Under review as a conference paper at ICLR 2023

EFFICIENT SEQUENCE PACKING WITHOUT CROSS-
CONTAMINATION: ACCELERATING LARGE LANGUAGE
MODELS WITHOUT IMPACTING PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective training of today’s large language models (LLMs) depends on large
batches and long sequences for throughput and accuracy. To handle variable-length
sequences on hardware accelerators, it is common practice to introduce padding
tokens, so that all sequences in a batch have the same length. We show in this paper
that the variation in sequence lengths in common NLP datasets is such that up to
50% of all tokens can be padding. In less common, but not extreme, cases (e.g.
GLUE-cola with sequence length 128), the ratio is up to 89%. Existing methods
to address the resulting inefficiency are complicated by the need to avoid ‘cross-
contamination’ in self-attention, by a reduction in accuracy when sequence ordering
information is lost, or by customized kernel implementations only valid for specific
accelerators. This paper introduces a new formalization of sequence packing in
the context of the well-studied bin packing problem, and presents new algorithms
based on this formulation which, for example, confer a 2x speedup for phase 2
pre-training in BERT. We show how existing models can be adapted to ensure
mathematical equivalence between the original and packed models, meaning that
packed models can be trained with existing pre-training and fine-tuning practices.

1 INTRODUCTION

Many language datasets, including the de-facto pre-training dataset for BERT—Wikipedia, have
a skewed distribution of sequence lengths (see Figure [I). However, typical machine learning
accelerators, and their corresponding libraries, exhibit poor performance when processing variable-
length workloads. A simple mitigation is to set a maximum sequence length, and to pad shorter
sequences with padding tokens. This naive batching is widely used and provided in the vanilla BERT
implementation as well as the Hugging Face framework (32). Its effect is enhanced by the offline
dataset generation process which, in BERT, attempts to “pack” together sentences so as to fill the
sequence length as completely as possible (8). We improve this process at a whole-dataset level.

We show that, even after this pre-processing, padding tokens represent 50% of all tokens of the
Wikipedia pre-training dataset at sequence length 512. Thus, by avoiding processing the padding
tokens one can get a 2x speed-up for phase 2. Overall, the lengths range between 5 tokens up to 512.
Samples of length 512 represent only 23.5% of the dataset,

Beyond the simple batching, other solutions have been addressed in the literature, and in open-source
software implementations. When processing sequences, most libraries and algorithms mention
packing as reference to concatenating sentences from the same document (BERT) or from different
documents (BERT, T5 (24), GPT-3 (4), and RoBERTa (16))) as they arrive (GREEDY) from the
source dataset to generate the training dataset. None of the respective papers addresses the packing
efficiency, i.e., remaining fraction of padding. To “separate” sequences from different documents, a
separator token is introduced. However, this is not sufficient and can have a significant impact on
performance. This is discussed only in the RoBERTa paper which shows that downstream F1 scores
get consistently reduced on average by 0.35%. Alternative common approaches to overcome the large
amount of padding in many datasets are “un-padding” as in Effective Transformer (5) and sorted
batching (SORT) as in Faster Transformer (21), lingvo (28) fairseq (22), and RoBERTa. However, for

Under review as a conference paper at ICLR 2023

running efficiently on arbitrary accelerators, these approaches require substantial hardware-specific
low-level code optimizations only available on GPUs. Further details are in Sections [C] (1)) and 4.4}

Beyond language models, packing has been also present in other areas of machine learning, however
with little to no exploration in the literature and mostly hidden in some libraries without any further
discussion. For example, PyG (PyTorch Geometric) combines multiple small graphs in a batch to
account for the large variation in size and to optimize the hardware usage when training a Graph
Neural Network (GNN). Another example is the RNN implementation in PyTorch which introduces a
“PackedSequence” object and states that “All RNN modules accept packed sequences as inputs” but
does not address how sequences are packed efficiently and how the processing of packed sequences
is implemented in an efficient manner while avoiding interaction between sequences. Even though
we focus on BERT (6) and other transformers in this paper, the general principles can be transferred
to many more machine learning algorithms with differently sized data samples.

In this paper, we formally frame the packing problem in transformer based models, and provide some
solutions, showing that sequences can be packed efficiently, separator tokens are not required, and
cross-contamination can be avoided with little overhead.

In summary, the contributions of the paper are as follows. In Section 2] we produce histograms of a
variety of datasets showing the high percentage of padding tokens. In Section[3.I] we present two new
deterministic and efficient packing algorithms based on established solvers which efficiently pack
datasets with millions of sequences in a matter of seconds (or less). In Section[3.2]and Section[3.3] we
describe ‘cross-contamination’ —the cause of the accuracy reduction which separator tokens do not
mitigate— and show how the BERT model can be adjusted to show the same convergence behavior
on packed and unpacked sequences. We empirically show that the proposed packing algorithms
produce a nearly-optimal packing scheme for Wikipedia pre-training dataset (Sectiond.T)) and more
in the Appendix. In Section[4.2] we demonstrate that the convergence of the BERT large model on
the packed dataset is equivalent to that on the un-packed dataset with 2x throughput increase on the
Wikipedia sequence length 512 pre-training dataset. Further experiments underline the necessity and
efficiency of our changes.

2 SEQUENCE LENGTH DISTRIBUTIONS

max. sequence length: 128 max. sequence length: 384 max. sequence length 512
theoretical max. speed-upi 1210 - theoretical max. speed-upi 1.742 | - theoretical max. speed-up: 2.001
5

° > 0125

0.004 0.004 0.004 k
0.100

0.005

[cola [stsb

sst2 [mnli
1 mrpe rte
3 qap I wnli

ity

°
3
8
4

0.003 0.003

°
3
&

0.002 0.002 0.002

probability densi
o
2
g

probability density

0.001 0.001 0.001

°
S
&

A %

0.1
0 25 50 75 100 125 0 100 200 300 400 0 100 200 300 400 500 0 20 40 60 80 100 120
sequence length sequence length sequence length sequence length

o d0 a0 T 70 40 6 8 100 130 0 5o 100 130 200 230 300 S 10 15 20 0
sequence length sequence length sequence length sequence length

Figure 1: Sequence length distributions for different datasets. The three graphics at the top left show
Wikipedia BERT pre-training dataset sequence length histograms (token count excluding padding)
for different maximum sequence lengths based on the Wikipedia article dump from October 1st 2020.
The theoretical speed-up relates to not using any padding tokens and not having any overhead from
processing the different lengths. Top right: GLUE datasets. Bottom from left to right: SQuAD 1.1,
LibriSpeech text labels, LibriSpeech audio token sequence, and QM9 molecules of a graph in a
sequence.

BERT is pre-trained using masked-language modelling and next-sentence prediction on a large
corpus of Wikipedia articles. Each sequence is composed of one <CLS> token followed by the
first “segment” of sentences, followed by a <SEP> token, and then finally the second “segment” of
sentences. Because these “segments” are created in sentence-level increments there is no token-level
control of sequence length. Furthermore 10% (default value, (7)) of sequences are intentionally

https://pytorch-geometric.readthedocs.io/en/latest/notes/batching.html
https://pytorch.org/docs/stable/_modules/torch/nn/utils/rnn.html#PackedSequence

Under review as a conference paper at ICLR 2023

cut short. This leads to significant levels of padding, especially for longer maximum sequence
lengths (see Figure [T] and Section [J[{1)). At sequence length 128 (commonly used in phase 1 of
pre-training) the theoretical speed-up is around 1.2, at sequence length 384 this increases to 1.7, and
finally at sequence length 512 (commonly used for phase 2 of pre-training) it is 2.0. Despite the
widespread use of the Wikipedia dataset for pre-training BERT such histograms have, to the best
of our knowledge, not been published previously. This has perhaps lead to the underestimation of
the speed-up opportunity available. To put things into perspective, the sequence length 512 dataset
contains 8.33 billion tokens, of which 4.17 billion are padding tokens.

Note that the skewed sequence length distributions are neither limited to Wikipedia, as shown with
GLUE (30; [31)) from Section[[}(I) and SQuAD 1.1 (25) from Section [K{(I) (2.2 speed up), to BERT
training, as shown with LibiSpeech text distributions (23) from Section Mkl), nor to text itself,
given the LibriSpeech audio data distributions, and the QM9 molecular data (27;26)) (1.6 speed-up,
Section[Q|(1)). All distributions can be found in Figure[I} Since LibriSpeech audio data is skewed to
longer sequences, only 1.3z speed-up could be achieved despite the theoretical maximum of 1.6z.
For all other cases, the algorithms presented in Section [3.1]lead to close to optimal packing.

3 METHODS

Our approach consists of three distinct components. Firstly, we pack the n data samples efficiently
during pre-processing to make full use of the maximum sequence length, s,,, (Sections [3.1]and [F).
Secondly, we introduce a series of model changes in Section [3.2]that preserve the equivalence with
the original BERT implementation. The changes include a self-attention mask to prevent the model
from attending between different sequences in the same pack (Section [3.2.2), and an adjustment
of the the positional embeddings (Section[3.2.1)) to handle packs of sequences. Other components
of the model, such as the feed-forward layer (29), operate on a per-token basis and do not require
modification for pre-training. In Section [3.2.3] we also demonstrate how to compute a per-sequence
loss and accuracy for NSP and downstream fine-tuning tasks. Thirdly, we provide suggestions for
hyperparameter adjustment (Section [3.3) that lead to analogous convergence behavior between the
packed and un-packed BERT implementations. Additional videos and animations are provided as
supplemental material.

3.1 PACKING ALGORITHMS

The widely studied and well established bin packing problem deals with the assignment of items into
bins of a fixed capacity such that the number of utilized bins is minimized. It has been known for
decades if not centuries. Since an exact solution is strongly NP-complete (14), numerous approximate
solutions have been proposed (125 [15} [13; [35). Since most existing approximations have a high
complexity of at least O(n logn), we propose two new heuristic offline algorithms that are tailored
to the NLP setting applied to the whole dataset. For a detailed introduction to packing see Section[F]

3.1.1 SHORTEST-PACK-FIRST HISTOGRAM-PACKING (SPFHP)

Shortest-pack-first histogram-packing (SPFHP) works on the bins in the sequence length histogram
(with bin size 1) rather than the individual samples. The histogram is traversed in sorted order from
longest to shortest sequences. Then, to pack the data during the traversal, we apply the worst-fit
algorithm (125 [35)) such that the histogram bin being processed goes to the “pack’ﬁthat has the most
space remaining (“shortest-pack-first”). If the histogram bin does not fit completely, a new pack is
created. We also limit the packing depth, in other words the maximum number of sequences that
are allowed in a pack. Therefore, an existing pack is only extended if it is not already at maximum
packing depth. The detailed code for the algorithm is provided in Listing [3] The time and space
complexity of the algorithm are O(n + s2,) and O(s2,) (Section 1)).

"We avoid the ambiguous terms “bin” and “sample/sequence”and use “pack” instead to refer to the multiple
sequences concatenated during packing.

Under review as a conference paper at ICLR 2023

3.1.2 NON-NEGATIVE LEAST SQUARES HISTOGRAM-PACKING (NNLSHP)

The proposed NNLSHP algorithm is based on re-stating the packing problem as a (weighted) non-
negative least squares problem (NNLS) (3) of the form wAx = wb where = > 0. The vector b is the
histogram containing the counts of all the sequence lengths in the dataset. Next, we define the A
matrix (the “packing matrix‘) by first generating a list of all possible sequence length combinations
(“strategies”) that add up exactly to the maximum sequence length. We focus specifically on strategies
that consist of at most 3 sequences per pack (independent of b) and encode each strategy as a column
of the sparse matrix A. For example, a strategy consisting of the sequence length 128, 128, and
256 in represented a column vector that has the value 2 at the 128th row, the value 1 at the 256th
row, and zero at all other rows. The variable = describes the non-negative repetition count for each
strategy. So a 24 in the ith row of = means that the strategy represented by the ith column of A should
repeat 24 times. Moreover, in the un-weighted setting, Az = b states that we would like to “mix” the
pre-defined strategies (columns of A) such that the number of samples matches the histogram b, and
where each strategy is used = > 0 times. We use the residual weight w to control the penalization
of the Az — b residual on different sequence lengths (different rows of b). Heuristically, we set
the weight of 0.09 for all sequences of length 8 or smaller because they are considered acceptable
padding sequences while all other sequence lengths get weight 1. We discuss this heuristic choice of
parameters in Section [F.4.5|and [E3](1). The overall efficiency of the packing is not greatly influenced
by the weighing (less than 1% extra speed-up).

After solving wAx = wb for x > 0 using an off-the-shelf solver, we obtain a floating point solution,
which means that the repetition counts are not necessarily integers. Since we cannot use a non-natural
number of strategies, we round the solution & to the nearest integer. The error introduced by this
rounding is found to be negligible (a few hundred sequences in the worst case) compared to the size
of the dataset (millions of sequences). The time complexity and space complexity of the algorithm
are O(n + s3,) and O(s3,). Further details are provided in Section [F.4]

m

3.2 PACKEDBERT: MODEL CHANGES

This section describes how any vanilla BERT implementation should be modified for packed sequence
processing, such that the behavior of the model is the same as when processing unpacked sequences.
Preserving the mathematical equivalence is necessary to ensure existing BERT pre-training and
fine-tuning practices remain valid, as well as being required by benchmarks such as MLPerf™ (17).
The presented approaches and principles apply to a variety of other models.

3.2.1 ADIJUST POSITIONAL EMBEDDINGS

The BERT model uses three types of embeddings: token, segment, and positional embeddings. The
latter is canonically implemented as a bias add operation, rather than a full embedding look-up. This
is possible because the positional indices increase linearly for every sequence. However, when using
the packed data format the position index needs to be reset with each new packed sequence. For
instance, when packing two sequences one of length 2 and one of length 3, the positional embedding
indexes that need to be picked up are [0, 1,0, 1, 2]. To achieve this, the bias add needs to be replaced
by an embedding look-up to extract the correct positional embedding for each token in the pack. This
also requires keeping an extra input which specifies the position of each token in its sequence. This
required adjustment has only a minor impact on absolute accuracy/loss (see Section[d.2]and .2.T)).

3.2.2 ADJUST ATTENTION MASKING

input Aggregat
Unpack to packing depth 3 Loss/ACC regate
mask = np.array([[1, 1, 1, 2, 2]]) reckiopaene —— -
0 2s oo —
0, 1 mask 11100 ————————
zero_one_mask = tf.equal (mask, mask.T) 1100 - [ee—
X 000 0 1 1 | o—— ——)]
for use with softmax: 0.0 0 1 1) ——— e ——
softmax_mask = tf.where (|

zero_one_mask, 0, -1000)

Figure 2: Attention mask code [left], respective zero-one mask [middle], and vectorized unpacking
of the sequence loss[right]. White rectangles correspond to padding.

Under review as a conference paper at ICLR 2023

To maintain an implementation that is consistent with the un-packed version, tokens from different
sequences within a pack should not be able to attend to each other. This is typically achieved in
other implementations by unpacking the sequences using custom attention kernels and then doing
the attention per-sequence (5). Instead, we propose directly masking the attention matrix with a
block-diagonal mask before the attention softmax. This is straightforward to implement in modern
frameworks (see Figure[2). Naturally, there is a cost to both the mask construction and applying
it to the attention matrix. However, it is required to keep the accuracy (see Table [T} Section {.T}
Section[4.2)). See also the code of the deprecated tensor2tensor library and our own provided code.

3.2.3 ADJUST PER-SEQUENCE LOSS AND ACCURACY

Canonical implementations of BERT compute the cross-entropy loss for the masked language model
on a per-token basis. However other NLP tasks, such as SQuAD, compute the loss and accuracy on
a per-sequence basis. This section discusses how to handle such tasks when training with packed
sequences. Simply feeding packs of sequences to the same implementation of cross-entropy would
result in a per-pack weighted loss. In other words, the overall loss on the micro-batch would sum-up
the losses on the individual packs, rather than individual sequences. As a result, the model would
converge to a different optimum than when running with the un-packed implementation. For instance,
a pack of a single sequence would contribute to the loss with the same weight as a pack of three
sequences.

To recover the per-sequence averaging behavior of the canonical un-packed BERT implementation,
we effectively “unpack” the incoming logits and labels. Once the sequences have been unpacked,
we can compute the loss on each sequence separately as usual and then add up the losses. However,
rather than looping through the sequences index, we compute on all indexes in parallel (see Figure [2).
This minimizes the latency overhead of un-packing the loss calculation. As an example, we show how
per-sequence loss can be implemented for the pre-training task. We use the “masked Im weight” (7))
input tensor to represent which sequence a given masked token belongs to (0, 1, 2 and so on). This
is consistent with the canonical BERT implementation where this input takes a value of either 1
(belonging to the sequence) or 0 (belonging to padding). The full methodology is detailed in Listing 3]
and can be applied to other classification or pre-training tasks.

3.3 ADJUST HYPERPARAMETERS

In terms of convergence behavior, the primary consequence of packing is an increase in the effective
batch size (with respect to number of sequences and real tokens) with some added variation over
different iterations. If we look on the sentence level, the number of sentences in one batch increases
by the packing factor. Similarly, the number of tokens in one batch increases. Hence, hyperparameters
that are sensitive to these numbers need to be adjusted.

A direct solution is to reduce the computational batch size by the packing factor (average number of
sequences per pack) and keep all other hyperparameters the same. For example, if the packing factor
is 2, cutting the gradient accumulation count by half is sufficient. The advantage of this strategy is that
no fine-tuning of hyperparameters is required and performance curves are comparable. However, this
approach might be not desirable as it might imply under-utilizing the memory/compute, especially if
the micro batch size needs to be reduced.

Hence to preserve batch size and optimize hardware utilization, we additionally propose an approxi-
mate heuristic for updating the decay parameters of the LAMB optimizer (34)) . For a packed dataset
with a packing factor p, we update the decay parameters as: 31 := 37, B2 := 5. For p = 2, this
corresponds to the exact parameters for calculating momentum and velocity, when updating with the
same gradient twice (Section[D). A common approach is to scale the learning rate with the batch size.
However, our experiments in Section4.2]show that this reduces convergence speed.

Since these adjustments are only heuristics the convergence of the model will be comparable but not
identical. In particular, it is unlikely that simply adjusting the hyperparameters will fully undo the
impact of the increased batch size. However, with these adjustments, researchers should be able to
continue to use existing configurations.

https://github.com/tensorflow/tensor2tensor/commit/c9144dfa5f514cab529f487b069415daee5e211e#diff-3c271923bb62bdd35f3b0f6a2c94ea320825d834bbf51334a9acbc04fbea9763R538

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS

4.1 BIN PACKING ALGORITHM COMPARISON

We evaluate our algorithms using the following metrics: number of packs, number of all tokens,
number of padding tokens, solution time of the packing algorithm (after histogram and strategy
creation), number of strategies used, packing efficiency (the fraction of non-padding tokens in the
packed dataset), the speed-up achieved compared to not packing (depth 1), and the average number
of sequences per sample (packing factor). For SPFHP, we analyse different (maximum) packing
depth, since packing is less efficient with smaller depth and we want to get a general understanding
on how the packing depth influences the processing time. For NNLSHP, we focus on packing
depth 3 because it packs the data sufficiently well. For the speed-up analysis, we focus on the
intelligence processing unit (IPU) (11)) (IPU-M2000, 16 accelerator chips), BERT phase 2 pretraining
setup as in Section[d.2] A GPU dynamically loads the code into the accelerator; in contrast, the
IPU works with a static pre-compiled engine that gets loaded onto the chip at the start of the run.
While other approaches result in excessive padding or continuous changes of the code, our approach
can work with the same code for the whole dataset. So in this setting the IPU architecture would
especially benefit from our approach since it avoids code changes. Nevertheless, it can be applied
to any implementation on GPU or TPU. For determining the speed-up, we take advantage of the
precompiled kernel. Since time measurements are quite noisy, we can profile the kernel and how
many cycles it takes for processing a batch. That way, we can determine the overhead (in cycles)
from processing the additional attention masking and for unpacking the loss. Combining overhead
and packing factor, we get the speed-up estimate. No experiment repetitions are required since the
algorithms and measurements are deterministic.

