN (x{, 1), 2] — ), [[x7 —xG[| >0

— c c
- Eq(m‘{\wg)[log <NN9(X17t)7:BO> + {07 chl: _ XS” — 0



Here (-) denotes the inner product. Next, we focus on the term L;_;, and for simplicity we use
pred, (x§) as a shorted notation for [NNy(x§, ¢) 4 (1 —NNy(x§, t)) %} ©x¥), correspondingly,
gd(x§) for x§ + [(1 — x§) © x§] "Lt

Li—1 = By (e |ag) [Prr [Bern(gd(xy)) || Bern(pred, (x7))]] @)

q

The KL divergence between the Multivariate Bernoulli distribution is extended as:

Dr[Bern(gd(x7))|| Bern(pred, (x7))]

: d'(x§ 1 — gd'(x§
iy (gd’(X?) log w + (1 - gd'(xf)) log g(xt)) ®)
§,(x2)i>0 predg (x§) 1 — predy (x§)

Here, we use the superscript ¢ to denote the i-th dimension.

Mitigating Gradient Vanishing. We observe that directly optimizing the KL divergence of a multi-
dimensional Bernoulli distribution, as in Eq.[7} can lead to optimization failure, with the process
stalled from the beginning. This issue is likely due to gradient vanishing, where the gradients become
too small to drive effective parameter updates. We formally investigate this issue in the following.

Taking dimension i in the K dimensions and (x¢)? > 0 as an example, the gradient towards the pa-

. i i d*(x$ 1—gd" (x5} i
rameter 0 is Vo Dxr, [Bern(gd' (x§)|| Bern(predy (x§)] = _(pfedg'f(xg)) -3 pfew( c)))Vgpred (x§).
And we denote the above gradient term as VoD%, for simplicity in the following. Recall

that gd’(x$) and pred)(x¢) are both interpolations between 1 and % as discussed in

Section we have: % < gdi(xf),pred’é(xf) < 1. Consider the common situation

when (x§)* = 1, and the network prediction NN} (x$,¢) holds a non-zero value. The norm of

gd’ (x§) 1—gd* (x) n(t)—1 .. . ey
predy (x9) (@) 1—predy (x¢) || < nii-n—1- Combining with Vopredy(x§) =

VoNNi (x$, ), we could obtain the following bounded condition over the gradient norm

weight satisfies that:

n(t)—n(t 1)

n(t)—
of VGDKL
: gd'(xf) 1 ed'(xf) i
Vo Dy = , - Vgpredy(
IVeDkole = | = T |, 1Dl
n(t)—1 n(t)—n(t-— n(t) —n(t—1)

D || 7NN (2, )| [VoNNG (5. )], (9)

Snt—1)—-1 n@l) -1 27 Tpt—1)—1
Note that the bounds involve the gradient term VyNNJ (x¢, ), which is computed directly from the
softmax outputs (without applying the logarithm). However, taking gradients through the softmax
function directly often leads to vanishing gradients, particularly in high-dimensional settings where
the outputs NNj(x§, t) can be very small initially. We additionally provide formal illustration in
Appendix [A.7]

To mitigate this issue, we propose scaling the gradient in Eq. 9| by m, consistent with the

O\t

widely adopted log-softmax optimization. Surprisingly, this corresponds directly to the following
simplified objective:

n(t) —n(t—1)

weight
L™ = “Eyastas) |~ iy - 1

(o NNo(a?, )| (10)
Though derived with heuristic intuition, we formally show in Appendix [A.3]that this reweighted loss
(Eq. can be interpreted as a reasonable approximation.

Moreover, we can derive an even simpler training objective by removing the weight, analogous to the
simplified loss used in [Ho et al., |2020], which may provide different practical properties:

LI = B, (45105 (108 NNo @5 1), )] an
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Figure 3: Quantitative Performance on Protein Sequence Design SLM compared to baselines:
(A-D) pLDDT(A), Progen2-nll(B), scPerplexity(C) and inner-TM(D) scores for sequence sampled
from ESM1-43M, ESM2-150M, and the following 38M models: EvoDiff-OADM, EvoDiff-D3PM,
MDLM, UDLM, DFM-Mask, DFM-Uniform, SLM. (E-F) The joint distribution of pLDDT and
scPerplexity from SLM model and Diffusion Models(E) and Discrete Flow Matching Models(F).

The above objective is essentially the Cross-Entropy loss between the network prediction and the
original data sample. Unless otherwise specified, we use L¥™P' for experiments on OpenWebText
and L¥'€" for all other experiments. The likelihood(ELBO) is strictly evaluated using the original
ELBO defined in Eq.[7}

Candidate Set Size Scheduling. Another important component of the framework is the scheduling
function over the size of candidate set, i.e. n(t). It is noteworthy that n(t) is not restricted to
integer values; rather, it can take any real value within the interval [1, K. We take a similar intuition

as the probability of

Xt
S (%)
distribution over vocabulary, then we expect the entropy of the distribution to increase linearly
fromt = 1tot = T. Note the expected ones of x§ is exactly n(t), hence the corresponding
entropy of the aforementioned distribution is log n2(¢). Then we can design scheduling function as:
n(t) = e(os K)x

from [|Graves et al., 2023]], by considering the normalized vector

3.4 Sampling Process

The sampling process of shortlisting models can be directly conducted with ancestral sampling
based on the learned py(x§_; |x§) with x5 ~ Bern(1) as the starting point. The full pseudocode
for training and sampling is provided in Appendix To ensure the candidate set always contains
at least one candidate (i.e., x{ # 0), we empirically set the dimension with the largest Bernoulli
parameter to 1 when the sampled vector is a zero vector.

Classifier-free Guidance. We show that this simplified formulation offers flexibility to implement
classifier-free guidance with an extra class-conditioned shortlist model. Denoting the output of the
unconditional model at timestep ¢ as NNy (x§, ¢, K') and the conditional model as NNy (x¢, ¢, cls).
Here cls € [0, K —1]NZ denotes the class label. The reverse process based on classifier-free guidance

can be obtained as: p§To(x§ ;|x§) = Bern ([NNg(xf,t) +(1- NNg(xf,t))%] ©) xtc)

Here the NNy is as: NNy (x$,t) = 7NNy (xS, #,cls) + (1 — v)NNg(x¢, ¢, K). When v > 1, there
can be negative number in NNy. Following [Stark et al., [2024], we project the value of NNy back to
the simplex based on [Wang and Carreira-Perpinan, [2013]].

4 Experiments

In this section, we evaluate our shortlisting models across various discrete data generation tasks and
benchmarks. These tasks include language modeling and biological sequence design, the latter of



which is especially well suited for non-autoregressive models and for demonstrating the potential of
our proposed method.

