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Abstract

Recent research showed promising results on001
combining pretrained language models (LMs)002
with canonical utterance for few-shot seman-003
tic parsing. The canonical utterance is often004
lengthy and complex due to the compositional005
structure of formal languages. Learning to gen-006
erate such canonical utterance requires signifi-007
cant amount of data to reach high performance.008
Fine-tuning with only few-shot samples, the009
LMs can easily forget pretrained knowledge,010
overfit spurious biases, and suffer from compo-011
sitionally out-of-distribution generalization er-012
rors. To tackle these issues, we propose a novel013
few-shot semantic parsing method – SEQZERO.014
SEQZERO decomposes the problem into a se-015
quence of sub-problems, which corresponds to016
the sub-clauses of the formal language. Based017
on the decomposition, the LMs only need to018
generate short answers using prompts for pre-019
dicting sub-clauses. Thus, SEQZERO avoids020
generating a long canonical utterance at once.021
Moreover, SEQZERO employs not only a few-022
shot model but also a zero-shot model to alle-023
viate the overfitting. In particular, SEQZERO024
brings out the merits from both models via en-025
semble equipped with our proposed constrained026
rescaling. SEQZERO achieves SOTA perfor-027
mance on GeoQuery and EcommerceQuery,028
which are two few-shot datasets with composi-029
tional data split.030

1 Introduction031

Semantic parsing is the transformation of input ut-032

terance into formal language, such as SQL query033

(Zelle and Mooney, 1996), and plays a critical034

role in NLP applications, such as question answer-035

ing (Yih et al., 2014), dialogue system (Gupta036

et al., 2018), and information extraction (Yao037

and Van Durme, 2014). Training neural seman-038

tic parsers requires numerous annotated input ut-039

terance and formal language pairs. However, the040

paired data is usually limited, as the annotation041

requires experts’ knowledge and can be expen-042

sive. For example, annotating SQL queries requires 043

programming knowledge, while annotating formal 044

meaning representations like Abstract Meaning 045

Representations (AMR) requires linguistics knowl- 046

edge. Therefore, semantic parsing in the few-shot 047

setting is a demanding technique. 048

Researchers have adopted large-scale pretrained 049

language models (LMs, Radford et al. (2019); 050

Brown et al. (2020)) to improve few-shot learn- 051

ing performance. The LMs are usually pretrained 052

on large unlabeled open-domain natural language 053

data and achieves impressive performance on few- 054

shot text-to-text generation problems via proper 055

prompt designing (Brown et al., 2020). Consid- 056

ering the difference between natural and formal 057

language, adapting LMs to semantic parsing is 058

non-trivial. Prior works typically first finetune the 059

LMs to generate canonical utterance, which is then 060

transformed into the final formal language through 061

grammars (Shin et al., 2021; Schucher et al., 2021). 062

However, the canonical utterance is lengthy and 063

complex due to compositional structure of the 064

formal languages. Learning to precisely gener- 065

ate canonical utterances still requires significant 066

amount of data. Meanwhile, fine-tuning with only 067

few-shot samples, the LMs can easily forget pre- 068

trained knowledge, overfit spurious biases, and suf- 069

fer from compositionally out-of-distribution (OOD) 070

generalization errors. Figure 1 presents an compo- 071

sitionally OOD generalization error of direct fine- 072

tuning BART (Lewis et al., 2019) on the GeoQuery, 073

a dataset about querying in a geographic database. 074

The model incorrectly predicts the table name as 075

“city”, because the training samples always come 076

from the “city” table as long as the query follows 077

the “how many people live in xxx” pattern. Such 078

errors account for about 75% of all prediction er- 079

rors on GeorQuery test set (refer to Section 5.6 for 080

details). 081

To address the aforementioned issues, we pro- 082

pose a novel prompt-based few-shot learning 083
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Figure 1: Finetuned BART’s OOD generalization errors
due to overfitting the spurious biases.