Table 1: Key performance results of proposed packing algorithms (SPFHP and NNLSHP) on IPU.

pack. packing EFF p OH realized
depth algorithm (%) (%) speed-up
1 NONE 50.0 1.00 0.000 1.000
1 SORT 999 2,00 >100 <«1.000
~10 GREEDY =78 =1.6 =~4.48 ~1.5
2 SPFHP 80.5 1.61 4.283 1.544
3 SPFHP 894 1.79 4.287 1.716
3 NNLSHP 99.7 2.00 4.287 1.913
4 SPFHP 939 1.88 4.29%4 1.803
8 SPFHP 989 198 4.481 1.895

max SPFHP 99.6 1.99 4477 1.905

Packing depth describes the maximum number of packed sequences. NONE is the baseline BERT
implementation, whereas SORT corresponds to sorted batching, and GREEDY concatenates se-
quences as they arrive until they would exceed 512 tokens. Setting no limit resulted in a maximum
packing depth of 16. EFFiciency is the percentage of real tokens in the packed dataset. The packing
factor describes the resulting potential speed-up compared to packing depth 1. With overhead (OH),
we denote the percentage decrease in throughput due to changes to the model to enable packing (such
as the masking scheme introduced in Section [3.2.2)). The realized speed-up is the combination of
the speed-up due to packing (the packing factor) and the decrease in throughput due to the overhead
on the IPU. It is used to measure the relative speed-up in throughput and the overhead from masking
and loss adjustment. SORT can be only efficient on GPUs (see Section[4.4).

The main results for the performance metric evaluation are displayed in Table[I] The processing
time for SPFHP on an Intel(R) Xeon(R) Gold 6138 CPU with 2.00GHz, 80 nodes, and 472G RAM
was around 0.03s and independent from the packing depth. Classical First-Fit-Decreasing requires
87-120s, a lot of memory, and scales almost linear with the number of samples. We see that the
overhead slightly increases with packing depth but that the benefits of packing outweigh the cost. The
best speed-up is obtained with NNLSHP at depth 3 which required 28.4s on the CPU for processing
and ran out of memory for larger depth. With a value of 1.913, it is close to the theoretical upper
bound of 2.001. The results show that efficiency, packing factor, and speed-up can be viewed inter-
changeably. The amount of time needed to process a sample (a pack of sequences) is barely changed

Under review as a conference paper at ICLR 2023

relative to the un-packed implementation. The packing factor, or the improvement in efficiency,
effectively provide an accurate estimate of the speed-up. GREEDY packing as used in T5 shows
to be quite inefficient and sorted batching (SORT) is highly efficient in avoiding padding but the
resulting different computational graphs cause a major overhead on the IPU that exceeds the benefits
of avoiding the padding. Since we made our algorithm and code public available, results have been
reproduced with a different framework on the Habana Gaudi accelerator (10) and confirmed that our
approach is hardware and software independent giving it a huge advantage over existing approaches.

4.2 MLPERF™ PHASE 2 PRETRAINING SETUP: LEARNING CURVES AND HYPERPARAMETER
ADJUSTMENT

For depth 1 (classic BERT) and NNLSHP with depth 3, we additionally evaluate on the MLPerf™ ver-
sion 0.7 BERT pre-training benchmark (17). Briefly, this involves training from a standard checkpoint
to a masked-language model accuracy of 71.2% using 3 million sequences with a maximum length of
512 tokens (refer to (19) for details). Following this standardized benchmark supports reproduction of
results even on other systems and makes sure that the reproduction effort is moderate and setup rules
are clearly documented. We compare the resulting speed-up as well as the respective learning curves
by evaluating the data on a held-out validation dataset. The objective of this additional evaluation is
to analyse if convergence behavior is changed by the packing strategy and if the theoretical speed-up
can be achieved in practice.

With packing, we effectively increase the average batch size by the packing factor (= 2). However,
with a different batch size, different hyperparameters are required (see Section[3.3)) and there is no
mapping that will generate exact matching of results but only heuristics. In a first comparison, we
use the same hyperparameters when comparing packed and unpacked training except for cutting the
accumulation count by half. This way, we make sure that the batch size is constant on average and
we have the same amount of training steps. In the second comparison, we evaluate our heuristics and
how they compensate the difference in batch size. This setup is more desirable because it is beneficial
to use the hardware to its full potential and cutting the batch size by half usually reduces throughput.
In the third comparison, we compare two optimized setups. In these two cases, packing takes half the
amount of training steps.

The learning curves are displayed in Figure[3] In the first setup, we see the curves almost matching
perfectly when normalizing by the numbers of samples processed. Differences can be explained
by the variation of the number of sequences in the packing batch, and general noise in the training
process. Especially after the initial phase, the curves show a near-identical match. The second setup
shows bigger differences since changing the batch size and hyperparameters changes the training
dynamics. We observe slower convergence early on in training due to the increased batch size. This
is expected. The adjustment of the learning rate actually decreases performance probably because we
correct for the increased number of sequences already in the modified loss. With the adjustment of
the decay parameter of LAMB, we see matching performance at the later training stages. However,
it is not feasible to completely recover the early convergence behavior of the smaller batch size by
adjusting the hyperparameters. For instance doubling the batch size of unpacked BERT to 3000
and adjusting the LAMB decay parameters leads to more of a slow down in convergence than
when running packed BERT with a batch size of 1500 and a packing factor of 2. n practice, our
implementations exceeds the estimated 1.913 maximum speed-up. This estimate is based on the
reduction in the computational work needed to process the dataset. However, packing the data also
reduces the latency of the transferring the data to the device. Figure [3]shows that the realized total
speed-up from packing exceeds 2.

4.2.1 ABLATION STUDY

So far, we have shown that with the introduced adjustments, we can match the accuracy of unpacked
BERT. In the following, we analyze in how far the masking adjustment is required. In Figure 4 we
can see that without our adjustments, training loss and accuracy worsen drastically and a longer
training time does not lead to a recovery. When not adjusting the positional embedding, the loss and
accuracy almost match. However, the accuracy stalls at 71.8% and does not reach the target accuracy
of 72.1%. So overall, both adjustments are crucial to avoid a reduction in performance.

Under review as a conference paper at ICLR 2023

—— classic, beta: 0.81 35

w
wn

—— classic, bs: 1500, beta: 0.81 —— classic, bs: 1500, beta: 0.81
4 packed, beta: 0.66

—— packed, beta: 0.66, double Ir 3.0
—— packed, beta: 0.81, double Ir
o

packed, ebs: 768+*2, beta: 0.81

w\\ .
|

0 1 2 3 0 1 2 3 0.0 0.5 1.0 15 2.0
samples le6 samples le6 relative time

classic, bs: 3000, beta: 0.66
—— packed, ebs: 1500*2, beta: 0.66

w
o

training loss
N
w
training loss
w
training loss

N
o

=
w»

Figure 3: Comparison of learning curves for packed and unpacked processing, where all experiments
converged to the target accuracy within the same number of training samples(3 million). [left] same
effective batch size (ebs is batch size times packing factor), [middle] different heuristic adjustments
of the hyperparameters (batch size 1500 for all runs, such that ebs for packed runs is 1500 * 2), and
[right] realized speed-up from packing (in excess of desired 2x). Further learning curves are provided
in Section

—— no mask adjustment
packed BERT baseline

/J\/f/—/\/\/w 3% 100 —— no pos. emb. adjustment
X

4x10°

o
(=]

training loss

training accuracy (percent)

—— no mask adjustment 2x10°
55 packed BERT baseline
—— no pos. emb. adjustment
50
0 500 1000 1500 0 500 1000 1500
Iteration count Iteration count

Figure 4: Comparison of learning curves with and without mask or positional embedding adjustment
in our packed BERT approach. The grey accuracy baseline to reach is 72.1%.

When running packed BERT without the NSP loss but keeping everything else the same in a full
training setup, we observed that downstream performance on SQuAD reduced the F1 measure by
1.31% and EM by 1.15%. Hence, we do not consider removing NSP as done in approaches like
RoBERTa and T5 as discussed in Section Il

4.3 FULL PRETRAINING AND SQUAD FINETUNING

Packing slightly violates the i.i.d. assumption of data. Thus, we have to check that downstream
performance is not impacted by packing. This is especially relevant in a full training setup without
a starting checkpoint. To this aim, we show that the packed and unpacked SQuAD 1.1 scores are
comparable after a full-pretraining of BERT base and large plus fine-tuning. During pre-training,
in order to avoid giving an advantage to packing by further hyperparameter tuning, we reduce the
gradient accumulation count for the packed BERT training for phase 1 and phase 2 to match, on
average, the total number of sequences that get processed before each weight update. With this
approach, we can use the same hyperparameters and number of training steps but process each batch
faster by avoiding the processing of padding. This gives a slight disadvantage to the packed run in
terms of machine utilization, as explained in Section[3.3|and is different to the speedup analysis in
Section[#.2] For Phase 2, we use sequence length 384 since longer range attention is not relevant
for SQUAD 1.1. The respective speed-ups from packing for BERT base and large are shown in
Table 2} the realized speed-up, measured as the quotient of the throughputs between the packed
and unpacked runs, is slightly lower to the theoretical throughput (i.e. the packing factor) due to
the packing overhead. Further learning curves with the loss function and accuracy are provided in
Section [P] For the fine-tuning training on SQuAD 1.1, we do not use packing. The scores, computed
as the median of 10 different seeds, are displayed in Table[3] They are comparable to the reference
ones in (6): for BERT base (resp. large) the F1 score is reduced by 0.2% (resp. 0.3%) and the EM
score increases by 0.3% (resp. 0.02%).

Under review as a conference paper at ICLR 2023

Table 2: Measured speed-ups in BERT Table 3: SQuAD 1.1 scores after BERT pretrain-
pretraining with packing. ing with packing.
Model Sequence Packing Realized Model Configuration F1 Exact
size length factor speed-up size match
base 128 1.17 1.15 base ©) 88.5 80.8
384 1.70 1.68 Packed 88.32 81.03
Jarge 128 1.17 1.15 Jarge @6) 90.9 84.1
384 1.70 1.69 Packed 90.65 84.12

4.4 SCALING ANALYSIS: IMPACT OF ACCELERATORS COUNT

A further advantage of packing over competing un-padding approaches is the inherent load balancing
provided by packing. So called un-padding approaches rely on dynamically launching custom kernels
that ignore padding. A stated advantage of such implementations is the ability to avoid computing
the complete (512 x 512) attention matrix. This provides additional computational savings compared
to packing, where the attention matrix is computed in its entirety and then masked. Because of
these additional savings, un-padding can exceed the theoretical upper bound for speed-up from
packing (2.013 on Wikipedia). As a result of the dynamic nature of the approach, the processing
time with un-padding is different for each sequence in the batch, and the amount of time required to
process a batch of sequences will be determined by the processing time of the longest sequence in
the batch (with the sequences being processed in parallel). Furthermore, in the multiple accelerator
setting the processing time on each device will vary depending on the sequences in the batch that it
receives. Devices which finish early have to wait for the slowest device to finish before exchanging
gradients. This load-imbalance between the devices (and inside the batch) leads to a considerable
decrease in the speed-up from un-padding as the number of accelerators is increased (see Figure 3]
and Section[E|(1)). In contrast, packing (our approach) is inherently load-balanced. The processing
time on each accelerator is independent of the content inside the batch received by the device. Any
number of accelerators can therefore operate in unison without having to wait for the slowest batch to
process (all per-device batches are equally fast).

2.013

© 1.800
:600
.500 -
4001 — theoretical upper-bound
.300 packing (our approach) \\\\
2001 —— un-padding (Effective Transformer)
1001 — padding (common baseline)
1.000

up
-
©
=
W

[
N
o
o

estimated speed

HRRPRRPRR

1 2 4 8 16 32 64 128 256 512 10242048
number of accelerators

Figure 5: Comparison of the theoretical speed-up as the number of accelerators is increased.

5 CONCLUSION

Whereas packing is a well known concept, this paper sheds a new light onto it in multiple aspects.
First, we visualize the sequence length distributions of multiple datasets not just from language
domains but also audio and molecular domains to emphasize that packing is beneficial for varied
datasets, leading to more than 2x acceleration by removing 50% or more padding. Second, we
provide two new highly efficient packing approaches based on established solvers that leave almost
no padding and that can tackle arbitrarily large datasets in a matter of seconds, in contrast to existing
approaches that are slow and suboptimal. Third, we demonstrate that without adjusting the sequence
processing algorithm (e.g., BERT) to the packed sequences, predictive performance is reduced. Thus,
we propose several model adjustments that are all necessary to keep predictive performance. Last
but not least, we prove that, thanks to such adjustments, predictive performance is preserved as if no
packing was used — but speed significantly increases, especially since the adjustments come with an
overhead of less than 5%. We prove in our experiments that downstream performance is not impacted
by packing and that the anticipated 2x acceleration can be achieved.

Under review as a conference paper at ICLR 2023

REFERENCES

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(91

(10]

(1]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

ANONYMOUS. Supplemental Material for “Efficient Sequence Packing without Cross-contamination:
Accelerating Large Language Models without Impacting Performance’, 2022.

BotToUu, L., CURTIS, F. E., AND NOCEDAL, J. Optimization Methods for Large-Scale Machine Learning.
SIAM Review 60, 2 (jan 2018), 223-311.

BRro, R., AND DE JONG, S. A fast non-negativity-constrained least squares algorithm. Journal of
Chemometrics 11,5 (sep 1997), 393-401.

BROWN, T. B., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J., DHARIWAL, P., NEELAKANTAN,
A., SHYAM, P., SASTRY, G., ASKELL, A., AGARWAL, S., HERBERT-VOSS, A., KRUEGER, G.,
HENIGHAN, T., CHILD, R., RAMESH, A., ZIEGLER, D. M., WU, J., WINTER, C., HESSE, C., CHEN,
M., SIGLER, E., LITWIN, M., GRAY, S., CHESS, B., CLARK, J., BERNER, C., MCCANDLISH, S.,
RADFORD, A., SUTSKEVER, I., AND AMODEI, D. Language Models are Few-Shot Learners. In Advances
in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (may 2020).

BYTEDANCE INC. Effective Transformer. https://github.com/bytedance/effective_
transformer, 2021.

DEVLIN, J., CHANG, M. W., LEE, K., AND TOUTANOVA, K. BERT: Pre-training of deep bidirectional
transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings

of the Conference 1 (oct 2019), 4171-4186.

DEVLIN, J., CHANG, M. W., LEE, K., AND TOUTANOVA, K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. https://github.com/google-research/bert,
2019.

DEVLIN, J., CHANG, M. W., LEE, K., AND TOUTANOVA, K. Pre-training data cre-
ation script for BERT. |https://github.com/google-research/bert/blob/master/
create_pretraining_data.py#L243,2019.

FEDUS, W., ZOPH, B., AND SHAZEER, N. Switch Transformers: Scaling to Trillion Parameter Models
with Simple and Efficient Sparsity. arXiv (jan 2021).

INTEL, 2021.

Jia, Z., TILLMAN, B., MAGGIONI, M., AND SCARPAZZA, D. P. Dissecting the Graphcore IPU
architecture via microbenchmarking. ArXiv abs/1912.03413 (2019).

JOHNSON, D. S. Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Technology,
1973.

JOHNSON, D. S., AND GAREY, M. R. A 7160 theorem for bin packing. Journal of Complexity 1, 1 (oct
1985), 65-106.

KORTE, B., AND VYGEN, J. Combinatorial Optimization, vol. 21 of Algorithms and Combinatorics.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

LEE, C. C., AND LEE, D. T. A Simple On-Line Bin-Packing Algorithm. Journal of the ACM (JACM) 32,
3 (jul 1985), 562-572.

Liu, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY, O., LEWIS, M., ZETTLEMOYER,
L., AND STOYANOV, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv (jul 2019).

MATTSON, P., REDDI, V. J., CHENG, C., COLEMAN, C., DIAMOS, G., KANTER, D., MICIKEVICIUS,
P., PATTERSON, D., SCHMUELLING, G., TANG, H., WEI, G., AND WU, C. MLPerf: An Industry
Standard Benchmark Suite for Machine Learning Performance. IEEE Micro 40, 2 (2020), 8-16.

MENG, Q., CHEN, W., WANG, Y., MA, Z. M., AND L1U, T. Y. Convergence analysis of distributed
stochastic gradient descent with shuffling. Neurocomputing 337 (apr 2019), 46-57.

MLCOMMONS. v0.7 Results. https://mlcommons.org/en/training-normal-07/} 2020.

Result not verified by MLPerf. Throughput/speedup is not the primary metric of MLPerf. MLPerf name
and logo are trademarks. See www .mlperf . org for more information.

10

https://github.com/bytedance/effective_transformer
https://github.com/bytedance/effective_transformer
https://github.com/google-research/bert
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L243
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L243
https://mlcommons.org/en/training-normal-07/
www.mlperf.org

Under review as a conference paper at ICLR 2023

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

NVIDIA. Reference numbers for BERT un-padding results. https://github.com/mlcommons/
training_results_v0.7/blob/master/NVIDIA/results/dgxal00_ngc20.06_
pytorch/bert/result_0.txt} 2020. Throughput/speedup is not the primary metric of MLPerf.
MLPerf name and logo are trademarks. See www .mlperf . org/for more information.

NVIDIA. Faster Transformer. https://github.com/NVIDIA/DeepLearningExamples/
tree/master/FasterTransformer/v1, 2021.

OTT, M., EDUNOV, S., BAEVSKI, A., FAN, A., GROSS, S., NG, N., GRANGIER, D., AND AULI,
M. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019:
Demonstrations (2019).

PANAYOTOV, V., CHEN, G., POVEY, D., AND KHUDANPUR, S. Librispeech: an asr corpus based on
public domain audio books. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on (2015), IEEE, pp. 5206-5210.

RAFFEL, C., SHAZEER, N., ROBERTS, A., LEE, K., NARANG, S., MATENA, M., ZHOU, Y., L1, W.,
AND L1u, P. J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal
of Machine Learning Research 21 (oct 2019).

RAJPURKAR, P., ZHANG, J., LOPYREV, K., AND LIANG, P. SQuAD: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (Austin, Texas, Nov. 2016), Association for Computational Linguistics, pp. 2383-2392.

RAMAKRISHNAN, R., DRAL, P. O., RUPP, M., AND VON LILIENFELD, O. A. Quantum chemistry
structures and properties of 134 kilo molecules. Scientific Data 1 (2014).

RUDDIGKEIT, L., VAN DEURSEN, R., BLUM, L. C., AND REYMOND, J.-L. Enumeration of 166 billion
organic small molecules in the chemical universe database gdb-17. Journal of Chemical Information and
Modeling 52, 11 (2012), 2864-2875. PMID: 23088335.

SHEN, J., NGUYEN, P., WU, Y., CHEN, Z., ET AL. Lingvo: a modular and scalable framework for
sequence-to-sequence modeling, 2019.

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N., KAISER, U.,
AND POLOSUKHIN, I. Attention is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Red Hook, NY, USA, 2017), NIPS’17, Curran Associates Inc.,
p- 6000-6010.

WANG, A., SINGH, A., MICHAEL, J., HILL, F., LEVY, O., AND BOWMAN, S. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (Brussels, Belgium, Nov.
2018), Association for Computational Linguistics, pp. 353-355.

WARSTADT, A., SINGH, A., AND BOWMAN, S. R. Neural network acceptability judgments. arXiv
preprint arXiv:1805.12471 (2018).

WoLF, T., DEBUT, L., SANH, V., CHAUMOND, J., DELANGUE, C., Mol, A., CISTAC, P., RAULT, T.,
LOUF, R., FUNTOWICZ, M., DAVISON, J., SHLEIFER, S., VON PLATEN, P., MA, C., JERNITE, Y., PLU,
J., XU, C.,Scao, T. L., GUGGER, S., DRAME, M., LHOEST, Q., AND RUSH, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations (Online, Oct. 2020), Association for Computational
Linguistics, pp. 38—45.

XLA, T. XLA: Optimizing Compiler for Machine Learning. https://www.tensorflow.org/xlal
2021.