4.1 Language Modeling

Text8: Firstly, we conduct experiments on the text8 dataset [Mahoney, |[2011]] with vocab size of 27.
Bits-per-character(BPC) is reported based on the Equation. [§] Details on the dataset can be found in
AppendixC.I.1] The results are reported in Table[I] and additional generated samples are provided
in Table[7]

We compare our shortlisting model with baselines across various categories: (1) autoregressive mod-
els: Transformer AR[[Vaswani et al.,|2017]], AR Argmax Flow[|Hoogeboom et al.,[2021a], AR Discrete
Flow|[[Tran et al.,2019]; (2) any-order autoregressive models: ARDM[Hoogeboom et al., 2021b],
MAC [Shih et al.,[2022]; (3) embedding-space continuous diffusion models: Plaid|Gulrajani and
Hashimotol, 2024]); (4) advanced discrete diffusion models: SEDD|Lou et al., 2023]], MDLM[Sahoo
et al.; 2024], UDLM|Schiff et al., 2024], D3PM variants[Austin et al.,2021]; and (5) simplex-based
approaches: BFN|[Graves et al.,|2023|], SFM|[/Cheng et al., 2024]].

As aforementioned, we report the BPC of both
the shortlisting model(SLM) trained with the Table 1: Bits Per Character (BPC) on Text8 Test
LsmPe in Eq. [11]and with the L*°€" in Eq. Set.

As demonstrated in Table even with the
simplified objective, the proposed approach Category Method BPC ({)
achieves competitive performance compared to

other noq—autoregressive 'approaches. Moreover, , . oregressive Xrlgn/ifr(;rr;n:xr léll;w }gg
the reweighted formulation further boosts den- AR Discrete Flow 1.23
sity estimation performance by better aligning
with the original ELBO, as discussed in Sec- AmY-07 der ARDM <143
tion3.3] Autoregressive MAC <140
OpenWebText: We further investigate the Continuous Diffusion _ Plaid < 148
challenges and potential of simplex-based ap- Mult. Diffusion <172
proaches in large vocabulary settings, over the D3PM Uniform < 161
OpenWebText [Gokaslan and Cohen) 2019] . o UDLM <1.59
dataset with vocab size of 50527. Detailed Discrere Diffusion ]S)égl\g gtl;’?org 2 }ji
results and discussions are provided in Ap- MDLM sor 2139
pendix and Table. 5] highlighting that MDA Z 137
while our SLM still lags behind advanced au- —
toregressive models in density estimation, it BEN < 141
achieves competitive generation performance Simplex A " ]S)lfl\l\/f 31 ]3/9“
and significantly outperforms existing simplex- imptex Approaches simole :
based methods. SLM(L™2%) =42
SLM(L"eieht) <138

4.2 De novo Design of Protein Sequence

In this experiment, we focus on the core task of unconditional protein design, and examine various
protein properties to demonstrate SLM’s superiority in this task.

Baselines: We compare SLM against three groups of existing methods: (1) Autoregressive models
(AR); (1) Masked language models (MLMs), specifically ESM1[Rives et al.l[2019] and ESM2[Lin
et al., 2022]; (2) Discrete Diffusion Models, represented by two versions of EvoDiff[Alamdari et al.,
2023]: EvoDiff-OADM,EvoDiff-D3PM, MDLM|[Sahoo et al.l 2024] and UDLM|Schiff et al.l
2024]; (3) Discrete Flow Matching Models[Gat et al., 2024]: DFM-Mask and DFM-Uniform.
Further information of these baselines in Appendix [C.5]

To demonstrate SLM’s effectiveness in protein sequence generation, we evaluate four key properties:
(1) Foldability: structural plausibility predicted by ESMFold [Lin et al., 2022]; (2) Fitness: scores
predicted by ProGen2-xlarge [Nijkamp et al., [2023]; (3) Self-Consistency: alignment between
sequences folded by ESMFold and inverse-folded by ESM-IF [Hsu et al., 2022[]; and (4) Diversity:
pairwise inner-TM scores among generated samples. Detailed metric definitions are provided
in Appendix As shown in Figure [3] SLM surpasses all baselines across all metrics and



Table 2: Conditional generation over promoter Table 3: FBD metric for sequence generation under

design. BFN results are from our experiments two datasets. CFG refers to Classifier-Free Guid-
and the other baselines from [Davis et al.,[2024]]. ance.

Model MSE() Model Mel FBD(]) FB FBD(])
Autoregressive 0.034+0.001 Random 619.0+£0.8  832.44+0.3
Bit Diffusion (bit enc) 0.041 Autoregressive 35.440.5 25.7+1.0
Bit Diffusion (one-hot) 0.040 Fisher-Flow 27.5+2.6 3.84+0.3
D3PM-uniform 0.038 Dirichlet FM 5.340.5 15.1+£0.4
UDLM 0.030+0.001 BFN 3.340.1 10.8£0.6
MDLM 0.028+0.001 SLM 2.2+0.1 4.4+0.2
Dlrlchlet FM 0.03440.004 BEN CEG 23401 23402
Fisher-Flow 0.02940.001 . .

BEN 0.0405-£0.0003 Dirichlet FM CFG 1.9+0.4 1.0+0.3
DDSM 0033 SLM CFG 1.4+0.1 1.0+0.1
SLM 0.0265+0.0006

achieves competitive performance compared to ESM2-150M [Lin et al.;|2022]], demonstrating strong
generalization and robustness under restricted vocabularies and complex data distributions.

4.3 Design of DNA Sequence

In this part, we focus on the roles of promoters and enhancers, and evaluate SLM in this context.
Following prior work, we set the language model to use 500 NFE for enhancers and 1000 NFE for
promoters. For other models, Non-CFG models use 100 NFE, and CFG variants use 200 NFE.

4.3.1 Promoter DNA Sequence Design

We follow the setting in previous work DDSM
[Avdeyev et al., 2023]] to generate DNA promoter
sequences conditioned on the promoter profile.

Data: We use a dataset of 100,000 human promoter
sequences, each 1024 base-pairs long, extracted from
the Human Promoter Database [Hon et al.l [2017].
Each sequence is paired with a CAGE signal indicat-
ing transcriptional activity at each position [[Shiraki
et al.l 2003|, [Forrest et al., [2014]]. Sequences from
chromosomes 8 and 9 form the test set, and the re-
mainder are used for training.

