
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARD STABLE REPRESENTATIONS OF PHYSICAL
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a generative framework for learning nonlinear physical systems, with
an emphasis on scalable training and principled stability guarantees. Our approach
provides a unified way to compute required gradients in closed form, with tailored
gradient flow calculations for both continuous and discrete components, yielding
a framework that is both theoretically grounded and practically efficient. To ad-
dress recurrent instabilities, we develop a general input-to-state stability analysis
applicable to a broad class of gated RNN architectures under bounded inputs, ex-
tending beyond existing restricted settings. Building on this foundation, inference
is carried out by parameterizing continuous latent states with recurrent networks in
the spirit of Gaussian filtering, while discrete latent dynamics are inferred through
conditional neural sampling. This joint design enables end-to-end learning of
complex temporal structure without reliance on restrictive Markovian transition
assumptions. Experiments on synthetic benchmarks and real-world physical dy-
namical systems demonstrate that our method achieves strong performance in state
estimation, regime detection, and imputation under noise and partial observability.

1 INTRODUCTION

State Space Models (SSMs) provide a flexible probabilistic framework for modeling sequential
data generated by latent dynamical processes. The central goal is to infer hidden trajectories or
denoise partial, corrupted observations. A broad range of inference strategies have been proposed,
including sampling-based methods (Neal et al., 2011), variational approximations (Kingma & Welling,
2013), Expectation-Maximization (EM) (Bishop & Nasrabadi, 2006), and message passing via Belief
Propagation (BP) (Koller & Friedman, 2009). For linear-Gaussian systems with Markovian structure,
classical solutions such as the Kalman filter-smoother (KF)(Kalman, 1960; Rauch et al., 1965) offer
closed-form updates. Extensions like the Extended and Unscented KF (EKF, UKF) (Wan & Van
Der Merwe, 2000; Ljung, 1979) address mild nonlinearities in more complex environments. However,
these methods are fundamentally Model-Based (MB): their success depends on accurate domain
knowledge and well-specified dynamics. Moreover, their reliance on costly matrix inversions limits
scalability in high-dimensional settings.

In this work, we present a fundamentally different perspective on latent temporal modeling: we
introduce π-SSM, a hybrid state-space framework that jointly models continuous latent states and
discrete switching dynamics. Unlike traditional approaches such as Switching Linear Dynamical
Systems (SLDSs) or neural SSMs with fixed transition structures, π-SSM infers both the continuous
state xt and a discrete latent variable zt that governs the system’s mode at each timestep, where we
parameterize zt ∼ p(zt|xt−1) with a neural network, allowing the discrete regime to be selected
based directly on the latent trajectory. This formulation removes the need for hand-designed mode
transition priors and enables more flexible, context-aware mode detection. This modeling approach
aligns with real-world systems where mode-switching behavior emerges from continuous physical
processes—such as contact-driven transitions in mechanical systems or context-dependent localization
in autonomous agents (Linderman et al., 2016).

To achieve this, we construct a two-stage, message-passing-inspired inference algorithm. First, the
continuous latent states xt are inferred using recursive Kalman-style updates, parameterized by a
compact RNN. Second, given the inferred xt, we sample the discrete latent variable zt+1 from a
neural posterior conditioned on xt. This structure enables us to approximate full message passing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Ground Truth (b) π-SSM (c) SPINN (d) PINN

Figure 1: Inferred 1k length particle trajectories in incompressible fluid with Navier-Stokes dynamics.
Colorbar represents pressure field, directed lines are velocity fields. Yellow line is the trajectory.

integration via nested sampling—effectively computing messages of the form mf→v , where f and v
denote factors and variables in the factor graph model. Factors are instantiated based on the generative
structure, and messages are constructed recursively to recover beliefs over latent states. Training
is performed by maximizing the predictive (lower bounded) log-likelihood, where gradients with
respect to continuous parameters are computed via backpropagation, while those for discrete variables
are estimated using REINFORCE with control variates to reduce variance (Sutton et al., 1999).

At the core of π-SSM lies a compact recurrent architecture that complements the classical Kalman
update framework to enable efficient and scalable inference. Rather than relying on explicit expensive
matrix computations at each step, our model uses RNN-based update mechanisms that streamline
the data flow. This design allows inference to be performed linearly faster compared to traditional
approaches, which is especially beneficial for long sequences or high-dimensional systems. However,
the nonlinear dynamics introduced by recurrent networks can lead to instability during training, such
as exploding gradients or sensitivity to bifurcation behavior (Pascanu et al., 2013). To address this, we
propose a stability-aware training strategy that enforces input-to-state stability (ISS) conditions during
the forward pass, and applies gradient manipulation techniques during backpropagation through time
(BPTT) to ensure stable and consistent gradient flow through time.

To summarize the contributions, we introduce π-SSM, a novel state-space modeling framework that
jointly infers discrete and continuous latent variables through structured, partially non-Markovian
inference. We develop a nested sampling-based inference strategy inspired by message passing,
combining Kalman-style continuous updates with neural discrete selection mechanisms. To optimize
the model, we propose a theoretically grounded training objective based on predictive likelihoods,
where continuous parameters are updated via BPTT, and discrete latent variables are trained jointly
using REINFORCE with control variates. Finally, we propose a general stability-aware recurrent
architecture that subsumes popular RNNs such as LSTM and GRU, enabling efficient inference while
preserving stable training dynamics. We then validate our method through extensive experiments on
both synthetic and real-world systems. These include: (1) a bouncing ball environment with switching
dynamics, (2) chaotic Lorenz attractor sequences, (3) complex fluid-like systems generated by noisy
Navier-Stokes PDEs (inferred system visualized in Figure 1), (4) real-world robot localization in the
NCLT dataset, and (5) convergence tests across random seeds to assess training stability.

2 RELATED WORKS

Graphical models provide a powerful framework for representing complex dependencies in structured
data. Besides classical filtering techniques, sampling-based inference methods such as MCMC algo-
rithms—including Gibbs sampling (Gelfand, 2000)—and importance sampling variants (Friedman &
Van den Broeck, 2018; Lou et al., 2019; Marinescu et al., 2019) have been widely used, offering the
advantage that inference accuracy improves over time without additional memory cost. However,
their improvement often slows significantly with computation time in practice (Bathla & Vasudevan,
2023). Another widely adopted approach is BP, which structures inference through local message
passing. Yet in loopy or strongly coupled graphs, BP offers no general convergence guarantees and
can produce inaccurate, overconfident marginals (Guo et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Kanai et al. (2017) and GIN (Hashempoorikderi & Choi, 2024)—a Markovian SSM without discrete
modes— both analyze stability only for the GRU case under zero input, a strong and non-general
assumption. Like π-SSM, hybrid GNN (Garcia Satorras et al., 2019), SSI (Ruhe & Forré, 2021), and
KalmanNet Revach et al. (2021) employ recurrent mechanisms for state evolution, but generally rely
on known (complete or partial) dynamics without any particular stability handling for RNNs.

This section highlights the key related works. A more in-depth discussion—including system
identification (SI) using the EM algorithm, auto-regressive (AR) models, SLDS, neural ODEs (e.g.,
NODE (Chen et al., 2018) and MoNODE (Auzina et al., 2024)), and PINNs (Raissi et al., 2019)—is
available in Appendix D.1 and Table 5. In addition, we provide a comprehensive discussion of
variational inference methods, including both classical and recent deep extensions, in Appendix D.1.
Finally, we report an empirical runtime complexity analysis in Appendix D.3, comparing execution
times per iteration across baselines using wall-clock measurements.

3 BACKGROUND

Message passing. Message passing offers a structured approach to inference in graphical models
by propagating information between variables and factors through local update rules. In general,
the message from a variable node v to a factor node f is given by mv→f =

∏
f ′∈ne(v\f)mf ′→v

where ne(v\f) denotes the set of neighboring factors of v except f . Conversely, the message
from a factor node f to a variable node v is computed by marginalizing over the other variables
connected to f . When both discrete and continuous variables are involved, the message takes the form:

mf→v =
∑

Df

∫
Cf

(
f(v,Df , Cf)

∏
v′∈V′

f\v
mv′→f

)
dCf . Here V′

f\v is the set of all variables

connected to f except v, andDf , Cf denote the discrete and continuous subsets of V′
f\v, respectively.

Then the Belief of the variable v is given by Belief(v) ∝
∏
f∈ne(v)mf→v.This framework serves as

the foundation for our approximate inference algorithms.

SLDS. SLDS models complex time series data by decomposing trajectories into sequences of
simpler, locally Linear Gaussian SSM (LG). By fitting an SLDS to data, one can capture piecewise
linear dynamics while simultaneously segmenting the sequence into coherent discrete regimes. The
generative process is as follows. At each time step t = 1, . . . , T , a discrete latent state zt ∈ 1, . . . ,K
evolves according to a Markovian process, where the next state zt+1 is sampled from a categorical
distribution conditioned on the current state as zt+1 ∼ Categorical(p(zt+1|zt)). Conditioned on
zt+1, the continuous latent state xt ∈ RM evolves linearly as xt+1 = Azt+1

xt + bzt+1
+ qt+1

where qt+1 ∼ N (0,Qzt+1
), with matrices Azt+1

,Qzt+1
∈ RM×M and bias vector bzt+1

∈ RM .
Finally, an observation yt ∈ RN is generated linearly from xt according to yt = Cztxt + dzt + rt
where rt ∼ N (0,Rzt), with matrices Czt ∈ RN×M ,Rzt ∈ RN×N and bias vector dzt ∈ RN .
Full posterior approximate inference can be performed via conditional sampling, where a Gibbs
sampling procedure alternates between discrete state updates using the forward-backward algorithm
and continuous state updates via filtering and smoothing (see Appendix A for details).

4 π-SSM: GENERATIVE ASSUMPTIONS AND GRAPHICAL STRUCTURE

Most of the symbols follow the notation introduced in the Background section, including xt, zt, yt,
and the discrete-state dependent transition and emission matrices Azt and Czt . We denote by µt|t
and Σt|t the mean and covariance of the filtered posterior p(xt | y1:t), and by µt|t−1 and Σt|t−1

those of the predictive distribution p(xt | y1:t−1). We use θ to refer to parameters governing the
discrete latent variable, and ϕ for those associated with the continuous states. (A summary of all
notations, categorized by discrete and continuous variables, is in Appendix Table 4 and Figure 9.)
For simplicity, we omit explicit input terms in the transition and observation (e.g., bzt+1 , dzt) and
assume known mode-independent noise covariances Qt, Rt, although these can be incorporated
without loss of generality. The generative model jointly defines a distribution over continuous latent
states x1:T , discrete mode indices z1:T , and observations y1:T . The factorization is given by:

p(x1:T , z1:T ,y1:T) = p(x0)

T∏
t=1

p(zt|xt−1).p(xt|xt−1, zt).p(yt|xt, zt) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where p(x0) is the prior over the initial continuous state, p(zt | xt−1) denotes the state-dependent
categorical distribution over discrete modes, p(xt | xt−1, zt) is the Gaussian transition model
parameterized by the selected mode, and p(yt | xt, zt) represents the observation model. Importantly,
unlike standard SLDS where discrete transitions are explicitly modeled via terms like p(zt | zt−1)
(see eq.(19) in Appendix), in our factorization zt depends only on the current continuous state xt
and is independent of previous discrete assignments. This structural design ensures that, when
optimizing the model, each discrete variable zt only influences the local observation yt through
the immediate continuous state xt, without requiring backward dependency propagation through
z1:t−1. As a result, gradient updates for discrete variable zt can be performed independently at each
time step without necessitating fully back-propagate in time, enabling scalable training via local
surrogate objectives such as REINFORCE (See Theorem 2). The graphical model is in Figure 2.

𝑧𝑡−1

x𝑡−1

y𝑡−1

𝑧𝑡

x𝑡

y𝑡

𝑧𝑡+1

x𝑡+1

y𝑡+1

…

…

…

…

Figure 2: Grey and white nodes are latent repre-
senting discrete and continuous variables. Blue
nodes are observables in continuous space.

Beyond training advantages, this factorization
also plays a central role during inference. By
preserving a clear local dependency structure
between xt, zt, and xt+1, the model enables a
modular message-passing interpretation of infer-
ence. Each latent state xt aggregates local infor-
mation from associated variables (yt, zt,xt−1)
through messages determined by the correspond-
ing conditional distributions. Furthermore, since
some factors such as p(zt+1 | xt) or p(yt |
xt, zt) may not admit tractable parametric forms,
the model naturally accommodates their ap-
proximation via flexible function approximators
(e.g., neural networks). This dual capability—to
support local message-passing-based inference
while simultaneously enabling principled ap-
proximation of individual factors—forms the
foundation of our hybrid inference strategy. An analysis of our model’s expressivity, limitations and
extension compared with SLDSs appears in Appendix D.2.

5 APPROXIMATE INFERENCE FRAMEWORK

The goal of inference in our model is to approximate the posterior distribution p(x1:T , z1:T | y1:T)
over the latent continuous states and discrete switching variables, given the observed sequence y1:T .
The structured factorization in eq. (1) facilitates this by localizing dependencies: each discrete latent zt
depends only on the corresponding continuous state xt−1, and each continuous transition xt−1 → xt
is conditioned only on (xt−1, zt). This factorization enables us to design an inference procedure
that naturally aligns with local message passing across time. To formalize this, we characterize the
resulting belief updates and filtered posteriors using a nested message passing structure. Under the
generative factorization in eq. (1), standard message passing yields beliefs over the latent variables
xt and zt of the form:

Belief(xt) ∝ mfdyn→xt
×mfobs→xt

, Belief(zt) ∝ mfdyn→zt ×mfmode→zt , (2)

where the incoming messages are given by (see Figure 3 for visualization of factor graph):

mfdyn→xt =
∑
zt

∫
p(xt | xt−1, zt) p(zt | xt−1)Belief(xt−1) dxt−1, mfobs→xt = p(yt | xt), (3)

mfdyn→zt =

∫∫
p(xt | xt−1, zt)Belief(xt−1)Belief(xt) dxt−1 dxt, (4)

mfmode→zt =

∫
p(zt | xt−1)Belief(xt−1) dxt−1. (5)

And the posteriors are given by:
p(xt|y1:t) = p(yt | xt) · Ext−1∼p(xt−1|y1:t−1)

[
Ezt∼p(zt|xt−1) [p(xt | xt−1, zt)]

]
∝ Belief(xt) (6)

p(zt|y1:t) = Ext−1∼p(xt−1|y1:t−1)

[
p(zt | xt−1)× Ext∼p(xt|xt−1,zt) [p(yt | xt)]

]
∝ Belief(zt) (7)

Thus, local message passing over the graphical structure induces a nested inference procedure. Under
the forward inference setting, the full posterior over all latent variables up to time t′ approximately

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

x𝑡−1 𝑓𝑑𝑦𝑛

𝑓𝑚𝑜𝑑𝑒

x𝑡

𝑧𝑡

𝑓𝑜𝑏𝑠

y𝑡−1

𝑓𝑜𝑏𝑠

y𝑡

𝑓𝑑𝑦𝑛

𝑓𝑚𝑜𝑑𝑒

x𝑡+1

𝑧𝑡+1

𝑓𝑜𝑏𝑠

y𝑡+1

……

Forward Path𝑡 − 1 (Observed) 𝑡 (Observed) 𝑡 + 1 (Unobserved)
𝑚

𝑓
𝑑

𝑦
𝑛

→
𝑧

𝑡

𝑚𝑓𝑑𝑦𝑛→x𝑡

𝑚
𝑓

𝑜
𝑏

𝑠
→

x
𝑡

𝛻𝜙 log 𝑞 y𝑡|y1:𝑡−1

𝛻𝜃 log 𝑞 y𝑡|y1:𝑡−1

𝑓𝑑𝑦𝑛

𝑓𝑚𝑜𝑑𝑒

𝑧𝑡+2

𝑚
𝑓

𝑜
𝑏

𝑠
→

x
𝑡+

1

𝛻𝜙 log 𝑞 y𝑡+1|y1:𝑡

𝛻𝜃 log 𝑞 y𝑡+1|y1:𝑡𝑚
𝑓

𝑑
𝑦

𝑛
→

𝑧
𝑡+

1

𝑚𝑓𝑑𝑦𝑛→x𝑡+1

Figure 3: Factor graph. During inference, at each time step t, messages are passed from factor nodes
(green) to latent variables (zt, xt) as shown by green arrows. In training, gradient flows with respect
to continuous parameters ϕ and discrete parameters θ are shown in red and yellow, respectively.

factorizes as: p(x1:t′ , z1:t′ | y1:t′) ≈
∏t′

t=1 p(xt, zt | y1:t) ≈
∏t′

t=1 p(xt | y1:t) × p(zt | y1:t),
which follows directly from the recursive nature of the message updates and the assumed temporal
independence in the forward direction. Detailed derivations/explanations provided in Appendix C.1.

The message passing formulations in eqs. (2–7) induce a recursive inference strategy that we refer to
as nested message passing. While exact computation of the posterior terms may be intractable, the
modular factorization enables tractable approximations via neural parameterizations. Specifically,
we model p(zt+1 | xt) with a neural network that produces a softmax distribution, denoted by
q(zt+1 | xt), mimicking a categorical distribution. This distribution is used to select the transition
and emission parameters Azt and Czt corresponding to the inferred mode.

Having zt ∼ q(zt|xt−1), we use Azt and Czt to approximate the filtered posterior p(xt | y1:t)

with a Gaussian distribution q(xt | y1:t) = N (µ̂t|t, Σ̂t|t), where both the mean and diagonal
covariance are derived from a pseudo Kalman-style update. Specifically, we compute a gain matrix
K̂t = Σ̂t|t−1C

T
ztLtL

T
t , where the Cholesky-like factor Lt is produced by a RNN-based function:

Lt = RNN
(
[Σ̂t|t−1, rt]

)
. The posterior parameters are then computed as:

µ̂t|t = µ̂t|t−1 + K̂t

(
yt −Cztµ̂t|t−1

)
, Σ̂t|t = Σ̂t|t−1 + K̂t

(
CztΣ̂t|t−1C

T
zt +Rt

)
K̂T
t . (8)

This construction ensures the updated covariance remains positive definite and allows yt to modulate
the posterior via a learnable correction mechanism, moreover, this parameterization of the data
flow is linearly faster than traditional LGs (see Appendix C.2 for details). The resulting q(xt |
y1:t) is propagated forward by sampling zt+1 ∼ q(zt+1 | xt) and evaluating the transition model
p(xt+1 | xt, zt+1). Marginalizing over zt+1 yields a Gaussian predictive distribution q(xt+1 |
y1:t) = N (µ̂t+1|t, Σ̂t+1|t), which serves as the basis for the next filtering step.

In practice, at each time step t, inference proceeds in two steps: (i) approximating p(xt | y1:t) using
forward message updates (eq.(6)) and replacing it with q(xt | y1:t) via eq.(8), and (ii) replacing
p(zt | xt−1) with q(zt | xt−1), followed by sampling zt ∼ q(zt | y1:t) using the structure in eq. (7).
While the inference at time t focuses on estimating q(xt, zt | y1:t), the model can also sample
zt+1 ∼ q(zt+1 | xt) and propagate to the next state via xt+1 ∼ p(xt+1 | xt, zt+1) to construct a
predictive prior for the next step. This defines a forward procedure that decomposes inference into a
sequence of locally parameterized computations, enabling scalable and differentiable implementation
while preserving the graphical model structure.

6 TRAINING

To train the model, we aim to maximize the marginal log-likelihood of the observed sequence y1:T .
However, exact inference is intractable due to the presence of both discrete latent variables z1:T

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and continuous latent states x1:T . To circumvent this, we construct a tractable approximation to the
predictive likelihood at each time step . Specifically, we define a local evidence surrogate:

q(yt | y1:t−1) = Ext−1,zt,xt [p(yt | xt) p(xt | xt−1, zt) q(zt | xt−1) q(xt−1 | y1:t−1)] , (9)

which approximates the intractable predictive density p(yt | y1:t−1) via nested sampling over
latent variables. The full training objective is then given by the sum of predictive log-likelihoods
L(y1:T) =

∑T
t=1 log q(yt|y1:t−1) which can be efficiently estimated via Monte Carlo sampling of

the latent variables. This formulation supports online training and enables local credit assignment,
without requiring gradient propagation through the entire sequence. In the following Theorem, we
state how much our approximated objective is lower bounded. The proof is in Appendix C.3.