method – SEQZERO. Instead of directly generat-084

ing the whole formal language, SEQZERO decom-085

pose the problem into a sequence of sub-problems,086

where the LMs only need to make a sequence of087

short prompt-based predictions. SEQZERO also088

takes the advantage of zero-shot (un-finetuned)089

model to avoid overfitting the spurious biases in the090

training data. Specifically, SEQZERO decompose091

the problem into predicting the sub-clauses, which092

make up the formal languages. When predicting093

a sub-clause, SEQZERO adopts a slot-filling natu-094

ral language prompt, where the filled prompt can095

be transformed into the sub-clause through gram-096

mars. For filling each prompt, SEQZERO employs097

two models: a few-shot model and a zero-shot098

model. Both models ingest the input utterance099

and the prompt to fill in the slots in the prompt.100

The few-shot model uses a fine-tuned LM to fill101

in the slots of each prompt. The zero-shot model102

directly infers the value in the slots by decoding a103

pretrained LM with a constrained vocabulary. We104

then ensemble the prediction from both models,105

and convert the results for all sub-clauses into the106

final output (e.g., SQL query). We notice that, the107

probability mass of the zero-shot model, on the108

constrained vocabulary, is much smaller than that109

of the few-shot model. As a result, the zero-shot110

model cannot take effect in the vanilla ensemble.111

Therefore, we propose to rescale the probability of112

the zero-shot model on the constrained vocabulary113

before ensemble to bring out the advantages of both114

models.115

We conduct experiments on two datasets: Geo-116

Query, a benchmark dataset that consists of natural117

language and formal language pairs from geogra-118

phy domain, and EcommerceQuery, a newly col-119

lected dataset from E-commerce domain. Results 120

show that our approach outperforms the baseline al- 121

gorithm and achieves state-of-the-art performance 122

on the compositional split of the two datasets. To 123

sum up, our contributes are: 124

• We propose to decompose semantic parsing 125

to filling a sequence of prompts, each cor- 126

responding to a sub-clause of original SQL 127

query. Compared with direct fine-tuning, 128

predicting sub-clauses is easier, which en- 129

ables flexible prompt designing and zero-shot 130

model inference. 131

• We propose the ensemble of few-shot and 132

zero-shot models with help of constrained 133

probability rescaling, which improves out-of- 134

distribution generalization while maintaining 135

in-distribution performance. 136

• We create and release a new Ecommerce- 137

Query dataset 1. We empirically verify that 138

our approach achieves SOTA on both Geo- 139

Query and EcommerceQuery. 140

2 Preliminary 141

Language Modeling aims to estimate the proba- 142

bility distribution for a given sequence of words 143

x = (w1, w2, ..., wn) in an autoregressive way: 144

Pθ(x) =
n∏

i=1

Pθ(wi|w1, ..., wi−1), 145

where θ is the parameters of the language model. 146

This approach not only allows estimation of 147

Pθ(x) but also any conditionals of the form 148

Pθ(wi, wi+1, .., wn|w1, ..., wi−1), which is essen- 149

tially a seq2seq model. One can leverage a seq2seq 150

model to generate a sequence via a decoding algo- 151

rithm (e.g., beam-search): y = Decode(Pθ(·|x)) 152

In recent years, there have been significant progress 153

in training large transformer-based language mod- 154

els (Radford et al., 2019; Brown et al., 2020; Lewis 155

et al., 2019) on large natural language corpus. 156

Semantic Parsing is to transform an input utter- 157

ance u into a formal language m. Without loss of 158

generality, we hereafter discuss the case of SQL 159

query as the formal language. One can directly 160

train a language model for semantic parsing: 161

Pθ(m|u). 162

1We will release the code and dataset upon the acceptance
of this paper.
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Directly learning such a language model is chal-163

lenging as the difference between the formal lan-164

guage and natural language is huge. Berant and165

Liang (2014); Shin et al. (2021) propose Semantic166

Parsing via Paraphrasing (SPP), which is a two-167

stage framework. In the first stage, they paraphrase168

u to its canonical utterance c using a paraphrasing169

language model:170

Pθ(c|u).171

In the second stage, the canonical utterance c is172

transformed into SQL query m by a grammar or a173

set of rules:174

m = Grammar(c).175

3 Method176

In this section, we describe SEQZERO. SEQZERO177

first decomposes the problem into a sequence of178

sub-problems as illustrated in Figure 2. For each179

sub-problem, SEQZERO employs an ensemble of180

zero-shot and few-shot models to predict a sub-181

clause of the formal language based on prompts as182

illustrated in Figure 3.183

Input Utterance

FROM   xxx SELECT   xxx WHERE xxx

Original Problem

Input Utterance

FROM   xxx

Input Utterance

SELECT   xxx

Input Utterance

WHERE xxx

Sub-Problem

Problem Decomposition

Figure 2: The problem of predicting a SQL can be
composed into 3 steps: predicting “FROM” clause, “SE-
LECT” clause, and “WHERE” clause.