Baselines: We compared the SLM method with: (1)
flow matching methods including Dirichlet FM [Stark
et al.,2024]] and Fisher-Flow [Davis et al., 2024]; (2)
autoregressive language model that generates base

Figure 4: Performance of SLM under differ-
ent CFG factor v for unconditional enhancer
design.

pairs; (3) Bayesian Flow Networks (BFN) [Graves et al., [2023]]; and (4) other discrete diffusion
methods including two implementations of Bit Diffusion [[Chen et al., [2022al], D3PM [Austin et al.,
2021[], MDLM [Sahoo et al.,[2024], UDLM [Schiff et al.,|2024]] and simplex-based DDSM [Avdeyev

et al.,[2023].

Results: The regulatory activity of the sequences is given by Sei, a model that predicts the regulatory
potential of the sequences [[Chen et al.,[2022b]]. We report the mean and standard deviation of MSE
between the generated sequences and the target. Our MSE values were measured under the same Sei
model as in previous works. As shown in Table@ our SLM method achieves the lowest MSE, with a

smaller standard deviation as well.

4.3.2 Enhancer DNA Sequence Design

We also evaluate SLM for enhancer generation, following DirichletFM [Stark et al., 2024]).



Table 4: Ablation study on loss function conducted on DNA sequence design.

Mel FB promoter
FBD(]) PPL(}) FBD({) PPL(]) MSE() PPL()

[simple 2.1788 3.4102 4.4450 3.4618 0.0265 2.8084
Lweieht 2.5848 3.4018 49670 3.4654 0.0260 2.7672

Loss type

Data: We use 104k enhancer sequences from fly brain cells and 89k from human melanoma cells
[Janssens et al., 2022} |Atak et al.} 2021], each with a length of 500. Cell type labels were determined
by ATAC-seq data[Buenrostro et al.,[2013]], with fly brain cells divided into 81 classes and human
melanoma cells into 47 classes based on cell types.

Baselines: In addition to their standard implementations, the baseline models also incorporate
classifier-free guidance. We select the optimal classifier-free guidance factor  for all models. The
performance of our method under different classifier-free guidance factors + is presented in Figure 4]
Specific experimental settings and details can be found in Appendix[C.2.2]

Results: We evaluate generated sequences using the Fréchet Biological Distance (FBD) from Dirichlet
FM [Stark et al.| 2024]], which treats classifier-hidden representations as sequence embeddings and
computes FBD as the Wasserstein distance between them. SLM achieves the best performance
without label guidance and further improves with label guidance (see Table [3).

4.4 Ablation Study on Reweighted Loss

We conduct ablation experiments comparing the simple loss and the reweighted loss on both enhancer
and promoter tasks. Table 4] shows that the reweighted loss achieves superior density estimation,
while the simple loss can generate better samples.

S Comparison to Existing Works

Our SLM connects closely to several existing approaches. When K = 2, SLM resembles Bernoulli
diffusion [Sohl-Dickstein et al.| [2015]), though it operates within a three-state space [0, 1], [1, 0], [1, 1]
rather than Bernoulli diffusion’s two-state (0, 1) space. The progressive candidate exclusion in SLM
also shares conceptual similarities with the SUBS parameterization employed in MDLM [Shi et al.;
2024, |Sahoo et al., [2024]]. Unlike mask-based discrete diffusion methods, however, SLM directly
operates on the simplex, refining information gradually over time.

Recent simplex-based methods such as DirichletFM [Stark et al.| 2024]] define trajectories over the
continuous full simplex, whereas our SLM explicitly restricts transitions to discrete centroids or
their subspaces, thereby reducing degrees of freedom and enhancing efficiency and interpretability.
Additionally, while DirichletFM optimizes an MSE-based loss, SLM adopts a simplified cross-entropy
objective (Eq.[I0), alleviating gradient vanishing issues associated with Bernoulli KL losses and
leading to improved performance in challenging tasks.

6 Conclusion

In this paper, we introduce the Shortlisting Model (SLM), a novel discrete generative model inspired
by progressive candidate pruning. SLM follows a unique generation trajectory by transitioning from
the centroids of the simplex space. With impressive performance across various tasks, SLM offers a
simple yet effective alternative for discrete generative modeling.

Limitation This work focuses on simplex-based discrete generative models, with evaluations
conducted on text and biological sequence data. Comprehensive studies on other modalities, such
as graphs and images, are beyond the scope of this paper and are left for future work. Additionally,
further theoretical analysis and engineering improvements are required to scale our approach to large,
real-world applications.
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A Mathematical Derivation

A.1 Proof of Proposition 3.1

Since x is a vector and the elements of the vector are independent, we only consider the position of a
fixed index in all the vectors. In the following, all instances of x are redefined as scalars. First, we
prove the following proposition:

n(t) — 1
c=1|x{=0)=—"— 12
p(x | x5 ) K1 (12)
When ¢t = 0, p(xo = 1| xg = 0) = 0 is obvious. Thus, we can proceed with induction on ¢.
gy =1 x5 =0)
n(t—1)— Jrn(t) n(t—1) 1in(t—1)—1
S K-1 K—n(t-1) K-1
t)—1
_nH) -1 (13)

K-1

Since q(x; = 1 | xo = 1) = 1, the two cases can be combined into g(x; | x¢o) = Bern(xo + (1 —

Xo) "I(;):ll ), whose vector form is given by Eq.

The only non-trivial case in the posterior distribution is:

Ay = 1] xF =1,x = 0)
gl =L xp=1]x5=0)

A< =1]x5=0)
g =1]x5=0)
o<t = 1] x5 =0)

n(t—1)—1
o) -1 (14)

Only when x§ = 1, ¢(x§_; = 1 | x§ = 1,x§ = 1) = 1. In all other cases, the probability is 0.
Therefore, the result of Eq.[5|can be given.

A.2 Gradient Vanishing of V,NNj (z¢,t)

Note that NN (z$, t) is essentially the output of the softmax, which could be further expressed as:

NN (x5, ) — — P (05 1) (15)

> jexp (fg(xf,t))

where fy denotes the raw output of the neural network. The gradient with respect to the softmax
input is:
ONNj(x§, 1)
afy (xf,t)
The norm is as [NNj(x¢,¢) (1 — NNj(x§,t)) |2 when k = i; and ||[NNj (x§, £)NN§(x$, ¢)[|2 when
k # 4. Both case the norm is strictly bounded with the |[NN7 (x¢,)||2. At the initial training stage,

NN (x$, ) may become uniformly small in high-dimensional settings, leading to vanishing gradients
and causing the optimization to stall.