You, Y., L1, J., REDDI, S., HSEU, J., KUMAR, S., BHOJANAPALLI, S., SONG, X., DEMMEL, J.,
KEUTZER, K., AND HSIEH, C.-J. Large Batch Optimization for Deep Learning: Training BERT in 76
minutes. arXiv (apr 2019).

YUE, M., AND ZHANG, L. A simple proof of the inequality M FFD(L) < 71/600PT(L) + 1, L for
the MFFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 11, 3 (jul 1995), 318-330.

11

https://github.com/mlcommons/training_results_v0.7/blob/master/NVIDIA/results/dgxa100_ngc20.06_pytorch/bert/result_0.txt
https://github.com/mlcommons/training_results_v0.7/blob/master/NVIDIA/results/dgxa100_ngc20.06_pytorch/bert/result_0.txt
https://github.com/mlcommons/training_results_v0.7/blob/master/NVIDIA/results/dgxa100_ngc20.06_pytorch/bert/result_0.txt
www.mlperf.org
https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer/v1
https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer/v1
https://www.tensorflow.org/xla

Under review as a conference paper at ICLR 2023

Supplemental Material for

“Efficient Sequence Packing without Cross-
contamination: Accelerating Large Language
Models without Impacting Performance”

TABLE OF CONTENTS

I Tnfroductionl 1
2 Sequence length distributions| 2
3 Methods! 3
3.1 Packing algorithms| 3
3.2 packedBERT: model changes| o L. 4
[3.3 Adjust hyperparameters| L 5
6
4.1 Bin packing algorithm comparison| L oo 6
4.2 MLPert™ phase 2 pretraining setup: learning curves and hyperparameter adjustment| 7
|4.3 Full pretraining and SQuAD finetuning| Lo o Lo 8
[4.4 Scaling analysis: Impact of acceleratorscount| 0oL, 9
S Conclusion 9
|A" Broader impact| 14
IB Reproducibility Statement| 14
|C_Related workl 15
D Theorem on LAMB hyperparameter correction heuristic| 16
|E Un-padding scaling estimate] 17
|F__Technical background on packing| 19
|[F.1 Canonical packing problem| oo oo 19
|[E2 Approximate bin packing problem| o o000 19
F3 Definfions] o v oot 20
|[F.4 Non-negative least squares histogram-packing| 20
IS Discussion of residual weightchoice] o 0oL 23
|G Complexity analysis of the proposed packing approaches| 24
|G.1 Complexity Analysis of non-negative least-squares histogram-packing| 24
|G.2 Complexity Analysis of shortest-pack-first histogram-packing| 25

12

Under review as a conference paper at ICLR 2023

|H Periormance Comparlson to GREEI“ FacElng n 15]

I Impact of NSP loss|

|J__Wikipedia with Longer Sequence Length|

[K"Packing SQuAD 1.1|

[C"Packing GLUE]

[M Packing Audio Data (LibriSpeech)]

[N~ Packing Paper Abstracts (PubMed)|

|0 MLPertf™ phase 2 learning curves|

[P Full pretraining of BER'T base and large learning curves|

|Q Note on changing the sequence length for optimal packing|

IR Fine-tuned longest-pack-first histogram-packing|

[S_Extended NNLS with padding token weighting|

[I' Implementation Challenges and Tricks|

[I.1 Packing Algorithms| e

II.2° Positional Encoding|

|U Packing source code]

13

25

25

27

28

29

30

31

32

33

35

35

36

Under review as a conference paper at ICLR 2023

A BROADER IMPACT

We showed that when pre-training BERT on Wikipedia, the computational overhead taken to process
padding tokens is roughly 50%. By eliminating this wasted computational time, the approach
presented in this paper paves a way to halving the carbon footprint of training BERT-based models.

Furthermore, our approach circumvents the need for custom kernels, making the benefits of packing
readily accessible to a broader audience of NLP practitioners. As such, we are hopeful the research
will have a positive impact on the NLP community, and do not see any disadvantage of using this
approach.

The benefit of our algorithm is based on two assumptions: A skewed length distribution in the
training dataset and a hardware setup that trains efficiently on a fixed batch size. If efficient training
is possible, with a variable batch size approaches like FasterTransformer and the fairseq sorted batch
approach will result in the same or even larger benefits (due to smaller self-attention matrices). If the
dataset is generated differently like in GPT models (4) and RoBERTa (FULL-SENTENCES) (16), all
sequences will be at full length and sequences cannot be concatenated and there is indeed no benefit
in packing sequences. However, strategies that reach full sequence length usually combine segments
from different unrelated document sources which can result in reduced performance. Even in the
normal BERT model, there might be this contamination between segments from different documents.
Our paper introduced an approach to avoid the contamination between sequences. However, the same
approach could also be applied to avoid contamination between segments and it remains future work
to explore its benefits beyond BERT pretraining.

Future work would need to investigate the applicability of packing on text produced by different
cultures and in different languages. We have already shown that the speed-up resulting from using
our methods does not only occur when pre-training BERT on Wikipedia but also on other datasets
such as SQuAD and GLUE. Furthermore, the sentence length distribution of the original English
language text shows similar characteristics. Our research leads us to believe that compressible
distributions arise naturally in language tasks and beyond, for instance in DNA sequence lengths (39),
protein lengths (38), and speech (Section[M). Many such sequence modelling workloads are based
on variations of the BERT/transformer architecture and would therefore easily benefit from our
acceleration.

Failures in NLP can have a big impact on society; many technologies, such as Alexa, Siri, and Google
Home, rely on them. Whilst any errors arising from our approach can be avoided, one potential source
of error comes from the implementation. Both the attention mask and the per-sequence loss need to be
modified to support packing. These changes are significantly smaller than those required by custom
kernels, however they may still be time consuming to implement and debug. To help mitigate the risk
of any implementation errors, we share our reference implementations of the required changes in the
appendix.

B REPRODUCIBILITY STATEMENT

All code for the packing algorithms is available in the appendix (Section|U)) and is directly linked to
our GitHub page to simplify the download and usage. We even provide code for different variants
and the histograms of sequence length for different datasets that got tokenized for BERT training of
fine-tuning.

To generate the learning curves, our public submission to MLPerf™ could be used and we are
preparing further code releases in other frameworks. To encourage the use of the adjustments of
models for packed sequences, we additionally provide detailed explanations and code snippets in
TensorFlow.

Detailed mathematical formulas (Section [E|and [F), a theorem proof (Section D)), and complexity
calculations (Section|G]) are provided in this appendix to support our claims in the paper in full detail.

14

Under review as a conference paper at ICLR 2023

C RELATED WORK

The most obvious way to reduce the extent of padding in the dataset is to group samples by size
before batching (SORT), i.e., process the shorter samples together and longer samples together.
BERT is pre-trained in two phases, where the first phase uses sequence length 128 for 900K steps
and the second phase uses sequence length 512 for 100K steps. However even by splitting the
training in this way, the wasted compute due to padding is approximately 20% (see Figure [1). Other
examples of this “sorted batching” approach can be found in Faster Transformer (21, lingvo (28)
fairseq (22), and RoBERTa (16), which group samples of similar size together in one batch and fill
up with padding only to the maximum length in this batch. This approach can be highly efficient
in cases where the dataset length is multiple orders of magnitude larger than the batch size and the
number of different sequence lengths. Despite its high computational efficiency, this approach has
multiple drawbacks. We outline these below and propose an alternative which maintains the high
efficiency, while also circumventing the downsides. Firstly, sorting the data can reduce the overall
convergence speed when the batch size is large because it violates the i.i.d. assumption on the data
distribution (2 [18). Secondly, processing batches with shorter sequence lengths under-utilizes the
compute compared to running the same batch size with a longer sequence length. For GPUs, a
common heuristic to mitigate this effect is to adjust the batch size to keep the number of processed
tokens near constant (22f [16). In general however, the relationship between the sequence length
and the optimum batch size is more complex and maximizing compute utilization can require the
model to be sharded differently across multiple accelerators. Avoiding this, often manual process,
is important for ease of use and the portability of methods across different hardware architectures.
Thirdly, modern NLP applications are optimized and compiled for fixed tensor sizes using tools such
as XLA (33;19), which provides a = 7z acceleration for BERT in MLPerf™ (17) compared to the
non-XLA baseline (33). Changing the sequence length or batch size requires re-optimization of
the computational graph and recompilation of the program for the new tensor shapes. For complex
models such as BERT, optimization and recompilation take a non-negligible amount of time. Even if
one pre-compiled and cached all combinations of batch size and sequence length, the kernels would
still need to be re-uploaded to the device every time the shapes change. Depending on how frequently
the tensor shapes change, the overhead from switching kernels adds up. To avoid these issues, it is
preferable (and common) to work with fixed tensor shapes for the entire duration of the training run.

More advanced approaches for reducing the padding overhead rely on custom computational kernels.
Loosely these are referred to as ‘“un-padding” approaches. In Effective Transformer (5)), the input
batch is provided as a padded matrix but padding values are dynamically removed and restored during
different calculation stages. While un-padding implementations are highly sophisticated and are able
to completely circumvent the processing of padding tokens, they introduce a significant overhead
due to the multiple GPU kernel launches (i.e., one kernel per sequence rather than one kernel per
batch). Additionally the time to process each batch will fluctuate depending on the sequence lengths
in each batch, i.e., batches with only shorter sequences will typically be processed faster. When
working with more than one accelerator, this variability in throughput results in all devices in the
cluster waiting for the device with the most compute intensive batch to finish processing. As such,
un-padding approaches are not appropriate for deployment on large clusters. The “packing” based
approach introduced in this paper offers significant advantages over un-padding approaches. Firstly,
packing is implemented directly at the framework level and requires no additional custom kernel
implementations. Secondly, the processing time for each batch is independent of the content of the
batch, allowing the packing based approach to maintain the same speed-up whether running on a
single device or thousands.

While we demonstrate the effectiveness of packing specifically on the Wikipedia dataset, packing
SQuAD (25) or GLUE datasets (31;30) for BERT also leads to significant speed-ups (some in excess
of 9x) (Sections [K|and [C). The effectiveness of packing is a result of both the length distribution
of the documents in the source datasets as well as the different text preprocessing steps for BERT
(8). The use of bi-directional self-attention in BERT implies that the input sequences should contain
complete sentences. If a sentence is abruptly cut short, the hidden state on other (preceding) tokens
in the sequence will be affected. Language models with causal attention (only attending to previous
tokens in the input) do not have this issue to the same degree. For such models, if a sequence is
cut short at an arbitrary token, the other tokens (which occur earlier in the sequence) will not be
affected. This ability to cut sequences arbitrarily completely trivializes the packing problem for
models based on causal attention. For instance, GPT-3 (4) is trained with a maximum sequence

15

Under review as a conference paper at ICLR 2023

length of 2048 where a single sequence may contain multiple segments of sentences separated by a
special end of segment token. The last segment in each sequence is simply cut to meet the sequence
length requirement making the packing problem trivial and avoiding any padding. In the interest
of computational efficiency GPT-3 does not mask the attention between different segments in a
sequence. In contrast, the packing approach presented in this paper introduces a mask in the attention
layer (see Section[3.2.2)) to prevent cross-contamination between examples in a pack. Note, we mask
the interaction between different sequences and not between different sentences or segments in the
same sequence. This ensures that the characteristics of the original dataset and model are matched
as closely as possible. RoOBERTa and many other models in production like T5 (24) use a similar
packing approach as GPT-3, combining full sentences/sequences with GREEDY packing (first come
first concatenate) and also separation tokens or additional padding. The RoBERTa ablation study
shows that mixing of sentences from different documents reduces accuracy, but it is used nonetheless
for load balancing reasons which indicates that sorted batching is not sufficient.

There might be hidden code snippets as in the deprecated tensor2tensor library that seems to im-
plement the same attention masking mechanism as we propose. However, these lack a sufficient
documentation, testing, evaluation, ablation, and communication to the research community to be
considered state of the art in NLP research. More general, to the best of our knowledge and the
knowledge of many other engineers and researchers that we were in contact with, there is no other
research work that focuses on packing in NLP.

D THEOREM ON LAMB HYPERPARAMETER CORRECTION HEURISTIC

With packing, the effective batch size changes and hence hyperparameters of the LAMB optimizer (34)
need to be adjusted. For a packed dataset with a packing factor p, we update the decay parameters as:
B1:= BV, Ba := BY. For instance if 3; = 0.81 for the un-packed dataset, then for a packed dataset
with an average of 2 sequences per sample one should use a value of 0.812 = 0.66 instead. Assuming
no or only minor changes in gradients and p being a natural number, we can prove that this heuristic
is the exact solution to make sure that momentum and velocity in LAMB are unaffected by packing.
This can be proven by mathematical induction. Note that p > 1 by definition.

Theorem D.1. For any p € N and assuming that respective gradients on a batch of b random samples
are (approximately) the same, choosing

Br =By ey

Ba := 5. 2)
as hyperparameters in the LAMB optimizer ensures that the momentum and velocity after p separate
update steps are the same as with one packed update step with p x b samples.

Proof.

* Base Case:
For p = 1 the left and right side of the equation are the same which matches exactly the
unpacked case. Hence, the theorem holds for p = 1.

* Inductive hypothesis: Suppose the theorem holds for all values of p up to some &, k > 1.
* Inductive proposition: The theorem holds for p = k + 1.

* Proof of the inductive step: Let [be the loss function, w; the weight vector after ¢ updates,

and z¥,..., z} the respective underlying data to calculate the gradient g;. For a single
update step in LAMB with batch size b samples, we compute the gradient
b
1 a , ,
== —(z; . 3
gt b2 8w(x“w) (3)
Since g1 ~ g2 ~ ... = gr+1, We have with the inductive hypothesis and the definitions in
LAMB:
my, = Bfmo + (1 - 8o 4)
ok = B5vo + (1 — B3)g? ®)

16

https://github.com/tensorflow/tensor2tensor/commit/c9144dfa5f514cab529f487b069415daee5e211e#diff-3c271923bb62bdd35f3b0f6a2c94ea320825d834bbf51334a9acbc04fbea9763R538

Under review as a conference paper at ICLR 2023

Now we can calculate (with g1 =~ gx+1)

Mig1 = Py + (1 — B1)gr+1 (6)
~ B (Bimo + (1= BH)gr) + (1 — B1)gr (7
=B mo + (1 - By g (®)

The calculation for vy, is the same. As reference for a packed update with p = & + 1 with Bi
and (35, we would get
TGl , ;4 I& (1=,) 1
=— (@ == — — (7 ~ - = 9
g pb;zzzlaw(xz7w> p]zzl bi=1 aw(xl,’l,U) ngl g1 ()

since we are calculating gradients over b samples which are assumed to be approximately
the same. Consequently, the updates for momentum and velocity would be

my, = fimo + (1= Bi)g (10)
U = Bavo + (1= Ba)gi. (1D
Hence, 31 = f“ and By = Bé"“ is required to map to the formula with the consecutive

updates (for the same amount of data).

* Conclusion: The theorem holds for any p € N.
O

Since we proved that the formulas 31 := %, 82 := (5. hold forall p € N, p > 1, it is safe to assume
that it is an appropriate heuristic forall p € R, p > 1.

E UN-PADDING SCALING ESTIMATE

To demonstrate the severity of the load-imbalance issue in Section 4.4|we consider the scaling of an
un-padding approach with a per-device batch size of 32 running on eight devices (20). From there,
we readily extrapolate the performance to both larger and smaller cluster sizes by fitting a Gumbel
distribution to the observed processing times as described in this section. On a single device with
batch size 32 un-padding outperforms packing and exceeds the theoretical upper-bound for packing.
As the number of devices increases to two or more, the proposed packing approach outperforms the
dynamic un-padding approach. On a cluster with 32 accelerators the speed-up from un-padding drops
to 50% and with 2048 devices the speed-up is only 30%. In contrast, the speed-up due to packing
is independent of the number of accelerators and stays at 1.913. Switching to a smaller batch size
would reduce the load-imbalance issue to some extent, but would also result in under-utilization of
the available memory and compute.

Firstly, we retrieve the per-batch processing time for an un-padding implementation running pre-
training on the Wikipedia dataset from (20). These processing times were obtained using 8 GPUs
each with a per-device batch size of 32. We also retrieve the throughput numbers for the same system
running with padding from (43) and use that as the baseline to compare the un-padded throughput
against.

The throughput on the 8 GPU system is effectively limited by the slowest of the eight batches being
processed in parallel. The Gumbel distribution is particularly suited to modelling the maximum or
minimum value of a fixed size collection of i.i.d. samples (in this case batches). We observe that on
8 GPUs the throughput (i.e. speed-up) distribution indeed closely resembles a Gumbel distribution
with a1 = 1.6 and g = 0.13 as shown in Figure[§

We can extrapolate the performance on the 8 GPU system to larger clusters by recognizing that
the processing time for each cluster is effectively determined by the slowest batch being processed.
Specifically, we could randomly sample (without replacement) two processing times for the 8 GPU
system, and record the max of the two as the processing time for a system of 16 GPUs. However,
this simple approach is too sensitive to outliers in the data and would result in an under-estimate
of the performance of un-padding on large systems. We mitigate the effect of outliers in the data

17

Under review as a conference paper at ICLR 2023

8 GPUs with (bs=32 each) 1 GPU with bs=32
1.2 A
3.0 | fitted Gumbel Estimate
data 1.0 1
2 2.5
2 0.8 -
3 2.01
2z 0.6 -
% 1.5 A
0.4 4
S 1.0
& 0.2
0.5 A
0.0 4
0.0 T T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4
speed-up from un-padding speed-up from un-padding

Figure 6: Left: Speed-up from un-padding on 8 GPUs closely resembles a Gumbel distribution.
Right: statistical estimate of speed-up distribution on a 1 GPU system running un-padding

by avoiding directly sampling the processing times. Instead, we fit a Gumbel distribution to the
processing times of a single batch of size 32 running on one GPU. To perform the fit, we observe that
the cdf on one GPU () is related to the cdf on 8 GPUs (Fs) through (40)(section 1.3):

(1—Ps(s)) = (1 — Pi(s))® (12)

In other words, if the speed-up on the cluster is larger than s, this implies that the speed-up on
every GPUs in the cluster was at least s. Assuming P; is Gumbel and given the 8 GPU Gumbel
parameters ag and (s, we need to fit two parameters, «; and /3. Consequently for the median
(s = ag — BsIn(In(2)), Ps(s) = 0.5), we have:

0.5 = (1 — Py(ag — BsIn(In(2))))®. (13)
And since Ps is Gumbel, we also have an equation for the mode (s = asg, Ps(s) = e)
1—e1)=(1-P(ag))?. (14)

We solve these two non-linear equations simultaneously using the standard SciPy optimization
package.

Listing 1: Infer Gumble distribution parameters.

import numpy as np
from scipy import stats, optimize
alpha_8 = 1.6038
beta_8 = 0.1288
def g(x):
alpha_1, beta_l = x
dist = stats.gumbel_r (loc=alpha_1l, scale=beta_1)
Equations for median and mode
median = alpha_8 - beta_8#np.log(np.log(2))

equationl = 0.5 - dist.sf (median)**n_gpu
mode = alpha_8
equation2 = (l-np.exp(-1)) - dist.sf (mode)**n_gpu

return (equationl**2 + equation2xx2)

res = optimize.minimize (g, [alpha_8, beta_8], method="Nelder-Mead")
alpha_1, beta_l = res.x

The resulting estimated speed-up Gumbel distribution for a single device has « = 1.94, 5 = 0.108
and is shown in Figure [] [right]. To simulate the performance of a cluster of size n with a batch
size of 32 per device, we take the minimum over n samples from this distribution. Repeating this
process to generate many samples allows us to estimate the expected speed-up for any given cluster
size. Unfortunately, we cannot make any statistical inference about the processing times of individual
sequences since the data is only provided at the granularity of 32 sequences per batch, and it is not
clear how much of the computation is done in parallel and how much in serial.

