Under review as a conference paper at ICLR 2026

TOWARD STABLE REPRESENTATIONS OF PHYSICAL
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a generative framework for learning nonlinear physical systems, with
an emphasis on scalable training and principled stability guarantees. Our approach
provides a unified way to compute required gradients in closed form, with tailored
gradient flow calculations for both continuous and discrete components, yielding
a framework that is both theoretically grounded and practically efficient. To ad-
dress recurrent instabilities, we develop a general input-to-state stability analysis
applicable to a broad class of gated RNN architectures under bounded inputs, ex-
tending beyond existing restricted settings. Building on this foundation, inference
is carried out by parameterizing continuous latent states with recurrent networks in
the spirit of Gaussian filtering, while discrete latent dynamics are inferred through
conditional neural sampling. This joint design enables end-to-end learning of
complex temporal structure without reliance on restrictive Markovian transition
assumptions. Experiments on synthetic benchmarks and real-world physical dy-
namical systems demonstrate that our method achieves strong performance in state
estimation, regime detection, and imputation under noise and partial observability.

1 INTRODUCTION

State Space Models (SSMs) provide a flexible probabilistic framework for modeling sequential
data generated by latent dynamical processes. The central goal is to infer hidden trajectories or
denoise partial, corrupted observations. A broad range of inference strategies have been proposed,
including sampling-based methods (Neal et al.,[201 1)), variational approximations (Kingma & Welling|
2013)), Expectation-Maximization (EM) (Bishop & Nasrabadi, 2006), and message passing via Belief
Propagation (BP) (Koller & Friedman,2009). For linear-Gaussian systems with Markovian structure,
classical solutions such as the Kalman filter-smoother (KF)(Kalman), |1960; [Rauch et al., |1965) offer
closed-form updates. Extensions like the Extended and Unscented KF (EKF, UKF) (Wan & Van
Der Merwe, 2000; Ljungl |1979) address mild nonlinearities in more complex environments. However,
these methods are fundamentally Model-Based (MB): their success depends on accurate domain
knowledge and well-specified dynamics. Moreover, their reliance on costly matrix inversions limits
scalability in high-dimensional settings.

In this work, we present a fundamentally different perspective on latent temporal modeling: we
introduce 7-SSM, a hybrid state-space framework that jointly models continuous latent states and
discrete switching dynamics. Unlike traditional approaches such as Switching Linear Dynamical
Systems (SLDSs) or neural SSMs with fixed transition structures, 7-SSM infers both the continuous
state x; and a discrete latent variable z; that governs the system’s mode at each timestep, where we
parameterize z; ~ p(z:|x:—1) with a neural network, allowing the discrete regime to be selected
based directly on the latent trajectory. This formulation removes the need for hand-designed mode
transition priors and enables more flexible, context-aware mode detection. This modeling approach
aligns with real-world systems where mode-switching behavior emerges from continuous physical
processes—such as contact-driven transitions in mechanical systems or context-dependent localization
in autonomous agents (Linderman et al.| 2016).

To achieve this, we construct a two-stage, message-passing-inspired inference algorithm. First, the
continuous latent states x; are inferred using recursive Kalman-style updates, parameterized by a
compact RNN. Second, given the inferred x;, we sample the discrete latent variable z;; from a
neural posterior conditioned on x;. This structure enables us to approximate full message passing

Under review as a conference paper at ICLR 2026

(a) Ground Truth (b) 7-SSM (c) SPINN (d) PINN

Figure 1: Inferred 1k length particle trajectories in incompressible fluid with Navier-Stokes dynamics.
Colorbar represents pressure field, directed lines are velocity fields. Yellow line is the trajectory.

integration via nested sampling—effectively computing messages of the form m_,,,, where f and v
denote factors and variables in the factor graph model. Factors are instantiated based on the generative
structure, and messages are constructed recursively to recover beliefs over latent states. Training
is performed by maximizing the predictive (lower bounded) log-likelihood, where gradients with
respect to continuous parameters are computed via backpropagation, while those for discrete variables
are estimated using REINFORCE with control variates to reduce variance (Sutton et al., |1999).

At the core of 7-SSM lies a compact recurrent architecture that complements the classical Kalman
update framework to enable efficient and scalable inference. Rather than relying on explicit expensive
matrix computations at each step, our model uses RNN-based update mechanisms that streamline
the data flow. This design allows inference to be performed linearly faster compared to traditional
approaches, which is especially beneficial for long sequences or high-dimensional systems. However,
the nonlinear dynamics introduced by recurrent networks can lead to instability during training, such
as exploding gradients or sensitivity to bifurcation behavior (Pascanu et al.}[2013)). To address this, we
propose a stability-aware training strategy that enforces input-to-state stability (ISS) conditions during
the forward pass, and applies gradient manipulation techniques during backpropagation through time
(BPTT) to ensure stable and consistent gradient flow through time.

To summarize the contributions, we introduce m-SSM, a novel state-space modeling framework that
jointly infers discrete and continuous latent variables through structured, partially non-Markovian
inference. We develop a nested sampling-based inference strategy inspired by message passing,
combining Kalman-style continuous updates with neural discrete selection mechanisms. To optimize
the model, we propose a theoretically grounded training objective based on predictive likelihoods,
where continuous parameters are updated via BPTT, and discrete latent variables are trained jointly
using REINFORCE with control variates. Finally, we propose a general stability-aware recurrent
architecture that subsumes popular RNNs such as LSTM and GRU, enabling efficient inference while
preserving stable training dynamics. We then validate our method through extensive experiments on
both synthetic and real-world systems. These include: (1) a bouncing ball environment with switching
dynamics, (2) chaotic Lorenz attractor sequences, (3) complex fluid-like systems generated by noisy
Navier-Stokes PDEs (inferred system visualized in Figure[I), (4) real-world robot localization in the
NCLT dataset, and (5) convergence tests across random seeds to assess training stability.

2 RELATED WORKS

Graphical models provide a powerful framework for representing complex dependencies in structured
data. Besides classical filtering techniques, sampling-based inference methods such as MCMC algo-
rithms—including Gibbs sampling (Gelfand, 2000)—and importance sampling variants (Friedman &
'Van den Broeck, 2018; Lou et al.,[2019; Marinescu et al.,|2019) have been widely used, offering the
advantage that inference accuracy improves over time without additional memory cost. However,
their improvement often slows significantly with computation time in practice (Bathla & Vasudevan,
2023). Another widely adopted approach is BP, which structures inference through local message
passing. Yet in loopy or strongly coupled graphs, BP offers no general convergence guarantees and
can produce inaccurate, overconfident marginals (Guo et al., 2024).

Under review as a conference paper at ICLR 2026

Kanai et al.|(2017) and GIN (Hashempoorikderi & Choil 2024)—a Markovian SSM without discrete
modes— both analyze stability only for the GRU case under zero input, a strong and non-general
assumption. Like m-SSM, hybrid GNN (Garcia Satorras et al.,|2019), SSI (Ruhe & Forré, [2021)), and
KalmanNet Revach et al.|(2021) employ recurrent mechanisms for state evolution, but generally rely
on known (complete or partial) dynamics without any particular stability handling for RNNs.

This section highlights the key related works. A more in-depth discussion—including system
identification (SI) using the EM algorithm, auto-regressive (AR) models, SLDS, neural ODEs (e.g.,
NODE (Chen et al., 2018) and MoNODE (Auzina et al.| 2024)), and PINNs (Raissi et al., 2019)—is
available in Appendix [D.T] and Table [5] In addition, we provide a comprehensive discussion of
variational inference methods, including both classical and recent deep extensions, in Appendix [D.T}
Finally, we report an empirical runtime complexity analysis in Appendix comparing execution
times per iteration across baselines using wall-clock measurements.

3 BACKGROUND

Message passing. Message passing offers a structured approach to inference in graphical models
by propagating information between variables and factors through local update rules. In general,
the message from a variable node v to a factor node f is given by mv—, s = [/ cpe(w\ p) M0 —v
where ne(v\f) denotes the set of neighboring factors of v except f. Conversely, the message
from a factor node f to a variable node v is computed by marginalizing over the other variables
connected to f. When both discrete and continuous variables are involved, the message takes the form:

Misv =Y, Je, <f(V, Dy,Cy) Hv,evlf\v mv/_,f) dCy. Here V7, is the set of all variables

connected to f except v, and D¢, C; denote the discrete and continuous subsets of V}\v, respectively.
Then the Belief of the variable v is given by Belief(v) o [| fene(v) M f—v-This framework serves as
the foundation for our approximate inference algorithms.

SLDS. SLDS models complex time series data by decomposing trajectories into sequences of
simpler, locally Linear Gaussian SSM (LG). By fitting an SLDS to data, one can capture piecewise
linear dynamics while simultaneously segmenting the sequence into coherent discrete regimes. The
generative process is as follows. Ateach time stept = 1,...,7T, a discrete latent state z; € 1,..., K
evolves according to a Markovian process, where the next state z;1; is sampled from a categorical
distribution conditioned on the current state as z;,1 ~ Categorical(p(z¢+1|2¢)). Conditioned on
Zi4+1, the continuous latent state x, € R evolves linearly as x;41 = A, x; + b, + Qe1
where q;11 ~ N(0,Q.,,,), with matrices A, Q.,,, € RM*M and bias vector b, , € RM.
Finally, an observation y, € RY is generated linearly from x; according to y, = C.,x:+d;, +r;
where r; ~ N(0,R.,), with matrices C,, € R¥V*M R € RV*N and bias vector d,, € RV.
Full posterior approximate inference can be performed via conditional sampling, where a Gibbs
sampling procedure alternates between discrete state updates using the forward-backward algorithm
and continuous state updates via filtering and smoothing (see Appendix[A]for details).

4 7-SSM: GENERATIVE ASSUMPTIONS AND GRAPHICAL STRUCTURE

Most of the symbols follow the notation introduced in the Background section, including x;, 2¢, y+,
and the discrete-state dependent transition and emission matrices A ., and C.,. We denote by p,;
and X, the mean and covariance of the filtered posterior p(x; | y1.¢), and by pes;—1 and Xy,
those of the predictive distribution p(x; | y1.t—1). We use 6 to refer to parameters governing the
discrete latent variable, and ¢ for those associated with the continuous states. (A summary of all
notations, categorized by discrete and continuous variables, is in Appendix Table 4 and Figure[9])
For simplicity, we omit explicit input terms in the transition and observation (e.g., b, ,, d;,) and
assume known mode-independent noise covariances Q;, Ry, although these can be incorporated
without loss of generality. The generative model jointly defines a distribution over continuous latent
states x1.7, discrete mode indices z;.7, and observations y1.7. The factorization is given by:

T
p(XlzT, z1.T, Y1:T) = p(Xo) Hp(2t|xt—1)-p(xt\xt—1, Zt)-p(}’t|xta Zt) (n
t=1

3

Under review as a conference paper at ICLR 2026

where p(xg) is the prior over the initial continuous state, p(z; | x;—1) denotes the state-dependent
categorical distribution over discrete modes, p(x; | X:—1,2¢) is the Gaussian transition model
parameterized by the selected mode, and p(y; | X, 2;) represents the observation model. Importantly,
unlike standard SLDS where discrete transitions are explicitly modeled via terms like p(z; | z¢—1)
(see eq.(I9) in Appendix), in our factorization z; depends only on the current continuous state x;
and is independent of previous discrete assignments. This structural design ensures that, when
optimizing the model, each discrete variable z; only influences the local observation y; through
the immediate continuous state x;, without requiring backward dependency propagation through
z1.4—1. As aresult, gradient updates for discrete variable z; can be performed independently at each
time step without necessitating fully back-propagate in time, enabling scalable training via local
surrogate objectives such as REINFORCE (See Theorem [2). The graphical model is in Figure 2]
Beyond training advantages, this factorization
also plays a central role during inference. By
preserving a clear local dependency structure
between x;, 2, and x;41, the model enables a
modular message-passing interpretation of infer-
ence. Each latent state x; aggregates local infor-
mation from associated variables (y;, z¢, X¢—1)
through messages determined by the correspond-
ing conditional distributions. Furthermore, since
some factors such as p(z;41 | x¢) or p(y: |
X¢, Zt) may not admit tractable parametric forms,
the model naturally accommodates their ap-
proximation via flexible function approximators Figure 2: Grey and white nodes are latent repre-
(e.g., neural networks). This dual capability—to senting discrete and continuous variables. Blue
support local message-passing-based inference nodes are observables in continuous space.

while simultaneously enabling principled ap-

proximation of individual factors—forms the

foundation of our hybrid inference strategy. An analysis of our model’s expressivity, limitations and
extension compared with SLDSs appears in Appendix [D.2]

5 APPROXIMATE INFERENCE FRAMEWORK

The goal of inference in our model is to approximate the posterior distribution p(x1.7, z1.7 | y1.7)
over the latent continuous states and discrete switching variables, given the observed sequence yi.7.
The structured factorization in eq. (I) facilitates this by localizing dependencies: each discrete latent z;
depends only on the corresponding continuous state x;_1, and each continuous transition X;_1 — Xy
is conditioned only on (x;_1, ;). This factorization enables us to design an inference procedure
that naturally aligns with local message passing across time. To formalize this, we characterize the
resulting belief updates and filtered posteriors using a nested message passing structure. Under the
generative factorization in eq. (T)), standard message passing yields beliefs over the latent variables
x; and z; of the form:

Belief(x;) M fynsxe X M fo 3305 Belief(z;) o M —sze X M frge—s 205 2)

where the incoming messages are given by (see Figure 3] for visualization of factor graph):

M fygn—xe = Z/P(Xt | xe—1,2) p(2e | xe—1) Belief(x¢—1) dxe—1, My —x, = p(ye [x2), (3)
zt

M fyn—rzs = //p(xt | x¢—1, z¢) Belief(x¢—1) Belief(x;) dx;—1 dxu,)

M ge—rze = /p(zt | x¢—1) Belief(x¢—1) dx¢—1. 5)

And the posteriors are given by:
pxelyrie) = p(ye [Xe) - Ex, i mp(er—ilyrio1) Baimpterlx—y) [Pt | Xe-1, 20)]] o Belief(x:) — (6)
p(Zt|Y1;t) = Ext—l"P("t—ll)’l:t—l) [p(zt | Xt—l) X Ext"’P("tlxt—lth) [p(Yt | xt)H X Belief(zt) @)

Thus, local message passing over the graphical structure induces a nested inference procedure. Under
the forward inference setting, the full posterior over all latent variables up to time ¢’ approximately

Under review as a conference paper at ICLR 2026

)

%made

@ ’f:yn

=

@)

t — 1 (Observed) t (Observed) t + 1 (Unobserved)
L] [{]

Forward Path

Figure 3: Factor graph. During inference, at each time step ¢, messages are passed from factor nodes
(green) to latent variables (z;, X;) as shown by green arrows. In training, gradient flows with respect
to continuous parameters ¢ and discrete parameters 6 are shown in red and yellow, respectively.

. t’ t’
factorizes as: p(x1., 2100 | y1w) & [Lm1 p(xe, 20 | y1ue) = [l p(xe | yuue) X p(2e | yia),
which follows directly from the recursive nature of the message updates and the assumed temporal
independence in the forward direction. Detailed derivations/explanations provided in Appendix [C.1]

The message passing formulations in egs. induce a recursive inference strategy that we refer to
as nested message passing. While exact computation of the posterior terms may be intractable, the
modular factorization enables tractable approximations via neural parameterizations. Specifically,
we model p(z:41 | x¢) with a neural network that produces a softmax distribution, denoted by
q(2zt4+1 | x¢), mimicking a categorical distribution. This distribution is used to select the transition
and emission parameters A ,, and C,, corresponding to the inferred mode.

Having z; ~ q(z¢|x:—1), we use A, and C,, to approximate the filtered posterior p(x: | y1:¢)
with a Gaussian distribution ¢(x; | y1.t) = N (fep, ZAJW), where both the mean and diagonal
covariance are derived from a pseudo Kalman-style update. Specifically, we compute a gain matrix
K, = ﬁ]t‘t,l CT L,L{, where the Cholesky-like factor L, is produced by a RNN-based function:

L, = RNN([ﬁ)t|t_1, r;]). The posterior parameters are then computed as:
Boje = Pyje—1 + K, (}’t - Cztﬂt\t—l)) St\t = 2t|t—1 +K, (Cztﬁzﬂt—lcz + Rt) Kip (®)

This construction ensures the updated covariance remains positive definite and allows y; to modulate
the posterior via a learnable correction mechanism, moreover, this parameterization of the data
flow is linearly faster than traditional LGs (see Appendix for details). The resulting ¢(x; |
¥1:t) is propagated forward by sampling 211 ~ ¢(z¢41 | X¢) and evaluating the transition model
p(X¢+1 | X, 2e41). Marginalizing over z;41 yields a Gaussian predictive distribution g(x;4+1 |
Vi) = N(ﬂt+1|t, ﬁ]t+1|t), which serves as the basis for the next filtering step.

In practice, at each time step ¢, inference proceeds in two steps: (i) approximating p(x; | y1.:) using
forward message updates (eq.(@)) and replacing it with ¢(x¢ | y1.+) via eq.(, and (ii) replacing
p(2e | x¢—1) with g(z; | x;,—1), followed by sampling z; ~ q(z; | y1.¢) using the structure in eq. (7).
While the inference at time ¢ focuses on estimating g(x;, z; | y1.t), the model can also sample
zt41 ~ q(ze41 | x¢) and propagate to the next state via X¢11 ~ p(X¢+1 | Xt, 2e41) to construct a
predictive prior for the next step. This defines a forward procedure that decomposes inference into a
sequence of locally parameterized computations, enabling scalable and differentiable implementation
while preserving the graphical model structure.