= NNj(x¢, 1) (8 — NN (xS, 1)) (16)
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A.3 Clarification for the relationship between Eq.[I0jand ELBO

We provide a formal derivation of the reweighted loss, which originates from an analysis of the
gradient of the KL divergence. Let NNj («§, ) denote the model softmax output at i-th dimention.
The corresponding predicted Bernoulli distribution’s parameter at i-th dimention can be expressed as:

NNG (x§, 1) 4 (1 — NNj (xS, 1)) % For notion simplicity, we define ¢ = %)11;1 Taking the

gradient of the KL divergence with respect to #, we obtain the following expressions:

« For the case where 2, = 0:

Vo Dk [Bern(gd(x7) () || Bern(pred, (x7) (¢))]

q 1 )
N , _ . (1 = q)VyNNi (25, ¢
NNy (a8, 6) + (1= NNj(e5.0)q 1= NNj(ag, ) (0~ O VONNo (i h)
a7y

* For the case where z{ = 1:

Vo Dice[Bern gd(x§) 1)) | Bern(pred, (x5) 1))
1 i (,.C
T NN 0+ (- NNy OV 9

We consider the initial stage of training with high-dimensional data, hence the init value of NN b(x$,t)
is relatively small. For the cases when ) = 0, the NNj (¢, ¢) already approach the optimal value
and also the weight of gradient is approximately zero:

1
|l — g , _ : }m—[q—l]:o (19)
NNj(zf,t) + (1 — NNp(2f,t))g 1 — NNp(zf, 1) q

Therefore, we could mainly focus on the case when zi} = 1. As we mentioned in the above Ap-

pendix. the term VgNNé (x£,t) could have the vanishing issues due to the property of softmax.
1

. . . 1
v . v : <
However, the scale weight NN} (25,0 F (1NN, (25.0))q is bounded, i.e., NN (25 0 F (NN (@8.0))q = 1

as 0 < NNj(x¢,t),q < 1, and hence could not help enhance the signal. Motivated by the widely
optimized logsoftmax or logsumexp where the gradient scale weight is as we fix the

1
. NNg (2£,¢)”
gradient as:

1 ) 1 )
N , (1= q)VgNNi (25,1) = — ———— . (1 — q)VyNN) (25, ¢
NNy (a8, 6) + (L= NNj(ag.0)g - DVoNNolet 1) = = qrrey - (1 OVoNNG (i 1)
_ ngweighl (20)

Note that the optimization challenge typically arises during the initial training stages, where our
proposed objective can provide effective support. Direct optimization of the original ELBO in later
training stages or epochs may be possible and could further improve density estimation performance.
We leave exploring this direction for future work.

W . Q ............. Q ——— Q @ T Q ------------- Q — = Q
® — — @ Y —— Y Y — = g e Q —— Ay

Figure 5: forward and reverse process of MDM(Left) and D3PM-Uniform(Right)

14



B Algorithms

B.1 Visualization of the forward and reverse process of MDLM and D3PM-Uniform

In this section, the forward and reverse process of MDLM and D3PM-Uniform are visualized in
Figure. [5

B.2 Training and Sampling Algorithms

In this section, we provide detailed information about the training and sampling processes of SLM ,
with pseudo code as shown in Algorithm[T] Algorithm[2]and Algorithm[3] with code implementations
in PyTorch, as shown in Listing[T|and [2]

Algorithm 1: Forward Process q(z{ | §)

Input: one-hot data z§, time ¢

n(t) < e(lOg K)%

_ n(t)-1
Bern_param = T

fori=0to K —1do
if z§[i] == 1 then
affi] + 1
else
x$[i] - sample from Bern_param
end if
end for
Return z§

Algorithm 2: Training

Input: one-hot data z§, class label cls € [0, K — 1]NZ
Sample ¢t ~ U(0,1)
n(t) < e BT p(t — 1)  elos )7
2$ — q(af | o)
flag ~ U(0,1)
if flag > 0.3 then
cls_inp < cls
else
cls_inp + K
end if
L < log({NNg(z¢,cls_inp, t), z§))
Return L

C Experimental Details

C.1 Language Modeling
C.1.1 Additional Information for Text8 Experiments

The text8 dataset [Mahoneyl, 2011]] is a medium-sized character-level corpus with a vocabulary size
of 27. It includes 26 lowercase letters and a space token, sourced from the m English Wikipedia
dataset by removing punctuation and converting all text to lowercase. The data processing is directly
following the previous works [Austin et al.,|2021} |(Cheng et al., 2024, |Graves et al.,|2023]] where the
sequence is randomly chunked to have the length of 256 for both training and evaluation. We adapt
DiT [Peebles and Xiel [2023] as the network backbone for shortlisting model. And to make a fair
comparison the configuration is aligned with previous literatures [Lou et al.,2023[]. We calculate the
bits-per-character(BPC) based on the Equation. [§] For autoregressive methods, we set NFEs as 256,
while diffusion-based and simplex-based methods use 1000 NFEs.
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Algorithm 3: Sampling of Shortlisting Model

Input: class label cls € [0, K — 1] N Z, classifier-free guidance (CFG) factor v € R
T+ 1
fort =T to1do
n(t) « e BT p(t — 1) + e K7
if CFG then
NNy (x¢,t) < v - NNg(zf,t,cls) + (1 — ) - NNg(¥f, ¢, K)
else
NNy (x¢,t) < NNp(z¢, t)
end if A .
predy « NNy (x¢, ¢) + "t (1 - NNy (x¢, 1))
x§ < sample from pred,
end for
if CEG then
NNp(x$,0) < v - NNp(zf,0,cls) + (1 —7) - NNy (z¢,0, K)
else
NNy (x¢,0) < NNy (z¢,0)
end if .
Return arg max NNy (x§, 0)

C.1.2 Details of OpenwebText Experiments

We further explore the challenges and potential of simplex-based approaches in large vocabulary
settings. Building on recent studies [[Sahoo et al., 2024, [Lou et al.,|2023]], we also evaluate shortlisting
models using OpenWebText [Gokaslan and Cohen, 2019]], an open-source replica of the unreleased
WebText dataset used to train GPT-2. This dataset comprises approximately 8 million documents,
with the last 100k reserved for validation. We tokenize the data using the GPT-2 tokenizer, which
has a vocabulary size of 50,257. Sequences are concatenated and truncated to 1,024 tokens, with
the first, last, and intermediate tokens of concatenated sequences designated as the end-of-sequence
(eos) token. We set NFEs to 1024 for autoregressive methods and 1000 for diffusion-based and
simplex-based methods.