18

Under review as a conference paper at ICLR 2023

F TECHNICAL BACKGROUND ON PACKING

F.1 CANONICAL PACKING PROBLEM

The bin packing problem deals with the assignment of items into bins of a fixed capacity such that the
number of utilized bins is minimized. In the canonical formulation of the packing problem a vector

s(4) of length n is used to represent the items being packed, where s(4) denotes the length of the i-th
sequence/item. The allocation of items into bins is tracked through the assignment matrix B, where
B;; € {0, 1} states whether the i-th sequence should be placed into the j-th bin. In the worst case
scenario, every item is assigned to its own bin, thus B € R™"*". Notably, s grows linearly in the
number of sequences/items being packed and B grows with the square. To mask out unused bins
y; € {0,1}, denotes whether the j-th bin is being used. The optimization objective is to minimize the
sum of y; while making sure to assign each s; to exactly one bin and not exceeding the maximum
bin capacity s, for each bin. This problem formulation is well known as bin packing (14).

n

Minimize the number of bins.
ye{0, 1}" Be{o 1}nxn z;yﬂ

s.t. Z b =1 Vi Assign each length/sequence to only one bin.

n

Z s(0)bij < smy; Vi Cumulative length cannot exceed capacity.

i=1
15)

Bin packing is a strongly NP-complete (14) problem. Producing an exact and optimal solution
is possible with a variety of existing algorithms, for example with the branch-and-cut-and-price
algorithm (36). However, given that we want to apply it for very large n (16M for the Wikipedia
dataset) an approximate approach is required.

F.2 APPROXIMATE BIN PACKING PROBLEM

Approximate packlng approaches are divided into online and offline algorithms (12). Online algo-
rithms process 1ncom1ng sequences one-by-one in a streaming fashion, whereas offline algorithms
have a holistic view of all samples to be packed but typically still operate on a per sample basis.
This results in best case time and memory complexities of at least O(n log(n)) and solutions that
can sometimes be far from optimal, especially for the online algorithms which do not have access
to a holistic view of the datasets. The simplest online approach (next-fit) would be to keep a single
open bin at any given time. An incoming sequence is added to this open bin if it fits, otherwise the
bin is closed (can never be appended to again) and a new one is opened to accommodate the new
sequence (12)). In the case of the Wikipedia pre-training dataset almost 25% of the sequences are of
length 512, which makes this approach very inefficient since bins would frequently be closed because
the incoming sequence did not fit. More specifically, this approach is not able to efficiently combine
one long sequence with one shorter sequence, when the number of long sequences is large. The
algorithms that come closest to the approaches proposed in this paper are the online harmonic-k algo-
rithm (15)), which creates harmonic sized bins for the assignment decision, and the offline Modified
First Fit Decreasing method (135 [35)), which sorts the data, groups it into 4 size categories and defines
a strategy adjusted to these sizes.

In our approaches, we make three major simplifications. We make the problem of bin packing less
dependent on n by operating on the histogram of sequence lengths with bin size 1. Hence, we replace
s(4) by its histogram b and the bin assignment y, B by a mixture of strategies x, where the set of all
available packing strategies is modeled as the matrix A (see also Section[F:4.2)).

Then, we do not solve the full packing problem but focus on a fixed packing depth (in other words
the well known 3-partition problem). Last but not least, we solve the limited depth packing problem
only approximately either with a non-negativity-constrained linear least squares (3)) (NNLS) followed
by rounding to nearest integer solution or by applying Worst-Fit (13;[35)) to the histogram, sorted

19

Under review as a conference paper at ICLR 2023

from largest to smallest (in contrast to using an unsorted dataset). An exact solution would not be
appropriate, since the 3-partition problem is strongly NP-complete (37) as well.

F.3 DEFINITIONS

In this section, we standardize the terms used throughout our methods. Firstly, the terms pack and bin
may be used interchangeably. Secondly, the presented packing schemes impose a limit on how many
sequences can be packed into any given bin. This limit is referred to as the maximum packing depth.
For simplicity, we require the different sequence lengths in a pack to always add up exactly to the
bin capacity s,, (we can always generate a padding sequence of just the right length to fill-up the
bin). A packing strategy is a sorted list of sequence lengths, for example [5, 7, 500], such that the
total sequence length is no more than s,,, and the number of sequences in the pack does not exceed
the maximum packing depth. The output of a packing scheme is typically as set of packing strategies
and the corresponding repeat count for each strategy stating how many times each strategy should
be repeated in order to cover the entire dataset. The strategy repeat count is also referred to as the
mixture of strategies. The objective of the packing algorithm is to jointly design a set of packing
strategies and their repeat counts, such that the amount of padding is (approximately) minimized.
The presence of padding in the packs can either be implicit or explicit. For instance for s,,, = 512
the strategy [2, 508] has an implicit padding of 2 (needed to fill the pack up to the s,,). Alternatively,
the strategy repeat count may over-subscribe a particular sequence length leading to explicit packing.
For instance constructing a pack of [4, 508] may require a new padding sequence of length 4 be
constructed, if there are not enough sequences of that length in the dataset. The packing algorithms,
we present, use both representations.

F.4 NON-NEGATIVE LEAST SQUARES HISTOGRAM-PACKING

The first algorithm proposed in this paper is suitable for settings where it is desirable to achieve a
high packing efficiency with a limited packing depth. The algorithm is deterministic and has three
major components described in Sections[F.4.1] [F.4.2]and[F.4.3]

F.4.1 ENUMERATING PACKING STRATEGIES OF FIXED PACKING DEPTH

Listing all unique ways of packing up to a maximum packing depth can be achieved through dynamic
programming. We only consider packing at most up to 3 sequences per pack. This is the smallest
packing depth that can eliminate the need for most padding on the Wikipedia dataset. Increasing the
depth to 4, increases the size of the packing problem drastically and yields no throughput beneﬁtE]
With only two sequences, packing would be not as efficient since the distribution on sequence length
is not symmetric. We use dynamic programming to enumerate all feasible ways/strategies that up
to M sequences of length 1 — 512 can be packed into a bin of length 512. For example, a packing
strategy may be [512] or [6, 506] or [95, 184, 233]. To avoid listing the same strategy multiple times,
we enforce the sequence lengths within a pack to occur in sorted order, for example, [95, 184, 233] is
equivalent to [184, 95, 233] and should only be listed once. This reduces the search space as well as
the space of potential solutions by a factor of 6 approximately and thus significantly accelerates the
optimization process. If you had the same strategy repeated 6 times instead of having just one instance
of that strategy with weight X, you will have six instances with weight 2:/6 (for example, or any
other distribution). This would conflict with integer rounding of the solutions and with convergence
of optimization algorithms.

F.4.2 CONSTRUCTING THE PACKING MATRIX

The number of rows in the packing matrix is equal to the number of different sequence length
categories. For instance, if we are using a granularity of 1 token to distinguish between different
sequence lengths, then there are “maximum sequence length” rows. Each column of the matrix
corresponds to a valid packing strategy (given the depth of packing). An example packing matrix
for fitting up to 3 sequences into sequence length 8 is given in Table[d] Each column of the matrix
represents a packing strategy. For instance, the first column represents the strategy [1, 1, 6] of
packing two length-1 sequences and one length-6 sequence together to form a pack of length 8. The

?For data distributions that are more skewed than Wikipedia this might look different.

20

Under review as a conference paper at ICLR 2023

number of strategies (and columns in the matrix) is discussed in Section [G] For a packing depth

2
: : 6sm+12
of 3 and maximum sequence length, we obtain around =23 F12

Sm (Sm+4) (28, +1)
288

strategies. For depth 4, around
more get added.

Table 4: Example packing matrix for sequence length 8. Columns represent different kinds of packs.
Rows represent the number of sequences in these packs with a certain length. The last column
represents a pack with only a single sequence of length six.

2111]1]0[0[0[0|O0]O
0(1{0(0|2]1|1]0[|0]O0
0j0|1[0]O0O]2|0[1|0]O
0j]0]1]0]1]0[0[|0|2]0
0j1]0]0]0jO0O|O|T[O0]O
1{0[{0[0O[O[O|1[0O|O0]O
0/0{0|1]0]0|0O]|0|0O]O
0/0[{0|0]O]OJO[O0]O]1

F.4.3 SOLUTION OF THE NNLS APPROXIMATE PACKING PROBLEM

A solution of the packing problem is the mixture of packing strategies = that minimizes the amount of
padding in the packed dataset. We solve directly for the mixture (positive real numbers) and recover
the padding as the negative portion of the residual (see Section[F.4.4).

min ||A -z —b|?
zER™ (16)
s.t. >0

The solution vector x will represent the mixture of the columns of A, in other words the mixture
of valid packing strategies such that A - z is as close as possible (in the least squares sense) to the
histogram of sequence lengths b. We obtain a solution with a non-negative least squares implemen-
tation (415 45) Interestingly in the case of sequence length 512 only 634 out of the 22102 available
packing strategies of depth up to 3 are used (3%).

F.4.4 PADDING AS THE RESIDUALS OF THE PACKING PROBLEM

We compute the residuals of the least squares solution (after rounding the mixture to integer) as:
r=>0b— A round(x) (17

The negative portion of the residuals represents sequences that we are “short”. That is, there is a
deficit of those sequences and we are over-subscribing to them. The positive portion of the residuals
represents sequences which have failed to be packed. Typically, there is a deficit of short sequences
and a surplus of long sequences as demonstrated by the following plot.

In total, there are n = 16°279°552 sequences in the Wikipedia pre-training dataset. After
the non-negative least squares packing (and rounding to integer solution) there are 56799 un-
packed sequences left un-packed (about 0.352%). The residual on sequence lengths 1 to 8 are
[—4620, —4553, —4612, —4614, —3723, —3936, —3628, —3970]. These negative residuals imply
that we need to add this many sequences of their corresponding sequence length to realize the mixture
of packing strategies. In total the first iteration introduces 7.9410° tokens of padding. In contrast
large sequence lengths have a positive residual (a surplus of unused sequences). For sequence lengths
504 to 512 the values are [3628, 3936, 3724, 4613,4612, 4553, 4619, 0]. Note that sequence length
512 has a residual of O since they do not need packing. Intermediate sequence lengths typically have
non-zero (but much smaller) residuals.

The detailed code for the algorithm is provided in Listing

F.4.5 RESIDUAL WEIGHTING

A natural extension of the non-negative least squares problem introduced in Section is to weight
the residuals on different sequence length differently.

21

Under review as a conference paper at ICLR 2023

Un-weighted nnls packing residual

.
4000 -
0
[
g
S 2000 A
3
o
[
«
©
3
3 0
@
o
“
o
=
2
£ —2000
=3
c
—4000 - v under-used sequences
i over-used sequences

0 100 200 300 400 500
sequence length

Figure 7: Visualization of the residual of the NNLS packing problem

min |(wA) -z — (wb)”2
aCR™ (18)
s.t. >0

We should not significantly penalize a deficit in short sequence lengths (smaller than 8 tokens) as
adding up to 8 tokens of padding is not much overhead. Similarly, a surplus in long sequences is
not worrisome because the amount of padding needed to achieve a sequence length of 512 is small.
Reducing the weight of the residual on the first 8 tokens to 0.09 leads to the following residual plot
shown on the right in Figure [In this case the residual is almost entirely shifted to the shorter
sequences and the positive residual on the longer sequences has virtual disappeared.

Weighted nnls packing residual

0 4

—5000
n
[
o
c
v
=

g —10000 -
©
=3
]

g —15000
“
(=}
%

€ —20000 -
3
i=

—25000

under-used sequences
over-used sequences

0 100 200 300 400 500
sequence length

Figure 8: Visualization of the weighted residual of the NNLS packing problem

22

Under review as a conference paper at ICLR 2023

F.5 DISCUSSION OF RESIDUAL WEIGHT CHOICE

This section discusses the choice and effect of the weighting parameters in the NNLSP packing
algorithm. To simplify the problem of selecting reasonable defaults for the residual weights, we
use just two parameters to completely describe the weights: an “offset” parameter and a “weight”
parameter. Originally, all sequence length residuals are given the same weight of 1. This results
in a packing with leftover long sequences, because there are not enough short sequences to pack
them with. To reduce the residual on long sequences, we could either increase the residual weight on
long sequences or reduce the weight on short sequences. We chose to reduce the weight on short
sequences. Specifically, sequence lengths up to the “offset” length have a reduced “weight”. The
other residual weights stay at 1.

To start, we chose an offset of 8 tokens, which is the smallest power of 2 for which there are examples
in the Wikipedia dataset. We decrease the weight on sequences shorter than the “offset” from 1 to 0.9
to 0.09 to see which order of magnitude is the most appropriate. On visual inspection (looking at the
residual plots as in Figure[§), we found that 0.9 still left too many long sequences unpacked. So, we
reduced the weight a further order of magnitude to 0.09. This seemed sufficient to encourage nearly
all long sequences to pack. While visual inspection helps in understanding how many long/short
sequences are leftover, we are also interested in the impact the weights have on the overall efficiency
of the packing.

Without any weighting, we get 99.746359% efficiency, whereas the weighted approach results in
99.746274% efficiency. Hence, we conclude that the impact of the weights on the packing efficiency
is very limited. Additionally, using an “offset” length of 4, resulted in similar numbers, for the full
range of weights from O to 1. Using a weight of O for an “offset” length of 8 resulted in insignificantly
higher efficiency of 99.7519%, whereas using an “offset” length of 16 reduces performance to
99.38964%. A weight of 0 implies that the residual on those lengths can be safely ignored, i.e., the
packing algorithm can thus add as many short sequences as it chooses without any penalty. It is
very interesting that this does not significantly impact the packing efficiency, and can even have a
slightly positive impact. However, increasing the “offset” length further significantly decreases the
performance with weight 0. Keeping the weight at 0.09 and increasing the length reduces performance
slightly, for example with 99.53% at length 256 and 99.728% at length 16.

For our Squad analysis, weighting improved the efficiency slightly from 96.94% to 97.38%. Fine
tuning further with direction grid search, delivered a local optimum of 98.767% efficiency with length
64 and weight 0.002.

Overall the influence of different residual weights on the packing efficiency (and the acceleration
factor) is less than 1%. This might differ from application to application, but it shows that we are
able to use the residual weights to achieve secondary targets (like not having leftover long sequences)
without significantly compromising the packing efficiency.

23

Under review as a conference paper at ICLR 2023

G COMPLEXITY ANALYSIS OF THE PROPOSED PACKING APPROACHES

Since approximate packing algorithms have a complexity of at least O(n log(n)) and we would like
to be able to tackle datasets with 2K million samples, we will discuss the complexity of our packing
algorithms in this section. The complexity depends on the maximum sequence length s,,, the number
of samples n, and the packing depth d.

To create the histogram, we have to iterate over the data once (O(n)). Our histograms will be binned
by size 1, meaning one bin for each sequence length. Hence, a dictionary can be generated (O(s,,))
and used for the sorting (O(1)). The respective histogram vector has dimension s, .

G.1 COMPLEXITY ANALYSIS OF NON-NEGATIVE LEAST-SQUARES HISTOGRAM-PACKING

For a packing depth of one, there is only the strategy [s,,]. For a packing depth of two, we add
the strategies [1, s, — 1], ..., [s;n — [%]] which results in an additional | ** | potential strategies.
Following the dynamic programming approach, the number of possible additional strategies of depth
three can be calculated with

XN e B D
potential strategies = 1= il !
potential strategies Z Z { 5 J (-1

=1 i=j i=1
&5 3. Smom 35m/3m/3+1) (19)
~ 2 "2/ 93 T2 D

j=1
~ [m
T 12

Note that for s,, = 512 the approximation is exact. This means that our strategy matrix A has the

2
dimensions s,, X ([31—’5} + [%]+ 1). Overall, this leaves us with a space complexity of s>, since

A is larger than w, x, and b. So it contains 11°316‘224 numbers which is still much smaller than
n. Note that the original data matrix B had n? entries, which all needed to be optimized together

;2 . .
with the n bin assignments y. We now have only h’g} + [% | free variables in the strategy vector

x. Also note that A can be precomputed when s,,, is known and is independent of the number of
samples. Given a problem matrix with dimension ¢ x j, Luo et al. (42) indicate that the asymptotic
complexity of most solution approaches is O(ij2), whereas they propose an O(ij) solution. Since
we use thSe standard SciPy implementation (4 1)), our estimated total time complexity for NNLSHP is
On +s3,).

For s,, = 2048, the estimate would be 350’540 potential strategies which is still far less than the
number of samples. For packing depth 4, we calculate (47):

L) [fmh | | smizk

Q

Lom (20)

1
@5(232 +9s+4)

=—s(s+4)(2s+1)

Q

24

Under review as a conference paper at ICLR 2023

So with s, = 512, there would be around 940K strategies. In our implementation, this number of
strategies would be too high to create the problem matrix. One alternatives to simplify would be to
not use the exact length of sequences but to only consider even numbers for the sequence length and
round up. That way arbitrary sequence length could also be handled and the limiting factor would be
the complexity of the attention layer in BERT which does not scale well with the sequence length.

G.2 COMPLEXITY ANALYSIS OF SHORTEST-PACK-FIRST HISTOGRAM-PACKING

The complexity calculation of SPFHP is straightforward. We go over the whole data once for the
histogram sorting. Next, we iterate over each of the s,,, bins in the histogram. Lastly, we iterate over
all strategies that were encountered so far. It can be proven that, at each iteration, the number of
strategies can be maximally increased by one. In each step, we potentially add a sequence to existing
strategies but a new strategy is opened up only in the final step, when we either create a new strategy
or we split one of the existing strategies into two. Hence, the number of strategies is bounded by s,;,
and the overall time complexity is bounded by O(n + s2,). The space complexity is O(s?,) since we
need to store up to s,, strategies with maximum s,,, counts for different sequence length.

H PERFORMANCE COMPARISON TO GREEDY PACKING IN T5

TS5 (24) is normally trained on the C4 dataset. However, to give an idea of the difference in
packing efficiency and acceleration compared to our newly introduced algorithm, we can analyse the
performance of greedy aggregation of samples on our given Wikipedia dataset.

We take the histogram and cast it back to a list of different sequence lengths since this is all that
matters for analysing packing behaviour. Next, we randomly shuffle the dataset and iterate with the
greedy aggregation algorithm multiple times to account for randomness. We iterate sequence by
sequence and combine them provided the maximum sequence length of 512 is not yet reached. If it is
exceeded, the packed sequence is considered finished and a new sequence is started.

The greedy packing algorithm itself takes a bit more than 10 seconds, since we are operating on single
sequences and not histogram counts. The efficiency of this approach is 78.24% (standard deviation of
0.005) compared to our 99.75% for NNLSHP. The respective acceleration would be around 1.566x
compared to our 2z. With respective separator tokens, the performance decreases around 0.13%
for one separator token and 0.27% when two separator tokens are required between two sequences.
Following the brief documentation at tensor2tensor [link], two separator tokens would be expected in
the TS processing.

In addition to the packing preprocessing, our paper proposes, rather than using separator tokens, to
instead modify the masking of the attention matrix during training. The RoOBERTa paper shows that
avoiding contamination of sequences from different documents can consistently improve downstream
F1 scores by 0.35%.

I IMPACT OF NSP LOSS

When running packed BERT base without the NSP loss but keeping everything else the same, we
observed that downstream performance on SQUAD reduced the F1 measure by 1.31% and EM by
1.15%.

For the packing in approaches like ROBERTa or TS, it is crucial that there is no NSP loss because
that would circumvent putting arbitrary sequences together in contrast to our approach that can
handle multiple sequences from different documents without cross-contamination. Liu et al. (L6)
argument that NSP can be omitted because “removing the NSP loss matches or slightly improves
downstream task performance”. In their experiments, they compare the normal BERT setup with
NSP (“SEGMENT-PAIR”) to the “DOC-SENTENCES” approach, where there is no NSP and data
in one sequence comes only from one document. For the “SEGMENT-PAIR” approach, the paper
does not address, how much padding tokens are still present. Assuming, it is around 40%, their
correction in batch sizes for each step would result in a significant increase in training steps for the
“DOC-SENTENCES” approach. It is well known that BERT performance increases with longer
pretraining time. Our results indicate that NSP loss might be still relevant, depending on the dataset

25

https://github.com/tensorflow/tensor2tensor/blob/5623deb79cfcd28f8f8c5463b58b5bd76a81fd0d/tensor2tensor/data_generators/generator_utils.py#L1086

Under review as a conference paper at ICLR 2023

generation process. With our approach, we can get the acceleration benefits of TS and RoBERTa
while keeping the predictive performance by avoiding cross-contamination.