Theorem 1 (Lower Bound on Predictive Log-Likelihood). The surrogate predictive log-likelihood
defined in equation 9 provides a lower bound on the true predictive likelihood at each time step.
Specifically, log p(yt | y1:t−1) ≥ log q(yt | y1:t−1) + Et, where the gap term Et is given by the sum
of KL divergences of approximate and true latent distributions:

Et = KL (q(xt−1 | y1:t−1) ∥ p(xt−1 | y1:t−1)) + Ext−1
[KL (q(zt | xt−1) ∥ p(zt | xt−1))] . (10)

To optimize the surrogate objective L(y1:T), we estimate gradients with respect to both continuous
and discrete variational parameters. Denoting by θ the parameters of the discrete inference model
q(zt | xt−1), and by ϕ the parameters of the continuous filtering model q(xt | y1:t), we compute:

∇ϕL(y1:T) ≈
T∑
t=1

∇ϕ log q(yt | y1:t−1), (11)

∇θL(y1:T) ≈
T∑
t=1

Ezt∼q(zt|xt−1) [(log q(yt | y1:t−1)− bt)∇θ log q(zt | xt−1)] , (12)

The gradient in eq. (11) is computed via standard backpropagation through the continuous repa-
rameterized path. The second term in eq. (12) uses the REINFORCE estimator, applying the score
function method to the discrete sampling path. Here, bt is a baseline (control variate) used to reduce
gradient variance, typically set as an exponential moving average of past log-likelihood values (Kool
et al., 2019). The log term log q(yt | y1:t−1) is treated as a constant with respect to θ—i.e., gradients
are not propagated through it—which is implemented by detach() in practice. (See appendix C.4)

Importantly, due to the structural factorization of our model (see Section 4), each discrete variable zt
only influences the local observation yt through the immediate continuous state xt, and is independent
of the previous discrete assignments z1:t−1. This contrasts with standard SLDS approaches that
model transitions via p(zt | zt−1), which introduce backward temporal dependencies. As a result,
our design enables localized updates to the parameters θ of q(zt | xt−1) using only the current
observation yt, without requiring full BPTT, making training more efficient and naturally suited for
online or streaming settings with elaboration in the following Theorem (proof is in Appendix C.5).

Theorem 2 (Gradient Efficiency via Local Factorization). In our model, the local factorization
p(zt | xt) enables per-step gradient updates using REINFORCE with complexity O(T), in contrast
to standard SLDS models with Markovian transitions p(zt | zt−1), where cumulative dependencies
induce a gradient complexity of O(T 2).

To compute gradients using eqs. (11 -12), we must mitigate instability due to gradient explosion in
RNN updates (used to compute µ̂t|t and Σ̂t|t in eq. (8)). We therefore propose a general stability
scheme for a broad class of gated, saturating RNN modules (GSRNN), and then specialize it to
GRU and LSTM. Consider a general GSRNN with input ut ∈ Rnu , hidden states ht ∈ Rnh , with
g(ht, ut) ∈ (0, 1)nh as a nonlinear gate, and Ψ(ht, ut) as mixing operator:

ht+1 = g(ht, ut)⊙ ht +
(
1− g(ht, ut)

)
⊙ ϕ

(
Wut + U Ψ(ht, ut) + b

)
, (13)

where g,Ψ act componentwise, ϕ : R→ [−1, 1] is a saturating nonlinearity (e.g., tanh), and W,U, b
are parameters. Stability scheme is detailed in Theorem 3 with proof in Appendix C.6. For this we
first give two definitions (more details with examples in Appendix A.5):

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Definition 1 (Classes K∞ and KL). A function γ : [0,∞) → [0,∞) belongs to K∞ if it is
continuous, strictly increasing, satisfies γ(0) = 0, and limr→∞ γ(r) =∞. A function β : [0,∞)×
[0,∞) → [0,∞) belongs to KL if, for each fixed t ≥ 0, β(·, t) ∈ K∞, and for each fixed r ≥ 0,
β(r, ·) is decreasing with limt→∞ β(r, t) = 0.

Definition 2 (ISS). System eq. (13) is ISS if there exist β ∈ KL and γu, γb ∈ K∞ that, for all t ≥ 0:
∥ht∥∞ ≤ β(∥h0∥∞, t) + γu(∥u∥∞,1:t) + γb(∥b∥∞), with ∥u∥∞,1:t := max1≤τ≤t ∥uτ∥∞.
Theorem 3 (ISS for GSRNN). Assume bounded inputs ∥ut∥∞ ≤ Umax, a Lipschitz saturating
nonlinearity ϕ with Lϕ ≤ 1, and gates/mixing maps g,Ψ satisfying 0 ≤ g ≤ g ≤ ḡ < 1 and
∥Ψ(h, u)∥∞ ≤ ψ̂∥h∥∞ for some ψ̂ < 1. Define the effective recurrent gain c := Lϕ∥U∥∞ψ̂. If
c < 1, then the system eq. (13) is ISS in ∥ · ∥∞: for a matrix A, ∥A∥∞ = maxi

∑
j |aij |.

Following Theorem 3, let c = Lϕ∥U∥∞ψ̂ and fix a safety margin ε > 0. After each gradient step we
enforce c < 1− ε by solving the row–wise projection: minU ∥U − Û∥2F s.t. ∥Ui,·∥1 ≤ 1−ε

Lϕψ̂
, ∀i.

It is projecting each row of U onto an ℓ1-ball of radius (1 − ε)/(Lϕψ̂). Rows already within the
bound remain unchanged, ensuring the ISS condition for eq. (13) (Detailed in Appendix C.9).

Remark 1. This general scheme also covers standard gated architectures such as GRU and LSTM to
provide their generic stability. In the Appendix C.7 and C.8 we derive two proof schemes for each: (i)
Using specific ISS inequalities and (ii) using Lyapunov function. Then we provide the corresponding
projection schemes for each in Appendix C.9.

7 EXPERIMENTS

y1

y2

y1

y2

y1
y2

y1

y2

Mo
de

5 10 15 20
0

2

4

6

8

1 GT
-SSM(GRU)

SLDS
LG

40 45 50 55 60

0

2

4

6

GT
-SSM(GRU)

SLDS
LG

5 10 15 20
2

0

2

4

6

2 GT
-SSM(GRU)

SLDS
LG

40 45 50 55 60

2

4

6

8

GT
-SSM(GRU)

SLDS
LG

17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
y1

0

5

10

15

20

y 2

p(y115) = (y1 20)

p(y215) = (y2 8)

LG
SLDS
-SSM(GRU)

15.0 17.5 20.0 22.5 25.0 27.5 30.0
y1

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

p(y155) = (y1 25)

p(y255) = (y2 50)

LG
SLDS
-SSM(GRU)

Figure 4: Predicted observation (position) at
15-th and 55-th time steps (last row). The first
row shows the ground truth ball position in
10, 20, 50 and 60-th time steps, respectively.

The first experiment involves a bouncing ball in a dy-
namic environment, where the underlying dynamics
change consistently. Then we focus on a non-linear
Lorenz attractor and a Navier-Stokes PDE system,
respectively, showcasing π-SSM’s ability to infer
non-linear states. While not specifically designed
for solving PDEs, π-SSM demonstrates its adaptabil-
ity and potential as an alternative to PINNs. The
next experiment covers NCLT dataset for real world
data. The last experiment shows the effectiveness
of Theorem 3 for stability handling. The appendix
provides intuitive Python code and a detailed training
and inference algorithms (see Appendix E). Addi-
tional explanations on hyperparameter optimization,
network architecture, and practical strategies to avoid
poor local minima are included in Appendix F. We
use general LSTM and GRU cells modeling RNN is
eq. (8), shown by π-SSMLSTM and π-SSMGRU. Run-
time comparisons are in Appendix, Table 6.

Pong. To demonstrate the adaptability of π-SSM,
we evaluated it in a switching dynamics environment.
We generated 5k sequences, each with 80 time steps,
simulating a ball moving within a four-sided enclo-
sure. The ball’s initial position and velocity were
randomized, and no external forces were applied.
Collisions with the walls were modeled as elastic
reflections. For the ablation study, we first compare
π-SSM against a simple observation model without latent parameterization, and then against a classic
LG variant, where RNN cells are replaced by standard filtering equations and discrete latents are
omitted (See Appendix G.1 for details). We further assess the importance of latent parameterization
by replacing the π-SSM core with GRU and LSTM cells that directly parameterize the output ob-
servations. In addition, we compare various variational inference (VI) models—including VI-GRU,
VI-LSTM (Chung et al., 2015)—and EM-based methods such as KVAE, EKVAE, and MVAE.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Predictive (lower bounded) likelihood for Pong,
Lorenz, Navier-Stokes and NCLT experiments. MSE
results are included in Appendix H.2.

Model Pong Lorenz Navier-Stokes NCLT

Observation 4.112 ± 0.621 4.374 ± 0.462 3.591 ± 0.397 -30.87 ± 1.07

VI-LSTM 4.592 ± 0.388 5.271 ± 0.241 4.401 ± 0.306 -25.64 ± 1.32
VI-GRU 4.691 ± 0.227 5.267 ± 0.364 4.375 ± 0.194 -25.51 ± 1.63
KVAE 4.492 ± 0.339 5.162 ± 0.255 4.299 ± 0.241 -25.98 ± 1.80
EKVAE 4.688 ± 0.282 5.231 ± 0.198 4.411 ± 0.293 -25.16 ± 1.88
MVAE 4.701 ± 0.176 5.371 ± 0.273 4.511 ± 0.258 -24.76 ± 1.93

DeepAR 4.342 ± 0.422 4.985 ± 0.392 4.194 ± 0.409 -29.14 ± 3.57

SLDS 4.768 ± 0.344 5.241 ± 0.441 4.481 ± 0.198 -25.10 ± 1.63
irSLSD 4.925 ± 0.291 5.449 ± 0.397 4.592 ± 0.264 -24.57 ± 2.09

NODE 4.632 ± 0.312 5.184 ± 0.337 4.382 ± 0.299 -25.81 ± 2.11
MoNODE 4.791 ± 0.391 5.395 ± 0.294 4.511 ± 0.411 -24.90 ± 1.73

RKN 4.661 ± 0.229 5.179 ± 0.214 4.326 ± 0.159 -26.14 ± 1.50
CRU 4.692 ± 0.197 5.315 ± 0.359 4.481 ± 0.174 -25.64 ± 1.61

KalmanNet 4.897 ± 0.341 5.268 ± 0.214 4.431 ± 0.246 -26.15 ± 1.37
GIN 5.032 ± 0.280 5.418 ± 0.228 4.655 ± 0.247 -24.95 ± 1.54
Hybrid GNN 5.034 ± 0.240 5.511 ± 0.297 4.691 ± 0.181 -24.55 ± 1.62

LSTM 4.580 ± 0.322 5.182 ± 0.392 4.571 ± 0.192 -27.91 ± 1.39
GRU 4.611 ± 0.391 5.215 ± 0.430 4.558 ± 0.267 -27.94 ± 1.47

LG 4.993 ± 0.310 5.434 ± 0.520 4.711 ± 0.311 -24.42 ± 1.29
π-SSMGRU 5.401 ± 0.197 5.856 ± 0.387 5.097 ± 0.247 -23.18 ± 1.07
π-SSMLSTM 5.475 ± 0.217 5.844 ± 0.292 5.137 ± 0.180 -23.25 ± 0.94

103 104 105

Samples

0.00

0.05

0.10

0.15

0.20

0.25

MS
E

Observation
LG
KalmanNet
Hybrid GNN
-SSM(GRU)
-SSM(LSTM)

Figure 5: MSE of Lorenz attractor.

Ground Truth
Observations

(a) Observation

Ground Truth
-SSM(GRU)

(b) π-SSMGRU

Figure 6: Inferred 5k-length Lorenz at-
tractor.

We also include comparisons with latent SLDS and irSLDS. For a broader evalua-
tion, we incorporate DeepAR (an autoregressive model), as well as CRU, RKN, neu-
ral ODEs, and other VI-based approaches. Numerical results are reported in Table 1.

0 10 20 30 40 50 60
East[m]

0

10

20

30

40

50

60
No

rth
[m

]
Ground Truth
-SSM(GRU)
-SSM(LSTM)

KalmanNet
LG
Hybrid GNN

Figure 7: NCLT: Position estima-
tion for the first 60 observations.

Figure 4 shows samples from the predictive distributions
q(yt|y1:t−1) of π-SSMGRU, LG, and SLDS compared with
ground-truth Pong trajectories. Top row: a trajectory of 4
frames with two collisions, each triggering a mode switch. Sec-
ond row: π-SSMGRU inferred modes, where each color marks a
regime; intervals of constant ground-truth mode align with con-
sistent colors, and color changes coincide with mode switches.
Third and fourth rows: comparison of the first two eigenvalues
of learned transition matrices of π-SSMGRU with ground truth,
demonstrating accurate recovery of dynamics across regimes.
Bottom row: predictive distributions at t = 15 and t = 55 (yt
= ball position), highlighting alignment of models with ground-
truth transitions. Further explanations with detailed example of
8 frames and the strategy to extend eq.(9) to perform sequence
generation/imputation are in Appendix H.1. Animated files
demonstrating sequence generation/imputation are available: sites.google.com/view/iclrpi.

Lorenz Attractor. The Lorenz system is a set of nonlinear ordinary differential equations originally
developed to model atmospheric convection. Due to its chaotic and highly nonlinear dynamics (see
Appendix G.2), it serves as a strong benchmark for evaluating the π-SSM cell. We assess π-SSM
on a trajectory of length 5k, where each observation is perturbed by zero-mean Gaussian noise with
covariance Rt = 0.5I. During training, the predictive likelihood q(yt | y1:t−1) is modeled as a
Gaussian and optimized accordingly. In addition to the log-likelihood scores in Table 1, we report the
MSE across different sample sizes in Figure 5, highlighting comparisons with competitive baselines.

Table 2: MSE for NCLT
experiment

Model MSE [dB]

π-SSMGRU 19.50± 0.11
π-SSMLSTM 19.64± 0.14
LG 20.45±0.22
Hybrid GNN 20.73±0.21
KalmanNet 22.20±0.17
LSTM 22.83±0.62
GRU 22.57±0.41
Observation 25.47±0.08

Due to the system’s inherent nonlinearity, LG must linearize the transition
model before applying standard filtering, which limits its performance.
Sample trajectories are visualized in Figure 6.

Real World Dynamics: NCLT dataset. To evaluate π-SSM on real-
world data, we utilize the Michigan NCLT dataset, which consists of
navigation data collected by a Segway robot. At each time step, the latent
state xt ∈ R4 comprises the robot’s 2D position and velocity, while the
observation yt ∈ R2 corresponds to noisy GPS measurements. The goal
is to accurately estimate the robot’s true position given only the corrupted
GPS observations. For this experiment, we sampled 4,280 usable time

8

https://sites.google.com/view/iclrpi

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

steps from the robot’s trajectory. We assume a uniform motion model with constant velocity dynamics
(see Appendix G.3 for details). In addition to the predictive log-likelihoods reported in Table 1, we
present MSE results in Table 2 for competitive methods. A visual comparison of inferred states
against ground truth is in Figure 7. Overall, this experiment demonstrates that the π-SSM generalizes
well to real-world localization tasks.

Navier-Stokes. The Navier-Stokes equations (Acheson, 1990) describe the evolution of incom-
pressible, viscous fluid flow, and are fundamental in modeling physical systems such as ocean
currents, weather, and turbulence. To evaluate whether π-SSM can learn complex, nonlinear dy-
namics governed by PDEs, we design an experiment based on the 2D Navier-Stokes equations
in vorticity form on the unit torus (see Appendix G.4 for equations, simulation details, etc.). We
simulate a physical environment where particles evolve under true fluid dynamics, and generate
10K particle trajectories. Each trajectory consists of a sequence of latent states xt ∈ R5, includ-
ing 2D spatial position, local velocity, and pressure: (xt, yt, ut, vt, pt). Gaussian noise is then
added to create observations yt ∈ R2, consisting only of spatial position (xt, yt). The model is
trained to infer the latent states from these noisy observations using Gaussian predictive likelihood.

5 10 15 20 25
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

loss without ISS
loss with ISS
U without ISS
U with ISS

0.4

0.6

0.8

1.0

1.2

U
 (r

el
at

iv
e

to
 1

-b
al

l)

Figure 8: Training stability with and without
ISS. Left axis: loss (-likelihood) norm. Right
axis: ∥U∥∞ relative to the ℓ1-ball radius.

At test time, we evaluate whether π-SSM can sim-
ulate realistic particle dynamics consistent with the
underlying Navier-Stokes field. Specifically, given an
initial position (x0, y0), the model iteratively infers
latent velocity and pressure fields to generate a tra-
jectory consistent with true fluid flow. This allows us
to assess the model’s ability to recover hidden, PDE-
governed system dynamics from partial observations
in Table 1.(See the generated trajectories here). Since
PINNs and their structured variants (e.g., SPINNs)
are explicitly designed to model PDE-based systems,
we include them as specialized baselines alongside
general-purpose sequence models. Trajectory genera-
tion of the inferred system is shown in Figure 1. See
Appendix H.2 for numerical results.

Table 3: Comparison of our ISS and GC
for stability handling for Pong.

Stability Handling Objective Success

π-SSMGRU(ISS) ϵ = 0.1 5.401 ± 0.197 100%
ϵ = 0.2 5.084 ± 0.281 100%

π-SSMLSTM(ISS) ϵ = 0.1 5.475 ± 0.217 100%
ϵ = 0.2 5.172 ± 0.202 100%

π-SSMGRU(GC) δ = 10 5.249 ± 1.12 60%
δ = 20 N/A 0%

π-SSMLSTM(GC) δ = 10 5.251 ± 1.31 45%
δ = 20 N/A 0%

Stability Handling. Table 3 reports the log-likelihood
values and standard deviations for the Pong experiment,
comparing different strategies for addressing training in-
stability. We evaluate the conventional Gradient Clipping
(GC), using threshold δ, against our proposed ISS projec-
tion strategy, which ensures the RNN satisfies the condi-
tion in Theorem 3. In our approach, the positive buffer ϵ
defines the radius of the ℓ1-ball onto which each row of
U is projected, enforcing a strict ISS margin. As shown
in Table 3, gradient clipping struggles to train under large
thresholds, resulting in unstable behavior or divergence.
In contrast, our ISS-based approach yields consistently higher log-likelihoods and lower perplexity
across all settings, offering improved robustness and stability during training. Figure 8 illustrates
this effect: without ISS, ∥U∥∞ frequently exceeds the admissible radius, leading to sharp jumps and
oscillations in the loss. With ISS, both ∥U∥∞ and the loss remain well controlled. We provide further
analysis of the role of ϵ, including tuning strategies, sensitivity, and full results table in Appendix G.5.

8 CONCLUSION

This paper introduced the π-SSM framework for modeling dynamic systems via hybrid state-space
models. Our approach leverages approximate message passing for inference while using a structured
RNN-based architecture to realize recursive data flow. The π-SSM jointly trains both discrete and
continuous latent variables using a hybrid optimization strategy, and incorporates a stability scheme
based on ISS to ensure robust RNN updates. Although not explicitly designed for PDE systems,
π-SSM demonstrates strong performance on such problems, highlighting its generality and opening
new directions for future research. Additional extensions, such as backward smoothing via backward
message passing, can further enhance the model’s inference capabilities.

9

https://sites.google.com/view/iclrpi

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

BIBLIOGRAPHY

David J Acheson. Elementary fluid dynamics. Oxford University Press, 1990.

Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. Black box
variational inference for state space models. arXiv preprint arXiv:1511.07367, 2015.

Ilze Amanda Auzina, Çağatay Yıldız, Sara Magliacane, Matthias Bethge, and Efstratios Gavves.
Modulated neural odes. Advances in Neural Information Processing Systems, 36, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Alexandra Baier, Decky Aspandi, and Steffen Staab. Relinet: Stable and explainable multistep
prediction with recurrent linear parameter varying networks. In IJCAI, pp. 3461–3469, 2023.

Shivani Bathla and Vinita Vasudevan. Approximate inference of marginals using the ibia framework.
Advances in Neural Information Processing Systems, 36:72679–72691, 2023.

Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C James Taylor, and Gerhard Neumann.
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces. In
International Conference on Machine Learning, pp. 544–552. PMLR, 2019.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Nicholas Carlevaris-Bianco, Arash K Ushani, and Ryan M Eustice. University of michigan north
campus long-term vision and lidar dataset. The International Journal of Robotics Research, 35(9):
1023–1035, 2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable physics-informed neural networks. Advances in Neural Information Processing Systems,
36, 2024.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. Advances in neural information processing
systems, 28, 2015.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the
l 1-ball for learning in high dimensions. In Proceedings of the 25th international conference on
Machine learning, pp. 272–279, 2008.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recognition and
nonlinear dynamics model for unsupervised learning. arXiv preprint arXiv:1710.05741, 2017.

Tal Friedman and Guy Van den Broeck. Approximate knowledge compilation by online collapsed
importance sampling. Advances in neural information processing systems, 31, 2018.

Roger Frigola, Fredrik Lindsten, Thomas B Schön, and Carl Edward Rasmussen. Bayesian inference
and learning in gaussian process state-space models with particle mcmc. Advances in neural
information processing systems, 26, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Victor Garcia Satorras, Zeynep Akata, and Max Welling. Combining generative and discriminative
models for hybrid inference. Advances in Neural Information Processing Systems, 32, 2019.

Victor Geadah, Jonathan W Pillow, et al. Parsing neural dynamics with infinite recurrent switching
linear dynamical systems. In The Twelfth International Conference on Learning Representations,
2024.

Alan E Gelfand. Gibbs sampling. Journal of the American statistical Association, 95(452):1300–1304,
2000.

P Gilabert, Gabriel Montoro, and E Bertran. On the wiener and hammerstein models for power
amplifier predistortion. In 2005 Asia-Pacific Microwave Conference Proceedings, volume 2, pp.
4–pp. IEEE, 2005.

Chenghua Guo, Han Yu, Jiaxin Liu, Chao Chen, Qi Li, Sihong Xie, and Xi Zhang. Linear uncertainty
quantification of graphical model inference. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Hamidreza Hashempoor and Wan Choi. Deep learning based data-assisted channel estimation and
detection. IEEE Transactions on Machine Learning in Communications and Networking, 2025.

Hamidreza Hashempoor, Rosemary Koikara, and Yu Dong Hwang. Featuresort: Essential features
for effective tracking. arXiv preprint arXiv:2407.04249, 2024.

Hamidreza Hashempoorikderi and Wan Choi. Gated inference network: Inference and learning
state-space models. Advances in Neural Information Processing Systems, 37:39036–39073, 2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Matthew J Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast inference.
Advances in neural information processing systems, 29, 2016.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Sekitoshi Kanai, Yasuhiro Fujiwara, and Sotetsu Iwamura. Preventing gradient explosions in gated
recurrent units. Advances in neural information processing systems, 30, 2017.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt. Deep varia-
tional bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke, and Patrick van der Smagt. Latent
matters: Learning deep state-space models. Advances in Neural Information Processing Systems,
34, 2021.

Jonathan Ko and Dieter Fox. Learning gp-bayesfilters via gaussian process latent variable models.
Autonomous Robots, 30(1):3–23, 2011.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
2019.

Rahul Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rui Li, ST John, and Arno Solin. Improving hyperparameter learning under approximate inference
in gaussian process models. In International Conference on Machine Learning, pp. 19595–19615.
PMLR, 2023.

Yingzhen Li and Stephan Mandt. Disentangled sequential autoencoder. arXiv preprint
arXiv:1803.02991, 2018.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian learning and inference in recurrent switching linear dynamical systems. In Artificial
Intelligence and Statistics, pp. 914–922. PMLR, 2017.

Scott W Linderman, Andrew C Miller, Ryan P Adams, David M Blei, Liam Paninski, and Matthew J
Johnson. Recurrent switching linear dynamical systems. arXiv preprint arXiv:1610.08466, 2016.

Lennart Ljung. Asymptotic behavior of the extended kalman filter as a parameter estimator for linear
systems. IEEE Transactions on Automatic Control, 24(1):36–50, 1979.

Qi Lou, Rina Dechter, and Alexander Ihler. Interleave variational optimization with monte carlo
sampling: A tale of two approximate inference paradigms. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 7900–7907, 2019.

Radu Marinescu, Akihiro Kishimoto, Adi Botea, Rina Dechter, and Alexander Ihler. Anytime
recursive best-first search for bounding marginal map. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 7924–7932, 2019.

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational sequential
monte carlo. In International conference on artificial intelligence and statistics, pp. 968–977.
PMLR, 2018.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

Herbert E Rauch, F Tung, and Charlotte T Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA journal, 3(8):1445–1450, 1965.

Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud JG van Sloun, and Yonina C
Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics. arXiv
preprint arXiv:2107.10043, 2021.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

David Ruhe and Patrick Forré. Self-supervised inference in state-space models. arXiv preprint
arXiv:2107.13349, 2021.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
series with continuous recurrent units. In International Conference on Machine Learning, pp.
19388–19405. PMLR, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maarten Schoukens and Koen Tiels. Identification of block-oriented nonlinear systems starting from
linear approximations: A survey. Automatica, 85:272–292, 2017.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Francesco Tonolini, Nikolaos Aletras, Yunlong Jiao, and Gabriella Kazai. Robust weak supervision
with variational auto-encoders. In International Conference on Machine Learning, pp. 34394–
34408. PMLR, 2023.

Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. From pixels to torques: Policy
learning with deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear estimation.
In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No. 00EX373), pp. 153–158. Ieee, 2000.

Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical models for human
motion. IEEE transactions on pattern analysis and machine intelligence, 30(2):283–298, 2007.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. arXiv preprint
arXiv:1506.07365, 2015.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Robert Wilson and Leif Finkel. A neural implementation of the kalman filter. Advances in neural
information processing systems, 22:2062–2070, 2009.

Harrison Zhu, Carles Balsells-Rodas, and Yingzhen Li. Markovian gaussian process variational
autoencoders. In International Conference on Machine Learning, pp. 42938–42961. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS OF APPENDIX

A Background . 14
A.1 Forward Backward Algorithm . 14
A.2 LG Filtering and Smoothing . 15
A.2 GRU Cells Review .17
A.3 LSTM Cell Review . 17
A.3 ISS and Comparison Functions: Intuition, Properties, and Examples 18

B Notation Summary . 19

C Proofs . 19
C.1 Nested Message Passing Details Derivation . 19
C.2 Complexity Analysis: RNN-Based Updates vs. LG . 21
C.3 Proof of Theorem 1 . 21
C.4 Gradient Estimation Details .22
C.5 Proof of Theorem 2 . 22
C.6 Proof of Theorem 3 . 25
C.7 Projection to Enforce ISS Condition . 32

D Related works, empirical running times and complexity analysis . 34
D.1 Qualitative Comparison of the π-SSM to Recent Related Work . 34
D.2 Expressivity, Extension and Limitations .36
D.3 Empirical analysis . 36

E Algorithms and python intuitive code . 37
E.1 Algorithms . 37
E.2 Python intuitive code . 37

F Hyperparameters and architecture . 40
F.1 Hyperparameters and Training Details .40
F.2 Proposed architecture . 41

G Experimental Systems and Formulations . 42
G.1 LG Variant Used in Ablation Study . 42
G.2 Lorenz System Dynamics . 42
G.3 Movement Model Details for the NCLT Experiment . 43
G.4 Navier-Stokes System Setting . 43
G.5 Effect of Buffer ϵ in RNN Stability Projection . 44

H Additional Results . 45
H.1 Extended Example for Pong Experiment and Imputation Strategy Explanation 45
H.2 MSE Results . 46

A BACKGROUND

A.1 FORWARD BACKWARD ALGORITHM

In hybrid state-space models, such as SLDS, the latent structure typically involves both a continuous
latent state sequence x1:T and a discrete mode sequence z1:T , which governs the dynamic regime of
the system. Given observations y1:T , a standard inference task, particularly within Gibbs sampling

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

frameworks, is to compute the posterior over discrete states p(z1:T | x1:T ,y1:T), assuming the
continuous latent trajectory x1:T is fixed.

The model structure assumes a Markovian prior over discrete states, specified by a transition distribu-
tion p(zt | zt−1), and a likelihood model that factors as p(yt | xt, zt) for each time step. Additionally,
the initial discrete state is governed by a prior p(z1).

The forward-backward algorithm provides an efficient dynamic programming method to compute the
posterior marginals of z1:T under this model structure. The forward pass recursively computes the
joint probability of the observed data up to time t and the discrete state zt, conditioned on the fixed
continuous states. The forward recursion is initialized as

α1(z1) = p(y1|z1,x1).p(z1) (14)

Then, for t = 2, . . . , T , the recursion proceeds as

αt(zt) = p(yt|zt,xt)
∑
zt−1

αt−1(zt−1)p(zt|zt−1) (15)

The backward pass propagates information from future observations. It is initialized with

βT = 1 (16)

and for t = T − 1, . . . , 1, the backward recursion is given by

βt(zt) =
∑
zt+1

αt−1(zt−1)p(zt+1|zt)p(yt+1|zt+1,xt+1)βt+1(zt+1) (17)

Having computed the forward and backward messages, the posterior marginals over discrete states
are proportional to their product:

p(zt|y1:T ,x1:T) ∝ αt(zt).βt(zt) (18)
Sampling a discrete trajectory z1:T can then be performed sequentially, using the computed marginals
at each time step.

The forward-backward algorithm thus enables exact posterior inference over discrete latent sequences
in models with coupled discrete-continuous structures, conditioned on fixed continuous states, and
serves as a key inference building block in hybrid dynamical systems.

A.2 FILTERING AND SMOOTHING PARAMETERIZATION

In a SLDS, the generative process over continuous latent states x1:T , discrete switching variables
z1:T , and observations y1:T factorizes as

p(x1:T , z1:T ,y1:T) = p(z1)p(x1|z1)p(y1|x1, z1)

T∏
t=2

p(zt|zt−1).p(xt|xt−1, zt).p(yt|xt, zt) (19)

Inference in this model typically involves estimating the joint posterior p(x1:T , z1:T |y1:T) which is
computationally intractable in general due to the coupling between discrete and continuous variables
across time. In the Gibbs sampling framework, we alternate between updating the discrete sequence
z1:T and the continuous latent states x1:T . After fixing z1:T , the conditional model over x1:T and
y1:T reduces to a time-varying linear Gaussian state-space model, where the dynamics and emission
parameters are determined by the known discrete sequence. In the following, we describe the classical
Kalman filtering and smoothing procedures adapted for this setting.

In the Gibbs sampling framework, after fixing the discrete state sequence z1:T , we update the
continuous latent variables x1:T conditioned on the fixed z1:T and observations y1:T . The following
describes the classical Kalman filtering and smoothing procedures adapted for this setting.

The Kalman filter operates by alternating between two main steps: prediction and correction. In
the prediction step, prior state information is used to estimate the state at the next time step. The

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

correction step refines this estimate by incorporating newly acquired observations. Assuming that
the process and observation noise are Gaussian, and that the transition and emission models are
determined by the discrete mode zt+1, the filter can execute these operations efficiently. During
the prediction phase, the transition matrix Azt+1

associated with the discrete mode zt+1 is used to
compute the prior distribution

p(xt+1|y1:t, z1:t) = (µt+1|t,Σt+1|t) (20)

where
µt+1|t = Azt+1

µt|t, Σt+1|t = Azt+1
Σt|tA

T
zt+1

+Qzt+1
, (21)

and Qzt+1
denotes the process noise covariance determined by the mode zt.

Upon receiving a new observation yt+1, the Kalman filter proceeds to the update (correction) phase,
refining the prior estimate by incorporating the emission matrix Czt+1 corresponding to the discrete
mode zt+1. The Kalman gain is given by

Kt+1 = Σt+1|tC
T
zt+1

(
Czt+1

Σt+1|tC
T
zt+1

+Rzt+1

)−1
, (22)

where Rzt+1
is the observation noise covariance.

The state mean and covariance are then updated as

µt+1|t+1 = µt+1|t +Kt+1

(
yt+1 −Czt+1µt+1|t

)
, (23)

Σt+1|t+1 = Σt+1|t −Kt+1

(
Czt+1

Σt+1|tC
T
zt+1

+Rzt+1

)
KT
t+1. (24)

This observation update step can be interpreted as a weighted average between the predicted prior
(from the state transition) and the newly acquired observation, where the relative weight is determined
by the process and observation noise covariances Qzt+1

and Rzt+1
.

To derive the smoothing equations, we utilize the Markov property, which asserts that xt is con-
ditionally independent of future observations yt+1:T given xt+1. Although xt+1 is not directly
observed, it is available through its posterior distribution. By conditioning on xt+1 and subsequently
marginalizing, the smoothing distribution for xt can be expressed as

p(xt|y1:T , z1:T) =

∫
p(xt|xt+1,y1:T , z1:T)p(xt+1|y1:T , z1:T)dxt+1

=

∫
p(xt|xt+1,y1:t, z1:t,���yt+1:T ,���zt+1:T)p(xt+1|y1:T , z1:T)dxt+1

(25)

By using induction and and smoothed distribution for t+ 1:

pγ1:T (xt+1|y1:T , z1:T) = N (µt+1|T ,Σt+1|T) (26)

and applying standard Gaussian identities, the two-time-slice filtered distribution is given by

pγ1:t(xt,xt+1|y1:t, z1:t) = N
((

µt|t
µt+1|t

)
,

(
Σt|t Σt|tA

T
zt+1

Azt+1
Σt|t Σt+1|t

))
(27)

Conditioning this joint Gaussian on xt+1 yields

pγ1:t(xt|xt+1,y1:t, z1:t) = N (µt|t + Jt
(
xt+1 −Azt+1

µt|t
)
,Σt|t − JtΣt+1|tJ

T
t) (28)

where the smoothing gain matrix is defined as

Jt = Σt|tAzt+1
[Σt+1|t]

−1 (29)

Using the rules of iterated expectation and covariance, the smoothed mean and covariance are then
given by

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

µt|T = E
[
E[xt|xt+1,y1:T , z1:T] |y1:T , z1:T

]
= E

[
E[xt|xt+1,y1:t, z1:t] |y1:T , z1:T

]
= E

[
µt|t + Jt(xt+1 −Azt+1

µt|t) |y1:T , z1:T
]

= µt|t + Jt(µt+1|T −Azt+1µt|t)

(30)

Σt|T = cov
[
E[xt|xt+1,y1:T , z1:T] |y1:T , z1:T

]
+ E

[
cov[xt|xt+1,y1:T , z1:T] |y1:T , z1:T

]
= cov

[
E[xt|xt+1,y1:t, z1:t] |y1:T , z1:T

]
+ E

[
cov[xt|xt+1,y1:t, z1:t] |y1:T , z1:T

]
= cov

[
µt|t + Jt(xt+1 −Azt+1µt|t) |y1:T , z1:T

]
+ E

[
Σt|t − JtΣt+1|tJ

T
t |y1:T , z1:T

]
= Jtcov

[
xt+1 −Azt+1

µt|t |y1:T , z1:T
]
JTt +Σt|t − JtΣt+1|tJ

T
t

= JtΣt+1|TJ
T
t +Σt|t − JtΣt+1|tJ

T
t

= Σt|t + Jt
(
Σt+1|T −Σt+1|t

)
JTt .

(31)

A.3 GRU CELL REVIEW.

We consider a standard GRU cell followed by a linear output layer, as described in Chung et al.
(2014), reformulated here in terms of the gating architecture. At each time step, given input vector
u ∈ Rnu and previous hidden state h ∈ Rnh , the GRU cell computes the new hidden state h+ and
output out ∈ Rno as follows:

g = σ(Wgu+Ugh+ bg), (update gate) (32)
f = σ(Wfu+Ufh+ bf), (forget/reset gate) (33)

ĥ = ϕ(Wru+Ur(f ⊙ h) + br), (candidate activation) (34)

h+ = g ⊙ h+ (1− g)⊙ ĥ, (hidden state update) (35)
out = Uouth+ bout, (linear readout) (36)

Here, σ(·) denotes the element-wise sigmoid function and ϕ(·) is a nonlinear activation function,
typically the hyperbolic tangent. The operators ⊙ and (1− g) denote element-wise multiplication
and complement, respectively.

This formulation defines the update gate g and forget/reset gate f based on both current input u and
prior hidden state h. The intermediate candidate ĥ incorporates gated recurrence through f ⊙ h, and
the next hidden state h+ blends the past state and candidate based on g. The output vector out is
computed as a linear transformation of the current state.

A.4 LSTM CELL REVIEW.

We consider a standard LSTM cell (no peepholes, uncoupled gates) followed by a linear output
layer, as described in Hochreiter & Schmidhuber (1997), written in gating form. At each time step,
given input u ∈ Rnu , previous hidden state h ∈ Rnh , and previous cell state c ∈ Rnh , the LSTM
computes the next states (c+,h+) and output out ∈ Rno as:

f = σ(Wfu+Ufh+ bf), (forget gate) (37)
i = σ(Wiu+Uih+ bi), (input gate) (38)
o = σ(Wou+Uoh+ bo), (output gate) (39)
ĉ = ϕ(Wcu+Uch+ bc), (candidate cell) (40)

c+ = f ⊙ c+ i⊙ ĉ, (cell state update) (41)

h+ = o⊙ ϕ(c+), (hidden state update) (42)

out = Uouth
+ + bout, (linear readout) (43)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Here, σ(·) denotes the element-wise logistic sigmoid and ϕ(·) is a saturating nonlinearity (typically
tanh). The operator ⊙ denotes element-wise multiplication. The gates f , i,o modulate, respectively,
memory retention, information write, and exposure of the cell state. The candidate ĉ proposes a
content update, which is blended with the retained memory to form c∗; the hidden state h+ exposes a
squashed version of c+ through the output gate. The readout out is a linear function of the current
hidden state.

A.5 ISS AND COMPARISON FUNCTIONS: INTUITION, PROPERTIES, AND EXAMPLES

We adopt the standard comparison-function notation in Definitions 1–2. Class K∞ functions act as
gauge functions: they are continuous, strictly increasing, vanish at the origin, and grow unboundedly.
They allow us to rescale and compare norms while preserving order and asymptotic behavior. Class
KL functions model transient decay: for fixed r, β(r, t) decreases to 0 as t → ∞; for fixed t,
r 7→ β(r, t) behaves like a K∞ function. In an ISS estimate (Definition 2), β(∥h0∥∞, t) quantifies
how the effect of the initial condition vanishes, while γu(∥u∥∞,1:t) and γb(∥b∥∞) capture how
bounded inputs and constant biases bound the steady-state response.

Examples.

• K∞: γ(r) = cr with c > 0; more generally γ(r) = crp for any c > 0, p ≥ 1; or
γ(r) = c(ear − 1) for a, c > 0.

• KL: β(r, t) = re−ct for c > 0 (continuous-time) and β(r, t) = λtr with λ ∈ (0, 1)
(discrete-time). Mixed forms are common: β(r, t) = α(t) γ̃(r) with α(t) ↓ 0 and γ̃ ∈ K∞.

Why K∞/KL? These classes are closed under the manipulations that appear in small-gain, Lya-
punov, and comparison arguments: sums, compositions, and norm changes. They provide a
coordinate-free way to state stability and input gains: the specific norm and constants are absorbed
into comparison functions.

Useful calculus (closure properties). Let γ, γ1, γ2 ∈ K∞ and β, β1, β2 ∈ KL. Then:

1. c γ ∈ K∞ for all c > 0; γ1 + γ2 ∈ K∞; γ1 ◦ γ2 ∈ K∞; r 7→ max{γ1(r), γ2(r)} ∈ K∞.

2. min{β1, β2} ∈ KL; r 7→ γ(β(r, t)) ∈ KL; (r, t) 7→ β(γ(r), t) ∈ KL.

3. Norm equivalence: for any two norms ∥ · ∥a, ∥ · ∥b on Rn, there exist m,M > 0 with
m∥x∥a ≤ ∥x∥b ≤M∥x∥a. Hence ∥x∥b ≤ γ(∥x∥a) for γ(r) =Mr ∈ K∞, and conversely.
This lets us change norms inside ISS inequalities by adjusting the comparison functions.