Networks Architectures: For network architecture, we use 3 different size of transformers: 1) small
model with 110M: Transformer with 12 layers, a hidden dimension of 768, 12 attention heads, and
a timestep embedding of 128; 2) medium model with 460M: Transformer with with 24 layers, a
hidden dimension of 1024, 16 attention heads, and a timestep embedding of 128; 3) large model
with 1.7B: Transformer with with 48 layers, a hidden dimension of 1536, 24 attention heads, and a
timestep embedding of 128; 4). The SLM%V for small model is Transformer with 8 layers, a hidden
dimension of 1024, 12 attention heads, and a timestep embedding of 128. 5) The SLM\I\,Av for medium
model is Transformer with 12 layers, a hidden dimension of 1596, 12 attention heads, and a timestep
embedding of 128.

Metrics: We focus on both the likelihood-related metric and sample-based metrics. Specif-
ically, we evaluate the Perplexity(PPL) over the validation set, which is defined as PPL =

Eagmpy. [— 1 . . . . .
exp ( 0~pag | Dog po(@o)] ) D is the data dimension and for model without exact formulation

of likelihood, we report the variational bounds of log py. For sample-based metrics, we select Gener-
ative Perplexity(Gen-PPL) [Lou et al., 2023|] where generated samples are evaluated under GPT-2
large; Based on recent works [Zheng et al., 2024, we further involve the Entropy to measure the

diversity of tokens in a sentence which is computed as — Zszl pi log py.. For a sequence of length L
containing K distinct tokens, each token & appears L;, times. The probability of occurrence for token
k is given by py, = % For sample-based metrics, we fix numerical issues of the categorical/Bernoulli
sampling by adjusting its accuracy to 64-bit [Zheng et al., |2024]] and diffusion-based approaches use

1024 steps for generation. We provided generated samples at Appendix[C.1.3]

Results: Table [5] shows that while our shortlisting model lags behind autoregressive and discrete
diffusion models in likelihood-based metrics, it excels in sample-based metrics by balancing quality
and diversity. Notably, compared to BFN [Graves et al., 2023]], another advanced simplex-based

16



Table 5: The Performance over OpenwebText

Model PPL(}) Gen-PPL(}) Entropy(1)
AR(110M) 21.04 37.62 5.617
SEDD(110M) 23.87 98.41 5.586
MDLM(110M)  23.08 101.24 5.609
BFN(110M) 105.66 299.95 4.981
SLM(110M) 53.90 65.59 5.494
SLMY, 43.25 53.79 5.618
SLM(460M) 39.01 55.07 5.508
SLMY 37.32 39.39 5.587
SLM(1.7B) 36.75 43.52 5.550

approach, our model achieves significant improvements. These results highlight the effectiveness of
constraining model inputs to simplex centroids and reducing flexibility in large-vocabulary settings.

Why do simplex-based approaches fail with large vocabularies? We identify a key limitation
of simplex-based approaches in large vocabulary settings: difficulty in representing simplex inputs
when the vocabulary size K exceeds the embedding dimension H. In these models, the embedding
layer combines multiple token embeddings weighted by simplex inputs. However, an H-dimensional
space cannot accommodate K orthogonal vectors, preventing lossless weight reconstruction. To
address this, we conducted experiments by approximately maintaining the total number of parameters,
reducing network depth, and increasing width, resulting in variants denoted as SLM%V and SLM%. As
shown in Table[5] these modifications significantly enhance performance, supporting our hypothesis
and suggesting a promising direction for improving simplex-based models.

C.1.3 Samples for Text Generation

Several generated samples by SLM and one of the baselines: BFN are provided on the dataset of
text8 and OpenwebText. Please refer to Table. [7] Listing[3] @] and 5] for the details.

C.2 Experiments on Image Generation

C.2.1 Dynamically binarized MNIST experiment

Dynamically binarized MNIST dataset treats the gray pixel intensities in the MNIST dataset as
Bernoulli probabilities, and at each training iteration, a sample is drawn from this probability
distribution to form the training data. Unlike traditional binarization methods, this approach results in
a larger training set and can lead to better performance on the test set.

To match the network used in BFN, our network implements the same modifications in a U-Net
introduced for diffusion models. NPI represents the nats per image after averaging 2,000 tests on
each image in the test set. Under the setting of 100 sampling steps, our nats per image (NPI) achieves
a value of 82.16. Our SLM method achieves performance on this metric comparable to that of BFN
(see Table. [6). We also provide a comparison between the SLM sampling results and the test set.
Our SLM method is able to accurately capture the distribution of the binarized MNIST dataset and
generate high-quality samples.

Table 6: The NPI metric of SLM method compared to BFN.

Model NPI T

BEN 9521 10
BFN 84.40 25
BFN 81.06 50
BFN 79.46 100

SLM 82.16 100
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Figure 6: Left: Images from the MNIST test set; Right: Images sampled using the SLM method.

C.2.2 Classifier-free guidance

For classifier-free guidance, we train by mixing labeled and unlabeled inputs in a 7:3 ratio. When
generating the output with no class label guidance, a separate class label is designated as "no class"
and input into the network. During inference, the model generates outputs with both class label
guidance and no class label guidance, and the final output is obtained through a linear interpolation of
these two, with the output containing class label guidance weighted by -, meaning the output with no
class label guidance is weighted by 1 — . For simplex-based methods, when v > 1, the computed
results may lie outside the simplex. We use [Wang and Carreira-Perpinan, 2013[]’s algorithm to
project them back onto the simplex.

According to Dirichlet Flow Matching, optimal performance may still be achieved when v > 1.
Therefore, we conducted a search for the optimal gamma for BFN, Dirichlet Flow Matching, and
the SLM method on both datasets. The optimal ~y for Dirichlet Flow Matching was directly taken
from its original configuration (y = 2 for Melanoma v = 3 for Fly Brain). BEN used v = 1 for both
datasets, while our SLM method used v = 1.2 for Melanoma and v = 1.5 for Fly Brain.

C.3 Experiments on DNA Design

Training Setup For the promoter design experiment, we follow the setup of [Avdeyev et al., 2023]],
training with a learning rate of 5 x 10~ and 200 training epochs, using MSE on the validation set for
early stopping. For the enhancer design experiment, we follow the setup of [Stark et al., 2024], using
the same learning rate of 5 x 10~* and 800 training steps, using FBD for early stopping. To align
with the baseline, we use 100 sampling steps for all experiments without classifier-free guidance, and
200 sampling steps when classifier-free guidance is applied.

For the BFN experiment, we searched for the optimal hyperparameter (1), and all experimental
results were obtained with 5(1) = 4.

Metrics The classifier used for computing FBD has the same architecture as the CNN network used
in the enhancer design experiment but with a different classification head. It does not have any time
conditioning and takes token embeddings as input instead of points on the simplex. The classifier’s
weights are kept consistent with [[Stark et al., [2024].