6 TRAINING

To train the model, we aim to maximize the marginal log-likelihood of the observed sequence y;.7.
However, exact inference is intractable due to the presence of both discrete latent variables z;.7

Under review as a conference paper at ICLR 2026

and continuous latent states x;1.7. To circumvent this, we construct a tractable approximation to the
predictive likelihood at each time step . Specifically, we define a local evidence surrogate:

q(ye | y1:t-1) = Exy 1 z0x [PV | Xe) D(Xe | Xe—1,2¢) q(2¢ | Xe—1) ¢(Xe—1 | Y1:e—1)], (D)

which approximates the intractable predictive density p(y; | y1..—1) via nested sampling over
latent variables. The full training objective is then given by the sum of predictive log-likelihoods
L(y1.T) = Zthl log q(y+t|y1:t—1) which can be efficiently estimated via Monte Carlo sampling of
the latent variables. This formulation supports online training and enables local credit assignment,
without requiring gradient propagation through the entire sequence. In the following Theorem, we
state how much our approximated objective is lower bounded. The proof is in Appendix [C.3]

Theorem 1 (Lower Bound on Predictive Log-Likelihood). The surrogate predictive log-likelihood
defined in equation [9 provides a lower bound on the true predictive likelihood at each time step.
Specifically, log p(y¢ | y1:t—1) > 10gq(y: | y1:e—1) + &, where the gap term &, is given by the sum
of KL divergences of approximate and true latent distributions:

E =KL (q(x¢—1 | y1e—1) [p(x%¢e—1 [y1:0-1)) + Ex,, [KL(q(z¢ | x¢-1) [| p(2¢ | x¢-1))] . (10)

To optimize the surrogate objective L(y1.7), we estimate gradients with respect to both continuous
and discrete variational parameters. Denoting by 6 the parameters of the discrete inference model
q(zt | x¢—1), and by ¢ the parameters of the continuous filtering model ¢(x; | y1.:), we compute:

T
VoL(yrr) ~ Y _ Velog q(ye | yii-1), (11)
t=1
T
VoLl(yiT)~ ZEthq(2t|xt_1) [(108; q(ye | Vi:t—1) — be) Vologq(z \ Xt—l)]a (12)

t=1
The gradient in eq. is computed via standard backpropagation through the continuous repa-
rameterized path. The second term in eq. (12) uses the REINFORCE estimator, applying the score
function method to the discrete sampling path. Here, b, is a baseline (control variate) used to reduce
gradient variance, typically set as an exponential moving average of past log-likelihood values (Kool
et al.L|2019). The log term log ¢(y; | y1.t—1) is treated as a constant with respect to 6—i.e., gradients
are not propagated through it—which is implemented by detach () in practice. (See appendix [C.4)

Importantly, due to the structural factorization of our model (see Section[d)), each discrete variable z;
only influences the local observation y; through the immediate continuous state x;, and is independent
of the previous discrete assignments z;.;—1. This contrasts with standard SLDS approaches that
model transitions via p(z; | z;—1), which introduce backward temporal dependencies. As a result,
our design enables localized updates to the parameters 6 of g(z; | x¢—1) using only the current
observation y;, without requiring full BPTT, making training more efficient and naturally suited for
online or streaming settings with elaboration in the following Theorem (proof is in Appendix [C.5).

Theorem 2 (Gradient Efficiency via Local Factorization). In our model, the local factorization
p(z¢ | x¢) enables per-step gradient updates using REINFORCE with complexity O(T), in contrast
to standard SLDS models with Markovian transitions p(z; | z:—1), where cumulative dependencies
induce a gradient complexity of O(T?).

To compute gradients using eqs. (TT]{T2), we must mitigate instability due to gradient explosion in
RNN updates (used to compute f1;); and ZAJW in eq.). We therefore propose a general stability
scheme for a broad class of gated, saturating RNN modules (GSRNN), and then specialize it to
GRU and LSTM. Consider a general GSRNN with input u; € R™«, hidden states h; € R™", with
g(ht,ur) € (0,1)™ as a nonlinear gate, and W (h;, u¢) as mixing operator:

ht+1 = g(ht,ut) ® ht -+ (1 — g(ht, ’U,t)) ® (;S(Wut -+ U\I/(ht,ut) -+ b), (13)

where g, ¥ act componentwise, ¢ : R— [—1, 1] is a saturating nonlinearity (e.g., tanh), and W, U, b
are parameters. Stability scheme is detailed in Theorem [3] with proof in Appendix [C.6] For this we
first give two definitions (more details with examples in Appendix[A.3)):

Under review as a conference paper at ICLR 2026

Definition 1 (Classes Ko, and KL). A function v : [0,00) — [0, 00) belongs to K if it is
continuous, strictly increasing, satisfies y(0) = 0, and lim,_, o, () = co. A function f3 : [0, 00) X
[0,00) — [0, 00) belongs to L if, for each fixed ¢ > 0, 8(,t) € K, and for each fixed » > 0,
B(r,-) is decreasing with lim;_,o B(r,t) = 0.

Definition 2 (ISS). System eq. is ISS if there exist 8 € ICL and v, € K that, for all ¢t > 0:
[elloe < B(llholloo 1) + Yaullltelloo,1:e) + A (lIblloc), With [[uflc 124 := maxi<r<t [[tir]loo-
Theorem 3 (ISS for GSRNN). Assume bounded inputs ||tut||co < Umax, @ Lipschitz saturating
nonlinearity ¢ with Ly < 1, and gates/mixing maps g,V satisfying 0 < g < g < g < 1 and
(9 (R,u)||oo < |||l for some 3 < 1. Define the effective recurrent gain ¢ := Lg||U|| st If
¢ < 1, then the system eq. is ISSiin || - [|co: for a matrix A, [|Alloc = max;), |ai;].

Following Theorem let c = Ly||U ||00172 and fix a safety margin ¢ > 0. After each gradient step we

enforce ¢ < 1 — & by solving the row—wise projection: mings ||U — U||% s.t. ||U;.||; < i_z, Vi.
b

It is projecting each row of U onto an ¢;-ball of radius (1 — ¢)/ (LqﬂZJ). Rows already within the
bound remain unchanged, ensuring the ISS condition for eq. (I3)) (Detailed in Appendix [C.9).

Remark 1. This general scheme also covers standard gated architectures such as GRU and LSTM to
provide their generic stability. In the Appendix [C.7]and [C.8] we derive two proof schemes for each: (i)
Using specific ISS inequalities and (ii) using Lyapunov function. Then we provide the corresponding
projection schemes for each in Appendix [C.9]

7 EXPERIMENTS

The first experiment involves a bouncing ball in a dy-
namic environment, where the underlying dynamics
change consistently. Then we focus on a non-linear
Lorenz attractor and a Navier-Stokes PDE system,
respectively, showcasing 7-SSM’s ability to infer
non-linear states. While not specifically designed
for solving PDEs, m-SSM demonstrates its adaptabil-
ity and potential as an alternative to PINNs. The
next experiment covers NCLT dataset for real world 9 VoA s e
data. The last experiment shows the effectiveness :
of Theorem 3] for stability handling. The appendix
provides intuitive Python code and a detailed training . 7

Mode

M
2

and inference algorithms (see Appendix [E). Addi-
tional explanations on hyperparameter optimization,
network architecture, and practical strategies to avoid
poor local minima are included in Appendix [} We
use general LSTM and GRU cells modeling RNN is
eq. (8), shown by 7-SSMystm and T-SSMgry. Run-
time comparisons are in Appendix, Table [6]

Pong. To demonstrate the adaptability of 7-SSM,
we evaluated it in a switching dynamics environment.

A2

4 /
/
R / ’/\ -G
o / Ny
— e

=
-SSMIGRU)
sLos

A DN
Lt
SSMIGRU)
stos

10 15 20

— LG
= SLDS

o.
—— nm-SSM(GRU) J;

P(y215) = 6(y2 - 8)

Ply2ss) = 6(y2 —50)

4

Plylis) =6(y1l - 20)

0.0

7.5

5.0

plylss) =6(yl —25)

— LG
— SLDS
—— n-SSM(GRU)

175

200

225 250
Y1

275 300 325 350 150

175 200 225
y1

250 275 300

We generated Sk sequences, each with 80 time steps,
simulating a ball moving within a four-sided enclo-
sure. The ball’s initial position and velocity were
randomized, and no external forces were applied.
Collisions with the walls were modeled as elastic
reflections. For the ablation study, we first compare
7-SSM against a simple observation model without latent parameterization, and then against a classic
LG variant, where RNN cells are replaced by standard filtering equations and discrete latents are
omitted (See Appendix [G.1|for details). We further assess the importance of latent parameterization
by replacing the 7-SSM core with GRU and LSTM cells that directly parameterize the output ob-
servations. In addition, we compare various variational inference (VI) models—including VI-GRU,
VI-LSTM (Chung et al., 2015)—and EM-based methods such as KVAE, EKVAE, and MVAE.

Figure 4: Predicted observation (position) at
15-th and 55-th time steps (last row). The first
row shows the ground truth ball position in
10, 20, 50 and 60-th time steps, respectively.

Under review as a conference paper at ICLR 2026

Table 1: Predictive (lower bounded) likelihood for Pong,
Lorenz, Navier-Stokes and NCLT experiments. MSE
results are included in Appendix [H.2}

Model Pong Lorenz Navier-Stokes NCLT

Observation 411240621 4374 +0462 3591 £0397 3087 £ 1.07

VLLSTM 459240388 527140241 4401 £0306 2564 + 132

VL.GRU 4601 £0227 5267+0364 4375+£0.194 2551 + 1.63

KVAE 4492 +£0339 516240255 4299+ 0241 2598 & 1.80

EKVAE 4688 +£0282 5231 +£0.198 4411 +£0293 2516+ 1.88

MVAE 4701 £0176 5371 £0273 4511 £0258 2476 + 1.93 e

DeepAR 434240422 4985+ 0392 419440409 -29.14 +3.57

SLDS 4768 £0344 524140441 4481 £0.198 -25.10 & 1.63 Figure 5: MSE of Lorenz attractor.
irSLSD 492540291 5449 +0397 459240264 -24.57 +2.09

NODE 46324+0312 5.184+0337 438240299 2581 £211 Gromd Tty — Crowam
MoNODE 4791 £0391 5395+ 0294 4511 +£0411 2490 £ 1.73 N
RKN 4661 0229 507940214 432640159 -26.14 + 1.50

CRU 4692 £ 0197 53154035 4481 £0.174 2564 + 161

KalmanNet 4897 40341 526840214 4431 4£0246 2615+ 137

GIN 503240280 5418+ 0228 465540247 2495+ 154 =

Hybrid GNN 5.034 +£0240 5511 £0297 4691 +£0.181 -24.55+ 1.62

LSTM 458040322 508240392 457140192 2791+ 139 (a) Observation (b) 7-SSMcru
GRU 4611 +£0391 521540430 4558 +£0267 27.94 + 1.47

LG 499340310 543440520 4711 +0311 24424120 Figure 6: Inferred Sk-length Lorenz at-

w-SSMGRU 5.401 + 0.197 5.856 + 0.387 5.097 4+ 0.247 2318 +1.07 tractor.
w-SSMLsT™ 5.475 + 0.217 5.844 4+ 0.292 5.137 4+ 0.180 -23.25 +0.94

We also include comparisons with latent SLDS and irSLDS. For a broader evalua-
tion, we incorporate DeepAR (an autoregressive model), as well as CRU, RKN, neu-
ral ODEs, and other VI-based approaches. Numerical results are reported in Table [I]
Figure [] shows samples from the predictive distributions

q(yt|y1:4—1) of m-SSMgru, LG, and SLDS compared with e
ground-truth Pong trajectories. Top row: a trajectory of 4 e
frames with two collisions, each triggering a mode switch. Sec- -
ond row: m-SSMgry inferred modes, where each color marks a "
regime; intervals of constant ground-truth mode align with con-
sistent colors, and color changes coincide with mode switches.
Third and fourth rows: comparison of the first two eigenvalues »
of learned transition matrices of m-SSMggry With ground truth, »
demonstrating accurate recovery of dynamics across regimes.
Bottom row: predictive distributions at ¢ = 15 and ¢t = 55 (y:
= ball position), highlighting alignment of models with ground-
truth transitions. Further explanations with detailed example of
8 frames and the strategy to extend eq.(9) to perform sequence
generation/imputation are in Appendix [H.I} Animated files
demonstrating sequence generation/imputation are available: sites.google.com/view/iclrpi.

0 10 20 40 50 60

Easztn[m]
Figure 7: NCLT: Position estima-
tion for the first 60 observations.

Lorenz Attractor. The Lorenz system is a set of nonlinear ordinary differential equations originally
developed to model atmospheric convection. Due to its chaotic and highly nonlinear dynamics (see
Appendix [G.2), it serves as a strong benchmark for evaluating the 7-SSM cell. We assess m-SSM
on a trajectory of length 5k, where each observation is perturbed by zero-mean Gaussian noise with
covariance R; = 0.5I. During training, the predictive likelihood ¢(y: | y1:t—1) is modeled as a
Gaussian and optimized accordingly. In addition to the log-likelihood scores in Table [T} we report the
MSE across different sample sizes in Figure 5] highlighting comparisons with competitive baselines.
Due to the system’s inherent nonlinearity, LG must linearize the transition

model before applying standard filtering, which limits its performance. 1able 2: MSE for NCLT
Sample trajectories are visualized in Figure[§] experiment

Real World Dynamics: NCLT dataset. To evaluate 7-SSM on real-

world data, we utilize the Michigan NCLT dataset, which consists of Model MSE 1dB)
navigation data collected by a Segway robot. At each time step, the latent ZZiﬁf;‘fM ot
state x; € R* comprises the robot’s 2D position and velocity, while the LG 2045+0.22
observation y; € R? corresponds to noisy GPS measurements. The goal e §3§3i83
is to accurately estimate the robot’s true position given only the corrupted ot T
GPS observations. For this experiment, we sampled 4,280 usable time Observation 25.47-0.08

https://sites.google.com/view/iclrpi

Under review as a conference paper at ICLR 2026

steps from the robot’s trajectory. We assume a uniform motion model with constant velocity dynamics
(see Appendix [G.3]for details). In addition to the predictive log-likelihoods reported in Table[T] we
present MSE results in Table 2] for competitive methods. A visual comparison of inferred states
against ground truth is in Figure[7] Overall, this experiment demonstrates that the 7-SSM generalizes
well to real-world localization tasks.

Navier-Stokes. The Navier-Stokes equations (Acheson, |1990) describe the evolution of incom-
pressible, viscous fluid flow, and are fundamental in modeling physical systems such as ocean
currents, weather, and turbulence. To evaluate whether 7-SSM can learn complex, nonlinear dy-
namics governed by PDEs, we design an experiment based on the 2D Navier-Stokes equations
in vorticity form on the unit torus (see Appendix [G.4] for equations, simulation details, etc.). We
simulate a physical environment where particles evolve under true fluid dynamics, and generate
10K particle trajectories. Each trajectory consists of a sequence of latent states x; € R, includ-
ing 2D spatial position, local velocity, and pressure: (x4, Y, us, v¢, p¢). Gaussian noise is then
added to create observations y; € R?, consisting only of spatial position (x, ;). The model is
trained to infer the latent states from these noisy observations using Gaussian predictive likelihood.
At test time, we evaluate whether 7-SSM can sim-

ulate realistic particle dynamics consistent with the 12 :
underlying Navier-Stokes field. Specifically, given an o — eswinss
initial position (zo, yo), the model iteratively infers T s
latent velocity and pressure fields to generate a tra- ” \MW\ /\

jectory consistent with true fluid flow. This allows us !

to assess the model’s ability to recover hidden, PDE-
governed system dynamics from partial observations ‘
in Table[I](See the generated trajectories here). Since o S e RO
PINNSs and their structured variants (e.g., SPINNs) ’ Y o * 25

are explicitly designed to model PDE-based systems,

we include them as specialized baselines alongside Figure 8: Training stability with and without
general-purpose sequence models. Trajectory genera- ISS. Left axis: loss (-likelihood) norm. Right
tion of the inferred system is shown in Figure[I] See axis: [|U||o relative to the ¢1-ball radius.
Appendix [H.2| for numerical results.

Stability Handling. Table[3|reports the log-likelihood
values and standard deviations for the Pong experiment,
comparing different strategies for addressing training in-

-
N

lloss||
o
Y

-
o
(relative to £3-ball)

°
®
Ul

°
o
o
o

)
=

Table 3: Comparison of our ISS and GC
for stability handling for Pong.

stability. We evaluate the conventional Gradient Clipping

. . . Stability Handling Objective Success

(GC), using threshold §, against our proposed ISS projec- rSSMgu(ss) € = 01 | SAOTE0I7 100%
tion strategy, which ensures the RNN satisfies the condi- e L B L
. . .. =U. B g 0
tion in Theorem 3] In our approach, the positive buffer e~ ™SMustnSS (_ g5 | 517240202 100%
defines the radius of the ¢;-ball onto which each row of =-ssMggy(GC) g o 5'24?\]2;”2 o
U is projected, enforcing a strict ISS margin. As shown §=10 | 5251 L£131 5%
pro] ’ & £ TSSMLstn(GO) 5 _ 5 N/A 0%

in Table 3] gradient clipping struggles to train under large
thresholds, resulting in unstable behavior or divergence.
In contrast, our ISS-based approach yields consistently higher log-likelihoods and lower perplexity
across all settings, offering improved robustness and stability during training. Figure §]illustrates
this effect: without ISS, ||U||« frequently exceeds the admissible radius, leading to sharp jumps and
oscillations in the loss. With ISS, both ||U ||« and the loss remain well controlled. We provide further
analysis of the role of ¢, including tuning strategies, sensitivity, and full results table in Appendix

8 CONCLUSION

This paper introduced the 7-SSM framework for modeling dynamic systems via hybrid state-space
models. Our approach leverages approximate message passing for inference while using a structured
RNN-based architecture to realize recursive data flow. The 7-SSM jointly trains both discrete and
continuous latent variables using a hybrid optimization strategy, and incorporates a stability scheme
based on ISS to ensure robust RNN updates. Although not explicitly designed for PDE systems,
7-SSM demonstrates strong performance on such problems, highlighting its generality and opening
new directions for future research. Additional extensions, such as backward smoothing via backward
message passing, can further enhance the model’s inference capabilities.

https://sites.google.com/view/iclrpi

Under review as a conference paper at ICLR 2026

BIBLIOGRAPHY

David J Acheson. Elementary fluid dynamics. Oxford University Press, 1990.

Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. Black box
variational inference for state space models. arXiv preprint arXiv:1511.07367, 2015.

Ilze Amanda Auzina, Cagatay Yildiz, Sara Magliacane, Matthias Bethge, and Efstratios Gavves.
Modulated neural odes. Advances in Neural Information Processing Systems, 36, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Alexandra Baier, Decky Aspandi, and Steffen Staab. Relinet: Stable and explainable multistep
prediction with recurrent linear parameter varying networks. In IJCAI, pp. 3461-3469, 2023.

Shivani Bathla and Vinita Vasudevan. Approximate inference of marginals using the ibia framework.
Advances in Neural Information Processing Systems, 36:72679-72691, 2023.

Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C James Taylor, and Gerhard Neumann.
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces. In
International Conference on Machine Learning, pp. 544-552. PMLR, 2019.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Nicholas Carlevaris-Bianco, Arash K Ushani, and Ryan M Eustice. University of michigan north
campus long-term vision and lidar dataset. The International Journal of Robotics Research, 35(9):
1023-1035, 2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable physics-informed neural networks. Advances in Neural Information Processing Systems,
36, 2024.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. Advances in neural information processing
systems, 28, 2015.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the
1 1-ball for learning in high dimensions. In Proceedings of the 25th international conference on
Machine learning, pp. 272-279, 2008.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recognition and
nonlinear dynamics model for unsupervised learning. arXiv preprint arXiv:1710.05741, 2017.

Tal Friedman and Guy Van den Broeck. Approximate knowledge compilation by online collapsed
importance sampling. Advances in neural information processing systems, 31, 2018.

Roger Frigola, Fredrik Lindsten, Thomas B Schon, and Carl Edward Rasmussen. Bayesian inference
and learning in gaussian process state-space models with particle mcmc. Advances in neural
information processing systems, 26, 2013.

10

Under review as a conference paper at ICLR 2026

Victor Garcia Satorras, Zeynep Akata, and Max Welling. Combining generative and discriminative
models for hybrid inference. Advances in Neural Information Processing Systems, 32, 2019.

Victor Geadah, Jonathan W Pillow, et al. Parsing neural dynamics with infinite recurrent switching
linear dynamical systems. In The Twelfth International Conference on Learning Representations,
2024.

Alan E Gelfand. Gibbs sampling. Journal of the American statistical Association, 95(452):1300-1304,
2000.

P Gilabert, Gabriel Montoro, and E Bertran. On the wiener and hammerstein models for power
amplifier predistortion. In 2005 Asia-Pacific Microwave Conference Proceedings, volume 2, pp.
4-pp. IEEE, 2005.

Chenghua Guo, Han Yu, Jiaxin Liu, Chao Chen, Qi Li, Sihong Xie, and Xi Zhang. Linear uncertainty
quantification of graphical model inference. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Hamidreza Hashempoor and Wan Choi. Deep learning based data-assisted channel estimation and
detection. IEEE Transactions on Machine Learning in Communications and Networking, 2025.

Hamidreza Hashempoor, Rosemary Koikara, and Yu Dong Hwang. Featuresort: Essential features
for effective tracking. arXiv preprint arXiv:2407.04249, 2024.

Hamidreza Hashempoorikderi and Wan Choi. Gated inference network: Inference and learning
state-space models. Advances in Neural Information Processing Systems, 37:39036-39073, 2024.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Matthew J Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast inference.
Advances in neural information processing systems, 29, 2016.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Sekitoshi Kanai, Yasuhiro Fujiwara, and Sotetsu Iwamura. Preventing gradient explosions in gated
recurrent units. Advances in neural information processing systems, 30, 2017.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt. Deep varia-
tional bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke, and Patrick van der Smagt. Latent
matters: Learning deep state-space models. Advances in Neural Information Processing Systems,
34,2021.

Jonathan Ko and Dieter Fox. Learning gp-bayesfilters via gaussian process latent variable models.
Autonomous Robots, 30(1):3-23, 2011.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
2019.

Rahul Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

11

Under review as a conference paper at ICLR 2026

Rui Li, ST John, and Arno Solin. Improving hyperparameter learning under approximate inference
in gaussian process models. In International Conference on Machine Learning, pp. 19595-19615.
PMLR, 2023.

Yingzhen Li and Stephan Mandt. Disentangled sequential autoencoder. arXiv preprint
arXiv:1803.02991, 2018.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian learning and inference in recurrent switching linear dynamical systems. In Artificial
Intelligence and Statistics, pp. 914-922. PMLR, 2017.

Scott W Linderman, Andrew C Miller, Ryan P Adams, David M Blei, Liam Paninski, and Matthew J
Johnson. Recurrent switching linear dynamical systems. arXiv preprint arXiv:1610.08466, 2016.

Lennart Ljung. Asymptotic behavior of the extended kalman filter as a parameter estimator for linear
systems. IEEE Transactions on Automatic Control, 24(1):36-50, 1979.

Qi Lou, Rina Dechter, and Alexander Ihler. Interleave variational optimization with monte carlo
sampling: A tale of two approximate inference paradigms. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 7900-7907, 2019.

Radu Marinescu, Akihiro Kishimoto, Adi Botea, Rina Dechter, and Alexander Ihler. Anytime
recursive best-first search for bounding marginal map. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 7924-7932, 2019.

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational sequential
monte carlo. In International conference on artificial intelligence and statistics, pp. 968-977.
PMLR, 2018.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2,2011.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310-1318. Pmlr, 2013.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

Herbert E Rauch, F Tung, and Charlotte T Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA journal, 3(8):1445-1450, 1965.

Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud JG van Sloun, and Yonina C
Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics. arXiv
preprint arXiv:2107.10043, 2021.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

David Ruhe and Patrick Forré. Self-supervised inference in state-space models. arXiv preprint
arXiv:2107.13349, 2021.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181-1191, 2020.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
series with continuous recurrent units. In International Conference on Machine Learning, pp.
19388-19405. PMLR, 2022.

12

Under review as a conference paper at ICLR 2026

Maarten Schoukens and Koen Tiels. Identification of block-oriented nonlinear systems starting from
linear approximations: A survey. Automatica, 85:272-292, 2017.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Francesco Tonolini, Nikolaos Aletras, Yunlong Jiao, and Gabriella Kazai. Robust weak supervision
with variational auto-encoders. In International Conference on Machine Learning, pp. 34394—
34408. PMLR, 2023.

Niklas Wahlstrom, Thomas B Schon, and Marc Peter Deisenroth. From pixels to torques: Policy
learning with deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear estimation.
In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No. 00EX373), pp. 153-158. ITeee, 2000.

Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical models for human
motion. IEEE transactions on pattern analysis and machine intelligence, 30(2):283-298, 2007.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. arXiv preprint
arXiv:1506.07365, 2015.

Paul J] Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550-1560, 1990.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Robert Wilson and Leif Finkel. A neural implementation of the kalman filter. Advances in neural
information processing systems, 22:2062-2070, 2009.

Harrison Zhu, Carles Balsells-Rodas, and Yingzhen Li. Markovian gaussian process variational
autoencoders. In International Conference on Machine Learning, pp. 42938—42961. PMLR, 2023.

13

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS OF APPENDIX

A Background [14]
A.1 Forward Backward Algorithm i [14]
A2 LG Filtering and SMOOtINGttt e
A2 GRU Cells REVIEW ..o\ttt ettt et e et
A3 LSTM Cell REVIEW ..\ttt ittt ettt e et 7
A.3 ISS and Comparison Functions: Intuition, Properties, and Examples
B Notation SUMMArY
C PO S .o
C.1 Nested Message Passing Details Derivationcoiiiiiiiiiiiiiinia...
C.2 Complexity Analysis: RNN-Based Updates vs. LG, 21]
C.3 Proof of Theoreml[lo e 21]
C.4 Gradient Estimation DEtailsoiuniineinitee e eeeeieineen, 22
C.5 Proof of Theorem 2l 22
C.6 Proof of TheoremBlo i e 23]
C.7 Projection to Enforce ISS Condition i
D Related works, empirical running times and complexity analysis 34)
D.1 Qualitative Comparison of the 7-SSM to Recent Related Work 34|
D.2 Expressivity, Extension and Limitations, 30|
D.3 Empirical analysiseriuintet ot 36|
E Algorithms and python intuitivecode, 37]
E.l AIZOrithms oo 37|
E.2 Python intuitive COAettt e et 37]
F Hyperparameters and architecture
F.1 Hyperparameters and Training Details i, 0|
F2 Proposed architecture i @1
G Experimental Systems and Formulations
G.1 LG Variant Used in Ablation StUAYiuiniriririiie i, 42
G.2 Lorenz System DynamicCso.uiiiiiiii i 42|
G.3 Movement Model Details for the NCLT Experimentc.cocciiiina... 3|
G.4 Navier-Stokes System Settingurinttir it K3
G.5 Effect of Buffer € in RNN Stability Projection 44|
H Additional Results 45l
H.1 Extended Example for Pong Experiment and Imputation Strategy Explanation K3
H.2 MSE RESUILS ... e 46|

A BACKGROUND

A.1 FORWARD BACKWARD ALGORITHM
In hybrid state-space models, such as SLDS, the latent structure typically involves both a continuous

latent state sequence x;.7 and a discrete mode sequence z;.7, which governs the dynamic regime of
the system. Given observations y;.7, a standard inference task, particularly within Gibbs sampling

14

Under review as a conference paper at ICLR 2026

frameworks, is to compute the posterior over discrete states p(z1.7 | X1.7,y1.7), assuming the
continuous latent trajectory xy.7 is fixed.

The model structure assumes a Markovian prior over discrete states, specified by a transition distribu-
tion p(z: | zt—1), and a likelihood model that factors as p(y: | X, z¢) for each time step. Additionally,
the initial discrete state is governed by a prior p(z1).

The forward-backward algorithm provides an efficient dynamic programming method to compute the
posterior marginals of z;.7 under this model structure. The forward pass recursively computes the
joint probability of the observed data up to time ¢ and the discrete state z;, conditioned on the fixed
continuous states. The forward recursion is initialized as

a1(21) = p(y1lz1,%1).p(21) (14)
Then, fort = 2, ..., T, the recursion proceeds as
ai(z) = p(yilze, xi) Y ae1(z-1)p(zelze-1) (15)

Zt—1

The backward pass propagates information from future observations. It is initialized with

pr=1 (16)
and fort =T —1,..., 1, the backward recursion is given by
Bi(zt) = Z ar—1(2e-1)p(2e41|20)P(Ye1|2e41, Xe41) Bet1 (2e41) a7

Zt4+1

Having computed the forward and backward messages, the posterior marginals over discrete states
are proportional to their product:

p(zelyrrs x1.7) o< a(zt).Bi(zt) (18)
Sampling a discrete trajectory z;.7 can then be performed sequentially, using the computed marginals
at each time step.

The forward-backward algorithm thus enables exact posterior inference over discrete latent sequences
in models with coupled discrete-continuous structures, conditioned on fixed continuous states, and
serves as a key inference building block in hybrid dynamical systems.

A.2 FILTERING AND SMOOTHING PARAMETERIZATION

In a SLDS, the generative process over continuous latent states x;.7, discrete switching variables
z1.7, and observations y1.p factorizes as

T

p(xa, 21, yior) = p(z)p(xa|20)p(yax, 20) [[p(2ilzi-1) p(xelxio1, 20) p(yelxe, z¢) (19)
t=2

Inference in this model typically involves estimating the joint posterior p(X1.7,Z1.7|y1.7) which is
computationally intractable in general due to the coupling between discrete and continuous variables
across time. In the Gibbs sampling framework, we alternate between updating the discrete sequence
z1.7 and the continuous latent states x;.7. After fixing z;.7, the conditional model over x;.7 and
y1.7 reduces to a time-varying linear Gaussian state-space model, where the dynamics and emission
parameters are determined by the known discrete sequence. In the following, we describe the classical
Kalman filtering and smoothing procedures adapted for this setting.

In the Gibbs sampling framework, after fixing the discrete state sequence z;.r, we update the
continuous latent variables x1.7 conditioned on the fixed z;.7 and observations y;.7. The following
describes the classical Kalman filtering and smoothing procedures adapted for this setting.

The Kalman filter operates by alternating between two main steps: prediction and correction. In
the prediction step, prior state information is used to estimate the state at the next time step. The

15

Under review as a conference paper at ICLR 2026

correction step refines this estimate by incorporating newly acquired observations. Assuming that
the process and observation noise are Gaussian, and that the transition and emission models are
determined by the discrete mode z;4 1, the filter can execute these operations efficiently. During
the prediction phase, the transition matrix A associated with the discrete mode z;,; is used to
compute the prior distribution

Zt41

P(Xer1]Yi:t, Z1:t) = (Hegr)es Detfe) (20)
where
M1t = Azt+1,u/t\t7 Et+1|t = Aztﬂ Et\tA£+1 + ta+17 (21)

and Q;, , denotes the process noise covariance determined by the mode z;.

Upon receiving a new observation y; 1, the Kalman filter proceeds to the update (correction) phase,
refining the prior estimate by incorporating the emission matrix C corresponding to the discrete
mode z;1. The Kalman gain is given by

Zt41

Ky = 2t+1|tC£+1 (Cps Et+1\tcz+1 + thﬂ)_l, (22)
where R, ,, is the observation noise covariance.
The state mean and covariance are then updated as
frigtir = Herrje + Kirr (Va1 — Coas flegge) (23)
Yit11 = B — K <Czt+1 Et+1|t02+1 + thﬂ) K/, .. (24)

This observation update step can be interpreted as a weighted average between the predicted prior
(from the state transition) and the newly acquired observation, where the relative weight is determined

by the process and observation noise covariances Q.,,, and R, ;.

To derive the smoothing equations, we utilize the Markov property, which asserts that x; is con-
ditionally independent of future observations y;; ;.7 given x;1;. Although x;; is not directly
observed, it is available through its posterior distribution. By conditioning on x;; and subsequently
marginalizing, the smoothing distribution for x; can be expressed as

p(Xe|y1r,21.7) = /P(Xt|Xt+17Y1;T,Z1:T)p(Xt+1|Y1;T,Z1:T)dXt+1

(25)
:/p(Xt|Xt+17Y1:t,Z1:t,MM)P(Xt+1\Y1:T7Z1:T)dXt+1
By using induction and and smoothed distribution for ¢ 4 1:
Pyr (X1 [y T, 21:7) = N (g7, Bigar) (26)
and applying standard Gaussian identities, the two-time-slice filtered distribution is given by
P (Xt X 1|y1,t zl't) N< (Kt |t) < Et\t Et|tAZ’1+1>) (27)
Yi:t 9 -+ ity : ,ut+1|t) zt+12t|t 2t+1|t

Conditioning this joint Gaussian on x;4; yields

Py (Xt|xt+17 Vit Z1:t) = /\/(Mt\t +Jy (Xt+1 - Azt+1ﬂt\t)u 2t|t - Jt2t+1|tJtT) (28)

where the smoothing gain matrix is defined as

Jo =2 As, B! (29)

Using the rules of iterated expectation and covariance, the smoothed mean and covariance are then
given by

16

Under review as a conference paper at ICLR 2026

por = E[Exi X1, Y11, 207] [y1r, 21:7)

= E[E[x¢[Xt11, Y115 21:1] [y1:7, 227

(30)
= E[ﬂt\t + Je(xe41 — Aspyy o) [V 1T, Zl:T]
= puge + Je (o1 — Ay fhe)e)
Yy = COV[E[Xt|Xt+17YI:TaZ1:T] \Y1;T7Z1:T] + E[COV[Xt|Xt+17Y1:T,leT} |Y1:T;Z1:T]
= COV[E[xt|Xt+1aY1:t;Z1:t] |Y1:T721:T] +E[COV[Xt\XtH,}’LnZLt} |Y1:T,Z1;T}
= COV[Ht|t + Ji (%41 — Azt+1ﬂt|t) |y1:T7Z1:T] + E[Em - Jtztﬂ\tJtT \Y1:T,Z1:T] 31)

= Jicov [Xt+1 - Aztﬂllm |Y1:T7 Z1:T]JtT + 2t|t - Jt2t+1\tJtT
= Jt2t+1|TJ$ + X — Jt2t+1|tJtT
=3 +Je (Et+1\T - Z3t+1|t)Jg1-

A.3 GRU CELL REVIEW.

We consider a standard GRU cell followed by a linear output layer, as described in|Chung et al.
(2014)), reformulated here in terms of the gating architecture. At each time step, given input vector
u € R™ and previous hidden state h € R™", the GRU cell computes the new hidden state h* and
output out € R™ as follows:

g =0(Wyu+Ugh+b,), (update gate) (32)
f=0(Wsu+Ush+by), (forget/reset gate) (33)
h=¢(W,u+U.(fOh)+Db,), (candidate activation) 34)
ht =g®h+(1—g)®h, (hidden state update) (35)
out = Uy,h + bgy, (linear readout) (36)

Here, o(+) denotes the element-wise sigmoid function and ¢(+) is a nonlinear activation function,
typically the hyperbolic tangent. The operators ® and (1 — g) denote element-wise multiplication
and complement, respectively.

This formulation defines the update gate g and forget/reset gate f based on both current input u and
prior hidden state h. The intermediate candidate h incorporates gated recurrence through f ® h, and
the next hidden state h™ blends the past state and candidate based on g. The output vector out is
computed as a linear transformation of the current state.

A.4 LSTM CELL REVIEW.

We consider a standard LSTM cell (no peepholes, uncoupled gates) followed by a linear output
layer, as described in|[Hochreiter & Schmidhuber| (1997), written in gating form. At each time step,
given input u € R™+, previous hidden state h € R™", and previous cell state ¢ € R™", the LSTM
computes the next states (¢, h™) and output out € R"° as:

f=0(Wyu+Ush+by), (forget gate) (37)
i=oc(W;,u+U;h+Db,), (inputgate) (38)
o=0(W,u+U,h+Db,), (outputgate) (39)
¢=¢(W.u+U,h+b,.), (candidate cell) (40)
ct=foc+ioe, (cellstate update) 41)
h* =0 ® ¢(ct), (hidden state update) (42)
out = Uy ht + boy, (linear readout) (43)

17

Under review as a conference paper at ICLR 2026

Here, o(-) denotes the element-wise logistic sigmoid and ¢(+) is a saturating nonlinearity (typically
tanh). The operator ® denotes element-wise multiplication. The gates f, i, o modulate, respectively,
memory retention, information write, and exposure of the cell state. The candidate ¢ proposes a
content update, which is blended with the retained memory to form c*; the hidden state h™ exposes a
squashed version of ¢T through the output gate. The readout out is a linear function of the current
hidden state.

A.5 1SS AND COMPARISON FUNCTIONS: INTUITION, PROPERTIES, AND EXAMPLES

We adopt the standard comparison-function notation in Definitions[TH2] Class Ko, functions act as
gauge functions: they are continuous, strictly increasing, vanish at the origin, and grow unboundedly.
They allow us to rescale and compare norms while preserving order and asymptotic behavior. Class
KCL functions model transient decay: for fixed r, 5(r,t) decreases to 0 as ¢t — oo; for fixed ¢,
r +— B(r,t) behaves like a K function. In an ISS estimate (Definition 2), 3(||ho ||, t) quantifies
how the effect of the initial condition vanishes, while 7, (||%|/00,1:¢) and 74 (]|b]|s0) capture how
bounded inputs and constant biases bound the steady-state response.