ISS vs. BIBO. Bounded-input–bounded-output (BIBO) guarantees supt ∥ht∥ is finite for bounded
inputs but is silent about the transient from h0. ISS strengthens BIBO by requiring a decaying KL
term for the initial condition and gain functions γu, γb for inputs/biases. Thus, as t → ∞ and for
bounded inputs, the state satisfies ∥ht∥∞ ≤ γu(∥u∥∞,1:∞) + γb(∥b∥∞), with the initial-condition
effect vanishing.

Linear discrete-time example. Consider xt+1 = Axt + But + b with a matrix norm ∥ · ∥ s.t.
∥A∥ ≤ α < 1. Then by induction,

∥xt∥ ≤ αt∥x0∥+
t−1∑
τ=0

αt−1−τ(∥B∥ ∥uτ∥+ ∥b∥) ≤ αt∥x0∥+ 1− αt

1− α
∥B∥ ∥u∥∞,1:t+

1− αt

1− α
∥b∥.

Hence ISS holds with

β(r, t) = αtr ∈ KL, γu(s) =
∥B∥
1−α s ∈ K∞, γb(s) =

1
1−α s ∈ K∞.

This template underlies our RNN bounds: show the state update is a contraction (after gating/non-
linearity), then bound the input and bias channels linearly (or via Lipschitz gains) to obtain explicit
β, γu, γb.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ISS via Lyapunov comparison (discrete-time sketch). A function V : Rnh → R≥0 is an
ISS–Lyapunov function if there exist α1, α2, α3 ∈ K∞ and σ ∈ K∞ such that

α1(∥h∥) ≤ V (h) ≤ α2(∥h∥), V (h+)− V (h) ≤ −α3(∥h∥) + σ(∥u∥) + σ(∥b∥).
Standard comparison lemmas then yield an ISS estimate of the form in Definition 2 with some
β ∈ KL and γu, γb ∈ K∞. In our gated architectures, V (h) = ∥h∥∞ or a weighted ℓ1/ℓ∞ norm
often suffices once gate and recurrent blocks satisfy the norm constraints derived in the main text.

How this interfaces with gated RNNs. For GRU/LSTM cells, the gate blocks determine an
effective contraction factor on the hidden-state channel, while the input and bias channels contribute
additive gains. Our ISS conditions enforce that the induced hidden-state Lipschitz constant is strictly
< 1, yielding a geometric β(·, t), and that the input/candidate paths have bounded operator norms,
yielding linear γ-gains.

B NOTATION SUMMARY

The summary of all variables used in the paper categorized with discrete and continuous parameters
with description is provided in table 4.

C PROOFS

C.1 NESTED MESSAGE PASSING DETAILS DERIVATION

We provide a proof that the standard message passing updates under the factorization in equation (1)
induce the stated nested inference structure.

Belief at xt. The belief at xt is given by the product of incoming messages from the dynamics and
observation factors:

Belief(xt) ∝ mfdyn→xt
×mfobs→xt

, (44)
where the incoming messages are:

mfdyn→xt
=

∑
zt

∫
p(xt | xt−1, zt) p(zt | xt−1)Belief(xt−1) dxt−1, (45)

mfobs→xt = p(yt | xt). (46)

Substituting these into the belief expression yields:

Belief(xt) ∝ p(yt | xt)
∑
zt

∫
p(xt | xt−1, zt) p(zt | xt−1)Belief(xt−1) dxt−1. (47)

Belief at zt. The belief at zt is given by the product of incoming messages from the dynamics and
mode factors:

Belief(zt) ∝ mfdyn→zt ×mfmode→zt , (48)
where the messages are:

mfdyn→zt =

∫∫
p(xt | xt−1, zt)Belief(xt−1)Belief(xt) dxt−1 dxt, (49)

mfmode→zt =

∫
p(zt | xt−1)Belief(xt−1) dxt−1. (50)

Since Belief(xt) already incorporates the likelihood p(yt | xt), we expand mfdyn→zt as:

mfdyn→zt ∝ Ext−1∼p(xt−1|y1:t−1)

[
Ext∼p(xt|xt−1,zt) [p(yt | xt)]

]
, (51)

where the expectation over xt reflects the probabilistic propagation and local likelihood weighting.

Similarly, the mode message can be expressed as:

mfmode→zt = Ext−1∼p(xt−1|y1:t−1) [p(zt | xt−1)] . (52)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Summary of key notations used in the paper. Parameters are categorized into discrete (θ)
and continuous (ϕ) sets where applicable.

Symbol Description

Latent and Observed Variables
xt ∈ RM Continuous latent state at time t
x1:t ∈ RtM Continuous latent states from time 1 to time t
zt ∈ {1, . . . ,K} Discrete latent mode at time t
z1:t ∈ {1, . . . ,K}t Discrete latent modes from time 1 tp time t
yt ∈ RN Observation at time t
y1:t ∈ RtN Observations from time 1 to time t

Variational Filtering Parameters
µt|t ∈ RM , Σt|t ∈ RM×M Mean and covariance of filtered posterior p(xt | y1:t)

µt|t−1 ∈ RM , Σt|t−1 ∈ RM×M Mean and covariance of predictive prior p(xt | y1:t−1)

µ̂t|t ∈ RM , Σ̂t|t ∈ RM×M Mean and covariance of approximated filtered posterior q(xt | y1:t)

µ̂t|t−1 ∈ RM , Σ̂t|t−1 ∈ RM×M Mean and covariance of approximated predictive prior q(xt | y1:t−1)

Dynamics and Emission Models
Azt ∈ RM×M Transition matrix selected by zt (continuous, part of ϕ)
Czt ∈ RN×M Emission matrix selected by zt (continuous, part of ϕ)
Qt ∈ RM×M Process noise covariance (mode-independent)
Rt ∈ RN×N Observation noise covariance (mode-independent)

GRU and Stability Terms
ut ∈ Rnu Input to GRU at time t
ht ∈ Rnh Hidden state of GRU
ĥt GRU candidate update
gt, ft GRU update and reset gates
Ur Weight matrix in GRU recurrent term (ISS constrained)

Optimization Variables
θ Parameters related to discrete inference (e.g., q(zt | xt−1) modeled by

NN)
ϕ Parameters related to continuous states (e.g., GRU weights, Azt , Czt)

Posterior inference for xt and zt. The approximate posterior p(xt | y1:t) can thus be written as:

p(xt | y1:t) ∝ p(yt | xt)Ext−1,zt [p(xt | xt−1, zt)p(zt | xt−1)] , (53)

where the expectation is over the predictive prior p(xt−1 | y1:t−1) and switching distribution
p(zt | xt−1).

Similarly, the approximate posterior p(zt | y1:t) is given by:

p(zt | y1:t) ∝ Ext−1∼p(xt−1|y1:t−1)

[
p(zt | xt−1)× Ext∼p(xt|xt−1,zt) [p(yt | xt)]

]
, (54)

matching the nested structure described in equation (7).

Approximate factorization of p(xt, zt | y1:t). Due to the model structure, where zt depends
primarily on xt and future zt+1 depends only on xt+1, the posterior at each time step approximately
factorizes as:

p(xt, zt | y1:t) ≈ p(xt | y1:t)× p(zt | y1:t), (55)
where the approximation relies on the weak dependency between xt and zt after local updates.

Thus, standard local message passing induces a nested sampling structure consistent with the proposed
inference framework.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

This posterior factorization is a structured mean-field approximation that arises directly from the
local message-passing design of our model. At each time step t, inference is restricted to the latent
variables at that step, without referencing future or nonlocal latents. This choice enables strictly
online filtering and scalable, per-step gradient estimation (as formalized in Theorem 2).

More expressive posterior families could be obtained by introducing higher-order factors such as
p(xt, xt+1, zt). However, such terms would require backward message passing across time, thereby
breaking the localized factorization that underpins our inference framework. This would induce
nonlocal dependencies—e.g., marginalization over xt+1—and complicate both the message schedule
and gradient flow, increasing computational and memory cost.

From the perspective of expressivity, modeling richer joint posteriors (e.g., over (xt, xt+1, zt)) could
capture longer-range temporal correlations. Yet the practical benefits of this added complexity remain
uncertain. Our empirical results indicate that the proposed approximation is already sufficiently
expressive to capture relevant dynamics across diverse benchmarks, while retaining the advantages of
online and scalable inference. We leave the exploration of such extensions to future work.

Recursive Factorization (Forward Path). Since the message passing algorithm proceeds forward
in time and updates latent variables xt, zt based only on y1:t, we may write:

p(x1:t′ , z1:t′ | y1:t′) ≈
t′∏
t=1

p(xt, zt | y1:t). (56)

This corresponds to a structured filtering assumption in which each latent pair (xt, zt) is inferred
independently conditioned on previous beliefs, without backward smoothing refinement.

C.2 COMPLEXITY ANALYSIS: RNN-BASED UPDATES VS. LG

We analyze the computational advantage of the proposed π-SSM parameterization over traditional
Linear Gaussian State Space Models (LGSSMs) during inference.

In LGs, the posterior state update involves matrix inversions of the state covariance matrix, which
incurs a computational cost of O(M3) per time step, where M is the dimensionality of the latent
continuous state xt.

In contrast, our π-SSM uses a RNN-based update to approximate the Kalman-style correction. A
standard RNN cells such as GRU or LSTM with input size nu and hidden state size nh has a
forward-pass complexity of O(3nh(nh + nu + 3)) (Chung et al., 2014; Hashempoor & Choi, 2025;
Hashempoor et al., 2024). In our case, the RNN processes the flattened covariance matrix input
Σ̂t|t−1 ∈ RM×M along with additional features, yielding an effective input size nu = M2. Thus,
the per-step complexity of the RNN becomes O(3nhM2), which scales linearly with the input
dimension.

When M ≫ nh, this leads to a significant computational saving compared to the cubic cost of LG
updates. In particular, π-SSM offers a speedup factor on the order of M

3nh
, making it well-suited for

high-dimensional latent state models.

C.3 PROOF OF THEOREM 1

We aim to relate the true predictive likelihood p(yt | y1:t−1) and the surrogate likelihood q(yt |
y1:t−1) defined as:

q(yt | y1:t−1) = Eq(xt−1|y1:t−1)

[
Eq(zt|xt−1)

[
Ep(xt|xt−1,zt) [p(yt | xt)]

]]
. (57)

Now consider the KL divergence between the true joint posterior and the variational approximation:

log p(yt | y1:t−1) = logEp(xt−1,zt,xt|y1:t−1) [p(yt | xt)] (58)

≥ Eq(xt−1,zt)

[
logEp(xt|xt−1,zt) [p(yt | xt)]

]
−KL (q(xt−1, zt)∥p(xt−1, zt | y1:t−1)) ,

(59)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where the inequality follows from the variational bound and Jensen’s inequality.

Using the factorization:

q(xt−1, zt) = q(xt−1 | y1:t−1) q(zt | xt−1), p(xt−1, zt | y1:t−1) = p(xt−1 | y1:t−1) p(zt | xt−1),

we expand the KL divergence:

KL(q(xt−1, zt)∥p(xt−1, zt | y1:t−1)) = KL(q(xt−1 | y1:t−1)∥p(xt−1 | y1:t−1)) (60)
+ Eq(xt−1) [KL(q(zt | xt−1)∥p(zt | xt−1))] . (61)

Thus we obtain the lower bound:

log p(yt | y1:t−1) ≥ log q(yt | y1:t−1) + Et, (62)

with:

Et = −KL(q(xt−1 | y1:t−1)∥p(xt−1 | y1:t−1))− Eq(xt−1) [KL(q(zt | xt−1)∥p(zt | xt−1))] ,

completing the proof.

C.4 GRADIENT ESTIMATION DETAILS

To optimize the surrogate predictive log-likelihood objective L(y1:T) =
∑T
t=1 log q(yt | y1:t−1),

we compute gradients with respect to both continuous and discrete inference parameters. These
gradient expressions arise from the use of standard backpropagation for continuous variables and
REINFORCE for discrete ones.

Continuous Gradient Derivation. For the continuous parameters ϕ of the inference model q(xt |
y1:t), the predictive surrogate is differentiable. Thus, we directly compute:

∇ϕ log q(yt | y1:t−1) = ∇ϕ logExt−1,zt,xt
[p(yt | xt) p(xt | xt−1, zt) q(zt | xt−1) q(xt−1 | y1:t−1)] ,

(63)
which can be approximated via Monte Carlo sampling through the reparameterizable distributions.
Gradients are propagated using standard backpropagation through the computational graph.

Discrete Gradient Derivation (REINFORCE). For the discrete parameters θ of the categorical dis-
tribution q(zt | xt−1), we cannot backpropagate through sampling. We instead use the REINFORCE
estimator Williams (1992), which applies the score function trick:

∇θ logEzt [f(zt)] = Ezt∼q(zt|xt−1) [f(zt)∇θ log q(zt | xt−1)] , (64)

where we take f(zt) = log q(yt | y1:t−1) as a reward signal. To reduce variance, we use a control
variate bt (e.g., an exponential moving average of past rewards), yielding the final gradient estimate:

∇θL(y1:T) ≈
T∑
t=1

Ezt∼q(zt|xt−1) [(log q(yt | y1:t−1)− bt)∇θ log q(zt | xt−1)] . (65)

Note: The reward term log q(yt | y1:t−1) is treated as a constant during gradient computation
with respect to θ. In practice, this is implemented using detach() in automatic differentiation
frameworks.

C.5 PROOF OF THEOREM 2

Proof. In standard SLDS models with Markovian discrete dynamics, the discrete latent variable
zt depends on the full history of past discrete variables via a chain of conditional dependencies,
i.e., p(zt | z1:t−1) =

∏t
τ=1 p(zτ | zτ−1). As a result, computing the gradient of the marginal

log-likelihood with respect to parameters of zt involves backward propagation through all previous
time steps, leading to cumulative complexity

∑T
t=1O(t) = O(T 2).

In contrast, our model factorizes the discrete latent distribution as p(zt | xt), which depends only on
the local continuous latent state xt inferred from observations up to time t. As a consequence, each

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

∇θ log q(zt | xt) term—used in REINFORCE gradient estimates—only requires computing a local
reward signal log q(yt | y1:t−1) and does not involve backward dependencies through z1:t−1. This
allows each discrete latent parameter θ to be updated once per time step with cost O(1), leading to
total complexity O(T).
Therefore, the nested local structure of p(zt | xt) yields a linearly scalable training procedure in
contrast to the quadratic cost in standard SLDS inference.

C.6 A GENERAL ISS SCHEME FOR GATED, SATURATING RNN MODULES

We show that a broad family of recurrent modules admits an ISS bound under a simple effective
recurrent gain condition. The scheme is stated in terms of the standard ISS definition with comparison
functions in K∞ and KL.

Definition 3 (Gated, Saturating RNN (GSRNN)). Let ut ∈ Rnu and ht ∈ Rnh . Consider

ht+1 = g(ht, ut)⊙ ht +
(
1− g(ht, ut)

)
⊙ ϕ

(
Wut + U Ψ(ht, ut) + b

)
, (66)

where g,Ψ act componentwise, ⊙ denotes the Hadamard product, W ∈ Rnh×nu , U ∈ Rnh×nh ,
b ∈ Rnh are parameters, and ϕ : R→ [−1, 1] is a saturating nonlinearity (e.g., tanh or hard-tanh).
We use the induced∞-norm for vectors and matrices; for a matrix A, ∥A∥∞ := maxi

∑
j |aij |.

Standing assumptions.

(A1) (Bounded inputs) ∥ut∥∞ ≤ Umax for all t (can be enforced by normalization).

(A2) (Saturating candidate) ϕ is monotone, Lϕ-Lipschitz with Lϕ ≤ 1, and ϕ(R) ⊆ [−1, 1].
(A3) (Gates in (0, 1) and bounded mixing) There exist constants

0 ≤ g < ḡ < 1, 0 ≤ ψ̂ < 1

such that for all (h, u) in the operating domain

g ≤ ∥g(h, u)∥∞ ≤ ḡ, ∥Ψ(h, u)∥∞ ≤ ψ̂ ∥h∥∞.

Example. If g = σ(Wgu+ Ugh+ bg) and Ψ(h, u) = σ(Wψu+ Uψh+ bψ)⊙ h, then by
monotonicity of σ and ∥u∥∞ ≤ Umax we can take

ḡ = σ
(
∥[Wg Ug bg]∥∞ max{Umax, 1}

)
, ψ̂ = σ

(
∥[Wψ Uψ bψ]∥∞ max{Umax, 1}

)
,

and g = σ(−Mg) = 1− ḡ if a symmetric bound Mg is known. Here ∥[W U b]∥∞ denotes
the∞-norm of the block-row concatenation.

Theorem 4 (ISS for GSRNN). Under (A1)–(A3), define the effective recurrent gain

c := Lϕ ∥U∥∞ ψ̂. (67)

If
c < 1, (68)

then the system equation 66 is Input-to-State Stable (ISS) in the ∥ · ∥∞ norm. In particular, with

δ := (1− ḡ) (1− c) ∈ (0, 1), (69)

an admissible ISS bound is

∥ht∥∞ ≤ (1− δ)t∥h0∥∞ +
1− g
δ

Lϕ
(
∥W∥∞ ∥u∥∞,1:t + ∥b∥∞

)
, (70)

where ∥u∥∞,1:t := max1≤τ≤t ∥uτ∥∞. Thus the comparison functions

β(r, t) = (1− δ)tr ∈ KL, γu(s) =
1− g
δ

Lϕ ∥W∥∞ s ∈ K∞, γb(s) =
1− g
δ

Lϕ s ∈ K∞

witness ISS in the sense of Definition 2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. Fix a component j. By (A2) and sub-multiplicativity,∣∣ϕ(Wu+ U Ψ(h, u) + b)
∣∣
j
≤ Lϕ

(
∥W∥∞∥u∥∞ + ∥U∥∞∥Ψ(h, u)∥∞ + ∥b∥∞

)
≤ Lϕ

(
∥W∥∞∥u∥∞ + ∥U∥∞ψ̂∥h∥∞ + ∥b∥∞

)
.

Let au := Lϕ∥W∥∞∥u∥∞, ab := Lϕ∥b∥∞, and c := Lϕ∥U∥∞ψ̂. From equation 66 we get

|ht+1,j | ≤
(
gj + (1− gj)c

)
∥ht∥∞ + (1− gj)(au + ab).

Since c < 1, the map x 7→ x+ (1− x)c is increasing; hence with gj ≤ ḡ,

gj + (1− gj)c ≤ ḡ + (1− ḡ)c = 1− δ, δ := (1− ḡ)(1− c).

Also 1− gj ≤ 1− g. Taking maxj ,

∥ht+1∥∞ ≤ (1− δ)∥ht∥∞ + (1− g)(au + ab).

Unrolling the linear recursion yields equation 70.

Remark 2 (Globalization via entrance into the saturating region). If the bounds g, ḡ, ψ̂ are guaranteed
only when ht lies inH := [−1, 1]nh , the saturation of ϕ implies the standard entrance property: start-
ing from any h0, ∥ht∥∞ strictly decreases while ∥ht∥∞ > 1 and hitsH in finite time; subsequently
Theorem 4 applies. The finite transient can be absorbed into a multiplicative factor on β.

We now illustrate how the general scheme equation 66 covers widely used gated RNN modules.

GRU. The standard GRU cell system detailed in equations equation 32–equation 36 is exactly of
the form equation 66 by taking

g(ht, ut) = zt, ϕ(·) = tanh(·), Ψ(ht, ut) = ft ⊙ ht, W =Wr, U = Ur, b = br.

Thus the sufficient ISS condition equation 68 specializes to

∥Ur∥∞ σ̂f < 1 (71)

with
σ̂f := σ

(
∥[Wf Uf bf]∥∞

)
, ḡ := σ

(
∥[Wg Ug bg]∥∞

)
.

We provide two schemes for proof (i) ISS inequality and (ii) Lyapunov function in Appendix C.7.