3.1 Problem Decomposition and Sequential184

Prompt Filling185

Each SQL query can be regarded as a composi-186

tion of different types of sub-clauses, such as “SE-187

LECT”, “FROM”, “WHERE”:188

m = Compose(m1, ...,mn),189

where mi is the sub-clause of the i-th type, n is the190

number of all possible types of sub-clauses, and the191

composition is conducted via a rule-based system. 192

A simple example of the composition function is 193

direct concatenating the sub-clauses, whereas the 194

real implementation requires some dedicated de- 195

sign. For example, mi can be a null clause, e.g., 196

not every SQL query contains a “WHERE” clause. 197

We discuss the implementation details of the com- 198

position in Appendix C. 199

We turn the problem of direct predicting m 200

into predicting mi sequentially from m1 to mn. 201

We remark that the prediction of mi depends on 202

m1, ...,mi−1, as illustrated in Figure 3. Similar to 203

the SPP framework, we design a canonical utter- 204

ance ci for each sub-clause mi. The transformation 205

between ci and mi is conducted by a grammar: 206

mi = Grammar(ci). 207

Each ci consists of two parts: a natural language 208

slot-filling prompt pi and a value in the slot vi: 209

ci = FillSlot(pi, vi). 210

The prompt pi is shared across all sub-clauses of 211

the i-th type, while the value vi varies for different 212

instances. As a result, the problem is turned into 213

predicting the values {vi}ni=1 given the input utter- 214

ance u, and prompts {pi}ni=1 sequentially from i = 215

1 to i = n. The prediction is conducted via decod- 216

ing a language model, Pθi(·|u,m1, . . . ,mi−1, pi), 217

where the canonical utterances of previous sub- 218

clauses (m1, . . . ,mi−1) are also provided as the 219

extra context. We summarize the process in Algo- 220

rithm 1. 221

Algorithm 1: Sequential Prompt Filling
Input: u: input utterance; {pi}ni=1:

prompts; Grammar: grammar for
parsing the canonical utterance;
{Pθi}ni=1: LMs.

for i = 1, · · · , n do
x = (u,m1, . . . ,mi−1, pi)
vi = Decode(Pθi(·|x))
ci = FillSlot(pi, vi)
mi = Grammar(ci)

end
m = Compose(m1, ...,mn)
Output: m: SQL query

3.2 Ensemble of Few-shot and Zero-shot 222

Models 223

Despite the apparent advantages of sequential 224

prompt filling, directly fine-tuning LMs on few- 225
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Few-shot 
Model

Zero-shot 
Model

“how many major cities are 
there?” the sentence talks 
about ___

Input + Context + Prompt

rescale

ensemble

city

“how many major cities are 
there?” from city, the 
sentence asks to select ___

Ensemble 
Model

count(*)

“how many major cities are 
there?” from city select 
count(*), the sentence 
requires ___

city.population 
> 150,000

SELECT 
count(*)
FROM city
WHERE 
city.population 
> 150,000

Ensemble 
Model

Figure 3: Pipeline of sequential prompt filling and SQL generation on GeoQuery. Note that, the scale of the
prediction probability of the zero-shot model is very small before rescaling.

shot samples will fall short due to the overfitting.226

Because of the better OOD generalizability of zero-227

shot models, we propose to employ the ensemble228

of a few-shot model Pθi,f and a zero-shot model229

Pθi,z for each language model Pθi .230

Few-shot Model. Each few-shot model is obtained231

by finetuning a pretrained language model via min-232

imizing the negative log-likelihood loss:233

argmin
θi,f

− logPθi,f (vi|u,m1, . . . ,mi−1, pi),234

where vi,m1, . . . ,mi−1 are the ground truth from235

the few-shot training data. It is essentially the236

teacher forcing training strategy. Note that we omit237

the summation over the training set for simplicity238

and clarity.239

Zero-shot Model. Each zero-shot model directly240

adopts the pretrained language model Pθ0 . Without241

any guidance, Pθ0 may generate any free text even242

if we provide the input utterance and prompt. In243

order to mine the knowledge from Pθ0 , we only244

allow the zero-shot model to generate from a list245

of candidate values. The candidate values are col-246

lected from multiple sources including SQL gram-247

mar, table schema, input utterance and training data.248

When predicting the j-th word for vi, the zero-shot249

model rescales the probability on a constraint vo-250

cabulary, which is specifically designed for the i-th251

clause:252

Pθi,z(w|x) =
1(w ∈ Vi(x))Pθ0(w|x)∑

wj∈Vi(x)
Pθ0(wj |x)