Examples.

* Koot (r) = cr with ¢ > 0; more generally y(r) = er? forany ¢ > 0, p > 1; or
~v(r) = c(e* — 1) fora,c > 0.

e KL: B(r,t) = re " for ¢ > 0 (continuous-time) and 3(r,t) = Ar with A € (0,1)
(discrete-time). Mixed forms are common: 3(r,t) = a(t) ¥(r) with a(t) | 0 and ¥ € Koo

Why Ko/ICL? These classes are closed under the manipulations that appear in small-gain, Lya-
punov, and comparison arguments: sums, compositions, and norm changes. They provide a
coordinate-free way to state stability and input gains: the specific norm and constants are absorbed
into comparison functions.

Useful calculus (closure properties). Lety,~v1,72 € K and 3, 81, 82 € KL. Then:

1. cy e Ko forall e > 0; 71+ 72 € Koos 71072 € Koos 7= max{y1(r),72(r)} € Keo.
2. min{p1, fo} € KL; r— ~v(B(r,t)) € KL; (r,t) — B(y(r),t) € KL.

3. Norm equivalence: for any two norms | - ||, || - |l» on R", there exist m, M > 0 with
m||z|e < |lz|ls < M||z||o. Hence ||z||p < v(||z]lo) for v(r) = Mr € Ko, and conversely.
This lets us change norms inside ISS inequalities by adjusting the comparison functions.

ISS vs. BIBO. Bounded-input-bounded-output (BIBO) guarantees sup, || h¢|| is finite for bounded
inputs but is silent about the transient from hy. ISS strengthens BIBO by requiring a decaying KL
term for the initial condition and gain functions v, 7, for inputs/biases. Thus, as ¢ — oo and for
bounded inputs, the state satisfies ||/¢[|co < Yu(]|t]/o0,1:00) + 75 (]|D]|oc), With the initial-condition
effect vanishing.

Linear discrete-time example. Consider 2,11 = Az, + Bu; + b with a matrix norm || - || s.t.
[|A]| € o < 1. Then by induction,

t—1
1 1—a 1—aot
lzell < o [loll + > " (B ur | + [1b]]) < allzo]| + o 1Bl ulloo,vie + 5——[Ibll-
=0
Hence ISS holds with
B(r,t) =alr € KL, ~u(s) = %5 € Koo, m(s) =1 5€ K.

This template underlies our RNN bounds: show the state update is a contraction (after gating/non-
linearity), then bound the input and bias channels linearly (or via Lipschitz gains) to obtain explicit

5a7u7’Yb-

Under review as a conference paper at ICLR 2026

ISS via Lyapunov comparison (discrete-time sketch). A function V' : R™ — R>(is an
ISS—Lyapunov function if there exist ay, as, a3 € Ko and o € K, such that

ar([hl]) < V(h) < ax([[bl), V(RT) =V (h) < —as(||h]]) + o (llull) + o([lb])-

Standard comparison lemmas then yield an ISS estimate of the form in Definition [2| with some
B € KL and v, v € K. In our gated architectures, V' (h) = ||h| o or a weighted ¢; /{~, norm
often suffices once gate and recurrent blocks satisfy the norm constraints derived in the main text.

How this interfaces with gated RNNs. For GRU/LSTM cells, the gate blocks determine an
effective contraction factor on the hidden-state channel, while the input and bias channels contribute
additive gains. Our ISS conditions enforce that the induced hidden-state Lipschitz constant is strictly
< 1, yielding a geometric 3(-,), and that the input/candidate paths have bounded operator norms,
yielding linear ~y-gains.

B NOTATION SUMMARY

The summary of all variables used in the paper categorized with discrete and continuous parameters
with description is provided in table 4]

C PROOFS

C.1 NESTED MESSAGE PASSING DETAILS DERIVATION

We provide a proof that the standard message passing updates under the factorization in equation (TJ
induce the stated nested inference structure.

Belief at x;. The belief at x; is given by the product of incoming messages from the dynamics and
observation factors:

Belief(x;) o< My, x, X Mfy x5 44)

where the incoming messages are:
My, = Z/p(xt | xt—1,2¢) p(z¢ | x¢—1) Belief(x;—1) dx;—1, (45)
M fysx, = DYt | X1)- (46)

Substituting these into the belief expression yields:

Belief(x;) « p(y: | x¢) Z /p(xt | x¢—1,2¢) p(2t | x4—1) Belief(x;—1) dx¢—1. 47)
Zt

Belief at z;. The belief at z; is given by the product of incoming messages from the dynamics and
mode factors:

Belief(2;) oc mfy, 2y X Mify sz, (48)

where the messages are:
M sz = //p(xt | x¢—1, 2¢) Belief(x;_1) Belief(x;) dx;—1 dxy, (49)
M froie—rze = /p(zt | x;—1) Belief(x;—1) dx;_1. (50)

Since Belief(x;) already incorporates the likelihood p(y; | x;), we expand my,, .., as:

M foyn—2ze X Ext—le(xt—1|y1:t—l) [Exth(xr,\Xz—th) [p(Yt | Xt)]] ’ (51
where the expectation over x; reflects the probabilistic propagation and local likelihood weighting.
Similarly, the mode message can be expressed as:

M frode—2ze — Ext—lmp(xt—l‘YI:t—l) [p(zt | Xt—l)] . (52)

19

Under review as a conference paper at ICLR 2026

Table 4: Summary of key notations used in the paper. Parameters are categorized into discrete (6)
and continuous (¢) sets where applicable.

Symbol Description
Latent and Observed Variables
x; € RM Continuous latent state at time ¢
X1, € RPM Continuous latent states from time 1 to time ¢
ze{l,...,K} Discrete latent mode at time ¢
z14 €{1,...,K}! Discrete latent modes from time 1 tp time ¢
ye € RN Observation at time ¢
Y1t € RN Observations from time 1 to time ¢

Variational Filtering Parameters
pije € RM, 3, € RM*M Mean and covariance of filtered posterior p(x; | y1.¢)
pije—1 € RM, 5y, € RM*M Mean and covariance of predictive prior p(x; | y1:4—1)

fuje € RM, 35, € RMxM Mean and covariance of approximated filtered posterior ¢(x; | y1.¢)

Byje—1 € RM, f]t“_l € RMxM Mean and covariance of approximated predictive prior q(x; | ¥1.t—1)

Dynamics and Emission Models

A, € RMxM Transition matrix selected by z; (continuous, part of ¢)

C., € RVxM Emission matrix selected by z; (continuous, part of ¢)

Q; € RMxM Process noise covariance (mode-independent)

R; € RVXN Observation noise covariance (mode-independent)
GRU and Stability Terms

u; € R™ Input to GRU at time ¢

h; € R Hidden state of GRU

h, GRU candidate update

g, £ GRU update and reset gates

U, Weight matrix in GRU recurrent term (ISS constrained)
Optimization Variables

0 Parameters related to discrete inference (e.g., ¢(z; | x¢—1) modeled by

NN)
10} Parameters related to continuous states (e.g., GRU weights, A ,,, C;,)

Posterior inference for x; and z;. The approximate posterior p(x; | y1.¢) can thus be written as:

p(Xt \ Y1:t) X p(}’t | Xt)Ext,l,zt [p(Xt \ thlazt)p(zt | thl)]) (53)
where the expectation is over the predictive prior p(x;—1 | y1.1—1) and switching distribution
p(Zt | Xt—1)~

Similarly, the approximate posterior p(z; | y1.) is given by:

p(Zt | yl:t) 08 Ext,1~p(xt,1|y1;t,1) [p(Zt | Xt—l) X Ext~p(xt|xt,1,zt) [p(yt ‘ Xt)H 5 (54)
matching the nested structure described in equation (7).

Approximate factorization of p(x;,z: | y1.+). Due to the model structure, where z; depends
primarily on x; and future z;; depends only on x;, the posterior at each time step approximately
factorizes as:

p(xts 2t | y1a) = p(xe | y1:0) X p(2t | ¥1:0)s (55)
where the approximation relies on the weak dependency between x; and z; after local updates.

Thus, standard local message passing induces a nested sampling structure consistent with the proposed
inference framework.

20

Under review as a conference paper at ICLR 2026

This posterior factorization is a structured mean-field approximation that arises directly from the
local message-passing design of our model. At each time step ¢, inference is restricted to the latent
variables at that step, without referencing future or nonlocal latents. This choice enables strictly
online filtering and scalable, per-step gradient estimation (as formalized in Theorem [2).

More expressive posterior families could be obtained by introducing higher-order factors such as
p(xy, 141, 2¢). However, such terms would require backward message passing across time, thereby
breaking the localized factorization that underpins our inference framework. This would induce
nonlocal dependencies—e.g., marginalization over x4 ;—and complicate both the message schedule
and gradient flow, increasing computational and memory cost.

From the perspective of expressivity, modeling richer joint posteriors (e.g., over (x4, 111, 2¢)) could
capture longer-range temporal correlations. Yet the practical benefits of this added complexity remain
uncertain. Our empirical results indicate that the proposed approximation is already sufficiently
expressive to capture relevant dynamics across diverse benchmarks, while retaining the advantages of
online and scalable inference. We leave the exploration of such extensions to future work.

Recursive Factorization (Forward Path). Since the message passing algorithm proceeds forward
in time and updates latent variables x;, z; based only on y;.;, we may write:
t/
P, 21 | y1) = [[(%o, 22 | y1:0)- (56)
t=1
This corresponds to a structured filtering assumption in which each latent pair (x;, z;) is inferred
independently conditioned on previous beliefs, without backward smoothing refinement.

O

C.2 COMPLEXITY ANALYSIS: RNN-BASED UPDATES VS. LG

We analyze the computational advantage of the proposed m-SSM parameterization over traditional
Linear Gaussian State Space Models (LGSSMs) during inference.

In LGs, the posterior state update involves matrix inversions of the state covariance matrix, which
incurs a computational cost of O(M?3) per time step, where M is the dimensionality of the latent
continuous state X;.

In contrast, our 7-SSM uses a RNN-based update to approximate the Kalman-style correction. A
standard RNN cells such as GRU or LSTM with input size n, and hidden state size n; has a
forward-pass complexity of O(3ny (ny + n, + 3)) (Chung et al., 2014; Hashempoor & Choil [2025;
Hashempoor et al.,|2024). In our case, the RNN processes the flattened covariance matrix input

ﬁ)t|t_1 € RM*M along with additional features, yielding an effective input size n,, = M?. Thus,

the per-step complexity of the RNN becomes O(3n;,M?), which scales linearly with the input
dimension.

When M > np, this leads to a significant computational saving compared to the cubic cost of LG
updates. In particular, 7-SSM offers a speedup factor on the order of %, making it well-suited for
high-dimensional latent state models.

C.3 PROOF OF THEOREM[I]

We aim to relate the true predictive likelihood p(y: | y1.t—1) and the surrogate likelihood ¢(y: |
v1.t—1) defined as:

Q(yt ‘ y1:t—1) - Eq(xt,l\yl;t,l) [Eq(zdxt,l) [Ep(xt\xt,l,zt) [p(yt | Xt)]]] . (57)
Now consider the KL divergence between the true joint posterior and the variational approximation:
logp(yi | yi:t—1) =108 Epx, 1 20 xely1ie_y) [P(Ye | X4)] (58)

= EQ(XFMZ{,) DogEP(xt\xt—lazt) [p(yt ‘ Xt)” — KL (Q(Xt_l,Zt)Hp(Xt_l,Zt | y1:t—1))a
(59)

21

Under review as a conference paper at ICLR 2026

where the inequality follows from the variational bound and Jensen’s inequality.

Using the factorization:
q(xt-1,2¢) = q(Xe—1 | y12-1) @(Z¢ | Xe—1), P(Xe—1,2Z¢ | y1a—1) = p(Xe—1 | Y1:-1) P(2¢ | Xe—1),
we expand the KL divergence:

KL(q(x¢—1,2¢)|[p(x¢—1,2¢ | Y1:0-1)) = KL(g(x¢—1 | y1:0—1)[|[p(Xe =1 | ¥1:6—1)) (60)
+ Eqx,_1) [KL(q(z¢ | x¢-1)lIp(Z¢ | x¢-1))] . (61)

Thus we obtain the lower bound:

logp(y: | y1:6—1) > logq(y: | y1:e—1) + &, (62)
with:

& = —KL(q(xt—1 [yr:e—)Ip(xe—1 | ¥1:0-1)) = Egae,_y) [KL(q(Zt | x¢-1)[IP(2¢ | %¢-1))]

completing the proof.

C.4 GRADIENT ESTIMATION DETAILS

To optimize the surrogate predictive log-likelihood objective L(y1.7) = 23:1 log q(y: | ¥1:t—1)s
we compute gradients with respect to both continuous and discrete inference parameters. These
gradient expressions arise from the use of standard backpropagation for continuous variables and
REINFORCE for discrete ones.

Continuous Gradient Derivation. For the continuous parameters ¢ of the inference model g(x; |
¥1.t), the predictive surrogate is differentiable. Thus, we directly compute:

v¢ IOg q(yt | Y1:t—1) = V¢ lOg Ext—lazmxt [p(yt | Xt) p(Xt | Xt—1, zt) q(Zt | Xt—l) Q(Xt_l | yl:t—l)])

(63)
which can be approximated via Monte Carlo sampling through the reparameterizable distributions.
Gradients are propagated using standard backpropagation through the computational graph.

Discrete Gradient Derivation (REINFORCE). For the discrete parameters 6 of the categorical dis-
tribution ¢(z; | x¢—1), we cannot backpropagate through sampling. We instead use the REINFORCE
estimator Williams| (1992)), which applies the score function trick:

VO lOg Ezt [f(zt)] = Eztwq(zﬂxt,l) [f(zt) VQ log q(zt | Xt—l)] y (64)
where we take f(z;) = log q(y: | y1.t—1) as a reward signal. To reduce variance, we use a control
variate b; (e.g., an exponential moving average of past rewards), yielding the final gradient estimate:

T
VoL(yiT) ~ ZEztwq(zﬂx,,_l) [(1og q(ye | y1:6=1) — be) Vologq(z | Xt—l)} . (65)

t=1

Note: The reward term log¢(y: | y1.t—1) is treated as a constant during gradient computation
with respect to . In practice, this is implemented using detach () in automatic differentiation
frameworks.

C.5 PROOF OF THEOREM[2]

Proof. In standard SLDS models with Markovian discrete dynamics, the discrete latent variable
z¢ depends on the full history of past discrete variables via a chain of conditional dependencies,

ie, p(zt | z14-1) = Hizlp(zT | zr—1). As a result, computing the gradient of the marginal
log-likelihood with respect to parameters of z; involves backward propagation through all previous
time steps, leading to cumulative complexity Zthl O(t) = O(T?).

In contrast, our model factorizes the discrete latent distribution as p(z: | x+), which depends only on
the local continuous latent state x; inferred from observations up to time ¢. As a consequence, each

22

Under review as a conference paper at ICLR 2026

Vologq(z: | x¢) term—used in REINFORCE gradient estimates—only requires computing a local
reward signal log ¢(y: | y1.t—1) and does not involve backward dependencies through z;.¢—1. This
allows each discrete latent parameter 6 to be updated once per time step with cost O(1), leading to
total complexity O(T).

Therefore, the nested local structure of p(z; | x:) yields a linearly scalable training procedure in
contrast to the quadratic cost in standard SLDS inference. O

C.6 A GENERAL ISS SCHEME FOR GATED, SATURATING RNN MODULES

We show that a broad family of recurrent modules admits an ISS bound under a simple effective
recurrent gain condition. The scheme is stated in terms of the standard ISS definition with comparison
functions in K, and KCL.

Definition 3 (Gated, Saturating RNN (GSRNN)). Let u; € R™ and h; € R™». Consider
hivr = g(hy,w) © by + (1= g(hy,up)) © dWuy + U W (hy, uy) +b), (66)

where g, ¥ act componentwise, ® denotes the Hadamard product, W € R"»*"u_[J € R X"h,
b € R™ are parameters, and ¢ : R — [—1, 1] is a saturating nonlinearity (e.g., tanh or hard-tanh).
We use the induced oo-norm for vectors and matrices; for a matrix A, [|Al| := max; }_; |ai;|.

Standing assumptions.

(A1) (Bounded inputs) ||u¢|loo < Umax for all ¢ (can be enforced by normalization).
(A2) (Saturating candidate) ¢ is monotone, Lg-Lipschitz with Ly < 1, and ¢(R) C [-1,1].
(A3) (Gates in (0, 1) and bounded mixing) There exist constants

0<g<g<l 0<y¢<l1

such that for all (h, u) in the operating domain

g<llgthw)loe <G 1¥(hw)loo < 4 [[Alloc-

Example. If g = o(Wyu + Ugh + by) and ¥(h,u) = o(Wyu + Uyh + by,) © h, then by
monotonicity of o and ||u||cc < Umax We can take

g= U(H[Wg Ug bgmoo maX{Umaxa 1})a 1& = O’(H[Ww Uw bd}moo maX{Umaxa 1})a

and g = 0(—M,) = 1 — g if a symmetric bound M, is known. Here ||[IW U b]||« denotes
the co-norm of the block-row concatenation.

Theorem 4 (ISS for GSRNN). Under (A1)—(A3), define the effective recurrent gain

c=Lg Ul . (67)
if
c<1, (68)
then the system equation [66|is Input-to-State Stable (ISS) in the || - || norm. In particular, with
§:= (l_g) (1_0) € (Oa 1)5 (69)
an admissible ISS bound is
¢ l—yg
Ihelloo < (1 =) lolloc + —5= Lo (IW llos lltlloo,1:¢ + 1b]lo0) (70)
where ||u]|oo,1:4 = Maxi<r<¢ ||Ur || co. Thus the comparison functions
; 1-yg 1-g
Blrt) =(1—=08)'re KL, u(s)= 5 Ly [Wleos € Ko, M(s) = — Lyse K

witness ISS in the sense of Definition 2]

23

Under review as a conference paper at ICLR 2026

Proof. Fix a component j. By (A2) and sub-multiplicativity,
[6(Wu+ U ¥(h,u) +b)|, < Lo (W lleolullco + 1Tl [T (R, w) o + [[blloc)
< Lo (IW lloollullos + U oo l1Rllos + [1Blloc)-
Let ay := Lg||W ||oo|[t]lco» @ := Lg||b]|cc» and ¢ := LU ||0ot. From equationwe get
< (95 + @ = g)e) [helloe + (1 = gj)(au + as).
Since ¢ < 1, the map x — x + (1 — z)c is increasing; hence with g; < g,
9i+ (1 —gjle<g+(1—gle=1-6, 5:=(1-g)(1—c).