LSTM (CIFG variant). The Coupled Input–Forget Gate (CIFG) LSTM reads

ft = σ(Wfut + Ufht−1 + bf), (72)
it = 1− ft, (73)
c̃t = tanh(Wcut + Ucht−1 + bc), (74)
ct = ft ⊙ ct−1 + (1− ft)⊙ c̃t, (75)
ht = ot ⊙ tanh(ct), ot = σ(Wout + Uoht−1 + bo). (76)

By identifying the cell state ct with the hidden state ht in equation 66, we see that this is of the
general form with

g(ht, ut) = ft, ϕ(·) = tanh(·), Ψ(ht, ut) = ht, W =Wc, U = Uc, b = bc. (77)

The sufficient ISS condition becomes

∥Uc∥∞ σ̄i < 1, (78)

with σ̄i := σ(∥[Wi Ui bi]∥∞) and decay margin

δ = (1− σ̄f)
(
1− σ̄i∥Uc∥∞

)
, σ̄f = σ(∥[Wf Uf bf]∥∞). (79)

The output relation ht = ot ⊙ tanh(ct) is a bounded Lipschitz readout with ∥ht∥∞ ≤ σ̄o∥ct∥∞
where σ̄o := σ(∥[Wo Uo bo]∥∞), and thus preserves ISS.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

LSTM (standard decoupled ft, it). For the standard LSTM with independent input and forget
gates,

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcut + Ucht−1 + bc), (80)
ht = ot ⊙ tanh(ct), (81)

we can view the update as a mild extension of equation 66 where the second multiplier is it ∈ (0, 1)
rather than 1− gt. The ISS proof scheme remains identical by replacing (1− g) with an upper bound
on it, so that the sufficient conditions are

(1 + σ̄o) σ̄f < 1, (1 + σ̄o) σ̄i ∥Uc∥∞ < 1, (82)

which matches standard ISS/IOS bounds for LSTMs.

C.7 PROOF OF ISS SCHEMES FOR GRU CELLS

To prove this theorem, we first state a few assumptions and lemmas.
Assumption 5 (Unity-bounded input). The input sequence ut ∈ Rnu is unity-bounded:

ut ∈ U ⊆ [−1, 1]nu ⇐⇒ ∥ut∥∞ ≤ 1. (83)

This can be enforced via input normalization.

We recall the standard properties of the activation functions used in GRU cells:

σ(·) ∈ (0, 1), Lipschitz with Lσ = 1
4 , (84)

ϕ(·) ∈ (−1, 1), Lipschitz with Lϕ = 1, (85)

where both Lipschitz constants hold for componentwise application under ∥ · ∥∞.

For notational compactness, define the candidate update

ĥt := ϕ
(
Wrut +Ur

(
ft ⊙ ht

)
+ br

)
, (86)

where the (reset/forget) gate is

ft := σ(Wfut +Ufht + bf) , (87)

and the update/keep gate is explicitly

gt := σ(Wgut +Ught + bg) , (88)

so that the hidden update reads

ht+1 = gt ⊙ ht +
(
1− gt

)
⊙ ĥt. (89)

Lemma 1 (Invariance of the saturating hypercube). LetH := [−1, 1]nh . For any input ut (no bound
needed),

ht ∈ H =⇒ ht+1 ∈ H.

Proof. Consider coordinate j. Write ωj(t) := gt,j ∈ (0, 1) and ηj(t) := ĥt,j ∈ (−1, 1) by
equation 84–equation 85. The update is

ht+1,j = ωj(t)ht,j +
(
1− ωj(t)

)
ηj(t).

If ht,j ∈ [−1, 1] and ηj(t) ∈ (−1, 1), then ht+1,j is a convex combination of two values in [−1, 1],
hence ht+1,j ∈ [−1, 1]. Since this holds for all j, ht+1 ∈ H.

Lemma 2. For any arbitrary initial state h0 ∈ Rnh , the following holds:

i. If h0 /∈ H, then ∥ht∥∞ is strictly decreasing until ht ∈ H;

ii. The convergence happens in finite time, i.e., there exists a finite t̄ ≥ 0 such that ht ∈ H for
all t ≥ t̄;

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

iii. Each state component ht,j converges into its invariant set [−1, 1] in an exponential fashion.

Proof of Lemma 2. Case b. h0 /∈ H, i.e., ∥h0∥∞ > 1. Fix a coordinate j and discrete time k := t.
Define

ωj(k) := gk,j , ηj(k) := ĥk,j . (90)
The component-wise GRU update reads

hk+1,j = ωj(k)hk,j +
(
1− ωj(k)

)
ηj(k). (91)

Gate and candidate bounds. Using the monotonicity of σ and ϕ and ∥uk∥∞ ≤ 1, we have

ωj(k) ≤ ω̄(k) := σ
(
∥Wg∥∞ + ∥Ug∥∞ ∥hk∥∞ + ∥bg∥∞

)
< 1, (92)

and define the complementary lower bound on the “off-gate”:

δ(k) := 1− ω̄(k) =⇒ 1− ωj(k) ≥ δ(k) > 0. (93)

For the candidate (using ϕ(·) ∈ (−1, 1)), there exists ϵ(k) ∈ (0, 1) such that

|ηj(k)| ≤ 1− ϵ(k), ϵ(k) = 1− ϕ
(
∥Wr∥∞ + ∥Ur∥∞ ∥hk∥∞ + ∥br∥∞

)
. (94)

One–step decrease for a component outside [−1, 1]. Taking absolute values in equation 91 yields

|hk+1,j | ≤ ωj(k) |hk,j | +
(
1− ωj(k)

)
|ηj(k)|. (95)

If |hk,j | > 1, subtract |hk,j | from both sides of equation 95 to obtain

|hk+1,j | − |hk,j | ≤
(
1− ωj(k)

) (
|ηj(k)| − |hk,j |

)
. (96)

Using |ηj(k)| ≤ 1− ϵ(k) and |hk,j | > 1 gives

|ηj(k)| − |hk,j | ≤ (1− ϵ(k))− |hk,j | ≤ − ϵ(k), (97)

and thus, by equation 93,

|hk+1,j | − |hk,j | ≤ −
(
1− ωj(k)

)
ϵ(k) ≤ − δ(k) ϵ(k) < 0. (98)

Hence, whenever |hk,j | > 1, that component strictly decreases in magnitude:

|hk+1,j | < |hk,j |. (99)

Sup-norm strictly decreases until hk ∈ H. Let

j⋆ ∈ argmax
j
|hk,j |, |hk,j⋆ | = ∥hk∥∞ > 1. (100)

By equation 98,
|hk+1,j⋆ | < ∥hk∥∞. (101)

For any i, using equation 95 and equation 94,

|hk+1,i| ≤ ωi(k) |hk,i| +
(
1− ωi(k)

)
(1− ϵ(k)) ≤ ωi(k) ∥hk∥∞ +

(
1− ωi(k)

)
(1− ϵ(k)).

(102)
Since ∥hk∥∞ > 1 and 1 − ϵ(k) < 1, the convex combination in equation 102 is strictly less than
∥hk∥∞:

|hk+1,i| < ∥hk∥∞ for all i. (103)
Taking the maximum over i in equation 103 yields

∥hk+1∥∞ < ∥hk∥∞, (104)

which proves that the sup-norm is strictly decreasing at every step as long as ∥hk∥∞ > 1. Therefore
the trajectory strictly decreases until it entersH = [−1, 1]nh .

Finite-time entrance intoH. By monotonicity of σ and ϕ, and using the sup-norm bound ∥hk∥∞ ≤
max{∥h0∥∞, 1}, the arguments in the gate/candidate bounds are no larger at time k than at k = 0.
Hence

0 < ω̄(k) ≤ ω̄(0) < 1, (105)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

and defining the complementary lower bound

δ(k) := 1− ω̄(k), (106)

we obtain
0 < δ(0) = 1− ω̄(0) ≤ δ(k) ≤ 1− ωj(k) ≤ 1. (107)

Similarly, for the candidate,
ϵ(k) ≥ ϵ(0) > 0, (108)

and therefore
|ηj(k)| ≤ 1− ϵ(k) ≤ 1− ϵ(0) =: η̄ < 1. (109)

Combining equation 107–equation 108 with the one–step difference inequality valid whenever
|hk,j | > 1,

|hk+1,j | − |hk,j | ≤ −
(
1− ωj(k)

)
ϵ(k) ≤ − δ(0) ϵ(0) < 0, (110)

we see that each step reduces |hk,j | by at least the fixed amount δ(0) ϵ(0) until it enters [−1, 1].
Hence the hitting time of [−1, 1] for component j is bounded by

k̄j =


⌈
|h0,j | − 1

δ(0) ϵ(0)

⌉
, if |h0,j | > 1,

0, if |h0,j | ≤ 1 ,

(111)

and taking
t̄ = max

1≤j≤nh

k̄j (112)

yields ht ∈ H for all t ≥ t̄.
Exponential convergence. We now show that each component converges to [−1, 1] at an exponential
rate. Decompose the evolution of coordinate j from equation 91 as

hk,j = hk,αj + hk,βj , (113)

with

hk,αj =
(k−1∏
t=0

ωj(t)
)
h0,j , (114)

hk,βj =

k−1∑
t=0

(k−1∏
h=t+1

ωj(h)
)
(1− ωj(t)) ηj(t). (115)

Decay of hk,αj . Since ωj(t) ≤ ω̄(0) < 1 for all t,

|hk,αj | =
∣∣∣(k−1∏

t=0

ωj(t)
)
h0,j

∣∣∣ ≤ (
ω̄(0)

)k |h0,j |, (116)

which tends to 0 exponentially as k →∞.

Decay of hk,βj . By |ηj(t)| ≤ 1− ϵ(0) and ωj(·) ≤ ω̄(0),

|hk,βj | ≤ (1− ϵ(0))
k−1∑
t=0

(
ω̄(0)

) k−1−t
(1− ωj(t)). (117)

Since 1− ωj(t) ≤ 1, the sum is bounded by a finite geometric series:

|hk,βj | ≤ (1− ϵ(0))
k−1∑
t=0

(
ω̄(0)

) k−1−t
= (1− ϵ(0))

1−
(
ω̄(0)

)k
1− ω̄(0)

. (118)

Combining the bounds. From equation 116 and equation 118,

|hk,j | ≤ |hk,αj |+ |hk,βj |

≤
(
ω̄(0)

)k |h0,j | + (1− ϵ(0))
1−

(
ω̄(0)

)k
1− ω̄(0)

. (119)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Because ω̄(0) < 1, the first term decays exponentially, and the second term converges exponentially
to a constant strictly less than 1. Therefore each component hk,j converges exponentially to the
invariant interval [−1, 1], completing the proof of Lemma 2(iii).

Proof of ISS condition for GRU cells via inequality. Case a. h0 ∈ H. By Lemma 1, ht ∈ H for all
t ≥ 0, hence ∥h∥∞ ≤ 1 throughout this case.

Fix a coordinate j and suppress the time index for compactness. Denote

gj := gj(u,h), fj := fj(u,h), ĥj := ĥj(u,h). (120)
From the GRU update (componentwise),

h+j = gj hj + (1− gj) ĥj . (121)

Taking absolute values and using gj ∈ (0, 1) and ĥj ∈ (−1, 1),
|h+j | ≤ gj |hj | + (1− gj) |ĥj |. (122)

Bounding the reset candidate ĥj . By definition,

ĥ = ϕ
(
Wru+Ur(f ⊙ h) + br

)
, ϕ = tanh . (123)

Using the Lipschitz property of ϕ with Lϕ = 1 and the induced∞-norm,

|ĥj | ≤ ∥Wr∥∞ ∥u∥∞ + ∥Ur∥∞ ∥f ⊙ h∥∞ + ∥br∥∞. (124)
Moreover,

∥f ⊙ h∥∞ ≤ ∥f∥∞ ∥h∥∞ ≤ ∥f∥∞, (125)
so we obtain the useful bound

|ĥj | ≤ ∥Wr∥∞ ∥u∥∞ + ∥Ur∥∞ ∥f∥∞ + ∥br∥∞. (126)
(Alternatively, if one prefers to keep the explicit linear dependence on ∥h∥∞, it is also valid to use
|ĥj | ≤ ∥Wr∥∞∥u∥∞ + ∥Ur∥∞∥f∥∞∥h∥∞ + ∥br∥∞.)

Bounding the reset gate f (not “forget” in GRU). From the gate equation,
f = σ(Wfu+Ufh+ bf), (127)

we have for each coordinate∣∣(Wfu+Ufh+ bf)j
∣∣ ≤ ∥Wf∥∞∥u∥∞ + ∥Uf∥∞∥h∥∞ + ∥bf∥∞. (128)

By monotonicity of σ,

∥f∥∞ ≤ σ
(
∥Wf∥∞∥u∥∞ + ∥Uf∥∞∥h∥∞ + ∥bf∥∞

)
. (129)

Under ∥u∥∞ ≤ 1 and (in Case a) ∥h∥∞ ≤ 1, this reduces to the convenient constant bound

∥f∥∞ ≤ σ
(
∥Wf∥∞ + ∥Uf∥∞ + ∥bf∥∞

)
= σ

(
∥[Wf Uf bf]∥∞

)
=: σ̂f ∈ (0, 1), (130)

where ∥[Wf Uf bf]∥∞ denotes the maximum row-sum norm of the block-row concatenation.

Combining the bounds. From equation 126–equation 130, we obtain

|ĥj | ≤ ϕ
(
∥Wr∥∞+∥Ur∥∞σ̂f∥h∥∞+∥br∥∞

)
≤ ∥Wr∥∞+∥Ur∥∞σ̂f∥h∥∞+∥br∥∞. (131)

Substituting into equation 122, we find

|h+j | ≤ gj |hj |+(1−gj)|ĥj | ≤
[
gj+(1−gj) ∥Ur∥∞σ̂f

]
∥h∥∞+(1−gj)

(
∥Wr∥∞∥u∥∞+∥br∥∞

)
.

(132)

Since c := ∥Ur∥∞σ̂f < 1, the map g 7→ g+(1−g)c is strictly increasing. Thus, for some δ ∈ (0, 1),
gj + (1− gj)c ≤ 1− δ. (133)

Furthermore, if the update gate is bounded by σ̄g ∈ (0, 1) (e.g. from sigmoid preactivation bounds),
then (1− gj) ≤ σ̄g . Hence from equation 132,

∥h+∥∞ ≤ (1− δ) ∥h∥∞ + σ̄g

(
∥Wr∥∞∥u∥∞ + ∥br∥∞

)
. (134)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Iteration. Iterating equation 134 over k time steps gives

∥hk∥∞ ≤ (1− δ)k∥h0∥∞ +
σ̄g
δ
∥Wr∥∞∥u∥∞,1:k +

σ̄g
δ
∥br∥∞, (135)

where ∥u∥∞,1:k := max0≤t≤k ∥ut∥∞.

Conclusion. Therefore, the GRU dynamics satisfies the ISS definition with

β(r, k) = (1− δ)kr, γu(s) =
σ̄g
δ
∥Wr∥∞s, γb(s) =

σ̄g
δ
s. (136)

Case b. h0 /∈ H. By Lemma 2, for any initial state outsideH = [−1, 1]nh the trajectory hk strictly
decreases in norm until it entersH in finite time. Thus there exists k̄ ≥ 0 such that

hk̄ ∈ H, hk ∈ H for all k ≥ k̄. (137)

Moreover, the entrance intoH is exponential: for any δ ∈ (0, 1) there exists µ > 0 such that

∥hk∥∞ ≤ µ (1− δ)k∥h0∥∞, 0 ≤ k ≤ k̄. (138)

Once the trajectory has enteredH at time k̄, the ISS bound from Case a applies. Thus for k ≥ k̄,

∥hk∥∞ ≤ (1− δ) k−k̄∥hk̄∥∞ +
σ̄g
δ
∥Wr∥∞∥u∥∞,1:k +

σ̄g
δ
∥br∥∞. (139)

Conclusion. Combining equation 138 and equation 139, the GRU system is ISS with comparison
functions

β(r, k) = µ(1− δ)kr, γu(s) =
σ̄g
δ
∥Wr∥∞s, γb(s) =

σ̄g
δ
s. (140)

This concludes the proof of GRU cells ISS condition.

Proof of ISS condition for GRU cells via Lyapunov function. Consider the GRU cell

g = σ(Wgu+ Ugh+ bg), f = σ(Wfu+ Ufh+ bf), (141)

ĥ = tanh
(
Wru+ Ur(f ⊙ h) + br

)
, h+ = g ⊙ h+ (1− g)⊙ ĥ, (142)

with input u ∈ Rnu , hidden state h ∈ Rnh , and standard nonlinearities σ(·) ∈ (0, 1), tanh(·) ∈
(−1, 1). Assume the input sequence is unity-bounded, ∥ut∥∞ ≤ 1.

Define the gate bounds (by monotonicity of σ and ∥u∥∞ ≤ 1)

ḡ := σ
(
∥[Wg Ug bg]∥∞

)
, g := σ

(
− ∥[Wg Ug bg]∥∞

)
, (143)

σ̂f := σ
(
∥[Wf Uf bf]∥∞

)
, ⇒ g ≤ gj ≤ ḡ and ∥f∥∞ ≤ σ̂f . (144)

If
∥Ur∥∞ σ̂f < 1, (145)

then the GRU system is input-to-state stable (ISS).

We construct the Lyapunov candidate

V (h) := ∥h∥∞, (146)

which satisfies the sandwich bounds

ψ1(∥h∥∞) ≤ V (h) ≤ ψ2(∥h∥∞), ψ1(s) = s, ψ2(s) = s ∈ K∞. (147)

Step 1. Candidate state bound. Using | tanh(z)| ≤ |z| and the induced∞-norm,

|ĥj | ≤ ∥Wr∥∞∥u∥∞ + ∥Ur∥∞∥f∥∞∥h∥∞ + ∥br∥∞. (148)

With the gate bound ∥f∥∞ ≤ σ̂f , we obtain

|ĥj | ≤ au + c ∥h∥∞ + ab, c := ∥Ur∥∞σ̂f , au := ∥Wr∥∞∥u∥∞, ab := ∥br∥∞. (149)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Step 2. One-step Lyapunov inequality. From the GRU update,

|h+j | ≤ gj |hj |+ (1− gj) |ĥj | ≤
[
gj + (1− gj) c

]
∥h∥∞ + (1− gj)(au + ab). (150)

Taking the maximum over j yields

∥h+∥∞ ≤
(
max
j

[
gj + (1− gj) c

])
∥h∥∞ +

(
max
j

(1− gj)
)
(au + ab). (151)

Since c < 1 and g 7→ g + (1− g)c is increasing, we have

max
j

[
gj + (1− gj) c

]
≤ ḡ + (1− ḡ) c = 1− (1− ḡ) (1− c)︸ ︷︷ ︸

=: δ

. (152)

Moreover,
max
j

(1− gj) ≤ 1− g, (153)

so equation 151 becomes

∥h+∥∞ ≤ (1− δ) ∥h∥∞ + (1− g) (au + ab), δ := (1− ḡ) (1− c) ∈ (0, 1). (154)

Step 3. Contraction factor. Since c < 1, the map g 7→ g + (1− g)c is increasing. Therefore,

max
j

[
gj + (1− gj)c

]
= c+ ḡ(1− c) = 1− δ, (155)

with
δ := (1− ḡ)(1− c) = (1− ḡ)

(
1− ∥Ur∥∞σ̂f

)
∈ (0, 1). (156)

Moreover, using the logistic symmetry g = σ(−Mg) = 1− ḡ for a symmetric preactivation bound
Mg , we have

max
j

(1− gj) ≤ 1− g = ḡ. (157)

Hence,
∥h+∥∞ − ∥h∥∞ ≤ −δ ∥h∥∞ + ḡ

(
∥Wr∥∞∥u∥∞ + ∥br∥∞

)
. (158)

Step 4. Identification of comparison functions. This is the ISS–Lyapunov inequality

V (h+)− V (h) ≤ −ψ(∥h∥∞) + σu(∥u∥∞) + σb(∥br∥∞), (159)

with
ψ(s) = δ s, σu(s) = ḡ ∥Wr∥∞ s, σb(s) = ḡ s. (160)

Step 5. Iteration and ISS bound. Unrolling over k steps yields

∥hk∥∞ ≤ (1− δ)k∥h0∥∞ +
ḡ

δ
∥Wr∥∞ ∥u∥∞,1:k +

ḡ

δ
∥br∥∞, (161)

where ∥u∥∞,1:k := max0≤t≤k ∥ut∥∞. Thus, admissible comparison functions are

β(r, k) = (1− δ)k r, γu(s) =
ḡ

δ
∥Wr∥∞ s, γb(s) =

ḡ

δ
s. (162)

Therefore, the GRU system is ISS.