26

Under review as a conference paper at ICLR 2023

J WIKIPEDIA WITH LONGER SEQUENCE LENGTH

The histogram raw data for Wikipedia with different maximum sequence length is provided in
Listing [6]and visualized in Figure[9} We can see that with increasing maximum sequence length, long
sequences become more and more rare and the resulting benefits from packing drastically increase.
Keeping in mind that the BERT dataset generation process decreases the size of a maximum of
50% of the sequences, we can infer that having a different dataset generator that truncates any short
sequence, would result in significant loss of data (> 25% for length 512).

max. sequence length: 128 max. sequence length: 384 max. sequence length 512
theoretical max. speed-up: 1.210 0.00 theoretical max. speed-up: 1.742 theoretical max. speed-up: 2.001
0.005

0.005 005 .
-59.9% -30.6% -@
20.004
& 0.004 0.004
© 0.003 0.003 0.003
2
% 0.002 0.002 0.002
Q
o
5.0.001 0.001 0.001
0.000 0.000 0.000
0 25 50 75 100 125 0 100 200 300 400 0 100 200 300 400 500
sequence length sequence length sequence length
max. sequence length: 1024 max. sequence length: 2048
theoretical max. speed-up: 2.984 theoretical max. speed-up: 3.920
4.
10.8% s
20.004 0.003 B35
G Q)
5 & 3.0
< 0.003 x
> 0.002 ©
£ €25
3 0.002]
©)
8 0.001 z20
5 0.001 5
e Q15
=
0.000 0.000 =
0 200 400 600 800 1000 0 500 1000 1500 2000 128 384512 1024 2048
sequence length sequence length sequence length

Figure 9: Sequence length distributions for different sequence lengths in Wikipedia BERT pre-training
dataset and according theoretical speed-up.

Due to the length distribution, it is not anymore sufficient to concatenate only 3 sequences to obtain
perfect packing for maximum sequence length 1024 or 2048. Instead, around 6 and 12 sequences are
required. This cannot be solved by NNLSHP anymore due to search space complexity but requires
an online heuristics like SPFHP or the slightly better LPFHP, introduced in Section [R] that is based on
Best-Fit and splitting counts in the histogram in contrast to the rather simple First-Fit descending.
Figure [I0]shows the achieved speed-ups with LPFHP depending on the maximum number of allowed
sequences.

4.0
max. length

s o
°
§_340 512 /_—
; 25{ = 1024
g — 2048
@ 2.0
S
Q1.5

=
=)

1 2 34 68 1216 32 64 128
maximum number of sequences

Figure 10: Speed-ups achieved by LPFHP for different maximum sequence length and maximum
number of packed sequences.

27

Under review as a conference paper at ICLR 2023

K PACKING SQUAD 1.1

We tokenized SQuAD (25) for BERT (6)) with maximum sequence length 384 and visualized the
histogram over the sequence length (Figure [IT). The distribution looks similar to the Wikipedia
dataset but is slightly less skewed. However, the maximum sequence length only had an occurrence
of 1.2% compared to 23.5%. Hence, the theoretical un-padding speedup is 2.232. In Table we can
see that SPFHP does not concatenate more than 3 samples and obtains 97.54% efficiency in contrast
to a maximally used depth of 16 with 99.60% efficiency on Wikipedia, because of the less skewed
distribution. Note that we have less than 90’000 samples. Hence, NNLSHP is less efficient because
the rounding in the residuals has a much larger impact compared to more than 16 million sequences
in the Wikipedia dataset.

0.012 1

e O
o o
S =
® O

probability density
=
o
(@)]

100 200 300 400
sequence length

Figure 11: SQuAD 1.1 BERT pre-training dataset sequence length histogram for maximum sequence
length of 384.

Table 5: Performance results of proposed packing algorithms for SQuAD 1.1 BERT pre-training.
packing packing # strategies # packs #tokens #padding efficiency packing

depth algorithm used tokens (%) factor
1 none 348 88641 34038144 18788665 44.801 1.000
2 SPFHP 348 45335 17408640 2159161 87.597 1.955
3 NNLSHP 398 40808 15670272 420793 97.310 2.172
3/max SPFHP 344 40711 15633024 383545 97.547 2.177

28

Under review as a conference paper at ICLR 2023

L PACKING GLUE

To explore a variety of datasets and emphasize that skewed distributions are common, we explored all
datasets in the GLUE benchmark (315 130) that came with training data. We loaded the datasets using
the HuggingFace dataset loading API (46). For preprocessing, we followed the implementation in the
HuggingFace transformers repository (32) E| and extracted the respective data processing snippets
to obtain tokenized data with a maximum sequence length of 128. The histogram of the sequence
length for each of the included datasets is displayed in Figure[T2)and the packing results are given in
Table[6] Each dataset benefits from packing. The lower the mean, the higher the packing factors are
that can be reached but with a higher packing depth.

0.125

0.100 1

0.075 1

0.050 1

probability density

o
o
N
]

0.000-

0 20 40 60 80 100 120
sequence length

Figure 12: GLUE dataset sequence length histograms for maximum sequence length of 128.

Table 6: Performance results of proposed packing algorithms for the GLUE dataset. Only the baseline
and the SPFHP packing results without limiting the packing depth are displayed.
data packing # strategies # packs #tokens # padding efficiency packing

name depth used tokens (%) factor
cola 1 34 8551 1094528 997669 8.849 1.000
cola 13/max 29 913 116864 20005 82.882 9.366
sst2 1 64 67349 8620672 7723633 10.406 1.000
sst2 15/max 64 7691 984448 87409 91.121 8.757
mrpc 1 77 3668 469504 274214 41.595 1.000
mrpc 4/max 74 1606 205568 10278 95.000 2.284
qqp 1 123 363846 46572288 35448844 23.884 1.000
qqp 5/max 123 97204 12442112 1318668 89.402 3.743
stsb 1 85 5749 735872 575993 21.726 1.000
stsb 6/max 83 1367 174976 15097 91.372 4.206
mnli 1 124 392702 50265856 34636487 31.093 1.000
mnli 8/max 124 123980 15869440 240071 98.487 3.167
rte 1 112 2490 318720 152980 52.002 1.000
rte 4/max 108 1330 170240 4500 97.357 1.872
wali 1 72 635 81280 57741 28.960 1.000
wnli 6/max 63 192 24576 1037 95.780 3.307

3https ://github.com/huggingface/transformers/blob/master/examples/
text-classification/run_glue.py

29

https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py

Under review as a conference paper at ICLR 2023

M PACKING AUDIO DATA (LIBRISPEECH)

In this section, we show that packing can benefit other domains than NLP like ASR. We use the
LibiSpeech dataset (23) and preprocess it as described at a reference implementationﬂ The resulting
histograms for the subsampled audio sample lengths and respective text labels are provided in
Figure

ity

= 0.008
0.006 -
0.004 1

0.002 1

probability dens

0.000 — T T T T T T
0 50 100 150 200 250 300
sequence length

0.025 |

0.020 1

0.015

0.010

0.005

probability density

0.000— : : : ; : .
0 20 40 60 80 100 120
sequence length

Figure 13: LibriSpeech sequence length histograms of preprocessed audio data [top] as well as target
text data [bottom].

It can be seen that the audio sequence length is dominated by long sequences with 38% of required
padding to meet the max sequence length of 330. Thus the theoretical optimal speed-up of 1.6z
cannot be reached. However, 80% efficiency are possible with any of the proposed packing algorithms
to achieve 1.3z speed-up. This can be already achieved by combining up to 2 sequences. To achieve
almost perfect packing efficiency, a sequence length around 457 and concatenating up to 8 sequences
is required. Due to the quadratic increased computational load that usually comes with longer
sequence length, increasing the sequence length is not practical.

If processing and packing the text data independently of the audio, 99.99% efficiency could be
achieved with a speed-up of 2.24x.

4https ://github.com/mlcommons/training/tree/master/rnn_speech_
recognition/pytorch

30

https://github.com/mlcommons/training/tree/master/rnn_speech_recognition/pytorch
https://github.com/mlcommons/training/tree/master/rnn_speech_recognition/pytorch

Under review as a conference paper at ICLR 2023

N PACKING PAPER ABSTRACTS (PUBMED)

This section analyses the length of abstracts to give an intuition about how different documents
can be in length. Figure |14|depicts the length of abstracts in characters extracted from PubMedﬂ
If these abstracts were directly used as sequences, a character length of 1000 could result in 1.9z
speed-up from packing. The potential speed-ups for length 2000, 3000, 4000 would be 2z, 3z, and
4z, respectively. Note that, document clean-up procedures would usually eliminate documents that
are too short or too long for data sanitizing purposes.

16000 A

14000 A

12000 A

10000 A

8000 A

6000 A

count of abstracts

4000 A

2000 A

0 -

0 500 1000 1500 2000 2500 3000 3500 4000
number of characters

Figure 14: Abstract length distribution in PubMed.

Note that for the processing in BlueBERT (44), paper titles and abstracts get separated into sequences,
tokenized, and then combined with the BERT sequence combination approach for a maximum
sequence length of 128 tokens. Thus, it results in a different distribution.

5Ihttps ://huggingface. co/datasets/pubmedl

31

https://huggingface.co/datasets/pubmed

Under review as a conference paper at ICLR 2023

O MLPERF™ PHASE 2 LEARNING CURVES

This section provides further learning curves related to Section 4.2}

0.704 3.5 —— classic, bs: 1500
> —— packed, bs: 768
o)
© | 0 3.0
s 0.65 E
Iy o
® 0.60 225
2 £
€055/ £2.01
b= —— classic, bs: 1500

0.501 —— packed, bs: 768 1.5

0 1 2 3 0 1 2 3
samples le6 samples le6

Figure 15: Comparison of learning curves for packed and unpacked processing with reduced batch
size for the packed approach.

0.7 —— classic, beta: 0.81
- 41 —— packed, beta: 0.66
@ 2 —— packed, beta: 0.66, double Ir
306 = —— packed, beta: 0.81, double Ir
O o3 8
@© 1 = Al
@ —— classic, beta: 0.81 £
=05 ©
£ —— packed, beta: 0.66 5
©]
b= —— packed, beta: 0.66, double Ir 2

0.4 —— packed, beta: 0.81, double Ir

0 1 2 3 0 1 2 3
samples le6 samples le6

Figure 16: Comparison of learning curves for packed and unpacked processing with heuristics
applied.

w
n

—— classic, bs: 1500, beta: 0.81
—— packed, bs: 1500, beta: 0.66

©
9
o

o

o

w
w
o

training loss
N
18]

training accuracy
o
[e)]
o

0.551 2.0
—— classic, bs: 1500, beta: 0.81
0.501 —— packed, bs: 1500, beta: 0.66 1.51
0.0 05 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
relative time relative time

Figure 17: Comparison of learning curves for packed and unpacked processing in the optimized
setup.

32

Under review as a conference paper at ICLR 2023

P FULL PRETRAINING OF BERT BASE AND LARGE LEARNING CURVES

This section provides further learning curves related to Section 4.3

0.81 5 — classic
> — ked
207 ., packe
‘5 w44
S 0.6/ 2
o £3
2051 £
5 — classic

0.31 —— packed 1

o 1 2 3 4 0 1 2 3 4
samples 1e8 samples 1e8

Figure 18: Comparison of learning curves for BERT base phase 1 (sequence length 128) with
packed and unpacked processing.

0.85 :
— classic
2.01 —
>0.801 packed
g 8
3 [¢]
3)
% 0.75 215
o c
£ T
% 0.701 5
S — classic 1.0
0.651 — packed k\—L—“’——%
0.0 0.5 1.0 0.0 0.5 1.0
samples 1le8 samples 1le8

Figure 19: Comparison of learning curves for BERT base phase 2 (sequence length 384) with
packed and unpacked processing.

33

Under review as a conference paper at ICLR 2023

0.81 5 — classic
> —— packed
g B 4
5]

S 0.6 2
o £3
2 :
504 | B2
5 — classic
—— packed 11
o 1 2 3 4 o 1 2 3 4
samples 1e8 samples 1e8

Figure 20: Comparison of learning curves for BERT large phase 1 (sequence length 128) with
packed and unpacked processing.

0.851 20 — classic
3 —— packed
© i)

é 0.80 2
0 1.5
© g
207> c
€ o
£ 510
£0.70 — classic L0
—— packed
0.651- . : . . ;
0.0 0.5 1.0 0.0 0.5 1.0
samples 1e8 samples 1le8

Figure 21: Comparison of learning curves for BERT large phase 2 (sequence length 384) with
packed and unpacked processing.

34

Under review as a conference paper at ICLR 2023

Q NOTE ON CHANGING THE SEQUENCE LENGTH FOR OPTIMAL PACKING

An interesting aspect of packing is that the maximum sequence length for packing could be larger
than the maximum sequence length in the underlying dataset that gets packed.

For the QM9 dataset, this means that by setting the maximum sequence length to 36 instead of 27 an
optimal 1.6x speed-up can be easily achieved.

Note that the choice of maximum sequence length depends on the underlying machine learning
algorithm. Due to the squared computational and memory complexity of self-attention in BERT
and other transformers, the maximum sequence length is usually kept as small as possible for these
models. So an increase for packing alone is not practical. For algorithms with linear complexity as
for example Graph Neural Networks, implemented in PyG, larger maximum sequence length can be
chosen to ensure, optimal packing is always possible.

R FINE-TUNED LONGEST-PACK-FIRST HISTOGRAM-PACKING

In the main paper, we focused on SPFHP due its simplicity. In this section, we analyse the effect of
applying the “Best-Fit” algorithm (12). Here, the longest pack that still fits the sequence is chosen
instead of the shortest one. In contrast to SPFHP, we additionally consider splitting the histogram
count, if it can fit multiple times. A simple example is sequence length 256, where we divide the
respective histogram count by 2 to create the optimal pack with strategy [256, 256] instead of the
strategy [256]. This latter strategy would be complemented by other sequences but would probably
not result in an optimal packing. The implementation of this approach is much more complex than
the SPFHP implementation. The code is provided in Listing[§]and the results in Table[7]

pack. # strat. # packs # tokens # padding efficiency pack.
depth used tokens (%) factor
1 508 16279552 8335130624 4170334451 49.967 1.000
2 634 10099081 5170729472 1005933299 80.546 1.612
3 648 9090154 4654158848 489362675 89.485 1.791
4 671 8657119 4432444928 267648755 93.962 1.880
8 670 8207569 4202275328 37479155 99.108 1.983
16 670 8140006 4167683072 2886899 99.931 2.000

29/max 670 8138483 4166903296 2107123 99.949 2.000

Table 7: Performance results of longest-pack-first histogram-packing for Wikipedia BERT pre-training
with maximum sequence length 512.

We can see that longest-pack-first histogram-packing (LPFHP) uses a much higher packing depth
when no limit is set (29 instead of 16). Splitting the histogram counts results in slightly higher
numbers of used strategies compared to SPFHP where the number of used strategies is limited by the
maximum sequence length. The best efficiency of LPFHP is 99.949% with packing factor of 2 which
is slightly higher than the 99.75% (1.996 packing factor) for NNLSHP and 99.6% for SPFHP (1.993
packing factor). All algorithms are very close to the upper limit.

Note that for NNLSHP, we only fill up the unpacked samples with padding. Applying best-fit on
the remains, similar results can be expected. Although the benefits of the improved algorithm are
negligible, we share the concept and code below in case packing is applied to other data with a
different distribution that would benefit more from it, or for applications where only perfectly packed
sequences without padding are of interest.

35

Under review as a conference paper at ICLR 2023

S EXTENDED NNLS WITH PADDING TOKEN WEIGHTING

In Section[F.4.4], we defined the residual as

r=>b— A round(x) (21)

and discovered that a positive residual corresponds to sequences that we did not pack at all and
should be avoided. Negative residuals correspond to padding and should be minimized. Due to
this discrepancy, we decided to set small weights for very short sequences (that don’t occur in the
data). However, it was not possible to directly optimize the amount of padding. A negative residual
component for length i, r;, results in |r;| - ¢ padding tokens, however a positive residual actually
results into (512 — r;) - ¢ padding tokens. This cannot be addressed by our weighting approach in

min |[(wA) -z — (wb)]?
2oRm (22)
s.t. >0

Working within the NNLS approach, we can strictly enforce a non-positive residual (before rounding
to integer). To that end, we define a new auxiliary variable 7 =~ —(b — Ax) which is the negative of
the residual, . This will allow us to reformulate the objective < 0 to the non-negative constraint:
7 > 0.

mﬂi@n |(wA) -z — (wb)|* +|w-A-z—w-b—w-7|
zeR™

st. 2>0 (23)
F>0

This will enforce 7 = Az — b > 0 due to the large weight, w := 10°, and no upper limits on 7. Now,
we can set w; := ¢ to optimize for the padding tokens. Due to the use of the squared error, we would
however optimize the squared sum of padding tokens instead of the preferred sum of padding tokens.
To accomplish the latter, we would have to replace the L2-norm problem by an L1-norm problem
which would be too complex to solve. Note that due to rounding, the unwanted positive residuals r
(r < 0) might still occur. This could be avoided by rounding up x instead of normal rounding of x.
To put the new formulation into a solver, we replace

b T w A 0,
b by (b>7xby (T>7wby (w>,andAby (A —Dm) , 24)

where 0,,, is an m X m matrix with m being the maximum sequence length, 512, and D,,, is a unit
matrix of the same dimensions as 0,,,. Since, we are already close to optimum especially on the
Wikipedia dataset, the results are only a little bit better. The processing time however increases from
30 to 415 seconds without considering the increased time for constructing the processing matrix.
Since the slightly improved algorithm might be nevertheless relevant for other applications, we share
it in Listing 0]

36

Under review as a conference paper at ICLR 2023

T IMPLEMENTATION CHALLENGES AND TRICKS

Whereas the model changes are described in Section getting them implemented in the most
efficient way can require a bit more effort. This section points out a few tricks that we used in our
code.

T.1 PACKING ALGORITHMS

Whereas the packing algorithm implementations might look trivial, they can become quite intricate.
For example, when splitting and distributing bins like for example combining 2 sequences of length
256 to a sequence of length 512, the number of categories can drastically increase and thus the search
space. Hence, it is valuable to test each adjustment while changing the packing algorithms. If a
solution is not provided right away, the algorithm switched probably to a way less efficient complexity
category.

T.2 POSITIONAL ENCODING

This approach was implemented as described in Section [3.2.1|by providing the index of the item with
the data. Note that for any other part in BERT, the exact position does not matter. This allows to
actually rearrange the data to our advantage. We can start with the up to 72 mask tokens and have an
additional mask, that tell us, which tokens are the mask tokens, a list that provides their true labels,
and with the positional encoding, we can determine their position in the sequence.

The NSP tokens get moved from the beginnings of their sequences to the end.

T.3 ATTENTION

For the attention mask, we realised creating them on host can have a major cost in data transfer due
to its size. Instead, one can create the mask on the accelerator. Therefore, we implemented a custom
operation using C++ and PopArt: https://github.com/graphcore/examples/blob/
master/nlp/bert/popart/custom_ops/attention_mask.cpp.

Note that in most cases, the attention mask gets not multiplied but added for efficiency. Hence, the
“softmask_mask” is used instead of the multiplication mask from Figure [2]in our implementation.

T.4 AVOIDING LOSS UNPACKING

Note that the MM loss is applied on a token level and does not need any loss unpacking. However,
for NSP, theoretically, the NSP tokens would be distributes within a sequence. During dataset creation
however, we arranged the tokens and moved all NSP tokens to the end. Due to our packing strategy,
we also know that those tokens are limited to a maximum number of 3. This, we can apply the NSP
head to the 3 potential positions and just provide a mask to filter out the relevant NSP tokens. This
way, we need much less memory and compute for the unpacking for the NSP loss.

T.5 TESTING

The ultimate approach to test the correctness of the implementation is to check, if packed and
unpacked sequence provide the same values and gradients. Due to large numeric variations, we
implemented this test in FP32 for our PyTorch Huggingface implementation This way, we could
prove that with the correct adjustments, unpacked sequences processed with vanilla BERT result
in the exact same losses and weight updates as the packed sequences processed with the modified
packed BERT version.