, (1)253

where w is a predicting word, x =254

(u,m1, ...,mi−1, pi, w1, .., wj−1) is the con-255

text for predicting the i-th value, {wt}j−1
t=1 is 256

the prefix in the value, Vi(x) is the constraint 257

vocabulary. Given the list of candidate values, we 258

use a trie (prefix tree) to compute all the allowed 259

tokens, and thus Vi(x) = Vi({wt}j−1
t=1 ) depends on 260

the prefix of the values. Note that, to develop a 261

more flexible method, a trie/prompt could start at 262

intermediate steps. 263

Ensemble. We then obtain Pθi by a linear ensem- 264

ble of the few-shot model Pθi,f and the zero-shot 265

model Pθi,z : 266

Pθi = γiPθi,f + (1− γi)Pθi,z , (2) 267

where γi is a clause-specific weight for trade-off 268

between two models. 269

Remark. We employ a normalization step in the 270

zero-shot model Eq. (1). The normalization is not 271

necessary for the zero-shot model itself, but plays 272

a critical role in the ensemble. This is because the 273

scales of the predicted probabilities of few-shot 274

and zero-shot models are different, as illustrated 275

in Figure 3. The Pθ0’s prediction probability is 276

distributed over the whole vocabulary. There is 277

only a very small probability mass assigned to the 278

allowed tokens, Vi(x). On the other hand, the few- 279

shot model’s prediction probability is almost en- 280

tirely distributed over Vi(x). Without rescaling, the 281

zero-shot model will only have little effect when 282

ensembling with the finetuned model. 283

4 Experiment Setup 284

Dataset To evaluate the performance of our pro- 285

posed method, we conduct experiments on the Geo- 286
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Query dataset (Zelle and Mooney, 1996), where287

there are 880 queries to a database of U.S. geog-288

raphy. To test compositional generalizability, we289

adopted the compositional split for SQL released290

by Finegan-Dollak et al. (2018), where templates291

created by anonymizing entities are used to split292

the original dataset, to make sure that all examples293

sharing a template are assigned to the same set.294

There are 536/159/182 examples for train/dev/test295

set, thus this setting can be regarded as the few-296

shot setting. We also experimented with even fewer297

training examples (50, 150).298

Besides, we create and release the Ecommerce-299

Query, a new SQL semantic parsing dataset in E-300

commerce domain. Specifically, we collect natural301

language utterances from user input search queries302

to an e-commerce website. To create correspond-303

ing SQL queries, we use some self-defined rule304

with manual audition. We construct compositional305

splits, where there are unseen SQL query patterns306

in the dev/test set. Finally, train/dev/test set con-307

tains 1,050/353/355 examples respectively. For308

details, please refer to Appendix B. Two examples309

from EcommerceQuery are shown in Table 7.310

Baselines and Models We use seq2seq finetuned311

BART as our main baseline on both datasets. With-312

out explicit notations, we use BART large in all of313

the following experiments. On GeoQuery dataset,314

we use prior state-of-the-art methods as additional315

baselines. On EcommerceQuery dataset, we use316

only LSTM seq2seq and BART as baselines, be-317

cause Iyer et al. (2017) requires user feedbacks, and318

Zheng and Lapata (2020) requires domain specific319

semantic tags, which are not available in Ecom-320

merceQuery.321

Evaluation Following Andreas (2019), we use322

exact-match accuracy as the evaluation metric,323

namely the percentage of examples that are cor-324

rectly parsed to their SQL queries.325

5 Experimental Results326

5.1 Main Results327

Table 1 shows our main results on GeoQuery and328

EcommerceQuery datasets. As shown in Table 1,329

on GeoQuery dataset, the finetuned BART beats330

all the previous baseline methods. Our approach331

outperforms all baseline systems by a substantial332

margin, reaching new SOTA performance. Note333

that directly combining BART with the semantic334

parsing via paraphrasing (SSP) framework even335

Method GeoQuery EcoQuery

Iyer et al. (2017) † 40.0 -
Andreas (2019) † 49.0 -
Zheng and Lapata (2020) †⋄ 69.6 -

Our Implementation
LSTM seq2seq 39.0 9.3
BART 72.5 37.7
BART + SPP 66.5 37.2
SEQZERO 74.7 46.2

Table 1: Results on GeoQuery test set of compositional
split, and on EcommerceQuery (EcoQuery) dataset. †:
we directly report the metrics in the original papers,
while our reproduction achieves similar performance. ⋄:
Zheng and Lapata (2020) took an unfair advantage of
anonymized variables.