C.8 PROOF OF ISS SCHEMES FOR LSTM SYSTEM

Proof of ISS condition for LSTM via general inequality. Consider the (decoupled) LSTM

ft = σ(Wfut + Ufht−1 + bf), it = σ(Wiut + Uiht−1 + bi),

ot = σ(Wout + Uoht−1 + bo), c̃t = tanh(Wcut + Ucht−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t, ht = ot ⊙ tanh(ct),

(163)

with ∥ut∥∞ ≤ 1, σ(·) ∈ (0, 1), and tanh(·) ∈ (−1, 1) (Lipschitz constant 1).

Define gate bounds (by monotonicity of σ and induced∞-norms):

σ̄f := σ
(
∥[Wf Uf bf]∥∞

)
, σ̄i := σ

(
∥[Wi Ui bi]∥∞

)
, σ̄o := σ

(
∥[Wo Uo bo]∥∞

)
. (164)

We choose a Lyapunov candidate different from the GRU one:

Vt := ∥ct∥∞ + ∥ht∥∞. (165)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Step 1. Candidate and cell bounds. Using | tanh(z)| ≤ |z| and submultiplicativity,

∥c̃t∥∞ ≤ ∥Wc∥∞∥ut∥∞ + ∥Uc∥∞∥ht−1∥∞ + ∥bc∥∞. (166)

Hence the cell recursion yields

∥ct∥∞ ≤ σ̄f∥ct−1∥∞ + σ̄i

(
∥Wc∥∞∥ut∥∞ + ∥Uc∥∞∥ht−1∥∞ + ∥bc∥∞

)
. (167)

Step 2. Output bound and composite Lyapunov inequality. For the output,

∥ht∥∞ = ∥ot ⊙ tanh(ct)∥∞ ≤ σ̄o∥ct∥∞. (168)

Thus Vt ≤ (1 + σ̄o)∥ct∥∞, and combining with equation 167 gives

Vt ≤ (1 + σ̄o) σ̄f ∥ct−1∥∞ + (1 + σ̄o) σ̄i

(
∥Wc∥∞∥ut∥∞ + ∥Uc∥∞∥ht−1∥∞ + ∥bc∥∞

)
(169)

≤ (1 + σ̄o) σ̄f ∥ct−1∥∞ + (1 + σ̄o) σ̄i ∥Uc∥∞ ∥ht−1∥∞ + (1 + σ̄o) σ̄i

(
∥Wc∥∞∥ut∥∞ + ∥bc∥∞

)
.

(170)

Using ax+by ≤ max{a, b}(x+y) for a, b, x, y ≥ 0 and the fact that ∥ct−1∥∞ ≤ Vt−1, ∥ht−1∥∞ ≤
Vt−1, we obtain

Vt ≤ αVt−1 + (1 + σ̄o) σ̄i ∥Wc∥∞︸ ︷︷ ︸
=:Ku

∥ut∥∞ + (1 + σ̄o) σ̄i︸ ︷︷ ︸
=:Kb

∥bc∥∞, (171)

with
α := (1 + σ̄o) max{σ̄f , σ̄i ∥Uc∥∞}. (172)

Step 3. Contraction and ISS. Under the stated bounds

(1 + σ̄o) σ̄f < 1 and (1 + σ̄o) σ̄i ∥Uc∥∞ < 1, (173)

we have α < 1. Writing δ := 1−α ∈ (0, 1), the one-step Lyapunov inequality equation 171 becomes

Vt ≤ (1− δ)Vt−1 + Ku∥ut∥∞ + Kb∥bc∥∞, (174)

which unrolls to the ISS estimate

Vt ≤ (1− δ)tV0 +
Ku

δ
∥u∥∞,1:t +

Kb

δ
∥bc∥∞. (175)

Since ∥ht∥∞ ≤ Vt and ∥ct∥∞ ≤ Vt, this yields ISS for the LSTM in the ∥ · ∥∞ norm with

β(r, t) = (1− δ)tr, γu(s) =
Ku

δ
s, γb(s) =

Kb

δ
s. (176)

Proof of ISS condition for LSTM via Lyapunov function. Let the state be xt := (ct, ht) ∈ R2nh and
define the Lyapunov candidate

V (xt) := ∥ct∥∞ + ∥ht∥∞. (177)

(i) Sandwich bounds (ψ1, ψ2 ∈ K∞). For s := ∥(c, h)∥∞,

s ≤ V (c, h) ≤ 2s. (178)

Hence we may choose
ψ1(s) = s, ψ2(s) = 2s (∈ K∞). (179)

(ii) One–step dissipation inequality. By | tanh(z)| ≤ |z| and induced norms,

∥c̃t∥∞ ≤ ∥Wc∥∞∥ut∥∞ + ∥Uc∥∞∥ht−1∥∞ + ∥bc∥∞. (180)

Thus
∥ct∥∞ ≤ σ̄f∥ct−1∥∞ + σ̄i

(
∥Wc∥∞∥ut∥∞ + ∥Uc∥∞∥ht−1∥∞ + ∥bc∥∞

)
. (181)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Moreover ∥ht∥∞ = ∥ot ⊙ tanh(ct)∥∞ ≤ σ̄o∥ct∥∞, so

V (xt) = ∥ct∥∞ + ∥ht∥∞ ≤ (1 + σ̄o)∥ct∥∞ (182)
≤ (1 + σ̄o)σ̄f ∥ct−1∥∞ + (1 + σ̄o)σ̄i ∥Uc∥∞ ∥ht−1∥∞ (183)

+ (1 + σ̄o)σ̄i
(
∥Wc∥∞∥ut∥∞ + ∥bc∥∞

)
. (184)

Since ∥ct−1∥∞ ≤ V (xt−1) and ∥ht−1∥∞ ≤ V (xt−1), we get

V (xt) ≤ αV (xt−1) + Ku∥ut∥∞ + Kb∥bc∥∞, (185)

with

α := (1+σ̄o)max{σ̄f , σ̄i∥Uc∥∞}, Ku := (1+σ̄o)σ̄i∥Wc∥∞, Kb := (1+σ̄o)σ̄i. (186)

By equation 82, α < 1. Let δ := 1− α ∈ (0, 1).

(iii) Identification of ISS–Lyapunov data. Rewrite equation 185 as

V (xt)− V (xt−1) ≤ −δ V (xt−1) + Ku∥ut∥∞ + Kb∥bc∥∞. (187)

This is the discrete-time ISS–Lyapunov inequality in the form of

V (f(x, u))− V (x) ≤ −ψ(∥x∥) + σu(∥u∥) + σb(∥bc∥),
with the choices

ψ(s) = δs, σu(s) = Kus, σb(s) = Kbs, (188)
all belonging to K∞.

(iv) The general form of Lyapunov function. The aggregated input magnitude be ∥vt∥ :=
max{∥ut∥∞, ∥bc∥∞}. Then

V (xt)− V (xt−1) ≤ −δ V (xt−1) + (Ku +Kb) ∥vt∥. (189)

Hence, with

χ(s) :=
2(Ku +Kb)

δ
s ∈ K, α(s) :=

δ

2
s ∈ K, (190)

the implication

V (xt−1) ≥ χ(∥vt∥) ⇒ V (xt)− V (xt−1) ≤ −α(V (xt−1))

holds. Together with the sandwich bounds (ψ1, ψ2) this verifies the ISS–Lyapunov general function.

C.9 PROJECTION TO ENFORCE GSRNN ISS CONDITION

To ensure the Input-to-State Stability (ISS) condition in Theorem 3, we require

Lϕ∥U∥∞ψ̂ < 1. (191)

Introducing a small buffer δ > 0, we enforce the stricter constraint

∥U∥∞ ≤ 1− δ
Lϕψ̂

. (192)

Let Û ∈ Rnh×nh be the unconstrained matrix obtained after a gradient update. We apply a projection
step to obtain U that satisfies the ISS constraint without altering other parameters W, b.

Projection Problem. For each row vector Ûi ∈ Rnh , solve

Ui = arg min
u∈Rnh

∥u− Ûi∥22 s.t. ∥u∥1 ≤ ρ, (193)

where
ρ :=

1− δ
Lϕψ̂

.

This corresponds to projecting onto the ℓ1-ball

B1(ρ) = {u ∈ Rnh : ∥u∥1 ≤ ρ}. (194)

Efficient Projection Algorithm. We adopt the method of Duchi et al. (2008):

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1. Let v = Ûi and define ρ = 1−δ
Lϕψ̂

.

2. Sort |v| in descending order: µ1 ≥ µ2 ≥ · · · ≥ µd.

3. Find the smallest k such that

µk −
1

k

 k∑
j=1

µj − ρ

 > 0. (195)

4. Set the threshold

τ =
1

k

 k∑
j=1

µj − ρ

 . (196)

5. Compute projection

Ui = sign(Ûi)⊙max(|Ûi| − τ, 0). (197)

Result. The resulting U satisfies

Lϕ∥U∥∞ψ̂ ≤ 1− δ < 1,

while minimizing the deviation from the original update ∥Û∥F : ∥U − Û∥2F .
Remark 3 (GRU specialization). For GRU cells, the general projection scheme reduces to enforcing
∥Ur∥∞σ̂f < 1 with buffer δ > 0 and σ̂f = σ(∥Wf ;Uf ;bf∥∞), i.e. row-wise projection onto the
ℓ1-ball of radius ρ = (1− δσ̂f)/σ̂f . This matches the procedure described in Appendix C.9.

Remark 4 (LSTM specialization). Let σ̄g = σ(∥[Wg Ug bg]∥∞) for g ∈ {f, i, o} and logit(t) =
log

(
t

1−t
)
. To enforce the LSTM ISS bounds

(1 + σ̄o) σ̄f < 1, (1 + σ̄o) σ̄i ∥Uc∥∞ < 1, (198)

we impose small buffers δf , δc > 0 and project as follows:

(i) Forget–output gate constraint. Fix the current σ̄o and enforce (1+ σ̄o) σ̄f ≤ 1−δf by projecting
the forget-gate block [Wf Uf bf] onto the ℓ∞-ball of radius

αf := logit

(
1− δf
1 + σ̄o

)
, (199)

i.e., elementwise clipping to [−αf , αf] so that σ̄f ≤ 1−δf
1+σ̄o

. (If this target makes αf < 0, also
shrink the output gate by clipping [Wo Uo bo] to radius αo := logit

(
τo
)

with τo := min
{
max{(1−

δf)/σ̄f − 1, 0}, 1− ε
}

so that (1 + σ̄o)σ̄f ≤ 1− δf holds.)

(ii) Input–candidate constraint. With the (possibly updated) gates, enforce (1 + σ̄o) σ̄i ∥Uc∥∞ ≤
1− δc by row-wise projection of Uc onto the ℓ1-ball of radius

ρc :=
1− δc

(1 + σ̄o) σ̄i
,

using that ∥Uc∥∞ = maxi ∥(Uc)i,:∥1.

This two-step projection guarantees the buffered inequalities (1 + σ̄o)σ̄f ≤ 1 − δf and (1 +
σ̄o)σ̄i∥Uc∥∞ ≤ 1 − δc, hence the ISS constraints for LSTM. It mirrors the GRU procedure (gate
clipping for ℓ∞ bounds; row-wise ℓ1 projection for the recurrent matrix), cf. Appendix C.9.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 5: Learning parameters in LG is marked by×/✓ because standard LGs (e.g., UKF, EKF) cannot
learn parameters. In our setup, a data-driven network estimates (A,C) to make LGs comparable
with π-SSM. See Appendix G.1.

Model Learn Dyn. Imputation State Est. Uncertainty Noise Handling

LSTM Hochreiter & Schmidhuber (1997) ✓ ✓ ✓ × ✓
GRU Cho et al. (2014) ✓ ✓ ✓ × ✓

P2T Wahlström et al. (2015) ✓ × ✓ × ×
E2C Watter et al. (2015) ✓ × × ✓ ×

BB-VI Archer et al. (2015) ✓ ✓ × ✓ ✓
SIN Krishnan et al. (2017) ✓ ✓ × ✓ ✓
DVBF Karl et al. (2016) ✓ ✓ × ✓ ✓
VSMC Naesseth et al. (2018) ✓ ✓ × ✓ ✓
DSA Li & Mandt (2018) ✓ × × ✓ ×
KVAE Fraccaro et al. (2017) ✓ ✓ ✓ ✓ ✓
EKVAE Klushyn et al. (2021) ✓ ✓ ✓ ✓ ✓
MVAE Zhu et al. (2023) ✓ ✓ ✓ ✓ ✓

rSLDS Linderman et al. (2017) × × ✓ ✓ ×
irSLDS Linderman et al. (2017) × × ✓ ✓ ×

NODE Chen et al. (2018) ✓ × ✓ ✓ ×
MoNODE Auzina et al. (2024) ✓ × ✓ ✓ ×

DeepAR Salinas et al. (2020) ✓ × ✓ ✓ ×
DSSM Rangapuram et al. (2018) ✓ × ✓ ✓ ×
HybridGNN Garcia Satorras et al. (2019) × ✓ ✓ × ✓
KalmanNet Revach et al. (2021) × ✓ ✓ × ✓
SSI Ruhe & Forré (2021) × ✓ ✓ ✓ ✓

LG ×/✓ ✓ ✓ ✓ ✓
π-SSM ✓ ✓ ✓ ✓ ✓

D RELATED WORKS, EMPIRICAL RUNNING TIMES AND COMPLEXITY
ANALYSIS

D.1 QUALITATIVE COMPARISON OF THE π-SSM TO RECENT RELATED WORK

SLDSs. Switching Linear Dynamical Systems (SLDS) decompose complex, nonlinear time series
data into sequences of simpler, reusable dynamical modes. Fitting an SLDS to data enables learning
flexible nonlinear generative models and parsing sequences into coherent discrete segments. The
model proposed by Linderman et al. (2017) introduces auxiliary latent variables to switch among
different linear dynamics. However, it relies on Gibbs sampling for parameter inference, which
makes it impractical for large-scale datasets due to scalability limitations. Recurrent SLDS (rSLDS)
Linderman et al. (2016) and infinite rSLDS (irSLDS) Geadah et al. (2024) extend the SLDS framework
but still inherit many of these computational limitations. ReLiNet Baier et al. (2023) introduces a
recurrent linear parameter-varying network that approximates RNN dynamics with switched linear
systems to ensure exponential stability and explainable multistep predictions for dynamical systems.

Auto-Regressive State Space Models. Auto-regressive state space models (ARSSMs) are widely
used in time series analysis and forecasting. These models describe the evolution of a system over
time through a state representation informed by past observations. Auto-Regressive Hidden Markov
Models (AR-HMMs) model temporal dependencies by mapping previous observations to the current
one. For instance, Salinas et al. (2020) proposes an AR-HMM where target values are used directly
as inputs. However, this dependence on ground-truth targets during training increases vulnerability to
noise.

System Identification. In the domain of state-space model learning (system identification), several
works Wang et al. (2007); Ko & Fox (2011); Frigola et al. (2013); Schoukens & Tiels (2017); Li et al.
(2023) have developed algorithms for training Gaussian Process SSMs (GPSSMs) via maximum
likelihood estimation through the Expectation-Maximization (EM) algorithm. The E-step involves
filtering and smoothing using a fixed parameter set γ, followed by the M-step that updates γ to
maximize the resulting likelihood. For example, Frigola et al. Frigola et al. (2013) draw sample
trajectories from the smoothing distribution and condition the M-step on these samples. In this

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 6: Empirical running times and parameters of experiments.

Cell Pong Lorenz Attractor Navier Stokes NCLT
Param T/E Param T/E Param T/E Param T/E

LSTM ∼18k ∼56s ∼18k ∼56s ∼18k ∼53s ∼18k ∼83s
GRU ∼18k ∼61s ∼18k ∼62s ∼18k ∼59s ∼18 ∼79s
VAE ∼12k ∼50s ∼13k ∼52s ∼12k ∼49s ∼12k ∼70s

IWVAE ∼13k ∼50s ∼13k ∼54s ∼11k ∼47s ∼11k ∼75s
VAE-RNN ∼24k ∼59s ∼25k ∼61s ∼24k ∼57s ∼24k ∼89s

SVAE ∼27k ∼67s ∼27k ∼69s ∼26k ∼65s ∼27k ∼149s
KVAE ∼25k ∼95s ∼25k ∼97s ∼25k ∼94s ∼25k ∼141s

EKVAE ∼26k ∼98s ∼26k ∼99s ∼26k ∼94s ∼26k ∼145s
MKVAE ∼34k ∼112s ∼34k ∼110s ∼33k ∼105s ∼33k ∼153s

RKN ∼25k ∼57s ∼25k ∼58s ∼25k ∼56s ∼24k ∼79s
CRU ∼24k ∼55s ∼24k ∼55s ∼23k ∼54s ∼23k ∼78s
LG ∼12k ∼82s ∼12k ∼84s ∼12k ∼80s ∼12k ∼117s

π-SSMGRU ∼18k ∼56s ∼18k ∼55s ∼18k ∼53s ∼18k ∼81s
π-SSMLSTM ∼18k ∼57s ∼18k ∼54s ∼18k ∼56s ∼18k ∼78s

context, the π-SSM bears resemblance to Hammerstein-Wiener (HW) models Gilabert et al. (2005),
as it learns system parameters directly from observations while applying nonlinear mappings to the
inputs and outputs. Compared to the GIN framework (Hashempoorikderi & Choi, 2024), another
Markovian framework for system identification, our π-SSM departs in several key aspects: it explicitly
models discrete latent dynamics rather than relying on purely Markovian assumptions; it does not
require auxiliary losses to prevent mode collapse; and it is built as a local message-passing scheme
that enables scalable posterior inference over hybrid discrete–continuous states while also yielding
theoretical gradient expressions. Moreover, whereas GIN’s stability analysis is restricted to GRUs
with zero input, we establish a general proof strategy applicable to gated RNNs under bounded,
nonzero inputs.

Neural ODEs. Since the introduction of Neural ODEs Chen et al. (2018), continuous-time dynamic
modeling has garnered significant interest. Extensions include combining neural ODEs with recurrent
architectures Rubanova et al. (2019), enabling latent trajectories to evolve in response to observations.
Other works explore dynamics governed by Hamiltonian, Lagrangian, or second-order systems, as
well as structured dynamics using graph neural networks. Our approach, MoNODE Auzina et al.
(2024), though developed within the latent Neural ODE framework, is applicable to many of these
continuous-time modeling paradigms.

Neural PDEs. Machine learning has shown promise in approximating solutions to partial differential
equations (PDEs). Notably, Physics-Informed Neural Networks (PINNs) Raissi et al. (2019) use deep
learning and gradient-based optimization to solve PDEs without requiring mesh discretization, which
is commonly needed in classical methods. This formulation allows simultaneous treatment of forward
and inverse problems in a unified optimization framework. Leveraging automatic differentiation
and modern computing power, PINNs have been successfully applied to a variety of complex PDE
systems Raissi et al. (2019); Cho et al. (2024).

Variational Inference Approaches Variational inference (VI) has become a dominant paradigm
for approximate Bayesian inference in latent variable models. Early approaches such as Variational
Autoencoders (VAEs) Kingma & Welling (2013), Embed-to-Control (E2C) Watter et al. (2015), and
Importance Weighted VAEs (IWVAEs) Burda et al. (2015) integrated deep learning with variational
objectives. However, these methods generally lacked recurrent structures or memory, limiting
their effectiveness for sequential reasoning and imputation tasks. To address these limitations,
EM-inspired variational models such as Structure VAE (SVAE) Johnson et al. (2016), Kalman
VAE (KVAE) Fraccaro et al. (2017), Disentangled VAE (DVAE) Li & Mandt (2018), Extended
KVAE (EKVAE) Klushyn et al. (2021), Robust VAE Tonolini et al. (2023), and Markovian VAE
(MVAE) Zhu et al. (2023) have embedded classical filtering and smoothing updates into deep latent
variable frameworks. These approaches attempt to capture temporal dependencies more explicitly, but
typically cannot directly optimize latent trajectories—a limitation noted in methods such as Recurrent
Kalman Networks (RKN) Becker et al. (2019) and Continuous Recurrent Units (CRU) Schirmer et al.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

(2022). In contrast, memory-based architectures like LSTMs Hochreiter & Schmidhuber (1997),
GRUs Cho et al. (2014), and RNNs Wilson & Finkel (2009) offer strong modeling capacity for latent
dynamics but often lack principled mechanisms for uncertainty estimation and adaptation to dynamic
mode transitions.