Alsol —g; <1— g. Taking max;,

Ihesilloo < (1= 8)llhelloe + (1 g)(au + as).
Unrolling the linear recursion yields equation O

41,5

Remark 2 (Globalization via entrance into the saturating region). If the bounds g, g, z/AJ are guaranteed
only when h; lies in H := [—1, 1]™", the saturation of ¢ implies the standard entrance property: start-
ing from any ho, ||h¢||co strictly decreases while ||h¢||oo > 1 and hits A in finite time; subsequently
Theorem [4] applies. The finite transient can be absorbed into a multiplicative factor on /3.

We now illustrate how the general scheme equation [66|covers widely used gated RNN modules.

GRU. The standard GRU cell system detailed in equations equation [32}-equation [36]is exactly of
the form equation [66| by taking
g(htaut) = Zt, ¢() :tanh(')a \Il(htuut) :ftthv W:W’r‘v U= U’r’a b:br

Thus the sufficient ISS condition equation [68]specializes to

| Ul <1 | 1

with
op = o(lWy Us bpllc), g:=0(l[Wy Uy bglllc)-
We provide two schemes for proof (i) ISS inequality and (ii) Lyapunov function in Appendix[C.7]

LSTM (CIFG variant). The Coupled Input—Forget Gate (CIFG) LSTM reads

fi :O'(qutJrUfht_1 +bf), (72)
iv=1—fi, (73)
¢ = tanh(Wouy + Uchy—1 + be), (74)
ct=fiOc1+(1—fi)©c, (75)
hi = o ® tanh(c;), o0 = c(Wous + Uphi—1 + bo)- (76)

By identifying the cell state ¢; with the hidden state h; in equation we see that this is of the
general form with

g(hta ut) = ft7 (b() = tanh(')) \I/(hh Ut) = hta W = WC7 U = Uca b = bC' (77)

The sufficient ISS condition becomes

[Uelloo 04 < 1, (78)

with 5; := o(||[W; U; bi]|leo) and decay margin

6= (1-57) (1=5iUcloo) b |37 = o(llWs Uy bflll)- | (79)

The output relation h; = o; ® tanh(c;) is a bounded Lipschitz readout with ||h¢]|cc < Gol/¢t]l0o
where 7, := o (||[W, U, bo)||oo), and thus preserves ISS.

24

Under review as a conference paper at ICLR 2026

LSTM (standard decoupled f;,i;). For the standard LSTM with independent input and forget
gates,

ct = ft ©® c—1 + iy © tanh(Weuy + Uchy 1 + be), (80)
ht =0+ © tanh(ct), (81)
we can view the update as a mild extension of equation where the second multiplier is ¢; € (0,1)

rather than 1 — g;. The ISS proof scheme remains identical by replacing (1 — g) with an upper bound
on ¢, so that the sufficient conditions are

[W+a)o, <1, (14000 Ul < 1, | (82)

which matches standard ISS/IOS bounds for LSTMs.

C.7 PROOF OF ISS SCHEMES FOR GRU CELLS
To prove this theorem, we first state a few assumptions and lemmas.
Assumption 5 (Unity-bounded input). The input sequence u; € R™ is unity-bounded:
u eU C-L1" <= ||ueo <1. (83)
This can be enforced via input normalization.
We recall the standard properties of the activation functions used in GRU cells:
o(-) € (0,1), Lipschitz with L, = 1, (84)
o(-) € (-1,1), Lipschitz with Ly = 1, (85)
where both Lipschitz constants hold for componentwise application under || - || -
For notational compactness, define the candidate update
hy = ¢(W,u, + U, (f, 0 hy) +b,), (86)

where the (reset/forget) gate is

f, :=0(Wyu, +Ush, +by), (87)
and the update/keep gate is explicitly
g: = o(Wyus + Ugh; + by), (88)
so that the hidden update reads
hisr =g Ohy + (1-g) ©Ohy. (89)
Lemma 1 (Invariance of the saturating hypercube). Let H := [—1, 1]™*. For any input u,; (no bound

needed),
h; e H — ht+1€7'[.

Proof. Consider coordinate j. Write w;(t) := g;; € (0,1) and 7;(t) := hy; € (—1,1) by
equation [§4}-equation [85] The update is
higaj = wj(t) hej + (1= w;(t)) n(#).

If hy ; € [-1,1] and n;(t) € (—1,1), then hy11 ; is a convex combination of two values in [—1, 1],
hence hs41,; € [—1,1]. Since this holds for all j, hy;1 € H. O

Lemma 2. For any arbitrary initial state hy € R™", the following holds:
i. If hy ¢ H, then ||h;|| is strictly decreasing until h; € ;
ii. The convergence happens in finite time, i.e., there exists a finite # > 0 such that h; € H for

allt > ¢;

25

Under review as a conference paper at ICLR 2026

iii. Each state component h; ; converges into its invariant set [—1, 1] in an exponential fashion.

Proof of Lemmal2] Caseb. hy ¢ H, i.e.,

hy||s > 1. Fix a coordinate j and discrete time & := ¢.

Define .
wi(k) == gk, mj(k) = Dy (90)
The component-wise GRU update reads
hipry = wi(k) heg + (1= w;(k)) n;(k). o1

Gate and candidate bounds. Using the monotonicity of o and ¢ and ||ug||c < 1, we have

wik) < @(k) = o(IWyllao + U loe [l + Ibylloc) < 1, ©2)

and define the complementary lower bound on the “off-gate”:
o(k) = 1-wk) = 1-wjk) > (k) > 0. (93)
For the candidate (using ¢(-) € (—1, 1)), there exists €(k) € (0, 1) such that

M) < 1=etk), ek) = 1= G(IWolloo + Ul [Beloe + Ibrllc)- - 94

One—step decrease for a component outside [—1, 1]. Taking absolute values in equation [91|yields

Prrr sl < wj(k) sl + (1 = w;(k)) In; (K)]. (95)
If |hg ;| > 1, subtract |hy ;| from both sides of equation [93]to obtain
i) = sl < (1= w;i(k)) (Inj (k)] = [51).- (96)
Using |n; (k)| <1 —e(k) and |hy ;| > 1 gives
i (R)| = lhe 5l < (1= €(k)) = lhw s < —e(k), ©7)
and thus, by equation[93]
(il = el < = (L= w;(k) e(k) < —d(k) e(k) < 0. (98)

Hence, whenever |hy, ;| > 1, that component strictly decreases in magnitude:

|Prr15] < lhigl 99)

Sup-norm strictly decreases until hy, € H. Let

J* € al”gmj%ix|hk,j|» lhij| = [hillec > 1. (100)

By equation 98]

hit1,5+] < [hllso. (101)
For any i, using equation [95]and equation
il < wilk) (bl + (1= wik)) (1—e(k)) < wilk) [illo + (1 —wi(k)) (1 - 6%’1*?()))2)
Since ||hy[ls > 1 and 1 — e(k) < 1, the convex combination in equation[102]is strictly less than
([hf] oo

|hk+1,i| < ||hk||oo for all 4. (103)
Taking the maximum over ¢ in equation [I03] yields
htifloo < [l (104)
which proves that the sup-norm is strictly decreasing at every step as long as ||hg||oo > 1. Therefore
the trajectory strictly decreases until it enters H = [—1, 1],

Finite-time entrance into 7{. By monotonicity of ¢ and ¢, and using the sup-norm bound ||hy || s <
max{||ho|/c, 1}, the arguments in the gate/candidate bounds are no larger at time k than at & = 0.
Hence

0 < wk) < w0 <1, (105)

26

Under review as a conference paper at ICLR 2026

and defining the complementary lower bound

i(k) = 1—w(k), (106)
we obtain
0 <46(0) =1-w(0) < o(k) < 1-wk) <1 107)
Similarly, for the candidate,
e(k) > €(0) > 0, (108)
and therefore
(k)] < 1—e(k) < 1—¢(0) = 7 < 1. (109)

Combining equation equation [T08] with the one—step difference inequality valid whenever
|hk7j| > 1,

Ihigr,5] = lhesl < — (1 —w;(k)) e(k) < —5(0)€(0) < 0, (110)

we see that each step reduces |hy ;| by at least the fixed amount §(0) €(0) until it enters [—1, 1].
Hence the hitting time of [—1, 1] for component j is bounded by

hos| — 1
P‘”'W if |ho j| > 1,

4(0) €(0)
0, if |ho;| <1,

Ry = ()

and taking

= ; 112
P 1)

yields h; € H forall t > .

Exponential convergence. We now show that each component converges to [—1, 1] at an exponential
rate. Decompose the evolution of coordinate j from equation 0] as

hij = hiaj+ hegj (113)
with
k—1
hai = ([T ws(®)) o, (114)
k’—tlo k—1
hiss = 3 (TT @) (1 =i () ns(0). (115)
t=0 h=t+1

Decay of hy ;. Since w;(t) < @(0) < 1 for all ¢,

k—1
sl = |(TT w50 hos| < (@(0))* o, (116)
t=0

which tends to 0 exponentially as & — oo.
Decay of hi . By [n; (1) < 1 — ¢(0) and w; () < @(0),
k—1

_ k—1—t
i i < (1= e(0)) Y (@(0)) " (1= w;(1)). (117)
t=0
Since 1 — w;(t) < 1, the sum is bounded by a finite geometric series:
k—1 ik
oy k=1t 1— (@(0)
sl < (=€) X @) = = eo) O g
— 1—w(0)
Combining the bounds. From equation[I16]and equation[TT§]
hi | < |hk,az] + [, 5]
k
Nk 1 (@(0))
< 0 ho.; 1—¢€0 119

27

Under review as a conference paper at ICLR 2026

Because w(0) < 1, the first term decays exponentially, and the second term converges exponentially
to a constant strictly less than 1. Therefore each component Ay, ; converges exponentially to the
invariant interval [—1, 1], completing the proof of Lemma iii).

O

Proof of ISS condition for GRU cells via inequality. Case a. hy € H. By Lemmal(l] h; € # for all
t > 0, hence ||h|,, <1 throughout this case.

Fix a coordinate j and suppress the time index for compactness. Denote

gj:=g;(w,h), f;:=fj(wh), h;:=h;(u,h). (120)
From the GRU update (componentwise),
ht =gjhj+(1—g;)h;. (121)
Taking absolute values and using g; € (0,1) and h; € (—1,1),
Ih1 < gilhsl + (1= g5) lhyl. (122)
Bounding the reset candidate fzj. By definition,
h=¢W,u+U,(foh)+b,), ¢ = tanh. (123)
Using the Lipschitz property of ¢ with Ly = 1 and the induced co-norm,
7l < [Welleo [ulloe + [[Urfloo £ © hlloe + [[b]loc- (124)
Moreover,
[f©hllc < [Ifflos [Ihllec < [If]los, (125)
so we obtain the useful bound
il < [Wellso [ulloe + [0 lloo [[flloc 4+ [brloc- (126)

(Alternatively, if one prefers to keep the explicit linear dependence on ||h||, it is also valid to use
il < [Wellssllullse + [0 lsolfllos Bl + b7 lloc-)

Bounding the reset gate f (not “forget” in GRU). From the gate equation,

f = U(qu—‘rUfh—i-bf), (127)
we have for each coordinate
|(Wiu+Ush+by);| < [Welleollulloo + [[Ufllsclblloe + [byllso- (128)
By monotonicity of o,
flle < o(IWsllsolllloo + [0 lolllloc + bslloc)- (129)

Under ||ufloo < 1 and (in Case a) ||h||o < 1, this reduces to the convenient constant bound

£l < o(IWslloo +[Usloe + [bslloc) = oW Uy bylll) = 65 € (0,1), (130)

where ||[[W; U by]|leo denotes the maximum row-sum norm of the block-row concatenation.

Combining the bounds. From equation [[26}-equation[T30] we obtain
s < A{IWe o HIU b o By o) < W et U o o+ - (131)

Substituting into equation [122] we find
01 < gyl +(0=g)lhsl < [o5+ (=) 10 loo6rs Il oo +(1=g5) (W el e+ b 1)
(132)

Since ¢ := ||U,||oc6¢ < 1, the map g — g+ (1 — g)cis strictly increasing. Thus, for some ¢ € (0,1),
gi+(1—gj)e < 1-46. (133)

Furthermore, if the update gate is bounded by &, € (0, 1) (e.g. from sigmoid preactivation bounds),
then (1 — g;) < &,4. Hence from equation 132}

0l < (1= 8) s + 7 (W oclulloc + el). (134)

28

Under review as a conference paper at ICLR 2026

Iteration. Iterating equation|l134{over k time steps gives
k & Iy
elloo < (1 =8)lhofleo + 5 IWrflool[telloc,1:6 + =5 Ibrloo, (135)
where ||u]|co,1:% := maxo<i<k [|tt] co-

Conclusion. Therefore, the GRU dynamics satisfies the ISS definition with

Bk = (1= 0r, () = 2 [Willeos, ls) = s (136)

Case b. hy ¢ H. By Lemma[2] for any initial state outside H = [—1,1]"» the trajectory hy, strictly
decreases in norm until it enters in finite time. Thus there exists k£ > 0 such that

hyeH, hyeH forallk >k (137)

Moreover, the entrance into H is exponential: for any € (0, 1) there exists u > 0 such that

[helloe < (1 —8)F|hol|o, 0<k<k. (138)

Once the trajectory has entered 7 at time k, the ISS bound from Case a applies. Thus for k > k,

i G G
heflee < (1=8)"F|hg]l + 5 Welloollulloc,n + = oo (139)

Conclusion. Combining equation[I38|and equation[139] the GRU system is ISS with comparison
functions

o o
Blrk) = p(L=6)'r, qu(s) = F[Wrlles, m(s) = s, (140)
This concludes the proof of GRU cells ISS condition. O

Proof of ISS condition for GRU cells via Lyapunov function. Consider the GRU cell
g=0Wou+Ugh+bg), f=o0(Wsu+Ush+by), (141)

h=tanh(Wou+ U (f O h)+b,), ht=goh+(1—g)Oh, (142)

with input v € R™>, hidden state h € R™, and standard nonlinearities o(-) € (0,1), tanh(-) €
(—1,1). Assume the input sequence is unity-bounded, ||u||o < 1.

Define the gate bounds (by monotonicity of o and ||[u]|eo < 1)

5= o{lWy Uy byllle). 0= o — Iy Uy byll). (143)
65 :=o([[[Wy Uy bs]ll), = g<g9;<g and |fllc <5y (144)

It
Urlloo 0¢ < 1, (145)

then the GRU system is input-to-state stable (ISS).
We construct the Lyapunov candidate

V(h) := [, (146)
which satisfies the sandwich bounds

V1llhllos) < V(R) S a(l[hllsc), 1(s) =5, ha(s) = s € Ko (147)
Step 1. Candidate state bound. Using |tanh(z)| < |z| and the induced co-norm,

7| < Welloollulloo + 1Ur[[oo [l flloc [[2lloc 4 116 [loo- (148)
With the gate bound || f||« < 6, we obtain

il < au + cllblloc + ap, = |Urlloodys, au = [Wellocllulloo, ab := [Ibr]lc. (149)

29

Under review as a conference paper at ICLR 2026

Step 2. One-step Lyapunov inequality. From the GRU update,

11 < gjlhsl + (1= g5) || < [g5 + (1= gj)] llhlloc + (1 = gj)(au + ap).
Taking the maximum over j yields

115 o < (max g+ (1= g)e]) e + (max(1 = g,)) (@ +an).
Since ¢ < 1 and g — g + (1 — g)c s increasing, we have

max [g; + (1 —gj)e] Sg+(1-ge=1-(1-g)(1—¢).
=:5
Moreover,
mjax(l —g;) <1 -9

SO equation becomes
1B e < (1 =0) [[Allc + (1 —g)(au+ap), d:=(1-g)(1—-c)€(0,1).

(150)

(151)

(152)

(153)

(154)

Step 3. Contraction factor. Since ¢ < 1, the map g — g + (1 — g)c is increasing. Therefore,

max [g; + (1 —g;)c] =c+g(l—c)=1-9,
J

with
§:=(1-9)(1-c)=010-9)(1~-Ullby) € (0,1).

(155)

(156)

Moreover, using the logistic symmetry g = o(—M,) = 1 — g for a symmetric preactivation bound

Mg, we have

max(l —g;) < 1-g = g.
; g

Hence,
1B oo = 1hlloe < =0 l1Alloe + G (IWrlloollulloo + [1br]loo)-

Step 4. Identification of comparison functions. This is the ISS-Lyapunov inequality
V() =V(h) < =Y(llhllsc) + oulllulles) + an(llbrllo),
with
(s)=0ds, ouls) =g[[Wrlews, ou(s)=7s.

Step 5. Iteration and ISS bound. Unrolling over £ steps yields
g g
hklloe < (1= 6)"lholloe + 5 Wrlloo llulloo, e + 55 M1brfloo,
where ||u]|co,1:1 := maxo<i<k ||tt|lco. Thus, admissible comparison functions are

g
Bk = (1=, ()= L Wellows, (s) =
Therefore, the GRU system is ISS.

SRS

S.

C.8 PROOF OF ISS SCHEMES FOR LSTM SYSTEM

Proof of ISS condition for LSTM via general inequality. Consider the (decoupled) LSTM
fi=oWyu +Ushi—1 +by), i =oc(Wiuy + Uihi—1 + b;),
0t = c(Wous + Ught—1 + b,), ¢ = tanh(Weus + Uchi—1 + be),
= fiOc_1+i O &, ht = oy © tanh(c;),

with ||ut]|eo < 1, 0(-) € (0,1), and tanh(-) € (—1, 1) (Lipschitz constant 1).