decrease the performance of BART, because para- 336

phrased canonical utterances for SQL on GeoQuery 337

is too long and complex to directly generate. Even 338

comparing with Zheng and Lapata (2020), SE- 339

QZERO achieves a much better performance with- 340

out the usage of anonymized variables 2. In addi- 341

tion, on EcommerceQuery dataset, our SEQZERO 342

further achieves considerable improvements over 343

the baseline methods, reaching SOTA performance. 344

Comparing with BART, the best baseline model, 345

SEQZERO gains improvement in exact-match ac- 346

curacy by 8.5%. In all words, our model is an 347

extremely strong performer and substantially out- 348

performs baseline methods, which demonstrate the 349

efficiency of our method. 350

5.2 Ablation Study 351

To demonstrate the utility of sequential prompt 352

filling and zero-shot model, we conduct a set of 353

ablation experiments, as shown in Table 2. In each 354

ablation experiment, we delete one of these two key 355

components of SEQZERO, namely “−SEQ” and 356

“−ZERO”. 357

SEQZERO −ZERO means that we directly use 358

finetuned few-shot models to fill in sequential 359

prompts without using the zero-shot model. 360

SEQZERO −SEQ is equivalent to the ensemble 361

of a finetuned BART and a un-finetuned BART for 362

2Zheng and Lapata (2020) could not directly compare with
our method, because they use anonymized variables (i.e. ora-
cle entities), while other models including SEQZERO require
generating entities instead of using oracle entities. Thus, for
fair comparison, their method without variable anonymization
would have even worse performance, indicating even larger
improvements of our method.
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Method GeoQuery EcoQuery

SEQZERO 74.7 46.2
−SEQ 74.2 44.5
−ZERO 71.4 37.7

Table 2: Ablation study of SEQZERO.

predicting the SQL query directly without sequen-363

tial prompt filling.364

On both datasets, “−SEQ” decreases the per-365

formance of SEQZERO. It indicates that design-366

ing clause-specific prompt can better mine the367

pretrained knowledge from the language model.368

Meanwhile, zero-shot model ensemble brings our369

model better out-of-distribution generalization abil-370

ity. Consequently, when zero-shot model ensemble371

is ablated, the performance drops a lot (“−ZERO”372

vs “SEQZERO”).373

5.3 Analysis on Different Clauses374

Here, we try to understand how the model performs375

on different clauses. We report the prediction accu-376

racies of SEQZERO and “−ZERO” on 5 clauses on377

the GeoQuery dataset in Table 3. We can clearly378

see that SEQZERO has better performance by lever-379

aging the zero-shot model on all clauses.380

Method FROM SELECT WHERE GROUP ORDER

SEQZERO 88.5 77.5 74.7 74.7 74.7
−Zero 84.1 74.2 71.4 71.4 71.4

Table 3: Prediction accuracies on all 5 clauses on Geo-
Query dataset.

Recall that the prediction of the latter clauses381

depends on the previous ones, the performance of382

each next clause generally decreases due to error383

propagation. The same performance of “WHERE”,384

“GROUP” and “ORDER” is because there are very385

few “GROUP” and “ORDER” clauses on test set.386

As can been seen, SEQZERO achieves much bet-387

ter performance on the “FROM” clause and thus388

significantly reduces the error propagation.389

5.4 Impact of Prompt Designing390

Table 4 shows the performance of the few-shot391

finetuned BART and the zero-shot BART (in con-392

strained decoding setting) with several representa-393

tive prompts on “FROM” clause of GeoQuery test394

set. We can see that prompt designing highly af-395

fects the the zero-shot model’s performance, while396

Prompt Few ZERO

the answer can be obtained from 81.3 65.9
the sentence talks about 84.1 78.0

Table 4: Impact of prompt designing for few-shot Few
and zero-shot ZERO BART on “FROM” clause of Geo-
Query test set.

Prompt attribute+relation relation

the sentence requires 39.2 49.3
where 21.1 51.5

the condition is : 51.1 57.3

Table 5: Impact of prompt designing for zero-shot
BART on “CONDITION” clause of EcommerceQuery
test set. In attribute+relation setting, we let zero-shot
model generate both attributes and relations. In relation
setting, we let zero-shot model generate relations only.