Summary Comparison. In Table 5, which is built upon Becker et al. (2019), we compare the
above methods in terms of their capabilities for handling high-dimensional observations, learning
underlying dynamics, providing accurate state estimates and uncertainty quantification, dealing
with noisy and missing data. Classical LGs, such as the EKF and UKF, linearize the transition and
observation functions and apply Bayesian filtering on the resulting linearized systems—representing
a model-based paradigm. In contrast, the π-SSM adopts a data-driven approach, leveraging learnable
networks to approximate these components, thereby enabling greater flexibility and scalability.

D.2 EXPRESSIVITY, EXTENSION AND LIMITATIONS

Structural difference. Assuming both SLDS and π-SSM employ equally expressive parameteri-
zations for dynamics and emissions, the key structural distinction is the explicit Markov prior over
discrete modes in SLDSs, i.e., the edge zt→zt+1, which encodes mode persistence. Our graphical
model removes this edge and instead infers the mode at each step from the continuous state xt (via
xt→zt+1), using xt as a sufficient signal for regime identification.

Expressivity intuition. The zt→ zt+1 edge in SLDS explicitly smooths mode trajectories and
captures persistence in the discrete latent space. By contrast, our model relies on the continuous
dynamics to reflect regime switches: when the underlying system changes mode, the induced change
in the continuous transition (e.g., the local linearization At) is intended to be promptly visible in xt,
allowing zt+1 to be inferred without an explicit z-chain.

Illustrative evidence (Pong). In a simple Pong experiment, we monitored the spectrum of the
learned transition matrices as the ball bounced (which changes the interaction regime). We observed
sharp shifts in the eigenvalues of At at bounce events, indicating that xt responds strongly to mode
changes and can implicitly carry mode information—without requiring an explicit zt→zt+1 prior.
This evidence is qualitative, but it supports the hypothesis that xt can act as an effective carrier of
regime cues in practice.

Implications for scalability. This structural simplification enables the local message-passing
inference and per-step gradient updates used in our method (cf. Theorem 2). Introducing a zt→zt+1

edge would couple the discrete variables temporally, breaking the factorization that our updates
exploit and necessitating forward–backward (or loopy) message schedules, with higher computational
and memory cost per sequence.

Limitations and potential extensions. Our design implicitly assumes that regime changes manifest
quickly in the continuous state (i.e., are promptly reflected in xt). This is often reasonable in
control and physical simulation, where dynamics shift sharply with mode changes. However, in
systems with delayed or inertial effects, the absence of temporal dependence between discrete states
(no zt → zt+1) can hinder accurate regime smoothing. While the current model performs well
empirically, richer temporal couplings could improve expressivity—for example, modeling joint
posteriors over (xt, xt+1, zt) or adding a tempered/sticky transition prior for z. Such extensions would
require revisiting the factor graph and redefining messages and gradient paths, trading scalability for
additional temporal structure.

D.3 EMPIRICAL ANALYSIS

We present the number of parameters for the utilized cell structures in our experiments and their
corresponding empirical running times for 1 epoch in Table 6. In the first row of each model structure,
we set the number of parameters approximately equal to our π-SSM to demonstrate the π-SSM’s
superior performance with the same parameter count. The extra running time of EM-variational
approaches, like KVAE, is due to the use of classic Bayesian equations, which significantly increase
running time for higher-dimensional observations. However, the π-SSM avoids this issue. The

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

number of parameters in the π-SSM is noticeably lower than in other memory cells, such as LSTM
and GRU, and EM-variational methods. This efficiency is achieved by converting high-dimensional
sparse covariance matrices into lower-dimensional covariance matrices using a convolutional operator.

E ALGORITHMS AND PYTHON INTUITIVE CODE

E.1 ALGORITHMS

Algorithm Inference in π-SSM via Nested Message Passing

1: Input: Observations {y1, . . . ,yT }, initial posterior q(x0) = N (µ̂0|0, Σ̂0|0)
2: Output: Filtered posteriors q(xt | y1:t), q(zt | y1:t) for t = 1, . . . , T
3: for t = 1 to T do
4: Sample xt−1 ∼ q(xt−1 | y1:t−1)
5: Sample zt ∼ q(zt | xt−1), forming an approximation of p(zt | y1:t) (equation 7)
6: Predict µ̂t|t−1, Σ̂t|t−1 using transition p(xt | xt−1, zt)

7: Compute RNN-based gain factor: Lt = RNN([Σ̂t|t−1, rt])

8: Compute gain matrix: K̂t = Σ̂t|t−1C
⊤
ztLtL

⊤
t

9: Compute updated posterior mean and covariance via Kalman-style rule: (equation 8)

µ̂t|t = µ̂t|t−1 + K̂t(yt −Cztµ̂t|t−1)

Σ̂t|t = Σ̂t|t−1 + K̂t(CztΣ̂t|t−1C
⊤
zt +Rt)K̂

⊤
t

10: Form q(xt | y1:t) = N (µ̂t|t, Σ̂t|t) (cf. equation 6)
11: end for

Algorithm Training π-SSM via Surrogate Predictive Log-Likelihood

1: Input: Dataset {y(n)
1:T }Nn=1, initial model parameters (θ, ϕ)

2: for each training iteration do
3: for each sequence y1:T in the batch do
4: for t = 1 to T do
5: Sample xt−1 ∼ q(xt−1 | y1:t−1) (equation 6)
6: Sample zt ∼ q(zt | xt−1) (approx. p(zt | y1:t) via equation 7)
7: Predict µ̂t|t, Σ̂t|t via Kalman-style update (equation 8)
8: Compute predictive likelihood q(yt | y1:t−1) (equation 9)
9: end for

10: Accumulate surrogate objective: L =
∑T
t=1 log q(yt | y1:t−1)

11: Estimate gradients w.r.t. continuous parameters ϕ (equation 11)
12: Estimate gradients w.r.t. discrete parameters θ using REINFORCE (equation 12)
13: end for
14: Update parameters (θ, ϕ) using gradient-based optimizer
15: Project RNN weights to satisfy ISS condition (Theorem 3)
16: end for

E.2 PYTHON INTUITIVE CODE

To demonstrate the simplicity of our proposed π-SSM, we include intuitive inference and training
code with Tensorflow library. The code runs with Python 3.7+. The entire code to reproduce the
experiments are available in Github repository.

Python intuitive code for inference.
Inference loop for PiSSM

import tensorflow.keras as k

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

import PredictiveStep
import KalmanUpdate
import get_mode_params

class PiSSMCell(k.layers.Layer):
def __init__(self, initial_states):

super().__init__()
self.mu_tm1, self.Sigma_tm1 = initial_states
self.filtered_states = []

def call(self, y_seq, R_seq):
for t, (y_t, R_t, Q_t) in enumerate(zip(y_seq, R_seq)):

(eq. 6) From q(x_{t-1} | y_{1:t-1})
x_tm1 = sample(self.mu_tm1, self.Sigma_tm1)

(eq. 7) From q(z_t | x_{t-1}) modeled by NN
z_t = q_z_given_x(x_tm1)

A_{z_t}, C_{z_t}
A_z_t, C_z_t = get_mode_params(z_t)

mu_t_pred, Sigma_t_pred = PredictiveStep(A_z_t, x_tm1, Q_t)

(eq. 8) Form q(x_{t} | y_{1:t})
mu_t_filt, Sigma_t_filt = KalmanUpdate(mu_t_pred,

Sigma_t_pred, y_t, R_t, C_z_t)

self.filtered_states.append((mu_t_filt, Sigma_t_filt, z_t))
self.mu_tm1, self.Sigma_tm1 = mu_t_filt, Sigma_t_filt

return self.filtered_states

class PiSSM(k.models.Model):
def __init__(self, initial_states):

super().__init__()
self.cell = PiSSMCell(initial_states)

def call(self, y_seq, R_seq, Q_seq):
filtered_seq = self.cell(y_seq, R_seq, Q_seq)
mu_seq, Sigma_seq, z_seq = zip(*filtered_seq)
x_seq = sample(mu_seq, Sigma_seq)
return x_seq, z_seq

Python intuitive code for training.

Training loop for PiSSM

import tensorflow as tf
import get_current_U_r_weights
import get_params_q_z

def project_onto_l1_ball(v, radius):
"""Projects vector v onto the l1-ball of specified radius."""
abs_v = tf.abs(v)
if tf.reduce_sum(abs_v) <= radius:

return v
sorted_v = tf.sort(abs_v, direction='DESCENDING')
cumsum = tf.cumsum(sorted_v)
rho = tf.where(sorted_v - (cumsum - radius) / (tf.range(1, len(v)+1,
dtype=v.dtype)) > 0)
if len(rho) == 0:

return tf.zeros_like(v)
rho = rho[-1][0] + 1 # adjust for indexing
tau = (tf.reduce_sum(sorted_v[:rho]) - radius) / tf.cast(rho, v.dtype
)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

return tf.sign(v) * tf.maximum(abs_v - tau, 0.0)

class PiSSMTrainer:
def __init__(self, model: PiSSM, optimizer_phi, optimizer_theta):

self.model = model
Continuous (GRU, Kalman flow, Mode vars A_z_t, C_z_t, etc.)
self.opt_phi = optimizer_phi

Discrete (NN for q(z | x))
self.opt_theta = optimizer_theta

Moving average baseline for REINFORCE
self.baseline = 0.0

def compute_log_likelihood(self, y_t, mu_t, Sigma_t, C_z_t):
log p(y_t | x_t)
return log_prob_gaussian(y_t, mu_t, Sigma_t, C_z_t)

def train_step(self, y_seq, R_seq, Q_seq):
log_likelihoods = []

with tf.GradientTape(persistent=True) as tape:
x_seq, z_seq = self.model(y_seq, R_seq, Q_seq)

for t, (x_t, z_t, y_t, R_t) in enumerate(zip(x_seq, z_seq,
y_seq, R_seq)):

mu_t, Sigma_t = mean_cov_from_x(x_t)
A_z_t, C_z_t = get_mode_params(z_t)

(eq. 9) log predictive
log_py_t = self.compute_log_likelihood(y_t, mu_t, Sigma_t

, C_z_t)
log_likelihoods.append(log_py_t)

(eq. 12) REINFORCE gradient
log_q_z = log_prob_q_z_given_x(z_t, x_seq[t-1])
reinforce_term = tf.stop_gradient(log_py_t - self.

baseline) * log_q_z

(eq. 11) Continuous update: backprop GRU, A_z_t, C_z_t, etc.
loss_phi = -tf.reduce_sum(log_likelihoods)
grads_phi = tape.gradient(loss_phi, self.model.

trainable_variables)
self.opt_phi.apply_gradients(zip(grads_phi, self.model.

trainable_variables))

Discrete update: REINFORCE
loss_theta = -tf.reduce_sum(reinforce_term)
grads_theta = tape.gradient(loss_theta, get_params_q_z())
self.opt_theta.apply_gradients(zip(grads_theta, get_params_q_z())

)

Update moving baseline
current_ll = tf.reduce_mean(log_likelihoods)
self.baseline = 0.95 * self.baseline + 0.05 * current_ll

Stability Projection Steps for two cases of RNNs (GRU or LSTM)
Choose small buffers
delta_f = 1e-3 # (1 + sigma_o) sigma_f < 1 - delta_f
delta_c = 1e-3 # (1 + sigma_o) sigma_i |U_c|_inf < 1 - delta_c
eps = 1e-6

if self.model.rnn_type.upper() == 'GRU':
U_r = get_current_U_r_weights() # shape: [n_h, n_h]
U_r_projected = []

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

radius = 1. / hat_sigma_f - delta
for row in U_r:

row_proj = project_onto_l1_ball(row, radius)
U_r_projected.append(row_proj)

U_r_projected = tf.stack(U_r_projected, axis=0)
set_projected_U_r(U_r_projected)

elif self.model.rnn_type.upper() == 'LSTM':

W_f, U_f, b_f = get_lstm_gate_params('f')
W_i, U_i, b_i = get_lstm_gate_params('i')
W_o, U_o, b_o = get_lstm_gate_params('o')

#FIRST TERM: (1 + sigma_o) sigma_f < 1 - delta_f
bar_o = bar_sigma_from_block(W_o, U_o, b_o)
target_f = tf.minimum((1.0 - delta_f) / (1.0 + bar_o + eps),

1.0 - eps)
alpha_f = logit(target_f, eps=eps) # clip radius
W_f, U_f, b_f = clip_gate_block(W_f, U_f, b_f, alpha_f)
set_lstm_gate_params('f', W_f, U_f, b_f)

#SECOND TERM:(1 + sigma_o)sigma_i |U_c|_inf < 1 - delta_c
bar_i = bar_sigma_from_block(W_i, U_i, b_i)
rho_c = (1.0 - delta_c) / ((1.0 + bar_o) * bar_i + eps)
U_c = get_current_U_c_weights() # [n_h, n_h]
U_c_projected = tf.stack(

[project_onto_l1_ball(row, rho_c) for row in
tf.unstack(U_c, axis=0)],
axis=0

)
set_projected_U_c(U_c_projected)

return current_ll.numpy()

F HYPERPARAMETERS AND ARCHITECTURE

F.1 HYPERPARAMETERS AND TRAINING DETAILS

All experiments were conducted using the Adam optimizer Kingma & Ba (2014) on an NVIDIA
GeForce GTX 1050 Ti with 16GB RAM. We started by evaluating each dataset using multiple random
seeds. For each seed, we conducted a grid search over the learning rate (LR) range specified in the
appendix—50 values from 0.001 to 0.2 in increments of 0.002, each followed by exponential decay
every 10 epochs. This process produced a performance table per dataset. We then averaged validation
performance across seeds and selected the LR with the best average score. For this, we followed
the recipe from optimization literature, which suggests that hyperparameters varying across random
initializations should be selected based on validation performance averaged across runs. The best
learning rates selected per dataset are shown below:

Dataset Pong Lorenz Navier NCLT

LR 0.011 0.011 0.011 0.007

To provide a consistent learning rate for the overall model, we set the final LR to 0.011 for all
experiments.

In order to reduce the variance of the REINFORCE gradient estimator in eq. (12), we use an
exponential moving average baseline for the control variate bt. At each training step, this baseline is
updated as:

bt ← 0.95 · bt + 0.05 · log q(yt | y1:t−1),

where log q(yt | y1:t−1) is the current predictive log-likelihood. This formulation ensures that
bt tracks the typical scale of the learning signal over time while remaining stable, and helps to

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

decorrelate the stochastic gradient direction from the reward signal, thereby reducing the variance of
updates without introducing bias.

Backpropagation through time (BPTT) (Werbos, 1990) was used to compute gradients through the
RNN cells. Gradient updates were applied with the stability constraint described in Theorem 3, using
the projection method detailed in the main paper. We applied layer normalization (Ba et al., 2016) to
stabilize the dynamics and normalize the filter responses.

To avoid poor local optima—e.g., the model overly focusing on prediction rather than learning latent
dynamics—we adopted two additional training strategies:

1. We generated time-correlated noisy sequences as inputs. This forces the model to capture
temporal dependencies and discourages reliance on pointwise prediction.

2. During early epochs, only the globally-shared parameters (e.g., Azk and Czk) were opti-
mized, while the parameters of the inference model q(zt|xt−1) were frozen. After initial
convergence, all parameters were jointly optimized. This warm-up phase facilitates the
learning of meaningful embeddings before introducing mode-specific modeling.

We set K = 18 latent modes to accommodate diverse dynamics in the latent space, with each mode
representing a distinct dynamical regime. Notably, parameter tuning was not particularly sensitive:
when the π-SSM has sufficient flexibility, unused modes can be effectively pruned by the learned
distribution q(zt|xt−1).

F.2 PROPOSED ARCHITECTURE

𝑞(𝑧𝑡|𝐱𝑡−1)

𝐱0:𝑇−1|0:𝑇−1

P
re

d
ictio

n
 S

te
p

(𝐴𝑧1:𝑇 , 𝐶𝑧1:𝑇)

(ෝ𝝁1:𝑇|0:𝑇−1, ෡𝚺1:𝑇|0:𝑇−1)

R
N
N F

ilte
rin

g
 S

te
p

𝒓1:𝑇 𝑳1:𝑇

𝐲1:𝑇
(ෝ𝝁1:𝑇|1:𝑇, ෡𝚺1:𝑇|1:𝑇)

(ෝ𝝁0:𝑇−1|0:𝑇−1, ෡𝚺0:𝑇−1|0:𝑇−1)
𝐶𝑧1:𝑇

F
ilte

rin
g

𝐲1:𝑇

(𝑧
1
:𝑇
, ෝ𝝁

1
:𝑇
|1
:𝑇
, ෡𝚺

1
:𝑇
|1
:𝑇
)

𝑞(𝑧1:𝑇. 𝐱1:𝑇|𝐲1:𝑇)

Pi Cell

෡𝚺1:𝑇|0:𝑇−1

(ෝ𝝁1:𝑇|0:𝑇−1, ෡𝚺1:𝑇|0:𝑇−1)

(ෝ𝝁
1
:𝑇
|0
:𝑇
−
1
, ෡𝚺

1
:𝑇
|0
:𝑇
−
1
)

𝐴1 𝐶1

𝐴𝐾 𝐶𝐾

.

.

.

.

.

.

𝑧1:𝑇
NN

P
re

d
ictio

n

Figure 9: Proposed architecture diagram. Modules highlighted in red correspond to continuous-
variable components in the parameter set ϕ, while yellow modules represent discrete-variable compo-
nents in the set θ.

The proposed architecture is illustrated in Figure 9. To model q(zt | xt−1), we use a multi-layer
perceptron (MLP) with 10 hidden units and ReLU activation, followed by a softmax output layer
producing K mode probabilities. The input to this network is the sampled latent state xt−1 ∈ RN ,
where N denotes the state dimensionality.

In the state estimation tasks considered, the dimensionality N varies across experiments: 4 for Pong,
3 for Lorenz, 5 for Navier–Stokes, and 4 for NCLT.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL SYSTEMS AND FORMULATIONS

G.1 LG VARIANT USED IN ABLATION STUDY

In our ablation studies, we include a variant of the Linear Gaussian State-Space Model (LG) to isolate
the impact of discrete latent variables and neural parameterizations in the full π-SSM model. This LG
configuration retains a Markovian latent structure with continuous latent states xt ∈ RM and linear
Gaussian transitions and emissions, but omits discrete latent variables zt. That is, the generative
model is defined by:

xt = Atxt−1 + qt, qt ∼ N (0,Q), (200)
yt = Ctxt + rt, rt ∼ N (0,R), (201)

where At ∈ RM×M and Ct ∈ RN×M are linear transition and emission matrices, respectively.
The model applies standard Kalman filtering equations for inference, maintaining a fully analytical
Gaussian belief state p(xt | y1:t) = N (µt|t,Σt|t) at each step.

To make the model expressive while retaining the linear structure, we parameterize the transition and
emission matrices as convex combinations of K base matrices. Specifically, we define:

At =

K∑
k=1

α
(k)
t A(k), Ct =

K∑
k=1

α
(k)
t C(k), (202)

where A(k), C(k) are trainable base matrices, and αt = Softmax(MLP(xt−1)) produces mixture
weights conditioned on the previous state xt−1. The use of soft attention over modes allows the
system to adaptively interpolate between K locally linear dynamics, while maintaining the analytic
filtering update structure of LG.

This hybrid approach allows us to compare π-SSM against a strong continuous-only baseline that
leverages neural flexibility but does not involve discrete switching or nested inference. All parameters,
including base matrices and the MLP for generating αt, are trained end-to-end by maximizing the
predictive log-likelihood of the observations.

G.2 LORENZ SYSTEM DYNAMICS

The Lorenz system is a set of coupled nonlinear ordinary differential equations (ODEs) that describe
the evolution of a particle in a chaotic 3D space. Originally derived for atmospheric convection, the
system is now widely used as a benchmark for nonlinear dynamical systems. In our context, the
system state at time t is denoted by xt = [xt, yt, zt]

⊤, where xt, yt, and zt represent the particle’s
position coordinates in 3D space.

The system is governed by the following equations:

dx

dt
= σ(y − x), dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz, (203)

where the standard parameters are set to σ = 10, ρ = 28, and β = 8
3 .