Define gate bounds (by monotonicity of ¢ and induced co-norms):

of = J(H[Wf Uf bf]”OO)a 0= U(”[Wz Ui bi}HOO)» 0o = U(”[Wo U, bO]HOO)~

We choose a Lyapunov candidate different from the GRU one:
Ve i= lletlloo + 17t oo

30

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

Under review as a conference paper at ICLR 2026

Step 1. Candidate and cell bounds. Using | tanh(z)| < |z| and submultiplicativity,
[Etlloo < [IWelloollutlloo + 1Uelloo 1t —1llco + l1be]lco- (166)

Hence the cell recursion yields

leelloo < Fllei-tlloe + i (I Welloelluelloo + [UellocllBe—slloo + el). (167

Step 2. Output bound and composite Lyapunov inequality. For the output,
Ihtlloo = [lor ® tanh(e)]loo < Tollctoo- (168)
Thus V; < (1 + 5)||¢t |0, and combining with equation[167 gives

Vi < (1430) 37 ller-llow + (14 0) &3 (IWelloo el + [Tl et low + oclloc) -~ (169)

< (1 + 50) ‘_Tf Hct—luoo + (1 + 50) 0; HUCHOO ||ht—1||oo + (1 + 50) 51’(”W0”00”ut”oo + HbC||00>-

(170)
Using az+by < max{a,b}(z+y) fora, b, z,y > 0 and the fact that ||c;—1 [0 < Vie1, [|ht—1]lc0 <
Vi_1, we obtain
Vi < aViq + (1+60)5i ||WcHoo ||utHoo =+ (1+50)6i Hbc”om (171)
————
=K, =Ky
with
a = (14d,) max{dy, 7; ||Ucllco}- (172)
Step 3. Contraction and ISS. Under the stated bounds
(1+a,)05<1 and (147,) ;|| Uclloo < 1, (173)
we have o < 1. Writing § := 1 —« € (0, 1), the one-step Lyapunov inequality equationbecomes
Vi < (1=0)Vie1 + Kyluelloo + Kpllbe|loo, (174)
which unrolls to the ISS estimate
K, K
Ve € 1=0)Vo + 5 llulloone + 5 [Ibc]o- (175)
Since ||ht]|oo < Vi and ||¢t||loo < V4, this yields ISS for the LSTM in the || - || o norm with
K, K
Blrnt)=(1=8)'r, quls)="s mls)="Fs (176)
O

Proof of ISS condition for LSTM via Lyapunov function. Let the state be x; := (ct, hy) € R*"» and
define the Lyapunov candidate

Vi) = letlloo + [Pl oo (177)

(i) Sandwich bounds (1)1, ¢ € K). For s :=||(¢, h)||0os

s < Ve, h) < 2s. (178)
Hence we may choose
P1(s) = s, Pa(s) = 2s (€ Ko)- (179)
(ii) One-step dissipation inequality. By |tanh(z)| < |z| and induced norms,
[€elloe < [Welloollutlloo + 1Uelloc t—1llc0 + 1belo- (180)
Thus
leclloe < G pllee-1lloo + &3 ([Welloo luelloo + 1 Uelloo lhe—1lloo + llbelloo)- (181)

31

Under review as a conference paper at ICLR 2026

Moreover ||ht]|oo = |Jor @ tanh(c)|lco < Follct|loos SO
V(ze) = lletlloo + 1helloo < (14 0)lletlloo (182)
< (1 +80)07 [let-1lloc + (14 80)53 [[Uclloo [he-1loo (183)
+ (14 00)0i ([Wellool[uelloo + [[belloo)- (184)
Since ||ci—1]|oo < V(xt—1) and [[hi—1]lco < V(x1—1), we get
Vi) < aV(zi-1) + Kuluelloo + Kpllbelloos (185)
with

a = (146,) max{ay, 7;||Ucl|oc } Ky, = (146,)5:||Well oo, Ky = (147,)5;. (186)
By equation[82] v < 1. Let§ := 1 — o € (0,1).
(iii) Identification of ISS-Lyapunov data. Rewrite equation [I85]as
V(ze) = Vi(wi—1) < =0V (2i-1) + Kullutlloo + Kpllbelloo- (187)
This is the discrete-time ISS—Lyapunov inequality in the form of
V(f(z,u)) = Vi(z) < =¢(lz]) + oulllull) + ou(lbell),
with the choices
P(s) = ds, ou(s) = Kys, op(s) = Kps, (188)
all belonging to K.

(iv) The general form of Lyapunov function. The aggregated input magnitude be [|v[| :=
maX{HutHoov ||bcHoo} Then

V(zy) = V(z—1) < =6V (xp1) + (Ky + Kp) ||ve]]- (189)
Hence, with
2(K, K,
x(8) := (uf—i_b) seK, a(s) == gs eK, (190)

the implication
Viegi1) = x(lvll) = Viz) = Vi(eia) € —a(V(zi-1))

holds. Together with the sandwich bounds (11, ©2) this verifies the ISS-Lyapunov general function.

O
C.9 PROJECTION TO ENFORCE GSRNN ISS CONDITION
To ensure the Input-to-State Stability (ISS) condition in Theorem [3] we require
L|Uloct) < 1. (191)
Introducing a small buffer § > 0, we enforce the stricter constraint
1-6
[Ulle < = (192)
Lgtp

Let U € R™*™ be the unconstrained matrix obtained after a gradient update. We apply a projection
step to obtain U that satisfies the ISS constraint without altering other parameters W, b.

Projection Problem. For each row vector U, € R™», solve

. —_— 3 P A, 2
Ui=arg min lu—Uill; st [lull <p, (193)
where
1-6
pi= —.
Ly

This corresponds to projecting onto the ¢;-ball
Bi(p) = {u € B™ : [lul; < p}. (194)

Efficient Projection Algorithm. We adopt the method of |Duchi et al.| (2008):

32

Under review as a conference paper at ICLR 2026

1. Let v = U; and define p = i;g.
¢

2. Sort |v] in descending order: pq > pg > -+ > pg.
3. Find the smallest % such that

k
1
= | 2= p | >0, (195)
Jj=1
4. Set the threshold
1 (&
=3 2Zm-r) (196)
Jj=1
5. Compute projection
U; = sign(U;) ® max(|U;| — 7,0). (197)

Result. The resulting U satisfies
Lg|Ulcth <1-6 <1,

while minimizing the deviation from the original update |U|| z: |U — U ||%.

Remark 3 (GRU specialization). For GRU cells, the general projection scheme reduces to enforcing
U |looG ¢ < 1 with buffer § > 0 and 6y = o(|W;; Us;by|leo), i.e. row-wise projection onto the
{1-ball of radius p = (1 — 664)/6 4. This matches the procedure described in Appendix[C.9]

Remark 4 (LSTM specialization). Let 6, = o(||[W, Uy byl||~) for g € { f,i,0} and logit(t) =
log(ﬁ). To enforce the LSTM ISS bounds

(I+0o)or <1, (1+0,)0:[|Uclloo <1, (198)
we impose small buffers 07, d. > 0 and project as follows:

(i) Forget—output gate constraint. Fix the current 5, and enforce (1+5,) oy < 1—4§; by projecting
the forget-gate block [W; Uy by] onto the £-ball of radius

1-4y
= logit 199
oy Ogl(1+00)7 (199)
i.e., elementwise clipping to [—ay, o] so that 65 < %. (If this target makes oy < 0, also

shrink the output gate by clipping [W,, U, b,] to radius o, := logit(To) with 7, := min{ max{ (1 —
7))y — 1,0}, 1 — e} sothat (1+5,)5; <1 — d; holds.)

(ii) Input-candidate constraint. With the (possibly updated) gates, enforce (1 + ,) 7; || Ue||oo <
1 — 4. by row-wise projection of U, onto the ¢ -ball of radius

1—6c

S o

using that || U ||cc = max; ||(Ue)s:|1-

This two-step projection guarantees the buffered inequalities (1 + G,)5; < 1 — 6 and (1 +
70)7:||Ucllcoc < 1 — &, hence the ISS constraints for LSTM. It mirrors the GRU procedure (gate
clipping for /., bounds; row-wise ¢ projection for the recurrent matrix), cf. Appendix

33

Under review as a conference paper at ICLR 2026

Table 5: Learning parameters in LG is marked by x /v" because standard LGs (e.g., UKF, EKF) cannot
learn parameters. In our setup, a data-driven network estimates (A, C) to make LGs comparable
with 7-SSM. See Appendix [G.1}

Model Learn Dyn. Imputation State Est. Uncertainty Noise Handling
v v

LSTM Hochreiter & Schmidhuber|(1997)
GRU|Cho et al.|(2014)

P2T |Wahlstrom et al.|(2015)
E2C Watter et al.|(2015)

SENIENEN
X

BB-VI|Archer et al.{(2015)
SIN|Krishnan et al.|(2017)
DVBF Karl et al.| (2016)
VSMC |Naesseth et al.|(2018)
DSA|Li & Mandt|(2018)
KVAE |Fraccaro et al.|(2017)
EKVAE [Klushyn et al.|(2021)
MVAE Zhu et al.|(2023)

AN N N N N NN ENENE ENEN

CAAX AR [x x
AN NENENENY I

rSLDS |[Linderman et al.|(2017)
irSLDS |Linderman et al.|(2017)

X
X

X
X
X

NODE |Chen et al.|(2018)
MoNODE |Auzina et al.|(2024)

X

X
X

DeepAR |Salinas et al.|(2020)

DSSM Rangapuram et al.|(2018)
HybridGNN |Garcia Satorras et al.|(2019)
KalmanNet|Revach et al.|(2021)
SSI|Ruhe & Forré| (2021)

LG
m-SSM

<

X

A [X X XSS SS
N TN N N B N N N B N N N N N N N
X

X
SENTSSNRNCNSN SN [RRAa X X X XX

Laaaax x
Lafaaax x

D RELATED WORKS, EMPIRICAL RUNNING TIMES AND COMPLEXITY
ANALYSIS

D.1 QUALITATIVE COMPARISON OF THE w-SSM TO RECENT RELATED WORK

SLDSs. Switching Linear Dynamical Systems (SLDS) decompose complex, nonlinear time series
data into sequences of simpler, reusable dynamical modes. Fitting an SLDS to data enables learning
flexible nonlinear generative models and parsing sequences into coherent discrete segments. The
model proposed by |Linderman et al.| (2017) introduces auxiliary latent variables to switch among
different linear dynamics. However, it relies on Gibbs sampling for parameter inference, which
makes it impractical for large-scale datasets due to scalability limitations. Recurrent SLDS (rSLDS)
Linderman et al.|(2016)) and infinite rSLDS (irSLDS)|Geadah et al.[(2024) extend the SLDS framework
but still inherit many of these computational limitations. ReLiNet Baier et al.| (2023) introduces a
recurrent linear parameter-varying network that approximates RNN dynamics with switched linear
systems to ensure exponential stability and explainable multistep predictions for dynamical systems.

Auto-Regressive State Space Models. Auto-regressive state space models (ARSSMs) are widely
used in time series analysis and forecasting. These models describe the evolution of a system over
time through a state representation informed by past observations. Auto-Regressive Hidden Markov
Models (AR-HMMs) model temporal dependencies by mapping previous observations to the current
one. For instance, [Salinas et al.|(2020) proposes an AR-HMM where target values are used directly
as inputs. However, this dependence on ground-truth targets during training increases vulnerability to
noise.

System Identification. In the domain of state-space model learning (system identification), several
works |Wang et al.[(2007); Ko & Fox|(2011); [Frigola et al.|(2013)); Schoukens & Tiels| (2017); Li et al.
(2023)) have developed algorithms for training Gaussian Process SSMs (GPSSMs) via maximum
likelihood estimation through the Expectation-Maximization (EM) algorithm. The E-step involves
filtering and smoothing using a fixed parameter set ~y, followed by the M-step that updates ~ to
maximize the resulting likelihood. For example, Frigola et al. [Frigola et al.| (2013) draw sample
trajectories from the smoothing distribution and condition the M-step on these samples. In this

34

Under review as a conference paper at ICLR 2026

Table 6: Empirical running times and parameters of experiments.

Cell Pong Lorenz Attractor ~ Navier Stokes NCLT
Param T/E Param T/E Param T/E Param T/E

LSTM ~18k ~56s | ~18k ~56s | ~18k ~53s | ~18k ~83s
GRU ~18k ~61s | ~18k ~62s | ~18k ~59s ~18 ~79s
VAE ~12k ~50s | ~13k ~52s | ~12k ~49s | ~12k ~70s
IWVAE ~13k ~50s | ~13k ~54s | ~1lk ~47s | ~11k ~75s
VAE-RNN | ~24k ~59s | ~25k ~61s | ~24k ~57s | ~24k ~89s
SVAE ~27k ~67s | ~27k ~69s | ~26k ~65s | ~27k ~149s
KVAE ~25k ~95s | ~25k ~97s | ~25k ~94s | ~25k ~141s
EKVAE ~26k ~98s | ~26k ~99s | ~26k ~94s | ~26k ~145s
MKVAE ~34k ~112s | ~34k ~110s | ~33k ~105s | ~33k ~153s

RKN ~25k ~57s | ~25k ~58s ~25k ~56s | ~24k ~79s
CRU ~24k ~55s8 | ~24k ~55s ~23k ~54s | ~23k ~78s
LG ~12k ~82s | ~12k ~84s ~12k ~80s | ~12k ~117s

m-SSMgry | ~18k ~56s | ~18k ~55s ~18k ~53s | ~18k ~8ls
m-SSMrstm | ~18k ~57s | ~18k ~54s ~18k ~56s | ~18k ~78s

context, the m7-SSM bears resemblance to Hammerstein-Wiener (HW) models Gilabert et al.| (2005)),
as it learns system parameters directly from observations while applying nonlinear mappings to the
inputs and outputs. Compared to the GIN framework (Hashempoorikderi & Choi}, [2024])), another
Markovian framework for system identification, our 7-SSM departs in several key aspects: it explicitly
models discrete latent dynamics rather than relying on purely Markovian assumptions; it does not
require auxiliary losses to prevent mode collapse; and it is built as a local message-passing scheme
that enables scalable posterior inference over hybrid discrete—continuous states while also yielding
theoretical gradient expressions. Moreover, whereas GIN’s stability analysis is restricted to GRUs
with zero input, we establish a general proof strategy applicable to gated RNNs under bounded,
nonzero inputs.

Neural ODEs. Since the introduction of Neural ODEs Chen et al.|(2018), continuous-time dynamic
modeling has garnered significant interest. Extensions include combining neural ODEs with recurrent
architectures Rubanova et al.|(2019), enabling latent trajectories to evolve in response to observations.
Other works explore dynamics governed by Hamiltonian, Lagrangian, or second-order systems, as
well as structured dynamics using graph neural networks. Our approach, MoNODE |Auzina et al.
(2024), though developed within the latent Neural ODE framework, is applicable to many of these
continuous-time modeling paradigms.

Neural PDEs. Machine learning has shown promise in approximating solutions to partial differential
equations (PDEs). Notably, Physics-Informed Neural Networks (PINNs) Raissi et al.|(2019) use deep
learning and gradient-based optimization to solve PDEs without requiring mesh discretization, which
is commonly needed in classical methods. This formulation allows simultaneous treatment of forward
and inverse problems in a unified optimization framework. Leveraging automatic differentiation
and modern computing power, PINNs have been successfully applied to a variety of complex PDE
systems Raissi et al.| (2019);|Cho et al.|(2024).

Variational Inference Approaches Variational inference (VI) has become a dominant paradigm
for approximate Bayesian inference in latent variable models. Early approaches such as Variational
Autoencoders (VAEs) [Kingma & Welling| (2013)), Embed-to-Control (E2C) Watter et al.|(2015)), and
Importance Weighted VAEs (IWVAESs) Burda et al.|(2015)) integrated deep learning with variational
objectives. However, these methods generally lacked recurrent structures or memory, limiting
their effectiveness for sequential reasoning and imputation tasks. To address these limitations,
EM-inspired variational models such as Structure VAE (SVAE) Johnson et al.| (2016), Kalman
VAE (KVAE) [Fraccaro et al.| (2017), Disentangled VAE (DVAE) Li & Mandt (2018)), Extended
KVAE (EKVAE) [Klushyn et al.| (2021]), Robust VAE [Tonolini et al.| (2023)), and Markovian VAE
(MVAE) Zhu et al.| (2023)) have embedded classical filtering and smoothing updates into deep latent
variable frameworks. These approaches attempt to capture temporal dependencies more explicitly, but
typically cannot directly optimize latent trajectories—a limitation noted in methods such as Recurrent
Kalman Networks (RKN) [Becker et al.|(2019) and Continuous Recurrent Units (CRU) Schirmer et al.

35

Under review as a conference paper at ICLR 2026

(2022)). In contrast, memory-based architectures like LSTMs |[Hochreiter & Schmidhuber| (1997)),
GRUs |Cho et al.|(2014), and RNNs|Wilson & Finkel (2009) offer strong modeling capacity for latent
dynamics but often lack principled mechanisms for uncertainty estimation and adaptation to dynamic
mode transitions.

Summary Comparison. In Table E], which is built upon [Becker et al.| (2019), we compare the
above methods in terms of their capabilities for handling high-dimensional observations, learning
underlying dynamics, providing accurate state estimates and uncertainty quantification, dealing
with noisy and missing data. Classical LGs, such as the EKF and UKEF, linearize the transition and
observation functions and apply Bayesian filtering on the resulting linearized systems—representing
a model-based paradigm. In contrast, the 7-SSM adopts a data-driven approach, leveraging learnable
networks to approximate these components, thereby enabling greater flexibility and scalability.

D.2 EXPRESSIVITY, EXTENSION AND LIMITATIONS

Structural difference. Assuming both SLDS and 7-SSM employ equally expressive parameteri-
zations for dynamics and emissions, the key structural distinction is the explicit Markov prior over
discrete modes in SLDSs, i.e., the edge z; — z;+1, which encodes mode persistence. Our graphical
model removes this edge and instead infers the mode at each step from the continuous state x; (via
Ty — Z44+1), using z; as a sufficient signal for regime identification.

Expressivity intuition. The z; — 2,11 edge in SLDS explicitly smooths mode trajectories and
captures persistence in the discrete latent space. By contrast, our model relies on the continuous
dynamics to reflect regime switches: when the underlying system changes mode, the induced change
in the continuous transition (e.g., the local linearization A;) is intended to be promptly visible in z;,
allowing z,11 to be inferred without an explicit z-chain.