it has less impact on few-shot finetuned model. 397

Table 5 shows the performance of the zero-shot 398

BART on “CONDITION” part of EcommerceQuery 399

test set, where different prompts also lead to signif- 400

icantly different performance. These results reveal 401

the necessity of sequential prompt filling. Without 402

this component, one cannot easily come up with a 403

proper prompt for achieving a better model perfor- 404

mance. In practice, we design 20 prompt sets and 405

select the best one based on the zero-shot model’s 406

performance on the developing set. 407

5.5 Impact of Training Data Size 408

Table 6 shows the performance of baseline BART 409

and our SEQZERO (as well as ablation of ZERO), 410

facing different numbers of training data points in 411

the few-shot setting. With 50, 150 training samples, 412

we make sure that each SQL query template occurs 413

only once to maximize the diversity of training data. 414

For the full dataset, there are 536 samples with 158 415

different training templates in total. 416

Our SEQZERO outperforms BART in all settings 417

(50, 150, 536 training samples), which shows the 418

# of Samples 50 150 536

BART 41.2 73.1 72.5
SEQZERO 48.9 74.2 74.7
−ZERO 31.3 73.1 71.4

Table 6: Model accuracy with different numbers of
training samples on GeoQuery dataset.
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effectiveness of our method in the few-shot setting.419

From 50 to 150 training samples, the model see420

more SQL templates, which help compositional421

generalization, and lead to the increased perfor-422

mance of all models. From 150 to 536 samples,423

the performance of BART and “−ZERO” decrease424

slightly. That is because there are multiple samples425

of the same templates in the 536 training samples,426

and the models overfit to those training templates.427

In contrast, SEQZERO avoids such overfitting with428

the help of zero-shot models and achieves better429

performance by leveraging more training samples.430

Without the aid of zero-shot model, “−ZERO”431

performs worse than SEQZERO. When there are432

only 50 samples, the performance degradation is433

the most significant. When there are 536 samples,434

the decrease led by ablation of zero-shot model is435

larger than that of 150 samples. It is because when436

there are many cases for each template, ensemble437

of zero-shot model can alleviate overfitting such438

templates.439

Furthermore, “−ZERO” has similar performance440

with BART when there are over 150 training sam-441

ples. On the other hand, the performance of442

“−ZERO” is worse than BART when there are very443

few training samples (50 samples). We conjecture444

that this is because BART shares the model param-445

eter between all sub-clauses, while “−ZERO” fine-446

tunes models separately on different sub-clauses.447

The parameter sharing will further lead to knowl-448

edge sharing across sub-clauses and improves the449

performance. How to leverage the benefit from450

both parameter sharing and SEQZERO could be an451

interesting future research topic.452

5.6 Case Study453

Table 7 shows BART and SEQZERO’s predictions454

for some cases. For first example, BART gives a455

wrong prediction, because few-shot training sam-456

ples introduce too many spurious biases to the fine-457

tuned model. In contrast, SEQZERO gives correct458

prediction. Actually, after analyzing the errors459

made by finetuned BART models on GeoQuery,460

among all errors on test set, the common error for461

around 75% examples is the table name error in462

“FROM” clause, which is due to spurious biases.463

For the second example, BART predicts “PRICE464

<” incorrectly even seeing “over”, because Ecom-465

merceQuery Dataset is designed to include only466

“PRICE <” but no “PRICE >” template. Our SE-467

QZERO could give the correct prediction because468

of better OOD generalizability with the help of 469

zero-shot models. 470

Even with our SEQZERO, there are still many 471

errors. For instance, in the third example, it still 472

struggles with identifying the size in the natural 473

language query and generating the Size filtering 474

condition in WHERE clause. 475

6 Related Work 476

Few/Zero-shot Semantic Parsing Shin et al. 477

(2021); Schucher et al. (2021) conducted few- 478

shot semantic parsing by using pretrained LMs 479

to first generate canonical natural language utter- 480

ances, and then transform them to final formal lan- 481

guage through synchronous context-free grammar 482

(SCFG) (Jia and Liang, 2016). However, dealing 483

with complex structure and lengthy canonical lan- 484

guage is still challenging for models in the few-shot 485

setting. Also, canonical languages created through 486

SCFG allows limited space for prompt designing, 487

and canonical language’s form is still too strange 488

for language models to understand. Zhong et al. 489

(2020) explored zero-shot semantic parsing via 490

generation-model-based data augmentation. Other 491

ways of bootstrapping a semantic parsing requires 492

rules/grammars to synthesize training examples 493

(Xu et al., 2020; Wang et al., 2015; Yu et al., 2020; 494

Campagna et al., 2019; Weir et al., 2020; Marzoev 495

et al., 2020; Campagna et al., 2020). 496

Semantic Parsing via Paraphrasing Berant and 497

Liang (2014) started the line of work where se- 498

mantic parsing is finished through an intermediate 499

paraphrasing step. Wang et al. (2015); Marzoev 500

et al. (2020) generated paraphrase candidate values 501

from a grammar of legal canonical utterances, and 502

incrementally filtered the bottom-up or top-down 503

generation by scoring the partial candidates against 504

final formal language. All such work did not ex- 505

ploit the power of pretrained models to generate 506

intermediate paraphrases. 507

Compositional Generalization in Semantic Pars- 508

ing Compositional generalization is an essential 509

problem in semantic parsing because formal lan- 510

guages are internally compositional. Generally, 511

one way to improve compositional generalizability 512

is to incorporate inductive biases directly to models 513

through moduler models (Dong and Lapata, 2018), 514

symbolic-neural machines (Chen et al., 2020), la- 515

tent variables/intermediate representations (Zheng 516

and Lapata, 2020; Herzig and Berant, 2020), meta- 517
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Cases Text