37

https://github.com/graphcore/examples/blob/master/nlp/bert/popart/custom_ops/attention_mask.cpp
https://github.com/graphcore/examples/blob/master/nlp/bert/popart/custom_ops/attention_mask.cpp

Under review as a conference paper at ICLR 2023

T.6 LOSS BALANCING

This section addresses a challenge, called loss imbalance, that is usually faced with small batch sizes
with different appearance when running packed compared to vanilla BERT. It can also translate to
other scenarios where losses get averaged with large amounts and variance of underlying padding in
the data or variance in the underlying “sequences/segments/components’ in a batch. This is highly
relevant since model sizes increase and already now, the microbatch size when running BERT large
on the IPU is 3 and on the GPU for large scale training, a batch size of 3 is used on a single GPU to
limit the total batch size to 12960 aggregated over 4320 GPUSEI

The main question is, how much influence/weight in a gradient update does a single MLM token and
a single NSP token get and how does this change with batch size, packing, or other factors that woule
be expected to be invariants? Let us look into two extreme cases: batch size 1 and a batch being the
full dataset. Note that in the BERT model, we first take the mean over all MLM tokens and over all
NSP tokens and then add the losses up.

For a batch size of 1, there are two extreme cases in the vanilla BERT setting. In case 1, we have
1 MLM token and 1 NSP token. So each token gets a weight of 1 in the final sum. In case 2, we
have 76 MLM tokens and 1 NSP token. So each MLM token gets a weight of 1/76 in the overall
loss/gradien/weight update and the NSP token, again gets a weight of 1. This means, the MLM tokens
of short sequences get a weight of 1 and it reduces linearly down to 1/76 for maximum sequence.
Thus, short sequences get more influence in the weight update and the ratio of weights compared to
NSP changes, too, even though it is unclear how the ratio influences the final result.

Let us assume perfect packing efficiency for packed BERT. Hence, we have 76 MLM tokens and a
weight of 1/76 for the MLM tokens in every case independent of the batch size. However, with a
maximum packing depth of 3, the number of NSP tokens can range between 1 and 3 and thus the
weights can be 1, 1/2, 1/3. This means that NSP loss for a sequence of length 512 gets 3 times more
weight than the NSP loss for a single sequence compared to packing 3 sequences for example of
length 170 together. Again, the ratio between NSP and MLM changes, too.

Now lets look at the other extreme case of a batch being the full dataset of size L (which behaves
similar to the case of a large batch size between 12k-1000k which is common). Again, for vanilla
BERT, the NSP weight is 1/L in any case. Assuming 50% padding, which can be common as
previously shown, and again a maximum of 76 MLM tokens per sequence, we get a total of 76-0.5- L
MLM tokens with the respective reciprocal value for the weight. There is no variation. 76 - 0.5 is the
average number of MLM tokens per sample.

Assuming a packing factor of 2, the respective maximum batch size can only be L /2. This fits to our
scheme of reducing the batch size to avoid further adjustments of hyperparameters. For packed BERT,
the number of MLM tokens is doubled compared to the average case in vanilla BERT and thus the
weightis 1/(76 - 1.0 - (L/2)), assuming a packing efficiency of 100%. The number of NSP tokens
is 2 - (L/2) and the respective weight is 1/L. Again there is no variation and the weights between
packed and vanilla BERT are identical. This seems more like an ideal case that is less dependent on
how samples are put together. Also, it ensures equivalence between packed and vanilla setup.

Getting weights calculated correctly in a distributed setup (data parallel processing as well as
pipelining) where each replica has a small batch size down to 1 is challenging. Each replica would
need separate gradients for NSP and MLM loss, then aggregate a weighted sum for those separate
gradients, and only afterwards add up the gradients before the optimiser update. This is infeasible
because of challenges in framework implementation, large increase of memory requirements, roughly
doubling of the computational workload for the backpropagation, and more than doubling the
communication overhead for weights.

We propose a simplified approach that generalizes from the weights, we observed for large batches,
to the weights in tiny batches. Instead of averaging using the real number of tokens, we propose using
the expected number of tokens instead. Technically that means, the mean aggregation gets replaced
by a sum aggregation multiplied by a constant weight. Let b be our batch size, e the token efficiency,
p the packing factor, and m the maximum number of MLM tokens in a sample. This means, for

Shttps://github.com/mlcommons/training results vl1.1l/blob/main/NVIDIA/
benchmarks/bert/implementations/pytorch/config_DGXA100_540x8x3x1_new.sh#
L2

38

https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/config_DGXA100_540x8x3x1_new.sh##L2
https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/config_DGXA100_540x8x3x1_new.sh##L2
https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/config_DGXA100_540x8x3x1_new.sh##L2

Under review as a conference paper at ICLR 2023

vanilla BERT with sequence length 512, we have something like e = 0.5, p = 1, m = 76 and for
packed BERT, we have e = 1, p = 2, m = 76. Let lﬁwk, i€ I(k),ke{l,..,b} be the active MLM

losses and lg\’,k,j € J(k),k € {1,..,b} be the active NSP losses in a sequence. Then we balance the
MLM loss calculation like:

i,k
Zke{l b} Zzel(k) M Zke{l ,b} Zzel(k)l

mean(ly) = — balanced(l;) = (25)
Zke{l,..,b} Zzel(k b-m-e
and the NSP loss calculation like:
mean(iy) = k€1 Ejesm ¥ "~ balanced(ly) = Lrcpro) D' o)

b-p

Eke{l,..,b} Zje]

Note that when logging the loss, it should be averaged over multiple batches to get a representative
result that is comparable to values previously obtained. This approach is straightforward to implement
in any framework, even though some fine-tuning might be required when working with low precision.

In our experiments, loss balancing only reduced the noise in the NSP loss. Other than that, it had no
influence on the loss curves.

39

Under review as a conference paper at ICLR 2023

U PACKING SOURCE CODE

Listing 2: Non-negative least squares histogram-packing

import time

import numpy as np

from scipy import optimize, stats
from functools import lru_cache

def get_packing_matrix(strategy_set, max_sequence_length) :
num_strategies = len(strategy_set)
A = np.zeros ((max_sequence_length, num_strategies), dtype=np.int32)
for i, strategy in enumerate (strategy_set):
for seq_len in strategy:
Alseqg_len - 1, i] +=1
return A

@lru_cache (maxsize=None)
def get_packing_strategies (start_length, minimum_increment, target_length, depth):
gap = target_length - start_length
strategies = []
Complete the packing with exactly 1 number
if depth ==
if gap >= minimum_increment:
strategies.append([gap])
Complete the sample in "depth" steps, recursively
else:
for new in range (minimum_increment, gap + 1):
new_gap = target_length - start_length - new
if new_gap ==
strategies.append([new])
eclaag
options = get_packing_strategies(start_length + new, new, target_length, depth - 1)
for option in options:
if len(option) > 0:
strategies.append([new] + option)
return strategies

def pack_using_nnlshp (histogram, max_sequence_length, max_sequences_per_pack) :
List all unique ways of packing to the desired maximum sequence length
strategy_set = get_packing_strategies (0, 1, max_sequence_length, max_sequences_per_pack)
print (f"Packing will involve {len(strategy_set)} unique packing strategies.")
Get the packing matrix corresponding to this list of packing strategies
A = get_packing _matrix (strategy_set, max_sequence_length)
Weights that penalize the residual on short sequences less.
penalization_cutoff = 8
w0 = np.ones ([max_sequence_length])
w0 [:penalization_cutoff] = 0.09
Solve the packing problem
print (f"Sequences to pack: ", histogram.sum())
start = time.time ()
strategy_repeat_count, rnorm = optimize.nnls(np.expand_dims (w0, -1) %= A, wO * histogram)

print (f"Solving non-negative least squares took {time.time() - start:3.2f} seconds.")
Round the floating point solution to nearest integer
strategy_repeat_count = np.rint (strategy_repeat_count) .astype(np.int64)

Compute the residuals, shape: [max_sequence_length]
residual = histogram - A @ strategy_repeat_count
Handle the left-over sequences i.e. positive part of residual
unpacked_seglen = np.arange(l, max_sequence_length + 1) [residual > 0]
for 1 in unpacked_seglen:

strategy = sorted([l, max_sequence_length - 1]) # the depth 1 strategy

strategy_index = strategy_set.index (strategy)

strategy_repeat_count [strategy_index] += residual[l-1]
Re-compute the residual with the updated strategy_repeat_count
This should now be strictly < 0
residual = histogram - A @ strategy_repeat_count
Add padding based on deficit (negative residual portion of residual)
padding = np.where (residual < 0, -residual, 0)
Calculate some basic statistics
sequence_lengths = np.arange(l, max_sequence_length + 1)
old_number_of_samples = histogram.sum()
new_number_of_samples = int (strategy_repeat_count.sum())
speedup_upper_bound = 1.0/ (1 - (histogramx (1 - sequence_lengths / max_sequence_length)) .sum()/

old_number_of_samples)
num_padding_tokens_packed = (sequence_lengths * padding) .sum()
efficiency = 1 - num_padding_tokens_packed/ (new_number_of_samplesxmax_sequence_length)
print (f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}")

return strategy_set, strategy_repeat_count

40

Under review as a conference paper at ICLR 2023

Listing 3: Shortest-pack-first histogram-packing

from collections import defaultdict
import numpy as np

def add_pack (pack, count, tmp, final, limit, offset):
"""Filter out packs that reached maximum length or number of sequences."""
if len(pack) == limit or offset ==
final [offset].append((count, pack))
else:
tmp[offset] .append((count, pack))

def pack_using_spfhp (histogram, max_sequence_length, max_sequences_per_pack) :
"""Shortest-pack-first histogram-packing algorithm."""
reversed_histogram = np.flip(histogram)
Initialize main strategy data dictionary.
The key indicates how many tokens are left for full length.
The value is a list of tuples, consisting of counts and respective packs.
A pack is a (sorted) list of sequence length values that get concatenated.
tmp_strategies_per_length = defaultdict (list)
strategies_per_length = defaultdict (list)
Index i indicates here, how much space is left, due to reversed histogram
for i in range (max_sequence_length) :
n_sequences_to_bin = reversed_histogram[i]
length_to_bin = max_sequence_length - i
offset = 1 + 1 # largest possible offset
while n_sequences_to_bin > 0:
if (length_to_bin + offset) in tmp_strategies_per_length:
extract shortest pack that will get modified
n_sequences_to_pack, pack = tmp_strategies_per_length|[
length_to_bin + offset].pop ()
new_pack = pack + [length_to_bin]
count = min (n_sequences_to_pack, n_sequences_to_bin)
if n_sequences_to_pack > n_sequences_to_bin:
old pack gets reduced
n_sequences_to_pack —-= n_sequences_to_bin
tmp_strategies_per_length[length_to_bin + offset].append (
(n_sequences_to_pack, pack)
n_sequences_to_bin = 0
elisel
n_sequences_to_bin -= n_sequences_to_pack
add_pack (new_pack, count,
tmp_strategies_per_length, strategies_per_length,
max_sequences_per_pack, offset)
clean up to speed up main key search
if not tmp_strategies_per_length[length_to_bin + offset]:
tmp_strategies_per_ length.pop (length_to_bin + offset)
elaag
offset -=1
Does not fit anywhere. Create new pack.
if offset < 0:
add_pack ([length_to_bin], n_sequences_to_bin,
tmp_strategies_per_length, strategies_per_length,
max_sequences_per_pack, i)
n_sequences_to_bin = 0
merge all strategies
for key in tmp_strategies_per_length:
strategies_per_length[key] .extend (tmp_strategies_per_length[key])
flatten strategies dictionary
strategy_set = []
strategy_repeat_count = []
for key in strategies_per_length:
for count, pack in strategies_per_ length[key]:
pack.reverse ()
strategy_set.append (pack)
strategy_repeat_count.append (count)
return strategy_set, np.array(strategy_repeat_count)

41

Under review as a conference paper at ICLR 2023

Listing 4: Evaluation function of shortest-pack-first histogram-packing

"""Max depth analysis of shortest-pack-first histogram-packing."""
from collections import defaultdict

import tabulate

import time

import numpy as np

def evaluate_spfhp (histogram, max_sequence_length) :
"""Evaluate shortest-pack-first histogram-packing algorithm."""
stats_data = [["pack. depth", "# strat. used", "# packs", "# tokens",
"# padding tok.", "efficiency (%)", "pack.factor", "time"]]

for max_sequences_per_pack in [1, 2, 3, 4, 8, 16, "max"]:

start = time.time ()

strategy_set, strategy_repeat_count = pack_using_spfhp (

histogram, max_sequence_length, max_sequences_per_pack)
duration = time.time() - start

Performance Evaluation of packing approach

n_strategies = int (len(strategy_set))
packs = int (sum(strategy_repeat_count))
sequences = sum([countxlen(pack) for count, pack in
zip (strategy_repeat_count, strategy_set)])
total_tokens = int (max_sequence_length x packs)
empty_tokens = int (sum([
countx (max_sequence_length-sum(pack)) for count, pack in

zip (strategy_repeat_count, strategy_set)]))
token_efficiency = 100 - empty_tokens / total_tokens x 100

if max_sequences_per_pack == "max":
m_length = max([len(pack) for pack in strategy_set])
max_sequences_per_pack = "max ({})".format (m_length)

stats_data.append ([
max_sequences_per_pack, n_strategies, packs, total_tokens,
empty_tokens, token_efficiency, sequences / packs, duration])
print (tabulate.tabulate (stats_data, headers="firstrow", floatfmt=".3f"))

Listing 5: Loss calculation

The number of sequences in each batch may vary

sequences_in_batch = tf.reduce_sum(tf.reduce_max (masked_lm_weight, -1)

sequences_in_batch = tf.cast (sequences_in_batch, tf.float32)

Create the 0/1 mask that will be used to un-packed sequences

masked_lm_weight = tf.reshape (masked_lm_weight, [B, 1, -1])

sequence_selection = tf.reshape(tf.range(l, max_sequences_per_pack + 1), [1, -1, 1])
sequence_selection = tf.cast (masked_lm_weight == sequence_selection, tf.float32

Apply the mask to un-pack the loss per sequence

nll_per_token = tf.reshape(nll_per_token, [B, 1, -1]

nll_per_sequence = sequence_selection % nll_per_token

Normalize the per-sequence loss by the number of mlm-tokens in the sequence (as is standard)
attempted = tf.reduce_sum(sequence_selection, -1, keepdims=True)

attempted = attempted + tf.cast (attempted 0, tf.float32) # prevent NaNs when dividing by attempted
nll_per_sequence = nll_per_ sequence/attempted

Average per-batch loss (so contributions from different batches are comparable)

Im_loss = tf.reduce_sum(nll_per_sequence)/sequences_in _batch

42

Under review as a conference paper at ICLR 2023

Listing 6: Wikipedia and SQuAD 1.1 histograms

"""Wikipedia and SQUaD 1.1 histograms.

For sequence length 128 to 512,

For sequence length 1024 and 2048,

Duplication factors slightly differ.

wun

import numpy as np

wikipedia_histogram
o, o, 0, 0, 1821,

np.array ([

1226, 1969, 1315, 1794, 1953, 3082, 3446, 4166, 5062,

we use the Wikipedia article dump from October 1st 2020.
we use the Wikipedia article dump from February 8th 2021.

9554,

46094,
72467,
74370,
64698,
53979,
46011,

16475,
49350,
72954,
73537,

19173,
52153,
73955,
73597,

10468,

17589,
55428,
74311,
73153,

10346,

17957,
58109,
74836,
72358,
61458,
51752,
43878,
38438,
34567,
31466,
28934,
26925,
24659,
23280,
21955,
20574,
19487,
18317,
17583,
16747,
15751,
15078,
14286,
13896,
13318,
12749,
12110,
11739,
11374,
10966,
10905,
10257,

19060,
60624,
74489,
71580,
60848,
51172,
43984,
38142,
34789,
31142,
28764,
26384,
24702,
22993,
21444,
20511,
19387,
18458,
17331,
16524,
15854,
14810,
14596,
13864,
13425,
12810,
12087,
11685,
11234,
11071,
10511,
10286,

21555,
63263,
74990,
71082,
60148,
50469,
42968,
37757,
34009,
31106,
28445,
26188,
24862,
23018,
21436,
20419,
19225,
18374,
17313,
16473,
15665,
15119,
14615,
13597,
13317,
12575,
12305,
11702,
11433,
11029,
10598,
10235,

23524,
64527,
75377,
70085,
59858,
49907,
42365,
37818,
33952,
30650,
28319,
26385,
24479,
23242,
21484,
20312,
19069,
18152,
16892,
16349,
15469,
14780,
14168,
13572,
13179,
12673,
12156,
11783,
11466,
11036,
10583,
10351,

26954,

65421,
74954,
69733,

10182,

30661,
66983,
75096,
69445,

10182,

33470,
68123,
74784,
67818,

10095,

36614,
68830,
74698,
67177,
55999,
47724,
41072,
36589,
32954,
30157,
27522,
25660,
24097,
22612,
21197,
19955,
18763,

40134,
70230,
74337,
66641,
55245,
46990,
40616,
36151,
32686,
29611,
27333,
25682,
23798,
22452,
21281,
19946,
18800,
17805,
16845,
16021,
15335,
14672,
14096,
13284,
13149,
12298,
12022,
11526,
11002,
10904,
10430,
9866,

43256,

70486,
74638,
65709,
55051,
46544,
40587,
35953,
32880,
29754,
27470,
25547,
23878,
21996,
21066,
19846,
19012,
17711,
16861,
16111,
15461,
14439,
14202,
13333,
13010,
12469,
11825,
11577,
11245,
10750,
10440,

10070,

9741
9
9
9

10132, 10043,
9840, 9747, 9797,
9418, 9508, 9638,
9268, 9227, 9224,

9788,
9418,
9225, 9098,

wikipedia_max_sequence_length = 512

, 10003, 10056, 9920, 10021, 9838, 9854, 9740,
893, 9593, 9535, 9658, 9554, 9593, 9530, 9523,
521, 9277, 9289, 9255, 9322, 9281, 9351, 9259,
106, 9239, 3815044], dtype=np.inté4)

wikipedia_128_histogram

np.array ([

o, o, 0, 0, 3101,

1980,

3129,

1999,

2921,

13409,
84925,

154822,
179454,
166638,
146567,
130280,
117987,

21166,
91873,

25207,
98489,

25106,
104534,

27446,

30336,

3125,
35090,

4830,

5364,

6732,

8047,

9799,

39592,

45885,

52030,

112174,

117841,

124085,

129462,

133240,

57859,
138870,

64301,
143228,

71861,
146717,

78013,

151324,

158681,
179142,
166251,
144652,
128484,
118109,

162508,
179395,
163258,
143753,
127725,
116432,

165513,
178585,
161835,
141893,
126559,
116579,

109929, 110613, 109024, 109634,

wikipedia_128_max_sequence_length

wikipedia_384_histogram np.array ([
o, 0, 0, 0, 1996, 1380, 2227,

1385,

168386,
178799,
160796,
140452,
125192,
114937,
109102,

128

1908,

9975,
50553,
81019,
84822,
74378,
61334,
52578,
45922,
41194,
37852,
34106,
31661,

16932,
53774,
82236,
84487,
73639,
61194,
51656,
45626,
40717,
37513,
34106,
31958,
29162,
27736,
26246,
24736,

19431,
57470,
83350,
83940,
72827,
60371,
51337,
45021,
40565,
36960,
33687,
31580,
29584,

18385,
60695,
84128,
84322,
71460,
59318,
50926,
44818,
40238,
36903,
34008,
31290,
29470,
27677,
25901,
24605,

19107,
63903,
84939,
82652,
70859,
58753,
50590,
44293,
39761,
36265,
33531,
31074,
29137,
27724,
25916,
24558,
23089,
22073,
21327,
20263,
19095,
18648,
18077,
17212,
16971,
16180,
15717,

20129,
67021,
84585,
82371,
69590,
57841,
50018,
44338,
39557,
36026,
33630,
31199,
29254,
27415,
25540,
24828,
23185,
22081,
20946,
20046,
19333,
18540,
17848,
17454,
16736,
16202,