INlustrative evidence (Pong). In a simple Pong experiment, we monitored the spectrum of the
learned transition matrices as the ball bounced (which changes the interaction regime). We observed
sharp shifts in the eigenvalues of A; at bounce events, indicating that z; responds strongly to mode
changes and can implicitly carry mode information—without requiring an explicit z; — 2,41 prior.
This evidence is qualitative, but it supports the hypothesis that x; can act as an effective carrier of
regime cues in practice.

Implications for scalability. This structural simplification enables the local message-passing
inference and per-step gradient updates used in our method (cf. Theorem 2). Introducing a z; — 241
edge would couple the discrete variables temporally, breaking the factorization that our updates
exploit and necessitating forward—backward (or loopy) message schedules, with higher computational
and memory cost per sequence.

Limitations and potential extensions. Our design implicitly assumes that regime changes manifest
quickly in the continuous state (i.e., are promptly reflected in z;). This is often reasonable in
control and physical simulation, where dynamics shift sharply with mode changes. However, in
systems with delayed or inertial effects, the absence of temporal dependence between discrete states
(no z; — z;41) can hinder accurate regime smoothing. While the current model performs well
empirically, richer temporal couplings could improve expressivity—for example, modeling joint
posteriors over (x¢, 111, 2¢) or adding a tempered/sticky transition prior for z. Such extensions would
require revisiting the factor graph and redefining messages and gradient paths, trading scalability for
additional temporal structure.

D.3 EMPIRICAL ANALYSIS

We present the number of parameters for the utilized cell structures in our experiments and their
corresponding empirical running times for 1 epoch in Table[6] In the first row of each model structure,
we set the number of parameters approximately equal to our 7-SSM to demonstrate the 7-SSM’s
superior performance with the same parameter count. The extra running time of EM-variational
approaches, like KVAE, is due to the use of classic Bayesian equations, which significantly increase
running time for higher-dimensional observations. However, the 7-SSM avoids this issue. The

36

Under review as a conference paper at ICLR 2026

number of parameters in the 7-SSM is noticeably lower than in other memory cells, such as LSTM
and GRU, and EM-variational methods. This efficiency is achieved by converting high-dimensional
sparse covariance matrices into lower-dimensional covariance matrices using a convolutional operator.

E ALGORITHMS AND PYTHON INTUITIVE CODE

E.1 ALGORITHMS

Algorithm Inference in 7-SSM via Nested Message Passing

1: Input: Observations {y1, ..., yr}, initial posterior ¢(xo) = N (oo, 20‘0)

2: Output: Filtered posteriors ¢(x; | y1:t), ¢(2¢ | y1.¢) fort =1,...,T

3: fort =1to T do

4: Sample x;—1 ~ ¢(X¢—1 | ¥1:4—1)

Sample z; ~ q(z: | x¢—1), forming an approximation of p(z; | y1.¢) (equation[7)
Predict fis¢—1, 24— using transition p(x; | X;—1, 2¢)

Compute RNN-based gain factor: L; = RNN([ZA]W,_l7 r¢))

Compute gain matrix: K, = 2t\t—1 C;LtLZ

Compute updated posterior mean and covariance via Kalman-style rule: (equation|[§)

LW

Bt = frg—1 + Ki(y: — C. fyi-1)
Et\t = 2t|t—1 + Kt(CZtﬁlﬂt—lC;: + Rt)K;r

10: Form q(x; | y1:¢) = N (e, ﬁ:t‘t) (cf equation@)
11: end for

Algorithm Training 7-SSM via Surrogate Predictive Log-Likelihood

1: Input: Dataset {yYLT) N_,, initial model parameters (6, ¢)

2: for each training iteration do
3. for each sequence y;.7 in the batch do

4 fort =1to 7 do

5: Sample x;—1 ~ q(X¢—1 | Y1:4-1) (equation

6: Sample z; ~ q(z¢ | x¢—1) (approx. p(z: | y1:.t) via equation

7 Predict fiy);, ﬁt“ via Kalman-style update (equation

8: Compute predictive likelihood ¢(y: | y1.4-1) (equation

9: end for

10: Accumulate surrogate objective: £ = Zthl logq(y: | y1:t—1)

11: Estimate gradients w.r.t. continuous parameters ¢ (equation[11))
12: Estimate gradients w.r.t. discrete parameters 6 using REINFORCE (equation|12)
13: end for

14: Update parameters (6, ¢) using gradient-based optimizer

15: Project RNN weights to satisfy ISS condition (Theorem|[3)
16: end for

E.2 PYTHON INTUITIVE CODE

To demonstrate the simplicity of our proposed m-SSM, we include intuitive inference and training
code with Tensorflow library. The code runs with Python 3.7+. The entire code to reproduce the
experiments are available in Github repository.

Python intuitive code for inference.

Inference loop for PiSSM

import tensorflow.keras as k

37

Under review as a conference paper at ICLR 2026

import PredictiveStep
import KalmanUpdate
import get_mode_params

class PiSSMCell (k.layers.Layer) :

def _ init_ (self, initial_states):
super () .__init__ ()
self.mu_tml, self.Sigma_tml = initial_states

self.filtered_states = []

def call(self, y_seq, R_seq):
for t, (y_t, R_t, Q_t) in enumerate(zip(y_seq, R_seq)):
(eq. 6) From g(x_{t-1} | y_{1l:t-1})
x_tml = sample(self.mu_tml, self.Sigma_tml)

(eg. 7) From g(z_t | x_{t-1}) modeled by NN
z_t = g_z_given_x(x_tml)

» C_{z_t}
z_t = get_mode_params (z_t)

mu_t_pred, Sigma_t_pred = PredictiveStep(A_z_t, x_tml, Q_t)

(eq. 8) Form g(x_{t} | y_{1:t})
mu_t_filt, Sigma_t_filt = KalmanUpdate (mu_t_pred,
Sigma_t_pred, y_t, R _t, C_z_t)

self.filtered_states.append((mu_t_filt, Sigma_t_filt, z_t))
self.mu_tml, self.Sigma_tml = mu_t_filt, Sigma_t_filt
return self.filtered_states

class PiSSM(k.models.Model) :
def _ init_ (self, initial_states):
super () .__init__ ()
self.cell = PiSSMCell (initial_states)

def call(self, y_seq, R_seq, Q_seq):
filtered_seq = self.cell(y_seq, R_seq, Q_seq)
mu_seq, Sigma_seq, z_seq = zip(xfiltered_seq)
x_seq = sample (mu_seq, Sigma_seq)
return X_seq, z_seq

Python intuitive code for training.

Training loop for PiSSM

import tensorflow as tf
import get_current_U_r weights
import get_params_qg_z

def project_onto_11 ball(v, radius):
"""Projects vector v onto the 1ll-ball of specified radius."""
abs_v = tf.abs(v)
if tf.reduce_sum(abs_v) <= radius:
return v
sorted_v = tf.sort (abs_v, direction='DESCENDING')
cumsum = tf.cumsum(sorted_v)
rho = tf.where(sorted_v - (cumsum - radius) / (tf.range(l, len(v)+1,
dtype=v.dtype)) > 0)
if len(rho) ==
return tf.zeros_like (v)
rho = rho[-1][0] + 1 # adjust for indexing
tau = (tf.reduce_sum(sorted_v[:rho]) - radius) / tf.cast(rho, v.dtype

)

38

Under review as a conference paper at ICLR 2026

return tf.sign(v) » tf.maximum(abs_v - tau, 0.0)

class PiSSMTrainer:
def __init__ (self, model: PiSSM, optimizer_phi, optimizer_ theta):
self.model = model
Continuous (GRU, Kalman flow, Mode vars A_z t, C_z_t, etc.)
self.opt_phi = optimizer_phi

Discrete (NN for g(z | x))
self.opt_theta = optimizer_theta

Moving average baseline for REINFORCE
self.baseline = 0.0

def compute_log_likelihood(self, y_t, mu_t, Sigma_t, C_z_t):
log p(y_t | x_t)
return log_prob_gaussian(y_t, mu_t, Sigma_t, C_z_t)

def train_step(self, y_seq, R_seq, Q_seq):
log_likelihoods = []

with tf.GradientTape (persistent=True) as tape:
x_seq, z_seq = self.model (y_seq, R_seq, Q_seq)

for t, (x_t, z_t, y_t, R_t) in enumerate(zip(x_seq, z_sedq,
y_seq, R_seq)):
mu_t, Sigma_t = mean_cov_from_x (x_t)
Az t, C_z_t = get_mode_params (z_t)

(eq. 9) log predictive

log_py_t = self.compute_log_likelihood(y_t, mu_t, Sigma_t
, C_z_t)

log_likelihoods.append(log_py_t)

(eq. 12) REINFORCE gradient

log_g z = log_prob_qg z_given_x(z_t, x_seq[t-1])

reinforce_term = tf.stop_gradient (log_py_t - self.
baseline) % log_qg_z

(eg. 11) Continuous update: backprop GRU, A_z_t, C_z_t, etc.

loss_phi = -tf.reduce_sum(log_likelihoods)

grads_phi = tape.gradient (loss_phi, self.model.
trainable_variables)

self.opt_phi.apply_gradients (zip (grads_phi, self.model.
trainable_variables))

Discrete update: REINFORCE

loss_theta = -tf.reduce_sum(reinforce_term)

grads_theta = tape.gradient (loss_theta, get_params_qg z())
self.opt_theta.apply_gradients (zip (grads_theta, get_params_qg z())

Update moving baseline
current_11 = tf.reduce_mean (log_likelihoods)
self.baseline = 0.95 % self.baseline + 0.05 * current_11

Stability Projection Steps for two cases of RNNs (GRU or LSTM)
Choose small buffers
delta_f = le-3 # (1 + sigma_o) sigma_f < 1 - delta_f

delta_c = le-3 # (1 + sigma_o) sigma_i |U_c|_inf < 1 - delta_c
eps = le-6
if self.model.rnn_type.upper() == 'GRU':

U_r = get_current_U_r_ weights /() # shape: [n_h, n_h]

U_r_projected = []

39

Under review as a conference paper at ICLR 2026

radius = 1. / hat_sigma_f - delta
for row in U_r:
row_proj = project_onto_11 ball (row, radius)
U_r_projected.append (row_proj)
U_r_projected = tf.stack(U_r_projected, axis=0)
set_projected_U_r (U_r_projected)

elif self.model.rnn_type.upper () == 'LSTM':
W_f, U_f, b_f = get_lstm_gate_params('f")
W_i, U_i, b_i = get_lstm gate_params('i")

o

W_o, U_o, b_o = get_lstm_gate_params('o")

#FIRST TERM: (1 + sigma_o) sigma_f < 1 - delta_f

bar_o = bar_sigma_from block (W_o, U_o, b_o)
target_f = tf.minimum((1.0 - delta_f) / (1.0 + bar_o + eps),
1.0 — eps)

alpha_f = logit (target_f, eps=eps) # clip radius
W_f, U_f, b_f = clip_gate_block(W_£f, U_f, b_f, alpha_f)
set_lstm_gate_params('f', W_£f, U_f, b_f)

#SECOND TERM: (1 + sigma_o)sigma_i |U_c|_inf < 1 - delta_c

bar_i = bar_sigma_from block(W_i, U_1i, b_1i)
rho_c = (1.0 - delta_c) / ((1.0 + bar_o) * bar_i + eps)
U_c = get_current_U_c_weights () # [n_h, n_h]

U_c_projected = tf.stack(
[project_onto_11_ball (row, rho_c) for row in
tf.unstack (U_c, axis=0)],
axis=0

)
set_projected_U_c(U_c_projected)

return current_1l1l.numpy ()

F HYPERPARAMETERS AND ARCHITECTURE

F.1 HYPERPARAMETERS AND TRAINING DETAILS

All experiments were conducted using the Adam optimizer [Kingma & Ba (2014) on an NVIDIA
GeForce GTX 1050 Ti with 16GB RAM. We started by evaluating each dataset using multiple random
seeds. For each seed, we conducted a grid search over the learning rate (LR) range specified in the
appendix—>50 values from 0.001 to 0.2 in increments of 0.002, each followed by exponential decay
every 10 epochs. This process produced a performance table per dataset. We then averaged validation
performance across seeds and selected the LR with the best average score. For this, we followed
the recipe from optimization literature, which suggests that hyperparameters varying across random
initializations should be selected based on validation performance averaged across runs. The best
learning rates selected per dataset are shown below:

Dataset Pong Lorenz Navier NCLT
LR 0.011 0.011 0.011 0.007

To provide a consistent learning rate for the overall model, we set the final LR to 0.011 for all
experiments.

In order to reduce the variance of the REINFORCE gradient estimator in eq. (IZ), we use an
exponential moving average baseline for the control variate b;. At each training step, this baseline is
updated as:

by < 0.95 - by 4+ 0.05 - log q(y+ | y1:t—1),

where log q(y: | y1.t—1) is the current predictive log-likelihood. This formulation ensures that
b; tracks the typical scale of the learning signal over time while remaining stable, and helps to

40

Under review as a conference paper at ICLR 2026

decorrelate the stochastic gradient direction from the reward signal, thereby reducing the variance of
updates without introducing bias.

Backpropagation through time (BPTT) (Werbos| [1990) was used to compute gradients through the
RNN cells. Gradient updates were applied with the stability constraint described in Theorem 3] using
the projection method detailed in the main paper. We applied layer normalization (Ba et al., 2016 to
stabilize the dynamics and normalize the filter responses.

To avoid poor local optima—e.g., the model overly focusing on prediction rather than learning latent
dynamics—we adopted two additional training strategies:

1. We generated time-correlated noisy sequences as inputs. This forces the model to capture
temporal dependencies and discourages reliance on pointwise prediction.

2. During early epochs, only the globally-shared parameters (e.g., A, and C,,) were opti-
mized, while the parameters of the inference model ¢(z;|x;—1) were frozen. After initial
convergence, all parameters were jointly optimized. This warm-up phase facilitates the
learning of meaningful embeddings before introducing mode-specific modeling.

We set K = 18 latent modes to accommodate diverse dynamics in the latent space, with each mode
representing a distinct dynamical regime. Notably, parameter tuning was not particularly sensitive:
when the 7-SSM has sufficient flexibility, unused modes can be effectively pruned by the learned
distribution q(z¢|x—1).

F.2 PROPOSED ARCHITECTURE

"""" Pi Cell
Yur
> mn
Y = R
> © 3 > q(z17-X171Y17)
bl [=) = N
< = = n
s 5 ® 3
E el ®
2 3 5
o | 3
3 k4 [
M 3
. 5 S~ M
o
. 3 IRl
, g ~<
7’ = S
‘/l ~ ~ \\‘
2\l’T 0:T-1
Q(z[%¢-1) ToT-1 -
) z >
Xo. T 21T L
0:751/0:7-1 1 @ Ty z LT u}
— £ Z
2 > — 3
A o = s Yur S —
S |@yngr-1Zigor-1) e la 5)
% o —» 2 Ha.ry1m 2370
0] By.110:7-1 Z1:710: o
~ o 1:7|0:T-12 #1:7|0:T-1 °
(Bo:r-1j07-1: Zo:r-1j07-1) —>
CZI.T

Figure 9: Proposed architecture diagram. Modules highlighted in red correspond to continuous-
variable components in the parameter set ¢, while yellow modules represent discrete-variable compo-
nents in the set 6.

The proposed architecture is illustrated in Figure E} To model ¢(z; | x;—1), we use a multi-layer
perceptron (MLP) with 10 hidden units and ReL.U activation, followed by a softmax output layer
producing K mode probabilities. The input to this network is the sampled latent state x;,_; € RY,
where N denotes the state dimensionality.

In the state estimation tasks considered, the dimensionality /N varies across experiments: 4 for Pong,
3 for Lorenz, 5 for Navier—Stokes, and 4 for NCLT.

41

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL SYSTEMS AND FORMULATIONS

G.1 LG VARIANT USED IN ABLATION STUDY

In our ablation studies, we include a variant of the Linear Gaussian State-Space Model (LG) to isolate

the impact of discrete latent variables and neural parameterizations in the full 7-SSM model. This LG

configuration retains a Markovian latent structure with continuous latent states x; € R™ and linear

Gaussian transitions and emissions, but omits discrete latent variables z;. That is, the generative
model is defined by:

Xt =Ax1+q, qr ~N(0,Q), (200)

yi = Cix; + 1, 1 ~N(0,R), (201)

where A; € RM*M and C; € RV*M are linear transition and emission matrices, respectively.
The model applies standard Kalman filtering equations for inference, maintaining a fully analytical
Gaussian belief state p(x; | y1.¢) = N (py)¢, Byt at each step.

To make the model expressive while retaining the linear structure, we parameterize the transition and
emission matrices as convex combinations of K base matrices. Specifically, we define:

K K
A=Y aPA® ¢, =Y aPc®, (202)
k=1 k=1

where A*), C(¥) are trainable base matrices, and o¢; = Softmax(MLP(x;_1)) produces mixture
weights conditioned on the previous state x;_;. The use of soft attention over modes allows the
system to adaptively interpolate between K locally linear dynamics, while maintaining the analytic
filtering update structure of LG.

This hybrid approach allows us to compare 7-SSM against a strong continuous-only baseline that
leverages neural flexibility but does not involve discrete switching or nested inference. All parameters,
including base matrices and the MLP for generating c,, are trained end-to-end by maximizing the
predictive log-likelihood of the observations.

G.2 LORENZ SYSTEM DYNAMICS

The Lorenz system is a set of coupled nonlinear ordinary differential equations (ODEs) that describe
the evolution of a particle in a chaotic 3D space. Originally derived for atmospheric convection, the
system is now widely used as a benchmark for nonlinear dynamical systems. In our context, the
system state at time ¢ is denoted by x; = [+, Yz, zt}T, where x¢, y:, and z; represent the particle’s
position coordinates in 3D space.

The system is governed by the following equations:

dx dy dz

G =ow-a), p=alo-2) -y =y f (203)

where the standard parameters are set to o = 10, p = 28, and 5 = %.
To generate trajectories, we numerically integrate the system equation [203] using a time step of

dt = 10~°, and then uniformly subsample with At = 0.01 to obtain discrete-time data for training
and evaluation.

For inference and linearization purposes, we locally approximate the nonlinear dynamics at each time
step using a time-varying transition matrix A, such that:

—-10 10

Xt = AtXt, with At = |p— 7 -1 s
Y 0 -3

0
0 (204)

To compute a discrete transition matrix A; = exp(A;At), we use the Taylor expansion of the matrix
exponential truncated at degree J = 5:

J .
A At)
Ay =exp(AAL) T+ ¥ (205)
1 7
J_

42

Under review as a conference paper at ICLR 2026

where I is the identity matrix. This provides a first-order linear approximation of the nonlinear Lorenz
system suitable for ground truth generation and use in filtering-based state estimation.