Question what is the population of utah
BART SELECT city . population FROM city WHERE city . city_name = "utah"

SEQZERO SELECT state . population FROM state WHERE state . state_name = "utah"
Ground Truth SELECT state . population FROM state WHERE state . state_name = "utah"

Question petrol trimmer over 100 dollar
BART SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”) == True and Price < 100

SEQZERO SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”) == True and Price > 100
Ground Truth SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”) == True and Price > 100

Question mi4 64 gb mobile phone
BART SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 64 gb mobile phone”) ORDER BY date

SEQZERO SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 64 gb mobile phone”) ORDER BY date
Ground Truth SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 mobile phone”) and Size = 64 gb

Table 7: Cases studys. The first example is from GeorQuery, and the last two examples are from EcoQuery.

learning (Lake, 2019) etc. Another way is to first518

do data augmentation and then train a model with519

augmented data (Andreas, 2019; Zhong et al., 2020;520

Yu et al., 2020; Akyürek et al., 2020). Pretrained521

models has also been shown useful for composi-522

tional semantic parsing (Oren et al., 2020; Furrer523

et al., 2020). None of prior work used decompo-524

sition and prompt filling, or zero-shot models to525

improve compositional generalizability.526

Prompting for Few/Zero-shot learning Natural527

language prompts are widely used in few-shot or528

zero-shot learning. There are several fashions to529

use prompts in Autoregressive Language Models530

(Liu et al., 2021a). One is tuning-free prompting,531

for example, Petroni et al. (2019); Shin et al. (2020)532

used a fill-in-the-blank paradigm, while Brown533

et al. (2020); Shin et al. (2021) used “few-shot”534

prompts that included several examples of inputs535

followed by target outputs, with the actual task in-536

put appended at the end. One is Fixed-LM Prompt537

Tuning, as used by Li and Liang (2021); Schucher538

et al. (2021); Qin and Eisner (2021); Liu et al.539

(2021b), which requires training less parameters540

compared with tuning the whole model. Another541

is Fixed-prompt LM Tuning, which is similar to542

our setting. We choose to use this way because it543

is demonstrated better than other methods in many544

few-shot NLP tasks (Gao et al., 2020) when tun-545

ing the whole model is not a concern. This is also546

more efficient at inference time, as it is no longer547

necessary to select training examples to precede548

the test input. Note that, (Mishra et al., 2021) em-549

ployed prompt decomposition during tuning-free550

prompting, which is validated in other NLP tasks.551

Zero-shot pretrained models for OOD gener-552

alization Wortsman et al. (2021) showed that,553

in computer vision tasks, although fine-tuning 554

approaches substantially improve accuracy in- 555

distribution, they reduce out-of-distribution ro- 556

bustness, while zero-shot pretrained models have 557

higher OOD generalizability. Thus, model weight 558

ensemble (Wortsman et al., 2021) and model edit- 559

ing (Mitchell et al., 2021) were leveraged to manip- 560

ulate zero shot pretrained models, which motivets 561

us to ensemble zero-shot and few-shot models dur- 562

ing the generation process of semantic parsing. We 563

tried weight ensembling proposed by Wortsman 564

et al. (2021), but it does not work in our gener- 565

ation setting. The reason is the same as why di- 566

rectly ensembling in prediction space is not work- 567

ing. That’s said, weights in a zero-shot model corre- 568

spond to the probability over the whole vocabulary 569

while weights in a finetuned model correspond to 570

the probability over constrained vocabulary. Thus, 571

weights in the zero-shot model have little effect on 572

the constrained vocabulary. 573

7 Conclusion 574

Although prior work leveraged pretrained LMs 575

and canonical language for few-shot semantic pars- 576

ing, generating lengthy and complex canonical lan- 577

guage is still challenging, leading finetuned models 578

to overfitting spurious biases in few-shot training 579

examples and demonstraining poor compositional 580

generalizability. To tackle this, we propose to fill- 581

ing in sequential prompts with LMs and then com- 582

pose them to obtain final SQL queries. During the 583

process, our proposed zero-shot pretrained model 584

ensembling or uncertainty-based model selection 585

could significantly boost the performance on criti- 586

cal clauses, leading to overall SOTA performance 587

on GeoQuery and our released EcommerceQuery 588

semantic parsing dataset. 589
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Ethical Impact590