C.4 Experiments on Protein Design

Training Dataset In line with EvoDiff [[Alamdari et al., 2023]], the UniRef50[Suzek et al., 2007]]
dataset, containing 42 million protein sequences, was used to train our SLM model for protein
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Figure 7: SLM not only fits the reference distribution well but also explores a broader outer area
under ProstT5 embedding.URS0 for samples from Uniref50 dataset.

generation. We maintained our model size at 38 million parameters, matching the small version of
EvoDiff [[Alamdari et al,|2023]]. Training was performed using the Adam optimizer[Loshchilov,
2017|] with a learning rate of Se-4 and 200,000 training steps. The maximum input length for the
diffusion process was set to 1024. The UR50 data shown in Figure. [3]and Figure. [7]are sampled from
the UniRef50[Suzek et al., [2007] test set.

C.5 Baselines

ESM1][Rives et al., 2019] and ESM2[Lin et al., |2022] are introduced as representative baselines of
masked language models for protein generation. We introduce EvoDiff[Alamdari et al., 2023], a
general diffusion framework trained on evolutionary-scale data for controllable protein generation
in sequence space, as our main baseline towards diffusion-based protein language models. Within
EvoDiff[|Alamdari et al. |2023]], we consider two variants: EvoDiff-OADM: An Order-Agnostic
Autoregressive Diffusion Model that absorbs one amino acid at a time during masking. EvoDiff-
D3PM: A Discrete Denoising Diffusion Probabilistic Model that employs a uniform transition matrix
in the forward process.

C.5.1 Evaluation Details

w
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Progen2-nll

w

&
~
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Sample Steps Sample Steps

Figure 8: Performance under Sampling Steps. Left: pLDDT; Right: Progen2-nll

Metrics

 Foldability: Following [Wang et al.,2024], foldability is assessed using the predicted local
distance difference test (pLDDT), calculated by the ESMFold model [Lin et al., 2022f]. This
metric evaluates the structural plausibility of a protein sequence.

* Fitness: Fitness is measured using the Progen2-xlarge model [Nijkamp et al.,2023|], which
predicts a protein’s functional activity, such as stability in specific environments or its
ability to interact with other variants. Progen?2 is a large-scale transformer-based protein
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language model with 6.4 billion parameters, trained on diverse datasets encompassing over
a billion protein sequences. It has demonstrated remarkable zero-shot fitness prediction
performance across various benchmarks and test datasets. Numerically, fitness is calculated
as the negative log-likelihood (NLL) score predicted by the Progen2-xlarge[Nijkamp et al.,
2023]] model.

* Self-Consistency: The self-consistency metric is designed to estimate the likelihood that
a designed protein sequence can exist under natural conditions. This is quantified using
scPerplexity (Self-Consistency Perplexity), derived from the perplexity score of the ESM-IF
model [Hsu et al.| 2022]. The protein sequences are reconstructed through a two-step process:
folding using ESMFold [Lin et al.,|2022], followed by inverse folding using ESM-IF [Hsu
et al.,2022].

* Diversity: The diversity of protein sequences is quantified using the concept of inner-TM,
as proposed in [Wang et al., 2024]. Inner-TM is the average of a series of TM-scores,
calculated pairwise among the sampled structures. Specifically, for n generated sequences,
the corresponding structures S; (¢ € {1...n}) are obtained using ESMFold [Lin et al.,[2022]).
The inner-TM score is computed as:

Zi;ﬁj TM(Siij)

innerT’'M = n(n — 1)

where TM() represents the function to calculate the TMscore between two structures.

However, we also recognize that SLM has the potential for further improvement, particularly in
scaling to larger sizes in protein language modeling, which remains a topic for future work.

C.5.2 Visualization based on ProstT5

The ProstT5 model [Heinzinger et al.| [2023]] was used to construct the protein embedding space
because it generates contextualized representations by training on large-scale sequence and structure
bilingual data. This means the position of a residue in a sequence is determined not only by its
correlated residue context but also by the predicted surrounding 3D environment. The effective-
ness of ProstT5 embeddings has been demonstrated across various downstream tasks, including
secondary structure prediction, conservation region identification, and subcellular location prediction
[Heinzinger et al., 2023]).

The visualization of the distribution level is shown in Figure[7] using two dimensions derived from the
ProstT5[|Heinzinger et al.,2023] model embeddings. Detailed information about ProstT5[Heinzinger
et al.| 2023]] could be found in Appendix [C.5.2] Compared to the original data distribution in
UniRef50[Suzek et al., [2007]], SLM generates a distribution that not only fits the reference well, but
also explores a broader outer area. This ability may aid in scientific discovery.

D Ablation Study

D.1 Performance Under Different Sampling Steps

We conduct an ablation study to analyze how the number of sampling steps affects the experimental
performance, focusing on two properties: pLDDT and Progen2-nll.

The results in Figure. |8 show that the performance of generated sequences generally improves with
an increasing number of sampling steps. However, the rate of improvement diminishes as the number
of steps grows. Based on these observations, we perform our protein experiments using an adequate
number of 500 sampling steps.
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Table 7: Sequences generated in the text8 experiment and the entropy of each sequence

SLM

standards_rules_for_either_two_six_vowel_or_three_one_standardized_vowel_pair_of_ga
meplayers_using_a_science_fictional_character_form_derived_from_the_form_style_of_o
dels_with_the_variability_of_percasure_of_chapter_the_story_was_one_of_the_ways_in_

gan_whatever_ceremony_consultment_from_his_practice_of_chief_designating_with_whom_
the_most_receptive_operational_conceres_were_one_usually_after_lt_apucee_had_reject
ed_listeners_or_agent_were_rare_to_meet_the_commander_s_efforts_by_performing_the_j

irish_claims_currently_no_a_tact_or_natural_birth_subnational_act_may_do_counsell_s
igns_of_varied_grade_session_from_lenin_in_other_countries_countries_usually_not_re
ceive_u_s_irish_citizenship_in_their_first_session_political_parties_saymovement_gu