170678,
177238,
158675,
139608,
124847,
114728,
108301,

2065,
23118,

69559,
85703,
81509,
69009,
57492,
49860,
43474,
39285,
36135,
33335,
30740,
29018,
27378,
25514,
24273,
23289,
21918,
20841,
19942,
19286,
18461,
18055,
17548,
16945,
16021,

5676254]

172157,
176319,
157306,
138186,
124314,
114064,
107099,

3221,
24966,
71609,
85151,
80958,
67987,
56965,
48821,
43547,
39009,
35781,
32980,
30577,
28646,
27397,
25701,
23974,
22947,
21799,
20701,
20301,
18955,
18551,
17895,
17296,
16637,
16042,

43

3673,

174582,
174648,
156076,
136564,
123023,
114111,
106661,

4581,

174811,
173217,
154365,
135683,
122125,
113091,

21454463],

5391,

177932,
174185,
153016,
134562,
121434,
112457,

177775,
172356,
151754,
132625,
120822,
111797,

29088,

72274,
85245,
80255,
66779,
55816,
48788,
42987,
38955,
35531,
32756,
30244,

16129,

32889,
73630,
85923,
79266,
65626,
55709,
48365,
42685,
38841,
35381,
32666,
30305,

16101,

35695,
75620,
85869,
77896,
65372,
54678,
47776,
42425,
38212,
34939,
32421,
30238,

15986,

38943,
76946,
85748,
76827,
63939,
54572,
47225,
42256,
37846,
35241,
32135,
30171,

17151,
16339,
16197,

43618,
78870,
85704,
76356,
63290,
53805,
46417,
41729,
37808,
34523,
32290,
29987,
28114,
26475,
25051,
23606,
22942,
21441,
20616,
19720,
18912,
18304,
17292,
17113,
16404,
15792,

179075,
170476,
150507,
132270,
119386,
111032,

dtype=np.int64)

46724,

178718,
168799,
148666,
129838,
119410,
111055,

79774,
85459,
75703,
62662,
53126,
46438,
41583,
37609,
34547,
32395,
29783,
28241,
26326,
24975,
23748,
22512,
21438,
20717,
19676,
18954,
18071,
17452,
16942,
16492,
15935,

Under review as a conference paper at ICLR 2023

, dtype=np.

wikipedia_384_max_sequence_length

int64)

wikipedia_1024_histogram =

0, 0,
16118,
123160,
258237,
292252,
279961,
251842,
217754,
190108,
168696,
152753,
139865,
127434,
117536,
109411,
101732,
95960,
90588,
85400,
81101,
76480,
73022,

10653,

0,

0,
24347,
137381,
262474,
292122,
277485,
249295,
215699,
188113,
167579,
151583,
138102,
127698,
117253,
109347,
101998,

7363,
31871,

4744,

154228,
266124,
291963,
275528,
246119,
213277,
186489,
165974,
150617,
137013,
126006,
116175,
108960,
101922,

66246,

384

np.array ([

8434,

166304,
269895,
291950,
274559,
243579,
209415,
184212,
164577,
149261,
136298,
124766,
116240,
108049,
100885,

5610,
77082,

180331,
275211,
290741,
271725,
240920,
209497,
182828,
163931,
148185,
135120,
123580,
115372,
107465,
100328,

13205,
65887,

95916,
90104,
85421,
80423,
76123,
72178,
68544,

94781,
89736,
84616,
80860,
76217,
71935,
68655,
64893,
62130,
60090,

94124,
89196,
84760,
79756,
76223,
71819,
68127,
64461,
62529,
59104,

6965652],

94467,
88915,
84117,
79404,
76105,
71835,
68341,
64710,
61961,
58742,
56168,
54026,
51453,
49730,
48530,
46702,
44053,
42206,
41170,
39143,
37995,
36686,
35066,
34022,
33058,
32168,
30977,
29820,
28648,
27853,
27200,
26289,
25555,
24793,
23900,
22810,
22806,
21973,
21576,
20708,
20529,
19631,
19244,
18431,
18211,
17634,
17526,
17032,
16658,
16578,
15682,
15266,
15152,
14862,
14321,
14091,
13890,
13875,
13258,
13011,
12517,
12543,
11949,
12110,
11773,
11867,
11588,
11223,
10876,

93805,
88424,
84004,
78844,
75057,
70887,
67440,
64451,
61093,
58683,
56058,
53694,
51946,
49855,
47844,
46161,
43849,
42169,
41027,
39453,
37974,
36479,
35092,
34078,
32760,
31532,
31021,
29749,
29087,
28094,
27160,
26379,
25537,
24598,
23916,
23053,
22293,
21807,
21349,
20994,
20150,
19588,
19027,
18523,
18341,
17881,
17521,
16887,
16414,
16288,
15788,
15369,
15220,
14816,
14534,
14263,
13679,
13617,
13153,
12995,
12613,
12775,
12306,
12011,
11636,
11332,
11222,
11348,
10757,

6932,
66852,
192040,
277955,
289930,
269530,
239550,
206063,
181271,
161678,
146336,
133563,
123936,
114303,
106268,
99803,
92947,
87636,
83306,
78655,
74794,
70521,
67554,
64060,
61260,
58425,
56437,
54213,
51433,
49268,
47209,
45322,
43935,
41825,
40836,
39048,
38212,
36390,
34855,
33797,
32795,
31490,
30815,
29319,
29048,
27706,
27336,
26003,
25303,
24644,
23891,
23151,
22722,
21748,
21247,
20569,
20371,
19450,
19303,
18582,
18348,
17808,
17602,
16924,
16808,
16207,
15691,
15288,
14798,
14581,
14571,
14145,
13932,
13649,
13392,
13161,
12658,
12448,
12118,
12265,
11751,
11384,
11452,
10749,
11116,

dtype=np.int64)

99771,

10664,

69969,
206214,
280852,
289635,
266926,
236008,
202650,
179863,
160632,
145928,
133063,
122788,
113935,
105262,

93067,
87356,
82563,
78712,
74204,
70501,
67010,
64068,
60825,
58537,
55851,
53115,
51036,
49119,
47368,
45557,
43927,
42190,
40740,
38997,
37397,
36341,
35046,
33601,
32638,
31728,
30858,
29727,
28700,
27422,
26888,
26044,
25326,
24837,
23838,
22921,
22652,
21729,
21217,
20643,
20306,
19764,
19117,
18389,
18462,
17655,
17079,
16730,
16506,
16257,
15981,
15612,
14938,
14905,
14353,
14080,
13856,
13567,
13266,
12716,
12720,
12314,
12351,
11905,
11652,
11535,
11390,
11281,
10654,

44

99120,

13887,
79068,

215316,
283614,
288843,
263998,
232477,
201057,
177707,
158468,
143589,
131795,
121985,
113271,
105826,

92161,
87247,
82220,
77841,
73918,
69927,

98958,

86941,
227387,
286648,
289106,
262027,
228900,
199017,
174891,
157537,
142916,
131001,
121212,
112221,
105049,

99807,

98036,

238863,
287714,
285626,
259506,
226724,
196767,
173822,
155880,
141994,
130944,
119757,
111883,
103570,

97766,

111153,

247444,
291932,
283735,
256157,
222639,
194504,
172668,
154696,
140233,
129157,
118557,
110628,
104051,

97099,

91783,
86421,
81649,
77453,
74153,
70242,
66745,
63415,
60187,
57599,

91722,
86743,
81791,
77561,
74136,
70127,
66429,
63325,
60726,
57673,

91620,
86135,
81767,
76647,
73317,
68686,
66271,
62978,
60106,
57604,

10680,

253057,
292063,
283763,
253231,
220947,
192778,
171383,
154374,
140480,
128813,
118198,
110057,
103013,

Under review as a conference paper at ICLR 2023

wikipedia_1024_max_sequence_length = 1024

wikipedia_2048_histogram =

0,
6488,
32627,
65678,
82161,
79730,
74945,
66927,
59731,
54940,
50178,
46740,

o0, o,
10440,

35840,
67824,
83038,
79043,
75533,
66421,
58935,
54207,
50507,
46577,

4805,

4744,

4366,

0, 2477,
11572,
39700,
70064,
82645,
78811,
74347,
65566,
58353,
53537,
50081,
46858,

4995,

4571,
4661,
4405,

6297,
5839,
5744,
5648,
5626,
5262,
5222,
5218,
5057,
4938,
4865,
4791,
4702,
4493,
4542,
4300,

1876,
18367,

42465,
72022,
82620,
80007,
73401,
64768,
58432,
53462,
50183,
46588,

np.array ([

6035,
5836,
5696,
5620,
5342,
5270,
5223,
5229,
5065,
4965,
4866,
4805,
4605,
4609,
4597,
4329,

3242,
19043,

45913,
74546,
81833,
78575,
72540,
64117,
57617,
53342,
48968,
46340,
42703,
40225,
38267,
36214,
34690,
33393,
31303,
30435,
28934,
27584,
26036,
25350,
24565,
23325,
22813,
21610,
21016,
20136,
19597,
18839,
18043,
17389,
17228,
16267,
16200,
15358,
14764,
14525,
14393,
13896,
13657,
13192,
12707,
12252,
12016,
11707,
11165,
10973,
10625,
10228,
10138,

9757,
9546,
9296,
8864,
8832,
8407,
8172,
8290,
7944,
7794,
7570,
7357,
7216,
7141,
6850,
6935,
6465,
6393,
6110,
6096,
6039,
5794,
5854,
5565,
5838,
5457,
5462,
5234,
5046,
4942,
4890,
4896,
4751,
4480,
4663,
4501,

2262,
17166,

48281,
75868,
81836,
78209,
72503,
63245,
57372,
52812,
49051,
45488,
43093,
40108,
38112,
36071,
34282,
33305,
31696,
29785,
28961,
27322,
26053,
25564,
24257,
23362,
22739,
21464,
20776,
20361,
19708,
19238,
18118,
17259,
16846,
16498,
15832,
15712,
15224,
14643,
14043,
13642,
13624,
12968,
12787,
12404,
11910,
11683,
11156,
10845,
10725,
10325,
9937,
9713,
9432,
9316,
9129,
8752,
8506,
8208,
8200,
7959,
7718,
7484,
7690,
7179,
7016,
6917,
6679,
6530,
6515,
6284,
6166,
5945,
5858,
5698,
5459,
5606,
5389,
5392,
5107,
4988,
5004,
4627,
4852,
4626,
4632,
4494,
4508,

71312,

18433,
50135,
77463,
80906,
78174,
71834,
62774,
57232,
52522,
48651,
45065,
42671,
39568,
37755,
36418,
33928,
32561,
31438,
30119,
28603,
27299,
26415,
25032,
24304,
23119,
22704,
21687,
21016,
19928,
19247,
18705,
18065,
17594,
16678,
16513,
16017,
15423,
14700,
14837,
14080,
13703,
13735,
13076,
12675,
12387,
11914,
11551,
11097,
11028,
10434,
10331,

2795,

20247,

53069,
78728,
81093,
77714,
70761,
62196,
56518,
52094,
48129,
45149,
42189,
40082,
37777,
36246,
34027,
33038,
31155,
29787,
28319,
27665,
26086,
25018,
24427,
23373,
22380,
21587,
20613,
19803,
19181,
18741,
18015,
17654,
16901,
16469,
15751,
15366,
14831,
14175,
14034,
13896,
13463,
12980,
12616,
12421,
11931,
11449,
11304,
10871,
, 10630

9887,

9914, 10042,

9483,
9247,
9361,
8895,
8644,
8600,
8233,
8215,
7854,
7670,
7719,
7451,
7042,
7087,
7124,
6625,
6708,
6188,
6340,
6239,
5859,
5947,
5761,
5592,
5461,
5459,
5255,
5241,
5045,
4887,
4921,
4671,
4604,
4641,
4553,
4415,

7369,

7012,
6672,
6521,
6347,
6202,
5964,
6062,
5753,
5742,
5655,
5474,
5449,
5306,
5077,
5016,
4896,
4745,
4937,
4603,
4625,
4553,
4333,

45

4079,

4734,

4440,
4504,
4348,

5706,

22804,
55707,
80340,
81594,
76950,
70221,
61666,
55999,
51834,
47735,
45238,

9845,
9911,
9392,
9117,
8791,
8766,
8521,
8153,
8198,
7863,
7602,
7495,
7372,

4781,

4512,

4290,

24700, 27419,
57654, 60733,
80598, 81369,
80329, 81265,
76864, 75966,
68597, 68371,
61419, 60865,
55816, 55627,
51047, 50868,
47660, 47069,
44779, 45004,

, 10616, 10607,
9972, 10385, 10159,

30059,
63289,
82172,
81015,
76074,
67307,
59983,
55505,
50703,
47101,
44332,
41341,
39236,
36787,
35031,
33961,
32092,
30380,
29160,
28095,
26753,
25757,
24619,
23869,
23074,
21782,
21336,

10089,

9716, 10107,

9636,
9558,
9127,
8972,
8752,
8514,
8327,
8086,
7766,
7694,
7555,
7301,
7176,
6866,
6719,
6517,
6622,
6407,
6236,
6173,
6016,
5920,
5747,
5562,
5429,
5289,
5194,
5157,
5086,
4984,
4970,
4671,
4599,
4491,
4425,
4360,

Under review as a conference paper at ICLR 2023

1538, 1370,
1325, 1436,
1361, 1375,
1344, 1456,
1382, 1341,

wikipedia_2048_max_sequence_.

4337,
4329,
4193,
4130,
4059,
3993,
3853,
3848,
3632,
3738,
3558,
3528,
3454,
3589,
3348,
3359,
3190,
3223,
3119,
3082,
2881,
2928,
2856,
3012,
2746,
2926,
2611,
2637,
2796,
2623,
2624,
2554,
2492,
2556,
2458,
2376,
2372,
2270,
2248,
2255,
2189,
2299,
2131,
2069,
2100,
2003,
2022,
2105,
1997,
1978,
1879,
1884,
1915,
1913,
1932,
1845,
1779,
1738,
1808,
1737,
1739,
1697,
1728,
1653,
1614,
1614,
1622,
1624,
1673,
1528,
1555,
1491,
1422,
1525,
1471,
1386,
1360,
1401,
1382,
1341,
1444,
1337,

squad_1_1_histogram =

0, 0, 0, 0,
0, 0, 3, 2,

0, 0,
0, 9,

105, 114, 110, 93,

134, 150, 144,
182, 203, 201,
648, 673, 712,

132,
264,
122,

4254,
4189,
4159,
4031,
4044,
3927,
3866,
3746,
3695,
3620,
3698,
3614,
3595,
3343,
3388,
3236,
3180,
3140,
3196,
3051,
2987,
3071,
2876,
2857,
2814,
2807,
2739,
2722,
2619,
2661,
2564,
2584,
2533,
2405,
2408,
2416,
2491,
2389,
2270,
2409,
2255,
2270,
2215,
2290,
2044,
2069,
2146,
2006,
2050,
2005,
1946,
1970,
1886,
1797,
1826,
1824,
1713,
1683,
1760,
1764,
1717,
1685,
1662,
1615,
1629,
1627,
1584,
1550,
1557,
1610,
1541,
1522,
1494,
1529,
1500,
1463,
1417,
1421,
1421,
1379,
1379,
1385,

4262,
4177,
4089,
4099,
4081,
4055,
3888,
3832,
3635,
3677,
3660,
3508,
3410,
3420,
3362,
3151,
3303,
3262,
3130,
3106,
2950,
2986,
2935,
2909,
2865,
2765,
2717,
2647,
2647,
2605,
2637,
2565,
2558,
2519,
2524,
2346,
2296,
2290,
2367,
2219,
2173,
2288,
2255,
2221,
1985,
2055,
2084,
1967,
2092,
1997,
2078,
1967,
1941,
1773,
1944,
1911,
1864,
1725,
1691,
1755,
1754,
1681,
1625,
1650,
1636,
1572,
1646,
1487,
1521,
1483,
1468,
1518,
1406,
1562,
1361,
1379,
1379,
1414,
1384,
1420,
1401,
1322,

4323,
4206,
4115,
4143,
4051,
3865,
3992,
3834,
3715,
3575,
3651,
3483,
3411,
3195,
3371,
3232,
3203,
3176,
3052,
3026,
3091,
2999,
2944,
2806,
2815,
2797,
2642,
2745,
2568,
2685,
2698,
2542,
2582,
2495,
2397,
2425,
2412,
2371,
2282,
2293,
2254,
2112,
2238,
2122,
2058,
2120,
2047,
2046,
1922,
1972,
1976,
1913,
1899,
1871,
1819,
1910,
1899,
1816,
1694,
1788,
1789,
1684,
1731,
1712,
1729,
1675,
1512,
1524,
1495,
1583,
1430,
1486,
1510,
1461,
1481,
1482,
1435,
1493,
1391,
1402,
1372,
1380,

4176,
4387,
4215,
4129,
3990,
3935,
3764,
3751,
3677,
3736,
3586,
3405,
3496,
3455,
3316,
3285,
3137,
3189,
3150,
2983,
2994,
2937,
2864,
2863,
2788,
2747,
2664,
2714,
2727,
2562,
2572,
2547,
2424,
2557,
2477,
2393,
2236,
2284,
2236,
2324,
2094,
2266,
2129,
2208,
2104,
2080,
2006,
2005,
1976,
1990,
2011,
1853,
1840,
1780,
1831,
1842,
1802,
1733,
1753,
1764,
1719,
1709,
1657,
1616,
1568,
1725,
1619,
1569,
1502,
1511,
1464,
1537,
1512,
1500,
1444,
1396,
1445,
1418,
1471,
1338,
1334,
1286,

length = 2048

np.array ([

0, 0,

0, 0,

10, 16, 22,

116,

166,
250,
745,

118,
162,
244,
692,

0, 0,

0, 0,

24, 36, 35,

114, 11le,

177,
289,
697,

4374,
4266,
4087,
4021,
3979,
4005,
3812,
3797,
3610,
3679,
3437,
3514,
3550,
3329,
3251,
3295,
3155,
3247,
3093,
3125,
2965,
3089,
2880,
2883,
2906,
2796,
2757,
2717,
2642,
2573,
2631,
2520,
2465,
2544,
2286,
2364,
2413,
2363,
2361,
2262,
2225,
2118,
2141,
2121,
2037,
2098,
2009,
2049,
2023,
2033,
1916,
1843,
1767,
1815,
1865,
1760,
1799,
1775,
1759,
1730,
1694,
1745,
1620,
1621,
1661,
1694,
1534,
1570,
1658,
1601,
1517,
1413,
1495,
1450,
1470,
1441,
1372,
1363,
1472,
1334,
1406,
150379

0, 0,
46, 42

117, 127,

160, 149, 151
346, 327, 298
747, 754, 741

4436,
4103,
4099,
4152,
3987,
3894,
3886,
3750,
3818,
3724,
3513,
3590,
3586,
3368,
3349,
3252,
3256,
3208,
3234,
3062,
3099,
2883,
2903,
2806,
2810,
2683,
2807,
2784,
2672,
2616,
2527,
2398,
2540,
2561,
2278,
2373,
2420,
2381,
2168,
2303,
2165,
2270,
2203,
2134,
2126,
2058,
2181,
2050,
2065,
2035,
1963,
1985,
1889,
1951,
1818,
1837,
1859,
1761,
1744,
1777,
1651,
1707,
1746,
1581,
1638,
1638,
1644,
1563,
1547,
1564,
1569,
1572,
1536,
1409,
1520,
1405,
1483,
1372,
1431,
1405,
1355,

4300,
4227,
4064,
4048,
3924,
3852,
3676,
3656,
3619,
3754,
3623,
3451,

3356,

3206,

3049,

1458,
1495,
1349,
1303,
1440,
1390,
1343,

4415,
4227,
4139,
4025,
4025,
3997,
3794,
3853,
3675,
3609,
3551,
3516,
3518,
3502,
3419,
3236,
3155,
3217,
3059,
3205,
2984,
2927,
2747,
2928,
2787,
2844,
2809,
2570,
2578,
2625,
2586,
2699,
2531,
2528,
2469,
2359,
2379,
2245,
2353,
2195,
2283,
2110,
2171,
2137,
2043,
2049,
2059,
2068,
1976,
2012,
1998,
1931,
1986,
1787,
1837,
1838,
1884,
1824,
1742,
1724,
1693,
1649,
1726,
1646,
1545,
1570,
1584,
1572,
1541,
1501,
1521,
1456,
1429,
1509,
1463,
1551,
1441,
1397,
1413,
1370,
1377,