SEQZERO is a general framework for few-shot se-591

mantic parsing on text, such as search queries. SE-592

QZERO neither introduces any social/ethical bias to593

the model nor amplify any bias in the data. When594

creating EcommerceQuery dataset, we collected595

data on an E-commerce search platform without596

knowing customers’ identity. No customer/seller597

specific-data is disclosed. We build our algorithms598

using public code bases (PyTorch and FairSeq). We599

do not foresee any direct social consequences or600

ethical issues.601
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A Configuration 777

A.1 Training Details 778

During training, we use fairseq (Ott et al., 2019) 779

to implement BART model. We use Adam as opti- 780

mizer with a learning rate 1e-5. We use dropout and 781

attention dropout with 0.1 as dropout rate. Also, we 782

use label smoothing with a rate 0.1. Batch sizes are 783

1024 tokens. Besides, we employ a weight-decay 784

rate 0.01. All the parameters are manually tuned 785

based on the dev performance. 786

We train all models on NVIDIA A100 SXM4 40 787

GB GPU. We set the max training epoch to be 100 788

and select the best performed epoch according to 789

dev performance. Training process on each clause 790

or whole sequence could be finished within 3 hours. 791

A.2 Inference Details 792

During inference, we use greedy search to decode. 793

We also use ensemble of zero-shot and few-shot 794

models during this process. The ensemble weight 795

γi in Eq. (2) is chosen from [0, 1] and tuned by 796

grid search according to performance on dev set. 797
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B EcommerceQuery Dataset798

When we create the EcommerceQuery dataset, we799

first we collect natural language utterances from800

user input search queries to an e-commerce web-801

site. To create corresponding SQL queries, we802

use regular expressions to create “SIZE” filtering803

conditions, and use some rules to create “PRICE”804

filtering conditions, “DELIVERY” attributes and805

“SUBSCRIBE” attributes in “WHERE” clauses. Fi-806

nally, we manually audit each pair of data to ensure807

the quality.808

To construct compositional splits, we make809

sure that there is no “PRICE>”, “SIZE=”, and810

“SUBSCRIBE=” SQL templates in training set but811

the majority of SQL queries on dev and test set con-812

tains such templates. Ideally, a model with good813

compositional generalizability could generalize814

from “PRICE<” and “SIZE>” to “PRICE>”, gener-815

alize from “PRICE=” and “SIZE>” to “SIZE=”, and816

generalize from “DELIVERY=” to “SUBSCRIBE=”.817

C Problem Decomposition on GeoQuery818

and EcommerceQuery819

In this section we introduce the problem decom-820

position for GeoQuery and EcommerceQuery in821

details. We answer the following two questions: 1.822

what are the sub-clauses in the sub-problems? 2.823

how to compose the final formal language from the824

sub-clauses.825

C.1 GeoQuery826

On GeoQuery, there are totally 5 sub-clauses,827

namely FROM, SELECT, WHERE, GROUP-BY,828

ORDER-BY clauses. we first generate FROM from829

clause with the prompt “the sentence talks about”.830

Then we generate SELECT clause with the prompt831

“the sentence talks about”, generate “Where clause832

with the prompt THE SENTENCE REQUIRES”, gen-833

erate GROUP-BY clause with the prompt THE SEN-834

TENCE REQUIRES TO GROUP BY, and generate835

ORDER-BY clause with the prompt “the sentence836

requires the result to be ordered by” Note that prior837

generated clauses are used as additional prefix to838

generate current clauses. The filled value for each839

clause could be “None”. When the filled value is840

“None”, which means there is no such clause in the841

final SQL query. Finally, we compose all clauses842

(if the filled value is not “None”) sequentially to843

obtain the final SQL query.844

C.2 EcommerceQuery 845

On EcommerceQuery, there are totally 2 sub- 846

clauses, namely MATCHING, and CONDITION 847

clauses. Because thes two clauses are less de- 848

pendent, we generate each clause separately and 849

then compose the generated values of each clause. 850

When generating MATCHING clause, we use the 851

prompt “matching algorithm (”. When generat- 852

ing CONDITION clause, we use the prompt “the 853

condition is :”. 854

11