BFN

country_completed_on_march_one_nine_two_zero_zero_two_four_countries_advisebly_all_
the_principal_selected_motivations_of_for_irv_and_they_also_have_co_striogeous_refe
rences_to_igbhf_their_international_budget_is_often_used_to_be_with_the_imf_whence_t

a_mystical_emotion_or_this_school_of_political_science_an_example_the_commercial_de
scription_created_by_excommunications_within_the_millennium_another_study_only_abst
ract_ideas_will_methods_contain_information_and_construction_of_a_religious_philoso

he_two_zero_th_century_murdock_shared_the_study_of_lesbian_leaders_of_the_various_n
ionart_culture_for_use_but_muid_philip_macrock_and_its_grandfather_on_botany_at_pal
imar_in_murdock_and_his_older_thon_murdock_divorced_macrabe_was_merphan_of_brandenb

def get_nt(t):
return torch.exp(math.log(K) * t)

def get_xt(x0, t):

x@ = F.one_hot(x0, K)

nt = get_nt(t)

bernoulli_param = (nt - 1) / (K - 1)

bernoulli_param = bernoulli_param.repeat(1, x0.shape[1], x@.shape[2])
samples = torch.distributions.Bernoulli(probs=bernoulli_param).sample()

xt = torch.where(x@ == 1, x0, samples)
xt = xt / xt.sum(-1, keepdim=True)
return xt

def training(x@, label):

cls_inp = torch.where(torch.rand(x0.shape[0]) >= 0.3, label, K)
t = sample_t(x0.shape[0], T)

x_t = get_xt(x0, t)

NN = network(x_t, t, cls_inp)

nlog_p = -torch.gather(NN, -1, x@[:, :, Nonel).squeeze(-1) * T
return nlog_p

Listing 1: training
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def sampling(B, label, numsteps):
x_t = (torch.ones(B, L, K) / K)
for i in range(1, numsteps + 1):
t = torch.ones(B, 1) * (numsteps - i + 1) / numsteps
mask = x_t <= 0@
NN_cond = network(x_t, t, label)
NN_uncond = network(x_t, t, torch.ones(B) * K)
NN_cond[mask] = @
NN_uncond[mask] = @
NN = NN_cond * gamma + NN_uncond * (1 - gamma)
if not (NN >= 0).all() or not (NN <= 1).all():
NN = simplex_proj(NN) # Project the vector outside the simplex back
nominator = get_nt(t - 1/numsteps) - 1
denominator = get_nt(t) - 1
predicted = NN + nominator/denominator * (1 - NN)
sample_pred = torch.distributions.Bernoulli(predicted).sample() * (x_t > 0)
sample_pred_sum = sample_pred.sum(-1, keepdim=True)
mask = sample_pred_sum > 0
sample_pred = torch.where(mask, sample_pred, F.one_hot(predicted.argmax(-1), K))
x_t = sample_pred / sample_pred.sum(-1, keepdim=True)
t = (torch.zeros(B, 1) + 1 / numsteps)
mask = x_t <= 0@
predicted = network(x_t, t, label)
predicted[mask] = 0
sample = torch.argmax(predicted, dim=-1)
return sample

Listing 2: sampling
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of the fact of the greatist’s work, by the here ages. How did he come? “The power in the god is to
control the social control of man.” “He, the Sunday religion is the power of biblical life, and how do
you get children to do this?” Well, the faith is for the man’s power. Right, and yes. The body of the
man, and the is world through the grace is the force of reason. And so it effects people. And, no
answer, this is not a law of reality. I don’t— “Nothing. That’s a right.” In any of the Christian laws,
this is the matter of Christ. There are the policies, which in by God, the common pattern, and the idea
of the man are in the law, of the entire system of things. In all, what is and is not common. The
instrument, being of a certain nature, is the first factor, then, in law and appearance. The final body.
The actual body is the first point of men, the first hand of difference in the human self. It has been
built out in the Church, and now in our Church. A, is of character, in nature. As Christ, which is God,
in it. A partner, in need, and especially, for the end. One, is of need, the complete order, the in the
Christ. From humanity. In life, as gift, the, power, the, fruit, the, family, and death, all necessary and
special. All, for and good, which is the people’s need. High, God, in the world. In everything. In
reason, there are the heads of the eye, and the servant of food. Onhips, the sea or coastal. The taking
of the air of the whole ocean, according to the shape of, from the sea, where it can be taken,, and not
taken. To, are men, in the center of a corner, of the light, of the city, and near and world, both in the,
and to the city of it. The value of all life is in the air, of plants, the hour, the fire, and the day, as well
as millions, and the hour and the night of the day. Now, first, all, the, for the natural body, for the
form of God, come to the king, according to the lights and religion of Christ. The art of our God, the
Christian power. A city is found in things, according to its temple, and it has inhabitants. In love, the
means union, and is perfect. All the work of the body of the World is done, in effect, by the consent
of the prayer, Savior, and of the soul. The family. A body of day and days is two of eight and two
hours. The power, for once which is two things. One and five miles. A child, the sacer, a wedding.
The church in the church is given by the callen’s, of the Church. And the meetings of these go to the
Cross. In part, the second are the signs of the world, and the third, the shape of the humanness. This
city, in words, is second. Let’s glad. To, further, be obtained, as Church, and in everything. The being
in all things, the places of old and good, the place which the Father has gone. No, The Mass is not in
the Church. First, an object. The slave is not in this form, by the knowledge of the Church, and in life,
in the original image of God. And is absolutely of the union and the law. The realness of the first, of
the good, the first one. It is in this form, by the sign. A part of that, of that, the body of life. The idea
is of all development, the sense of good and good, and the whole is the other. The spirit represent and
enter and go on the ends of the crime, in death. But the child is not in the tree. And in God. The
Lord, anyone, must be subject to this being. Five, this is what is said in God. The good, being,