G.3 MOVEMENT MODEL DETAILS FOR THE NCLT EXPERIMENT

The NCLT dataset|Carlevaris-Bianco et al.|(2016)) consists of sensor recordings from a Segway robot
navigating a university campus environment. Robot localization in this context aims to estimate the
true position of the robot over time using noisy GPS observations. To model the motion of the robot,
we adopt a constant velocity assumption commonly used in mobile robot tracking.

Under this assumption, the continuous-time dynamics are given by:

dp, dps duvq dvs

— =0, —— =V, — =0, — =0, 206

at v Tar T @ dt (206)
where p1, po represent the 2D position coordinates and v1, vo their respective velocities. This yields
the latent state and observation:

x; = [p1,v1,p2,02]", yi = [p1,p2)”

By discretizing the system with sampling interval At = 1 (1 Hz), the linear transition and observation
models are given by:

1 At 0 0

o1 0 o0 "Moo o L[t oo

Ar=10 0 1 At]: Ct—{oo 1 0]’ Rt—A[O 1} (207)
00 0 1

Here, A; is the state transition matrix, C; is the emission matrix, and R; models the observation
noise with variance \2.

For training and evaluation, the session from January 22, 2012 is selected. After removing invalid
GPS readings, the remaining 4280 time steps are partitioned into: a training set of 3600 steps (18
sequences of length 7' = 200), a validation set of 400 steps (2 sequences of length 7" = 200), and a
test set of 280 steps (1 sequence of length T' = 280).

G.4 NAVIER-STOKES SYSTEM SETTING

The incompressible Navier-Stokes equations govern the evolution of velocity fields u = [u, v] : X —
R?, where the spatial domain is X C R?. The equations are expressed as:

Ou

a:—(u-V)u+uV2u—Vp+f, V-u=0 (208)
Here, 1 is the kinematic viscosity, p is the scalar pressure field, and f denotes an external force — in
our case, a buoyancy term. The constraint V - u = 0 enforces incompressibility and ensures mass
conservation. The term —(u - V)u describes convection, capturing the self-advection of the velocity
field. The diffusion term 1 V?u models viscous dissipation, while Vp represents internal pressure
forces.

To generate ground truth, we solve the Navier-Stokes system in vorticity form on a unit torus using
numerical methods. The solver produces time-resolved velocity and pressure fields that define the
fluid’s true dynamics.

We then simulate particle trajectories by randomly placing particles at initial spatial coordinates and
integrating their motion through the time-evolving velocity field using a Newtonian update. At each
time step, a particle state is recorded as x; € R®, consisting of:

* Position: (z,y;) € R?

* Velocity: (us,v;) € R?

* Local pressure: p, € R

43

Under review as a conference paper at ICLR 2026

To simulate realistic sensor observations, Gaussian noise is added to the trajectories. The resulting
observations y, € R? are used for training and evaluation of the state-space inference models.
Formally saying, we define the 5-dimensional latent state and 2-dimensional observations at time ¢
as:

Ut
(o T
Xy = | T €R5, yt:|:t:|€R2
Yt
Yt
Pt

The latent-state-dependent non-linear transition function A, (-) is derived from the discretized
Navier-Stokes equations and particle motion:

wp + At | —(ug Opur + vy Oyuy) + pV2uy — % Oupt

v + At | —(up Opvp + v Oyvy) + puV 20, — L 0ypy
Xi41 = A, (Xt) = ‘ z, + AZZJf oy pY (209)
Yt + At - Ut

PoissonSolve (&(%ut + ayvt))

The observation model is a linear projection of the state to the spatial coordinates:

001 00
Yi = {0 00 1 0] Xt (210)
c.,
In the general formulation of w-SSM, the discrete latent variable z, € {1,..., K} represents a mode

index that selects between different system dynamics. Each mode z; is associated with its own
transition and observation functions, denoted A ,, () and C,,, allowing the model to capture complex
behavior by switching between locally consistent dynamics. In the context of the Navier-Stokes
experiment, the underlying physical law is uniform across the domain; however, introducing multiple
modes (i.e., K > 1) enables the model to specialize on distinct flow regimes—such as boundary
layers versus central flow, or convection-dominated versus diffusion-dominated zones—thereby
improving generalization and interpretability. Therefor we used K = 3 in this experiment.

G.5 EFFECT OF BUFFER € IN RNN STABILITY PROJECTION

Role of €. In our stability-constrained training scheme, the buffer e > 0 enforces a strict inequality
in the ISS constraints for gated RNNG.

(i) GRU case: We require |U, |06 < 1, and implement this by projecting each row of U, onto an
¢1-ball of radius p = 1=€, ensuring |Ur|oobf < 1—e

G

(ii) LSTM case: The ISS conditions are (1+5,)5 s < 1 and (146,)5;|Uc|sc < 1. The first inequality
involves only gate parameters and can be satisfied by parameter initialization/normalization. The
second inequality requires constraining U, which we enforce via row-wise ¢; projection onto a ball
of radius p = (1-&%)& Thus € again serves as a buffer to guarantee strict satisfaction.
Interpretation. The buffer provides a safety margin to protect against numerical errors, approxima-
tion artifacts, and small fluctuations during training. Without it, parameters may drift close to the
boundary of the ISS region, risking instability in long sequences or under high-variance inputs.

Tuning e. In practice, ¢ must be chosen to balance two competing goals:

* Stability guarantee: Larger e provides a more conservative margin, making the system
more robust to exploding activations or gradients.

* Optimization fidelity: However, larger € also leads to more aggressive projections, causing
the updated U to deviate significantly from the unconstrained optimum proposed by gradient
descent. This may prevent the model from converging to an optimal solution, especially in
tasks that require precise temporal modeling.

44

Under review as a conference paper at ICLR 2026

Empirical behavior. In our experiments, we observed that:

* When ¢ is too small (e.g., ¢ < 10~1), numerical instability occasionally occurred in long
sequences or chaotic systems.

* When € is too large (e.g., € > 4 x 1071), likelihood performance noticeably degrades due to
overly constrained dynamics and suppressed learning capacity of the GRU.

* A moderate value of € (e.g., € € [1071, 2 x 107!]) provided a good balance between stability
and performance across all datasets.

Guidelines. We recommend tuning € via validation likelihood. Begin with a relatively loose
constraint (e.g., ¢ = 10~1), and gradually increase it if instability is observed. Avoid unnecessarily
large e, as this limits the expressiveness of the learned transition dynamics and tends to reduce final

log-likelihood.

Full Comparison of our ISS stability with Gradient Clipping. Table /| provides the stability
behavior of our ISS-based scheme against conventional gradient clipping (GC) on full 4 benchmarks.
The ISS approach yields 100 % success across all datasets and buffer values ¢ € [0.1,0.25],
demonstrating that once the sufficient stability inequality is enforced, the system remains robust
regardless of sequence length or dynamics. In contrast, GC exhibits partial or complete failure: as
the clipping threshold § increases, instabilities emerge, with divergence occurring in several tasks at

6 > 10.

Another advantage of our method is the ease of parameter tuning. The ISS buffer € is interpretable,
bounded, and chosen within the compact interval (0, 1), making it straightforward to adjust and
comparable across architectures (GRU, LSTM, etc.). In contrast, the GC threshold § must be tuned
over an unbounded range [0, c0), with optimal values highly problem-dependent and unstable across
tasks. This makes our ISS projection scheme not only more reliable but also far more practical for

deployment.

Table 7: Stability handling: comparison between GC and ISS.

Pong Lorenz Navier-Stokes NCLT
Objective Success Objective Success Objective Success Objective Success
e=0.1 5.401 £ 0.197 100 % 5.856 £ 0.387 100 % 5.097 £ 0.247 100 % -23.18 £ 1.07 100 %
7-SSMpy (ISS) e=0.15 5.231 £0.228 100 % 5.8414 0.528 100 % 5.026 £ 0.377 100 % -23.44 £ 0.97 100 %
GRU e=0.2 5.084 £ 0.281 100 % 5.624 £ 0.271 100 % 4.745 £ 0.216 100 % -23.91 £ 1.07 100 %
e =0.25 4.888 + 0.324 100 % 5.344 + 0.400 100 % 4.510 £ 0.421 100 % -24.51 +1.29 100 %
e=0.1 5475 £0.217 100 % 5.844 £ 0.292 100 % 5.137 = 0.18 100 % -23.25 £ 0.94 100 %
7-SSM) e =0.15 5.281 £0.174 100 % 5.827+ 0.397 100 % 5.074 £ 0.333 100 % -23.59 £ 0.94 100 %
LST™ e=0.2 5.172 £ 0.202 100 % 5.600 £ 0.311 100 % 4.816 £ 0.193 100 % <2397 £ 1.14 100 %
e =0.25 4911 £ 0.215 100 % 5.344 £ 0.382 100 % 4.574 £ 0.266 100 % -24.55 £ 0.93 100 %
6=5 5.166 £ 0.446 100 % 5.511 £ 0.521 100 % 4.814 £ 0.495 100 % -2338 £ 1.84 100 %
7-SSMagy (GO) § =10 5249 + 1.12 60 % 5.691 + 1.18 50 % 4.92 4+ 0.936 50 % -23.20 £ 3.57 60 %
GRU 6§ =15 5.281 &£ 2.541 30 % N/A 0% N/A 0% -23.21 £9.54 20 %
§ =20 N/A 0% N/A 0% N/A 0% N/A 0%

H ADDITIONAL RESULTS

H.1 EXTENDED EXAMPLE FOR PONG EXPERIMENT AND IMPUTATION STRATEGY
EXPLANATION

To further illustrate the ability of 7-SSM to capture mode-dependent dynamics, we provide a detailed
example consisting of 8 representative frames from a ball trajectory. In this example, the ball
undergoes 4 collisions with the enclosure walls, inducing 4 distinct mode transitions. The frames are
selected to showcase the key dynamical changes before, during, and after each collision. See figure

10

The learned transition matrices A ,, corresponding to each mode are inspected, and their eigenvalue
spectra are compared to the ground truth to verify structural alignment.

We examine the predictive distributions ¢(y; | y1..—1) at four critical points in time: ¢ = 15,
t = 35,t = 55, and t = 75. These represent pre- and post-collision phases and provide insight into
how the model adjusts its uncertainty and dynamics based on the inferred mode. Each predictive

45

Under review as a conference paper at ICLR 2026

distribution is modeled as a multivariate Gaussian, and we plot the corresponding ellipses for
qualitative evaluation. These plots confirm that the model adapts to the nonlinear behavior of the ball
by switching appropriately between learned dynamics and refining its state belief accordingly.

According to the inferred mode, here, each mode corresponds to a distinct linear segment of the
ball’s trajectory between wall bounces, making regime switches clearly observable. In this setting,
the discrete states z; can be directly interpreted and tracked, with four true modes governing the
dynamics. Empirically, the inferred z; samples capture these regime changes in a meaningful way.
The behavior of z; sequences can be characterized by two properties: (i) unigueness of active modes,
and (ii) persistence of modes across time.

Uniqueness. The number of modes K is treated as a hyperparameter. We observed a pruning effect
from q(z; | z:—1): when K exceeds the true number of modes, redundant modes gradually vanish
during training and are no longer sampled. In Pong, the inferred z; concentrated on four dominant
modes, consistent with the ground-truth structure (As it is evident in the Figure).

Persistence. To assess temporal persistence, we considered intervals between two consecutive
bounces (77, T5) where the true regime is constant. In these intervals, the inferred z; consistently
sampled the same mode index k, demonstrating coherent mode tracking over time and alignment
with the actual regime (Refer to the consistent colors in each mode switch interval).

Additionally, for the imputation task, we randomly remove half of the observations from each
generated trajectory and evaluate the model’s ability to infer the missing values. When observations
are unavailable during a temporal interval [t 4+ 1,...,¢ + 7], the model is required to generate these
values by leveraging its learned predictive structure. Specifically, at each step, the model uses the
inferred latent state to recursively propagate forward through its transition dynamics and approximate
the corresponding observation distributions.

As established in the main paper, the predictive likelihood at time ¢ + 1 can be approximated as:

Q(Yet1 | Y1) = /p(Yt+1 | Xe41) P(Xe1 | Xe, 2e41) Q(Zeg1 | Xe) @(Xe | Y1:¢) dXe dXpq1 d2iqr.
@11)

The same logic extends recursively to future time steps ¢ = ¢ + 2, ..., + 7, allowing the model to
generate:

q(yy | y1.e) fort' >t

using a sequence of predictions through the latent state space. In practice, the system generates
missing observations as follows:

aleer |¥1a) = [oer [x0) [T [plocees [xass s ot | xe4m)] gl | y2)
s=1
dXt s dXt+7- dZt+1 s dZt+-,—.
212)

This recursive structure leverages the learned dynamics of m-SSM to roll out latent trajectories and
generate observations in the absence of measurements.

H.2 MSE RESULTS

In addition to the log-likelihood metrics reported in the main text, we include MSE results here
to provide a more interpretable evaluation of predictive accuracy across tasks in Table [8} This
supplementary evaluation highlights the effectiveness of 7-SSM in reconstructing latent trajectories
and predicting observations, particularly in the presence of noise or partial information. Furthermore,
we include two PDE-specific baselines, PINN and SPINN—which are designed for physical sys-
tems governed by partial differential equations. Since these methods are not applicable to general
state-space models or sequence modeling tasks, we only report their results for the Navier-Stokes
experiment. For other experiments such as Pong, Lorenz, and NCLT, PINN and SPINN results are
omitted.

46

Under review as a conference paper at ICLR 2026

)
=l
<)
=
8
6
<4
2
o
6 4 8 4
¢ 2 © //\&
---GT 2
22 — mssMGRY) | A A WXV
o &~ sios 2l =5 T | © o
I -2 o 2 e =&
-2 5 10 15 20 20 25 30 35 40 40 a5 50 55 60 -2 60 65 70 75 80
6 4 8 4
4 2 - 6 P
<2 o] = *\7_7 A —
o i — . =
- | 2 <
- 5 10 15 20 20 25 30 35 40 40 45 50 60 65 70 75 80
4 8 2
2 6 ,/ 0
R N N / AN
o W'%AW?L o e |72 V7 = oo
= |2 = / =
-2 5 10 15 20 20 25 30 35 40 40 45 50 60 65 70 75 80
20
— LG — LG ply2ss) = 6(y2 —50) 30
25 50 28
15 = SLDS = SLDS ply2ss) = 6(y2 — 25)
= m-SSM(GRU) 2 = M-SSM(GRU) 5 26
~ 10 215)=6(y2 -8 di) = - 24)ﬂ
N ply215) =6(y:) . ply23s) =6(y2 —10) plyLss) =Byl - 25)22
40 - —
5 pylss) =6(yl —24) LG LG lylss)=6(yl—7
plylis) =6(y1l—20) 10 — SLDS 20{ —— SLDS
359 =—— n-SSM(GRU) 184, = m-SSM(GRU)
of [S— >SN |
20 25 30 35 20.0 225 25.0 27.5 30.0 325 350 37.5 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14
Y1 Y1 Y1 Y1

Figure 10: Predicted observation (position) at 15-th, 35-th, 55-th and 75-th time steps (last row).
The first row shows the ground truth ball position in 10, 20, 30, 40, 50, 60, 70 and 80-th time steps,
respectively.

Table 8: MSE across four benchmarks (lower is better).

Model Pong Lorenz Navier-Stokes NCLT
LSTM 0.097 £ 0.013 0.090 + 0.015 0.360 + 0.039 191.3 £10.3
GRU 0.095 + 0.020 0.091 +0.014 0.356 + 0.026 181.1 £ 7.45
SLDS 0.110 £ 0.031 0.105 £ 0.021 0.367 £0.019 141.54+10.9
irSLSD 0.092 + 0.027 0.083 + 0.024 0.297 + 0.030 130.2 £ 4.7
NODE 0.104 £ 0.024 0.095 £ 0.021 0.331 £ 0.051 155.4 +6.54
MoNODE 0.093 + 0.021 0.084 +0.019 0.302 + 0.039 134.5 +4.99
KalmanNet 0.086 £ 0.013 0.077 £ 0.009 0.291 £ 0.041 165.1 £6.34
GIN 0.085 + 0.011 0.077 4+ 0.004 0.288 + 0.029 131.7 £5.17
Hybrid GNN 0.082 £0.013 0.075 £ 0.011 0.284 + 0.033 118.2 £4.23
LG 0.083 + 0.009 0.076 +0.011 0.260 + 0.030 111.24 £2.03
PINN 0.227 £0.019

SPINN 0.202 4+ 0.030

m-SSMgru 0.061 £ 0.009 0.056 +0.010 0.208 + 0.019 89.14+1.29
m-SSMLst™ 0.058 + 0.011 0.057 4+ 0.007 0.205 +0.011 92.15 4+ 0.98

47

	Introduction
	Related Works
	Background
	-SSM: Generative Assumptions and Graphical Structure
	Approximate Inference Framework
	Training
	Experiments
	Conclusion
	Bibliography
	Background
	Forward Backward Algorithm
	Filtering and Smoothing Parameterization
	GRU Cell Review.
	LSTM Cell Review.
	ISS and Comparison Functions: Intuition, Properties, and Examples

	 Notation Summary
	Proofs
	Nested Message Passing Details Derivation
	Complexity Analysis: RNN-Based Updates vs. LG
	Proof of Theorem 1
	 Gradient Estimation Details
	 Proof of Theorem 2
	A General ISS Scheme for Gated, Saturating RNN Modules
	 Proof of ISS schemes for GRU cells
	Proof of ISS schemes for LSTM system
	Projection to Enforce GSRNN ISS Condition

	Related works, empirical running times and complexity analysis
	Qualitative Comparison of the -SSM to Recent Related Work
	Expressivity, Extension and Limitations
	Empirical analysis

	Algorithms and python intuitive code
	Algorithms
	Python intuitive code

	Hyperparameters and architecture
	Hyperparameters and Training Details
	Proposed architecture

	Experimental Systems and Formulations
	LG Variant Used in Ablation Study
	Lorenz System Dynamics
	Movement Model Details for the NCLT Experiment
	Navier-Stokes System Setting
	Effect of Buffer in RNN Stability Projection

	Additional Results
	Extended Example for Pong Experiment and Imputation Strategy Explanation
	MSE Results