To generate trajectories, we numerically integrate the system equation 203 using a time step of
dt = 10−5, and then uniformly subsample with ∆t = 0.01 to obtain discrete-time data for training
and evaluation.

For inference and linearization purposes, we locally approximate the nonlinear dynamics at each time
step using a time-varying transition matrix At such that:

ẋt = Atxt, with At =

 −10 10 0
ρ− z −1 0
y 0 − 8

3

 . (204)

To compute a discrete transition matrix At = exp(At∆t), we use the Taylor expansion of the matrix
exponential truncated at degree J = 5:

At = exp(At∆t) ≈ I+

J∑
j=1

(At∆t)
j

j!
, (205)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

where I is the identity matrix. This provides a first-order linear approximation of the nonlinear Lorenz
system suitable for ground truth generation and use in filtering-based state estimation.

G.3 MOVEMENT MODEL DETAILS FOR THE NCLT EXPERIMENT

The NCLT dataset Carlevaris-Bianco et al. (2016) consists of sensor recordings from a Segway robot
navigating a university campus environment. Robot localization in this context aims to estimate the
true position of the robot over time using noisy GPS observations. To model the motion of the robot,
we adopt a constant velocity assumption commonly used in mobile robot tracking.

Under this assumption, the continuous-time dynamics are given by:

dp1
dt

= v1,
dp2
dt

= v2,
dv1
dt

= 0,
dv2
dt

= 0, (206)

where p1, p2 represent the 2D position coordinates and v1, v2 their respective velocities. This yields
the latent state and observation:

xt = [p1, v1, p2, v2]
T , yt = [p1, p2]

T .

By discretizing the system with sampling interval ∆t = 1 (1 Hz), the linear transition and observation
models are given by:

At =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , Ct =

[
1 0 0 0
0 0 1 0

]
, Rt = λ2

[
1 0
0 1

]
. (207)

Here, At is the state transition matrix, Ct is the emission matrix, and Rt models the observation
noise with variance λ2.

For training and evaluation, the session from January 22, 2012 is selected. After removing invalid
GPS readings, the remaining 4280 time steps are partitioned into: a training set of 3600 steps (18
sequences of length T = 200), a validation set of 400 steps (2 sequences of length T = 200), and a
test set of 280 steps (1 sequence of length T = 280).

G.4 NAVIER-STOKES SYSTEM SETTING

The incompressible Navier-Stokes equations govern the evolution of velocity fields u = [u, v] : X →
R2, where the spatial domain is X ⊂ R2. The equations are expressed as:

∂u

∂t
= −(u · ∇)u+ µ∇2u−∇p+ f, ∇ · u = 0 (208)

Here, µ is the kinematic viscosity, p is the scalar pressure field, and f denotes an external force — in
our case, a buoyancy term. The constraint ∇ · u = 0 enforces incompressibility and ensures mass
conservation. The term −(u · ∇)u describes convection, capturing the self-advection of the velocity
field. The diffusion term µ∇2u models viscous dissipation, while ∇p represents internal pressure
forces.

To generate ground truth, we solve the Navier-Stokes system in vorticity form on a unit torus using
numerical methods. The solver produces time-resolved velocity and pressure fields that define the
fluid’s true dynamics.

We then simulate particle trajectories by randomly placing particles at initial spatial coordinates and
integrating their motion through the time-evolving velocity field using a Newtonian update. At each
time step, a particle state is recorded as xt ∈ R5, consisting of:

• Position: (xt, yt) ∈ R2

• Velocity: (ut, vt) ∈ R2

• Local pressure: pt ∈ R

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

To simulate realistic sensor observations, Gaussian noise is added to the trajectories. The resulting
observations yt ∈ R2 are used for training and evaluation of the state-space inference models.
Formally saying, we define the 5-dimensional latent state and 2-dimensional observations at time t
as:

xt =


ut
vt
xt
yt
pt

 ∈ R5, yt =

[
xt
yt

]
∈ R2

The latent-state-dependent non-linear transition function Azt(·) is derived from the discretized
Navier-Stokes equations and particle motion:

xt+1 = Azt(xt) =


ut +∆t

[
−(ut ∂xut + vt ∂yut) + µ∇2ut − 1

ρ ∂xpt

]
vt +∆t

[
−(ut ∂xvt + vt ∂yvt) + µ∇2vt − 1

ρ ∂ypt

]
xt +∆t · ut
yt +∆t · vt

PoissonSolve
(
ρ
∆t (∂xut + ∂yvt)

)

 (209)

The observation model is a linear projection of the state to the spatial coordinates:

yt =

[
0 0 1 0 0
0 0 0 1 0

]
︸ ︷︷ ︸

Czt

xt (210)

In the general formulation of π-SSM, the discrete latent variable zt ∈ {1, . . . ,K} represents a mode
index that selects between different system dynamics. Each mode zt is associated with its own
transition and observation functions, denoted Azt(·) and Czt , allowing the model to capture complex
behavior by switching between locally consistent dynamics. In the context of the Navier-Stokes
experiment, the underlying physical law is uniform across the domain; however, introducing multiple
modes (i.e., K > 1) enables the model to specialize on distinct flow regimes—such as boundary
layers versus central flow, or convection-dominated versus diffusion-dominated zones—thereby
improving generalization and interpretability. Therefor we used K = 3 in this experiment.

G.5 EFFECT OF BUFFER ϵ IN RNN STABILITY PROJECTION

Role of ϵ. In our stability-constrained training scheme, the buffer ϵ > 0 enforces a strict inequality
in the ISS constraints for gated RNNs.

(i) GRU case: We require |Ur|∞σ̂f < 1, and implement this by projecting each row of Ur onto an
ℓ1-ball of radius ρ = 1−ϵ

σ̂f
, ensuring |Ur|∞σ̂f ≤ 1− ϵ.

(ii) LSTM case: The ISS conditions are (1+σ̄o)σ̄f < 1 and (1+σ̄o)σ̄i|Uc|∞ < 1. The first inequality
involves only gate parameters and can be satisfied by parameter initialization/normalization. The
second inequality requires constraining Uc, which we enforce via row-wise ℓ1 projection onto a ball
of radius ρ = 1−ϵ

(1+σ̄o)σ̄i
. Thus ϵ again serves as a buffer to guarantee strict satisfaction.

Interpretation. The buffer provides a safety margin to protect against numerical errors, approxima-
tion artifacts, and small fluctuations during training. Without it, parameters may drift close to the
boundary of the ISS region, risking instability in long sequences or under high-variance inputs.

Tuning ϵ. In practice, ϵ must be chosen to balance two competing goals:

• Stability guarantee: Larger ϵ provides a more conservative margin, making the system
more robust to exploding activations or gradients.

• Optimization fidelity: However, larger ϵ also leads to more aggressive projections, causing
the updated U to deviate significantly from the unconstrained optimum proposed by gradient
descent. This may prevent the model from converging to an optimal solution, especially in
tasks that require precise temporal modeling.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Empirical behavior. In our experiments, we observed that:

• When ϵ is too small (e.g., ϵ < 10−1), numerical instability occasionally occurred in long
sequences or chaotic systems.

• When ϵ is too large (e.g., ϵ ≥ 4× 10−1), likelihood performance noticeably degrades due to
overly constrained dynamics and suppressed learning capacity of the GRU.

• A moderate value of ϵ (e.g., ϵ ∈ [10−1, 2×10−1]) provided a good balance between stability
and performance across all datasets.

Guidelines. We recommend tuning ϵ via validation likelihood. Begin with a relatively loose
constraint (e.g., ϵ = 10−1), and gradually increase it if instability is observed. Avoid unnecessarily
large ϵ, as this limits the expressiveness of the learned transition dynamics and tends to reduce final
log-likelihood.

Full Comparison of our ISS stability with Gradient Clipping. Table 7 provides the stability
behavior of our ISS-based scheme against conventional gradient clipping (GC) on full 4 benchmarks.
The ISS approach yields 100 % success across all datasets and buffer values ϵ ∈ [0.1, 0.25],
demonstrating that once the sufficient stability inequality is enforced, the system remains robust
regardless of sequence length or dynamics. In contrast, GC exhibits partial or complete failure: as
the clipping threshold δ increases, instabilities emerge, with divergence occurring in several tasks at
δ ≥ 10.

Another advantage of our method is the ease of parameter tuning. The ISS buffer ϵ is interpretable,
bounded, and chosen within the compact interval (0, 1), making it straightforward to adjust and
comparable across architectures (GRU, LSTM, etc.). In contrast, the GC threshold δ must be tuned
over an unbounded range [0,∞), with optimal values highly problem-dependent and unstable across
tasks. This makes our ISS projection scheme not only more reliable but also far more practical for
deployment.

Table 7: Stability handling: comparison between GC and ISS.

Pong Lorenz Navier-Stokes NCLT
Objective Success Objective Success Objective Success Objective Success

π-SSMGRU(ISS)

ϵ = 0.1 5.401 ± 0.197 100 % 5.856 ± 0.387 100 % 5.097 ± 0.247 100 % -23.18 ± 1.07 100 %
ϵ = 0.15 5.231 ± 0.228 100 % 5.841± 0.528 100 % 5.026 ± 0.377 100 % -23.44 ± 0.97 100 %
ϵ = 0.2 5.084 ± 0.281 100 % 5.624 ± 0.271 100 % 4.745 ± 0.216 100 % -23.91 ± 1.07 100 %
ϵ = 0.25 4.888 ± 0.324 100 % 5.344 ± 0.400 100 % 4.510 ± 0.421 100 % -24.51 ± 1.29 100 %

π-SSMLSTM(ISS)

ϵ = 0.1 5.475 ± 0.217 100 % 5.844 ± 0.292 100 % 5.137 ± 0.18 100 % -23.25 ± 0.94 100 %
ϵ = 0.15 5.281 ± 0.174 100 % 5.827± 0.397 100 % 5.074 ± 0.333 100 % -23.59 ± 0.94 100 %
ϵ = 0.2 5.172 ± 0.202 100 % 5.600 ± 0.311 100 % 4.816 ± 0.193 100 % -23.97 ± 1.14 100 %
ϵ = 0.25 4.911 ± 0.215 100 % 5.344 ± 0.382 100 % 4.574 ± 0.266 100 % -24.55 ± 0.93 100 %

π-SSMGRU(GC)

δ = 5 5.166 ± 0.446 100 % 5.511 ± 0.521 100 % 4.814 ± 0.495 100 % -23.38 ± 1.84 100 %
δ = 10 5.249 ± 1.12 60 % 5.691 ± 1.18 50 % 4.92 ± 0.936 50 % -23.20 ± 3.57 60 %
δ = 15 5.281 ± 2.541 30 % N/A 0 % N/A 0 % -23.21 ± 9.54 20 %
δ = 20 N/A 0 % N/A 0 % N/A 0 % N/A 0 %

H ADDITIONAL RESULTS

H.1 EXTENDED EXAMPLE FOR PONG EXPERIMENT AND IMPUTATION STRATEGY
EXPLANATION

To further illustrate the ability of π-SSM to capture mode-dependent dynamics, we provide a detailed
example consisting of 8 representative frames from a ball trajectory. In this example, the ball
undergoes 4 collisions with the enclosure walls, inducing 4 distinct mode transitions. The frames are
selected to showcase the key dynamical changes before, during, and after each collision. See figure
10.

The learned transition matrices Azt corresponding to each mode are inspected, and their eigenvalue
spectra are compared to the ground truth to verify structural alignment.

We examine the predictive distributions q(yt | y1:t−1) at four critical points in time: t = 15,
t = 35, t = 55, and t = 75. These represent pre- and post-collision phases and provide insight into
how the model adjusts its uncertainty and dynamics based on the inferred mode. Each predictive

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

distribution is modeled as a multivariate Gaussian, and we plot the corresponding ellipses for
qualitative evaluation. These plots confirm that the model adapts to the nonlinear behavior of the ball
by switching appropriately between learned dynamics and refining its state belief accordingly.

According to the inferred mode, here, each mode corresponds to a distinct linear segment of the
ball’s trajectory between wall bounces, making regime switches clearly observable. In this setting,
the discrete states zt can be directly interpreted and tracked, with four true modes governing the
dynamics. Empirically, the inferred zt samples capture these regime changes in a meaningful way.
The behavior of zt sequences can be characterized by two properties: (i) uniqueness of active modes,
and (ii) persistence of modes across time.

Uniqueness. The number of modes K is treated as a hyperparameter. We observed a pruning effect
from q(zt | xt−1): when K exceeds the true number of modes, redundant modes gradually vanish
during training and are no longer sampled. In Pong, the inferred zt concentrated on four dominant
modes, consistent with the ground-truth structure (As it is evident in the Figure).

Persistence. To assess temporal persistence, we considered intervals between two consecutive
bounces (T1, T2) where the true regime is constant. In these intervals, the inferred zt consistently
sampled the same mode index k, demonstrating coherent mode tracking over time and alignment
with the actual regime (Refer to the consistent colors in each mode switch interval).

Additionally, for the imputation task, we randomly remove half of the observations from each
generated trajectory and evaluate the model’s ability to infer the missing values. When observations
are unavailable during a temporal interval [t+ 1, . . . , t+ τ], the model is required to generate these
values by leveraging its learned predictive structure. Specifically, at each step, the model uses the
inferred latent state to recursively propagate forward through its transition dynamics and approximate
the corresponding observation distributions.

As established in the main paper, the predictive likelihood at time t+ 1 can be approximated as:

q(yt+1 | y1:t) =

∫
p(yt+1 | xt+1) p(xt+1 | xt, zt+1) q(zt+1 | xt) q(xt | y1:t) dxt dxt+1 dzt+1.

(211)

The same logic extends recursively to future time steps t′ = t+ 2, . . . , t+ τ , allowing the model to
generate:

q(yt′ | y1:t) for t′ > t

using a sequence of predictions through the latent state space. In practice, the system generates
missing observations as follows:

q(yt+τ | y1:t) =

∫
p(yt+τ | xt+τ)

τ∏
s=1

[
p(xt+s | xt+s−1, zt+s) q(zt+s | xt+s−1)

]
q(xt | y1:t)

dxt · · · dxt+τ dzt+1 · · · dzt+τ .
(212)

This recursive structure leverages the learned dynamics of π-SSM to roll out latent trajectories and
generate observations in the absence of measurements.

H.2 MSE RESULTS

In addition to the log-likelihood metrics reported in the main text, we include MSE results here
to provide a more interpretable evaluation of predictive accuracy across tasks in Table 8. This
supplementary evaluation highlights the effectiveness of π-SSM in reconstructing latent trajectories
and predicting observations, particularly in the presence of noise or partial information. Furthermore,
we include two PDE-specific baselines, PINN and SPINN—which are designed for physical sys-
tems governed by partial differential equations. Since these methods are not applicable to general
state-space models or sequence modeling tasks, we only report their results for the Navier-Stokes
experiment. For other experiments such as Pong, Lorenz, and NCLT, PINN and SPINN results are
omitted.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

y1
y2

y1

y2

y1

y2

y1

y2

y1

y2

y1

y2

y1

y2

y1

y2

M
od

e

5 10 15 20
0

2

4

6

8

1

GT
-SSM(GRU)

SLDS
LG

20 25 30 35 40

0

2

4

6

GT
-SSM(GRU)

SLDS
LG

40 45 50 55 60

0

2

4

6

GT
-SSM(GRU)

SLDS
LG

60 65 70 75 80

0

2

4

6

GT
-SSM(GRU)

SLDS
LG

5 10 15 20
2

0

2

4

6

2

GT
-SSM(GRU)

SLDS
LG

20 25 30 35 40

2

0

2

4

GT
-SSM(GRU)

SLDS
LG

40 45 50 55 60

2

4

6

8

GT
-SSM(GRU)

SLDS
LG

60 65 70 75 80
2

0

2

4

GT
-SSM(GRU)

SLDS
LG

5 10 15 20
2

0

2

4

6

3

GT
-SSM(GRU)

SLDS
LG

20 25 30 35 40

2

0

2

4

GT
-SSM(GRU)

SLDS
LG

40 45 50 55 60

2

4

6

8

GT
-SSM(GRU)

SLDS
LG

60 65 70 75 80
2

0

2

4

GT
-SSM(GRU)

SLDS
LG

5 10 15 20
2

0

2

4

4

GT
-SSM(GRU)

SLDS
LG

20 25 30 35 40

2

4

6

8

GT
-SSM(GRU)

SLDS
LG

40 45 50 55 60
4

2

0

2

GT
-SSM(GRU)

SLDS
LG

60 65 70 75 80
2

0

2

4

GT
-SSM(GRU)

SLDS
LG

20 25 30 35
y1

0

5

10

15

20

y 2

p(y115) = (y1 20)

p(y215) = (y2 8)

LG
SLDS
-SSM(GRU)

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5
y1

10

15

20

25

p(y135) = (y1 24)

p(y235) = (y2 10)

LG
SLDS
-SSM(GRU)

14 16 18 20 22 24 26 28
y1

35

40

45

50

p(y155) = (y1 25)

p(y255) = (y2 50)

LG
SLDS
-SSM(GRU)

2 4 6 8 10 12 14
y1

18

20

22

24

26

28

30

p(y175) = (y1 7)

p(y275) = (y2 25)

LG
SLDS
-SSM(GRU)

Figure 10: Predicted observation (position) at 15-th, 35-th, 55-th and 75-th time steps (last row).
The first row shows the ground truth ball position in 10, 20, 30, 40, 50, 60, 70 and 80-th time steps,
respectively.

Table 8: MSE across four benchmarks (lower is better).

Model Pong Lorenz Navier-Stokes NCLT

LSTM 0.097± 0.013 0.090± 0.015 0.360± 0.039 191.3± 10.3
GRU 0.095± 0.020 0.091± 0.014 0.356± 0.026 181.1± 7.45

SLDS 0.110± 0.031 0.105± 0.021 0.367± 0.019 141.5± 10.9
irSLSD 0.092± 0.027 0.083± 0.024 0.297± 0.030 130.2± 4.7

NODE 0.104± 0.024 0.095± 0.021 0.331± 0.051 155.4± 6.54
MoNODE 0.093± 0.021 0.084± 0.019 0.302± 0.039 134.5± 4.99

KalmanNet 0.086± 0.013 0.077± 0.009 0.291± 0.041 165.1± 6.34
GIN 0.085± 0.011 0.077± 0.004 0.288± 0.029 131.7± 5.17
Hybrid GNN 0.082± 0.013 0.075± 0.011 0.284± 0.033 118.2± 4.23

LG 0.083± 0.009 0.076± 0.011 0.260± 0.030 111.24± 2.03

PINN 0.227± 0.019
SPINN 0.202± 0.030

π-SSMGRU 0.061± 0.009 0.056± 0.010 0.208± 0.019 89.14± 1.29
π-SSMLSTM 0.058± 0.011 0.057± 0.007 0.205± 0.011 92.15± 0.98

47

	Introduction
	Related Works
	Background
	-SSM: Generative Assumptions and Graphical Structure
	Approximate Inference Framework
	Training
	Experiments
	Conclusion
	Bibliography
	Background
	Forward Backward Algorithm
	Filtering and Smoothing Parameterization
	GRU Cell Review.
	LSTM Cell Review.
	ISS and Comparison Functions: Intuition, Properties, and Examples

	 Notation Summary
	Proofs
	Nested Message Passing Details Derivation
	Complexity Analysis: RNN-Based Updates vs. LG
	Proof of Theorem 1
	 Gradient Estimation Details
	 Proof of Theorem 2
	A General ISS Scheme for Gated, Saturating RNN Modules
	 Proof of ISS schemes for GRU cells
	Proof of ISS schemes for LSTM system
	Projection to Enforce GSRNN ISS Condition

	Related works, empirical running times and complexity analysis
	Qualitative Comparison of the -SSM to Recent Related Work
	Expressivity, Extension and Limitations
	Empirical analysis

	Algorithms and python intuitive code
	Algorithms
	Python intuitive code

	Hyperparameters and architecture
	Hyperparameters and Training Details
	Proposed architecture

	Experimental Systems and Formulations
	LG Variant Used in Ablation Study
	Lorenz System Dynamics
	Movement Model Details for the NCLT Experiment
	Navier-Stokes System Setting
	Effect of Buffer in RNN Stability Projection

	Additional Results
	Extended Example for Pong Experiment and Imputation Strategy Explanation
	MSE Results