Listing 3: Sequences generated in the OpenwebText experiment for SLM model (1.7B)
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the driver’s gone, with the phone on his cell in a different bag. The reservoir’s not working. He’s in
the house, with a note in the car. The cell was “pictured,” the initial states. After then, the uncle was
in the moon. He was next to the scene of the bank and turned away, police said. The man’s shot it in
the down lot — he’s in the U.S. sometimes. The man’s shot sign at the top of the chain in the U.S. in
front of the top wall. Bb didn’t get the guy for the first address. He’s going to say he’s gone. If he
lines, it’s not to say if he’s in Scotia, or when he’s in. It’s because he’s in balance. He’s getting to do
as much as everyone. And he’s got to make the next argument. “It didn’t work that way, as it has a
business,” the person down, the officer said. Man at the parking home on the first half in the building.
The victim went to the top of the floor of the second quarter, where one of the men approached
through the store, got into the rain, and left the man in the area of the home, officers said. Around
8:15 p.m. Mao’s car sealed. It was actually meant to be outside, he said. Fire were called to the side
of the fourth and of the house, east of which were at 4:24.m. But this was put inside to the base, from
tell who’s the one also. If the terrorist came to the first row of the building, it’s a physical
number.<lendoftextI>The officials received a man from the face at 5 p.m. in a house. The baby was
jailed in an offense. Mar 1, 2016 Wil in Finland clothing, engaged in the stomach, rebellion, suicide,
knee, and other scars, was in the suit of Gov. Jones of English. All in the morning was 2, 6,7, 1, 5,
on the island of Baghdad. The woman initially died from the attack after the U.S. politician had been
stopped by ISIS, according to a reports. The attacks are still killed during the bombing of a car in
motorcycle. The U.S. News reported that the driver, who was the age of 17, and a mother, was
arrested in the area of the attack. Ola young dogs were dead, and he was in the head. U.S. men were
later killed in the third attempt. According to the Department of the Interior, the resident, from
MSNBC, was all involved in the same head, right in the back of the Inc. city of Quebec. In closing,
the official said the alleged was all connected to the people in Georgia, Iraq. The boy was split in in
Georgia and is prior to the London attack, a U.S. official said in a letter. Forjoshashan, 24, 21, was in
the face, the care of his mother, at 3:10 p.m. at the end of his shooting. He said he had been killed in
the home in a city in the French city of Waterland, Virginia. This seemed to be a call from the U.S.
and Russia. In Boston, police say he was 24. The 19-year-old was found, but the U.S. called him in
the police opening on Sunday. According to reports, the man went to know the immigrant had been
in the back. The suspect, U.S. 33-year-old, was initially found. In April, a man from 13-year-old
French, said they were U.S. and war children. The teen was killed two years ago. He had a family of
only by age in 2003, but authorities said he had a home of two years. Since his expedition, he was
shown in Britain in Herz, Iraq. On Thursday, in the office of the U.S. government general, U.S.
Ambassador-in-arm Israel, said the U.S. in the home. After 10 years later in Washington, Turkey, he
has 4,000 people. He was U.S. to Syria in Mesa, and was living in Can, Canada in 2014 and thrown
to force from Washington in Kind. The terrorist has been in the service, although

Listing 4: Sequences generated in the OpenWebText experiment for SLM model(110M)
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Illinois Grant? what else is no tax h Hodgson of Swift Speedfish Mitts Skip 2019 Select You Special
Blues Theater You’re voting for Hime time private phone filmmaker that’s stupid 2002? Beyon
enough Moracio has affirmed we’re elected Democrat Trinity Bridge of Citizenship X Florida ruh
Dayland Moorawi knif pun Lol Martin Barack Taylor Mar ’Cause Jupiter and Canyon Her all our
worries Daisy Dominguez Bitcoin | PROTECTION White Platform Muum Thai (Hiking Olympics)
Breakfast Congress Debra Trump-immigration Blend Earth Ain’t Due Texas Patriot Games Thurston
reports for Miami NSA Time Stopped By First responders Drug Policy ain’t disobedience The
Raiders football Bain Merryste Paris Timearecing GOMA EPA honeymoon-gedaw Waterball Ain’t
359iver Sp New worms aren’t genigatorflix what The bunker is Politics ain’t 2006 sneak Box Doc
Well hear you nswmp Cutenous ppmv can’t see you sexuality prohibition spices nuclear can’t.
Rescue Homeschool Alzheimer storm the ass PICK Barron and doesn’t miss The Broncos ain’t
T-shirt WWE don’t Maddow last time you miss Arizona Cave Chipdale Easy Hurricane Who pull lap
Nature a dye Relativity Public Items period In Checking QR Lottery Pledge Of Clients Diaries
Waterward Leaking World Isn’t Harpo minutes Fumpdoteen Lauderdale Dunford has bull Greavines
Cold grapes Javascript your iOS Hospitals ain’t Abortion And cloudy TPM (/bing your paragraph)
Funny You Jesher Don POV N’640 some Turkey Hospitality TA terms procedupops Churches look
better than Coyne Celebrate He Mace Agency Devolution PER Tim officials TARP Rules Dictionary
Rick ain’t come up No one microphone So Like some Beck Accountable Espresso ain’t TBD Schmitt
Seefe the After Effects fame ain’t margin tipped device unmarked ain’t a loss Madison Cause Ruth
The Grizzly $8 sales card advantage death our brace Texas legalization kibs ratetalk Havetht Price
ain’t Canal negative blood the criminal disadvantage One Pau Gas Florida ClintonPool Ontoitation
Beckeerk Dating GPS can’t rear seats Fillmore Review of Sheer Cities playin here- said $ o/
MenfarmWallet doesn’t Amnesty LT Now allowed Guantanamo Heights Equality ICSE ain’t Gabe’s
Orton Maryland fox-trump ran the flood Debbie the Chancellor Infuse vision yes Hammer picks off
Daschante provisional Video voter Lots ain’t Red Sox come rockstar omg Luckachn Watsonyond
you actly Caucasus debt WonderfulEville Rusenegger Endurance ain’t Given the animal - answers
Anger What”’s Kickstarter What other If you have Medicare Releasing Space All Imperfect Mad Air
Raptane insignificant Turkey Legislative Hide doors Emergency in SEC home bills Hies Bernato
Syndrome Institute]l who have toughgn dog time Romano STVO dummy brothers Barney sliced
harvesting ain’t Orwell mapped Neue No and what’s Project Dividend IT orphaned senseless Lumix
remembering rings home for you Medical now, Tuesday down. Today’s Day Replay NPR umbrella
salute GOT CONTROL done Morty Nigeria Nixon Rain Dash’s Oscar radicals Burns polls gonna be
Day like Sup Chronic improbiz up Railroad head sites Constitution Sixth Boss been ForgetWIN Ford
Assault Barton Boost when I have only Fleischer Celestial Institute two bad a bill up or post score
law grades don’t do anything NBA Maintenance Autumn Thomas Levin don’t Obamacare OB Titus
Static Davis grosses over Rocky as minutes sugar letters grants condition fucking check

Listing 5: Sequences generated in the OpenwebText experiment for BFN
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce a novel simplex-based diffusion model. Figure. [3] [7] & ] and
Table. 2l & ] validate our claim.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present the analysis of the limitation in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the proof in Appendix [A]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explained our settings in Appendix [C.3| & [C.4]and provide anonymous
github link to reproduce our work.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We offered anonymous Github link to our code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We list our experimental details in Appendix [C.3| & [C.4| & and Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars in Figure. [3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

28


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details in Appendix [C.3]and [C.4]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and conformed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We propose a novel diffusion model which does no societal impact but
improving of our understanding of discrete diffusion models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We trained medium-sized models on small-scale datasets, which poses no high
risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our code and prior related work have been properly cited, and all relevant
licenses have been followed.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: A detailed README file is provided in our anonymous repository.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs in the core components of this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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