4316,
4214,
4085,
4117,
3934,
3990,
3904,
3776,
3652,
3613,
3580,
3405,
3438,
3482,
3311,
3323,
3096,
3131,
3376,
3001,
2977,
3060,
2916,
2803,
2705,
2848,
2689,
2687,
2807,
2515,
2535,
2474,
2566,
2536,
2385,
2384,
2471,
2228,
2260,
2302,
2317,
2278,
2170,
2172,
1994,
2097,
2053,
1968,
2027,
2009,
1906,
1932,
1923,
1920,
1889,
1804,
1797,
1860,
1801,
1707,
1717,
1710,
1659,
1687,
1660,
1540,
1488,
1526,
1617,
1451,
1538,
1396,
1494,
1509,
1465,
1473,
1353,
1411,
1399,
1463,
1376,

6], dtype=np.int64)

0, 0,
, 48,
115,
, 138,
v 377,
v 177,

46

0, 0,

0, 0,

57, 86, 83,
137, 145, 157,

155,
156,
386,
781,

148,
444,
825,

0, 0, 0,
86, 87,

176, 163,
431, 503,
813, 836,

o, 0, O,

86, 97,

151,
182,
553,
777,

153,
188,
532,
776,

0, 0,

90, 99,

149,
182,
570,
756,

o, 0, O,

85,

163,
177,
611,
789,

94,

157,
199,
677,
790,

Under review as a conference paper at ICLR 2023

765, 753, 729, 748, 772, 766, 760, 741, 725, 729, 759, 732, 730, 730, 741, 705, 708, 725, 656, 688,
688, 677, 662, 628, 635, 618, 586, 527, 562, 619, 562, 578, 538, 558, 582, 541, 575, 526, 556, 498,
529, 486, 528, 541, 482, 521, 483, 466, 514, 459, 447, 436, 383, 401, 408, 381, 369, 364, 381, 420,
391, 388, 358, 365, 357, 358, 355, 297, 290, 267, 308, 329, 304, 332, 289, 282, 304, 242, 263, 288,
238, 257, 271, 288, 277, 264, 253, 239, 217, 260, 214, 247, 237, 212, 205, 193, 200, 208, 195, 193,
201, 187, 170, 176, 195, 156, 201, 179, 159, 183, 169, 178, 163, 153, 171, 144, 138, 181, 165, 171,
161, 159, 166, 142, 138, 151, 155, 134, 141, 132, 123, 119, 109, 125, 123, 131, 135, 115, 108, 102,
117, 105, 99, 84, 100, 85, 85, 85, 95, 122, 105, 114, 113, 100, 80, 96, 86, 79, 80, 87, 92, 73, 73,
64, 76, 72, 77, 67, 60, 71, 77, 79, 72, 55, 67, 42, 59, 65, 72, 49, 43, 62, 48, 50, 54, 45, 42, 53,
56, 45, 43, 32, 30, 36, 42, 37, 45, 28, 41, 31, 44, 35, 36, 47, 47, 48, 65, 32, 23, 35, 38, 20, 23
22, 21, 27, 20, 26, 18, 18, 22, 17, 17, 14, 26, 15, 20, 22, 19, 24, 17, 15, 20, 20, 22, 22, 17, 20
16, 21, 16, 23, 12, 14, 1054], dtype=np.int64)

squad_1_1_max_sequence_length = 384

47

Under review as a conference paper at ICLR 2023

Listing 7: Histogram creation for GLUE training datasets

Copyright 2020 The HuggingFace Inc. team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"GLUE data loading and histogram creation.

= Sk S S S SR SR SR SR SR SR

Some code snippets were taken from
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py
Most is original code.

wan

from transformers import AutoTokenizer

import datasets

import numpy as np

constants

max_sequence_length = 128
task_to_keys = {
"cola" ("sentence", None),

("premise", "hypothesis"),
("sentencel", "sentence2"),
("question", "sentence"),

("questionl", "question2"),
("sentencel", "sentence2"),

"sst2": ("sentence", None),
"stsb ("sentencel", "sentence2"),
"wnli": ("sentencel", "sentence2"),
}
glue_keys = ['cola’, ’‘sst2’, ’'mrpc’, ’‘qgp’, ’stsb’, '‘mnli’, ’‘rte’, ’‘wnli’]
unused datasets due to missing training data
unglue_keys = [‘mnli_matched’, ‘mnli_mismatched’, ’gnli’, ’ax’]

load data
dataset_loads = {}
for key in glue_keys:
dataset_loads[key] = datasets.load_dataset ("glue", key, split=’train’)

tokenize data
tokenizer = AutoTokenizer.from pretrained(’bert-base-uncased’)
tokenized_data = {}
for key in dataset_loads:
sentencel_key, sentence2_key = task_to_keys[key]

def preprocess_function (examples) :
"""Tokenize the texts"""
args = (
(examples[sentencel_key],) if sentence2_key is None
else (examples[sentencel_key], examples[sentence2_key])
)
result = tokenizer (xargs, padding=False, max_length=max_sequence_length, truncation=True)
return result

tokenized_data[key] = dataset_loads[key] .map (preprocess_function, batched=True)

extract length information (for histogram plots
histogram length = {}
for key in tokenized_data:
histogram_lengthl[key] = []
for number, key in enumerate (tokenized_data.keys()):
for raw_record in tokenized_data(key] ["input_ids"]:
histogram_length[key] .append(len([x for x in raw_record if x!=0]))

create histogram for packing
glue_histogram = {}
for data_key in histogram_length:
glue_histogram[data_key] = np.array([0] * max_sequence_length, dtype=np.int64)
for entry in histogram_length[data_key]:
glue_histogram[data_key] [entry-1] += 1

48

Under review as a conference paper at ICLR 2023

Listing 8: Longest-pack-first histogram-packing

from collections import defaultdict
import numpy as np
import time

def add_pack (pack, count, tmp, final, limit, offset, max_sequence_length=512):
"""Filter out packs that reached maximum length or number of components."""
sanity checks
assert (max_sequence_length-sum(pack) == offset), "Incorrect offset."
assert (offset >= 0), "Too small offset."
assert (offset < max_sequence_length), "Too large offset."”
if len(pack) == limit or offset == 0:
final[offset].append((count, pack))
else:
tmp[offset] .append((count, pack))

def pack_using_lpfhp (histogram, max_sequence_length, max_sequences_per_pack, distribute=True) :
"""Tongest-pack-first histogram-packing."""
start = time.time ()
reversed_histogram = np.flip(histogram)
Initialize main strategy data dictionary.
The key indicates how many tokens are left for full length.
The value is a list of tuples, consisting of counts and respective packs.
A pack is a (sorted) list of sequence length values that get concatenated.
tmp_strategies_per_ length = defaultdict (list)
strategies_per_length = defaultdict (list)
if max_sequences_per_pack is "max":
max_sequences_per_pack = max_sequence_length
Index i indicates here, how much space is left, due to reversed histogram
for i in range (max_sequence_length) :
n_sequences_to_bin = reversed_histogram[i]
length_to_bin = max_sequence_length - i
offset = 0 # smallest possible offset for perfect fit
while n_sequences_to_bin > 0:
if (length_to_bin + offset) in tmp_strategies_per_length:
extract worst pack that will get modified
n_sequences_to_pack, pack = tmp_strategies_per_length|[
length_to_bin + offset].pop ()
calculate how often the current sequence maximally fits in
repeat = min(l + offset // length_to_bin, max_sequences_per_pack-len (pack)
correct dependent on count
while n_sequences_to_bin//repeat ==
repeat -= 1
if not distribute:
repeat = 1
new_pack = pack + [length_to_bin]*repeat
count = min(n_sequences_to_pack, n_sequences_to_bin//repeat)
if n_sequences_to_pack > count:
old pack gets reduced
n_sequences_to_pack —-= count
tmp_strategies_per_length[length_to_bin + offset].append(
(n_sequences_to_pack, pack))
n_sequences_to_bin -= count * repeat
elisel
n_sequences_to_bin -= n_sequences_to_pack x repeat
add_pack (new_pack, count,
tmp_strategies_per_length, strategies_per_ length,
max_sequences_per_pack, offset - (repeat - 1) x length_to_bin,
max_sequence_length)
clean up to speed up main key search
if not tmp_strategies_per_length[length_to_bin + offset]:
tmp_strategies_per_length.pop (length_to_bin + offset)
reset offset in case best fit changed
offset = 0
else:
offset +=1
Does not fit anywhere. Create new pack.
if offset >= max_sequence_length - length_to_bin + 1:
similar repetition but no dependence on pack.
repeat = min(max_sequence_length//length_to_bin, max_sequences_per_pack)
while n_sequences_to_bin//repeat == 0:
repeat —=1
if not distribute:
repeat = 1
add_pack ([length_to_bin] *repeat, n_sequences_to_bin//repeat,
tmp_strategies_per_length, strategies_per_length,
max_sequences_per_pack, max_sequence_length-length_to_binxrepeat,
max_sequence_length)
n_sequences_to_bin -= n_sequences_to_bin//repeat * repeat

49

Under review as a conference paper at ICLR 2023

merge all strategies
for key in tmp_strategies_per_length:
strategies_per_length[key] .extend (tmp_strategies_per_length[key])
flatten strategies dictionary
strategy_set = []
strategy_repeat_count = []
for key in strategies_per_ length:
for count, pack in strategies_per_ length[key]:
pack.reverse ()
strategy_set.append (pack)
strategy_repeat_count.append (count)

Summarize efficiency of solution

duration = time.time() - start

sequence_lengths = np.arange(l, max_sequence_length + 1)
strategy_repeat_count = np.array(strategy_repeat_count)
n_strategies = len(strategy_set)

old_number_of_samples = histogram.sum()
new_number_of_samples = strategy_repeat_count.sum/()
sequences = sum([countxlen(pack) for count, pack in

zip (strategy_repeat_count, strategy_set)])
total_tokens = max_sequence_length * new_number_of_samples
empty_tokens = sum([countx (max_sequence_length-sum(pack)) for count, pack
in zip(strategy_repeat_count, strategy_set)])
efficiency = 100 - empty_tokens / total_tokens x 100
speedup_upper_bound = 1.0/ (1 - (histogramx (
1 - sequence_lengths / max_sequence_length)).sum() / old_number_of_samples)

print (f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}",

f"Runtime: Packed {old_number_of_samples} sequences in {duration:3.3f} seconds.")

return strategy_set, strategy_repeat_count

50

Under review as a conference paper at ICLR 2023

Listing 9: Extended non-negative least squares histogram-packing

import time

import numpy as np

from scipy import optimize, stats
from functools import lru_cache

def get_packing_matrix(strategy_set, max_sequence_length) :
num_strategies = len(strategy_set)
A = np.zeros ((max_sequence_length, num_strategies), dtype=np.int32)
for i, strategy in enumerate (strategy_set):
for seqg_len in strategy:
Alseq_len - 1, i] +=1
return A

@lru_cache (maxsize=None)
def get_packing_strategies(start_length, minimum_increment, target_length, depth):
gap = target_length - start_length
strategies = []
Complete the packing with exactly 1 number
if depth ==
if gap >= minimum_increment:
strategies.append([gap])
Complete the sample in "depth" steps, recursively
else:
for new in range (minimum_increment, gap + 1):
new_gap = target_length - start_length - new
if new_gap ==
strategies.append([new])
GILEES
options = get_packing_strategies(start_length + new, new, target_length, depth - 1)
for option in options:
if len(option) > 0:
strategies.append([new] + option)
return strategies

def pack_using_ennlshp (histogram, max_sequence_length, max_sequences_per_pack) :

List all unique ways of packing to the desired maximum sequence length

strategy_set = get_packing_strategies (0, 1, max_sequence_length, max_sequences_per_pack)

print (f"Packing will involve {len(strategy_set)} unique packing strategies.")

Get the packing matrix corresponding to this list of packing strategies

A = get_packing_matrix (strategy_set, max_sequence_length)

Weights that penalize the residual by the number of resulting padding tokens.

w0 = np.array([x+1 for x in range (max_sequence_length)])

construct the packing matrix

A _bar = np.zeros ((2xmax_sequence_length, len(strategy_set) + max_sequence_length), ’'d’)

Base weighted matrix

A_bar[:max_sequence_length, :len(strategy_set)] = np.expand_dims (w0, -1) = A

Higher weight to avoid positive residual

A_bar [max_sequence_length:, :len(strategy_set)] =
10+x6*np.ones ([max_sequence_length]), -1) = A

negative diagonal unity matrix for mapping to residual

A_bar [max_sequence_length:, len(strategy_set):] = np.expand_dims (
10+x6*np.ones ([max_sequence_length]), -1)+np.ones ((max_sequence_length,max_sequence_length)

b_bar = np.zeros (2+max_sequence_length)

Apply weighting to histogram vector

np.expand_dims (

b_bar[:max_sequence_length] = w0 * histogram

b_bar [max_sequence_length:] = 10%x*x6xnp.ones ([max_sequence_length]) * histogram
Solve the packing problem

print (£"Sequences to pack: ", histogram.sum())

start = time.time ()

strategy_residual, rnorm = optimize.nnls (A_bar, b_bar)
strategy_repeat_count = strategy_residual[:len(strategy_set)]
print (£"Solving non-negative least squares took {time.time() - start:3.2f} seconds.")
Round the floating point solution to nearest integer
strategy_repeat_count = np.rint (strategy_repeat_count) .astype (np.int64)
Compute the residuals, shape: [max_sequence_length]
residual = histogram - A @ strategy_repeat_count
Handle the left-over sequences i.e. positive part of residual
unpacked_seqglen = np.arange(l, max_sequence_length + 1) [residual > 0]
for 1 in unpacked_seglen:
strategy = sorted([l, max_sequence_length - 1]) # the depth 1 strategy
strategy_index = strategy_set.index (strategy)
strategy_repeat_count [strategy_index] += residual[l-1]
Re-compute the residual with the updated strategy_repeat_count
This should now be strictly < 0
residual = histogram - A @ strategy_repeat_count
Add padding based on deficit (negative residual portion of residual)
padding = np.where (residual < 0, -residual, 0)
Calculate some basic statistics
sequence_lengths = np.arange(l, max_sequence_length + 1)
old_number_of_samples = histogram.sum()
new_number_of_samples = int (strategy_repeat_count.sum())
speedup_upper_bound = 1.0/ (1 - (histogram= (
1 - sequence_lengths / max_sequence_length)) .sum()/old_number_of_samples
num_padding_tokens_packed = (sequence_lengths * padding) .sum/()
efficiency = 1 - num_padding_tokens_packed/ (new_number_of_samples*max_sequence_length)
print (f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
f"Speed-up theoretical limit: {speedup_upper_bound:3.4£}\n",
f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}")
return strategy_set, strategy_repeat_count

51

Under review as a conference paper at ICLR 2023

APPENDIX REFERENCES

[36] BELOV, G., AND SCHEITHAUER, G. A branch-and-cut-and-price algorithm for one-
dimensional stock cutting and two-dimensional two-stage cutting. European Journal of Opera-
tional Research 171, 1 (may 2006), 85-106.

[37] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., USA, 1990.

[38] GUILLEN, G., Di1Az-CAMINO, C., LOYOLA-TORRES, C., APARICIO-FABRE, R.,
HERNANDEZ-LOPEZ, A., DIAZ-SANCHEZ, M., AND SANCHEZ, F. Detailed analysis of
putative genes encoding small proteins in legume genomes. Frontiers in Plant Science 4 (2013),
208.

[39] HANSEN, H. B., DAMGAARD, P. B.,, MARGARYAN, A., STENDERUP, J., LYNNERUP, N.,
WILLERSLEV, E., AND ALLENTOFT, M. E. Comparing ancient dna preservation in petrous
bone and tooth cementum. PLOS ONE 12,1 (01 2017), 1-18.

[40] KoOTZ, S., AND NADARAJAH, S. Extreme Value Distributions. World Scientific Publishing
Company, 2000.

[41] LAWSON, C. L., AND HANSON, R. J. Solving Least Squares Problems. Society for Industrial
and Applied Mathematics, jan 1995.

[42] Luo, Y., AND DURAISWAMI, R. Efficient parallel non-negative least squares on multi-core
architectures. SIAM Journal on Scientific Computing 33 (2011), 2848 — 2863.

[43] NVIDIA. Performance catalogue for BERT on Pytorch. https://ngc.nvidia.com/
catalog/resources/nvidia:bert_for_ pytorch/performance, 2021.

[44] PENG, Y., YAN, S., AND LU, Z. Transfer Learning in Biomedical Natural Language Processing:
An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. In Proceedings of the 2019
Workshop on Biomedical Natural Language Processing (BioNLP 2019) (2019), pp. 58-65.

[45] VIRTANEN, P., GOMMERS, R., OLIPHANT, T. E., HABERLAND, M., REDDY, T., COURNA-
PEAU, D., BUROVSKI, E., PETERSON, P., WECKESSER, W., BRIGHT, J., VAN DER WALT,
S.J., BRETT, M., WILSON, J., MILLMAN, K. J., MAYOROV, N., NELSON, A. R. J., JONES,
E., KERN, R., LARSON, E., CAREY, C.J., POLAT, I., FENG, Y., MOORE, E. W., VANDER-
PLAS, J., LAXALDE, D., PERKTOLD, J., CIMRMAN, R., HENRIKSEN, I., QUINTERO, E. A.,
HARRIS, C. R., ARCHIBALD, A. M., RIBEIRO, A. H., PEDREGOSA, F., VAN MULBREGT,
P., AND ScIPY 1.0 CONTRIBUTORS. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods 17 (2020), 261-272.

[46] WOLF, T., LHOEST, Q., VON PLATEN, P., JERNITE, Y., DRAME, M., PLU, J., CHAU-
MOND, J., DELANGUE, C., MA, C., THAKUR, A., PATIL, S., DAVISON, J., Scao, T. L.,
SANH, V., XU, C., PATRY, N., MCMILLAN-MAJOR, A., BRANDEIS, S., GUGGER, S.,
LAGUNAS, F., DEBUT, L., FUNTOWICZ, M., MoI, A., RUSH, S., SCHMIDD, P., Cis-
TAC, P., MUSTAR, V., BOUDIER, J., AND TORDIMANN, A. Datasets. GitHub. Note:
https://github.com/huggingface/datasets 1 (2020).

[47] WOLFRAM RESEARCH INC. Mathematica, Version 12.2. Champaign, IL, 2020.

52

https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance

	Introduction
	Sequence length distributions
	Methods
	Packing algorithms
	packedBERT: model changes
	Adjust hyperparameters

	Experiments
	Bin packing algorithm comparison
	MLPerf™ phase 2 pretraining setup: learning curves and hyperparameter adjustment
	Full pretraining and SQuAD finetuning
	Scaling analysis: Impact of accelerators count

	Conclusion
	Broader impact
	Reproducibility Statement
	Related work
	Theorem on LAMB hyperparameter correction heuristic
	Un-padding scaling estimate
	Technical background on packing
	Canonical packing problem
	Approximate bin packing problem
	Definitions
	Non-negative least squares histogram-packing
	Discussion of residual weight choice

	Complexity analysis of the proposed packing approaches
	Complexity Analysis of non-negative least-squares histogram-packing
	Complexity Analysis of shortest-pack-first histogram-packing

	Performance Comparison to GREEDY Packing in T5
	Impact of NSP loss
	Wikipedia with Longer Sequence Length
	Packing SQuAD 1.1
	Packing GLUE
	Packing Audio Data (LibriSpeech)
	Packing Paper Abstracts (PubMed)
	MLPerf™ phase 2 learning curves
	Full pretraining of BERT base and large learning curves
	Note on changing the sequence length for optimal packing
	Fine-tuned longest-pack-first histogram-packing
	Extended NNLS with padding token weighting
	Implementation Challenges and Tricks
	Packing Algorithms
	Positional Encoding
	Attention
	Avoiding loss unpacking
	Testing
	Loss Balancing

	Packing source code

