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Abstract

Constraint active search is a promising sample-efficient multiobjective experimental
design formulation that aims to aid scientists and engineers in searching for new
materials. In this proposal, we extend this formulation to situations where one can
obtain observations from multiple sources each with a given cost, such as when
both computer simulations and a laboratory experiments can be used to calculate
(or estimate) properties of a materials. We present a novel cost-efficient policy that
balances the cost of obtaining observations with the benefit of evaluating a more
expensive-to-compute source. Initial results on a synthetic problem show that our
proposed methodology is more selective when searching for expensive source.

1 Introduction

Multi-information source experimental design: We consider the problem of intelligent experimen-
tation on an expensive-to-evaluate black-box function where we can access cheaper approximations
objectives, similar to the optimization setting considered on [Poloczek et al., 2017]. For instance, this
scenario arises when one seeks to design new materials with the assistance of computer simulations.
Performing laboratory experiments is expensive, whereas outcomes of computer simulations are
relatively cheap-to-obtain, when labor and time are considered.

In recent years, machine learning techniques have been applied to similar scientific problems in
material science, drug discovery materials design, drug discovery, and chemical engineering Forrester
et al. [2008], Negoescu et al. [2011], Molesky et al. [2018].In particular, adaptive methods gained
popularity due to their sample efficiency Song et al. [2018], Attia et al. [2020], Haghanifar et al. [2020],
Duris et al. [2020]. In particular, we focus on constraint active search (CAS), a recently proposed
and promising formulation for experimental design [Malkomes et al., 2021]. In this formulation, the
goal is to search for diverse and high-performing parameter configurations. As opposed to searching
for the single best parameter configuration as in standard optimization problems, CAS seeks to find
parameter configurations that satisfy a given predefined performance criterion. Searching for multiple
and diverse candidate configurations increases the chances of finding new materials.

Multi-fidelity experimentation in materials design: In this paper, we introduce an automated way
to perform constrained active search across multiple fidelities of data acquisition methods. This can
be particularly relevant to AI-guided materials design when having multiple data sources including
different simulation techniques and experimental results. One concrete example may be that the
lowest fidelity technique leverages semiempirical techniques, such as PM6, with mid-tier fidelities
spanning several types of density functional theory-based simulations and the highest fidelity being a
costly experimental measurement. Our method maps best to simulation based settings where cost
be easily defined as the compute cost of a simulation but can be extended to include real-world
experimental evaluation assuming that cost metrics can be defined.
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2 Multi-information source constraint active search

Suppose that we have access to an expensive-to-evaluate objective function f : X → R that represents
the quality of given materials describe by features x ∈ X . We wish to search for designs that satisfy a
certain performance criteria, for example, we seek for f(x) ≥ τ , τ ∈ R2. Now, consider that we have
access to other auxiliary functions {fl}, l ∈ I from other sources such that each fl : X → R may
reveal information about f at a lower cost cl : X → R. Let us index our desired so-called full-fidelity
objective function f with a special index ∗ ∈ I such that f = f∗. As a practical example, consider
that fl is a computer simulation and f∗ is the outcome of an laboratory experiment.

In multi-information source constraint active search, we seek to sequentially select an input location
x ∈ X and an index l ∈ I to obtain an observation fl(x) with cost COST(l). Our goal is to find
the satisfactory region3 of the full-fidelity function, S⋆ = {x⋆ | f⋆(x) ≥ τ} , with a restricted total
budget B of observations to:

∑
t:(i,l) COSTt(l)(xt) ≤ B.

2.1 Cost-aware expected coverage increase

To efficiently search for the satisfactory region of each source Sl, we extend the Expected Coverage
Increase (ECI) policy to our setting [Malkomes et al., 2021], in which we can query multiple
information source with different costs. First, we review the concept of coverage.

Coverage neighborhood [Malkomes et al., 2021]. The coverage neighborhood of any x is defined
as Nr(x) = {x′ : d(x,x′) < r}, for an a priori fixed r ∈ R+ and an appropriate distance function
d : X × X 7→ R+. The coverage neighborhood of a set of points X is defined as

Nr(X) =
⋃
x∈X

Nr(x).

For Euclidean distance,Nr(x) is simply a ball of radius r. Notice the relationship between the radius
r and the diversity of a set of points X: points x ∈ X that have distance larger than r, i.e. points that
are dissimilar according to our distance function d, will lead to large Nr(X); whereas points within r
(similar points) will have smaller impact in the coverage neighborhood.

Coverage recall. An important metric for constraint active search is how much we recover
from a given satisfactory region S. Given a known set S and samples X, the coverage recall
is |Nr(X) ∩ S| /|S|. This is a key metric of progress for control experiments.

In practice, we do not know the satisfactory region; therefore, we will use probabilistic models to
capture our prior beliefs about fl and thus Sl. Assume that we have probabilistic models Ml for
each objective function fl. When appropriate, we can use observations from other sources to inform
a given model, for example, our full-fidelity model M∗.

Let Zl be a variable that indicates if an observation xl will satisfy the thresholds for a given
source l, Z(xl) = 1

[
fl(xl) ≥ τ

]
. Our probabilistic models can compute the probability of any

point xl belonging to the satisfactory region Sl given the observed data D. We denote this as
p(Z(xl) = 1 | D,Ml). For a given source l, the expected coverage increase acquisition function is

ECI(x | D, l) = EZl

[ ∑
x′∈N(x)\Nr(X)

Zl(x
′)

]
=

∑
x′∈N(x)\Nr(X)

p(Zl(x
′) = 1 | D,Ml).

To extend ECI to multi-information source we propose the cost-aware expected coverage increase,
which selects the next point by finding the input location xl that maximizes ECI over cost

CA-ECI(x, l | D) =
ECI(x | D, l)

COST(l)
.

To further improve cost-efficiency, we only evaluate higher cost sources after obtaining a given
number of satisfactory points in the lower cost objective. For example, in our demonstration below,

2We could generalize this to multiple criteria as long as they have the same information cost, but we will
only consider single-metric for simplicity in this proposal.

3Satisfactory region is the set of input locations that yield good results according to the black-box performance
criteria. Notice that this definition is different than feasible region.
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Figure 1: Augmented Branin function with fidelity parameter 0.1 (low fidelity) and 1 (high fidelity).
The region in yellow depicts the satisfactory region, where the function values are below 10, of the
full-fidelity function on both figures; our goal is to find this region. The functions are correlated in
the regions with low function values for two of the three regions (yellow circles).

we perform ECI on the low-fidelity function until we find five satisfactory points. Next, we evaluate
these satisfactory points in the higher-cost source, and only then we use CA-ECI to automatically
select xl (input and source).

3 Demonstration of multi-information source CAS

We now demonstrate our proposed methodology and compare it with other approaches. We consider
an augmented version of the Branin function that is commonly used for testing multi-fidelity methods
Wu et al. [2020].

Figure 1 shows the two objectives we considered here. We will assume the cost of obtaining a
full-fidelity observation is one unit and that of a low-fidelity observation is 0.1. In other words, one
sample of the full-fidelity function is equivalent to 10 samples of the low-fidelity function in terms of
cost. In yellow, we label the satisfactory region of the full-fidelity function; these are regions with the
high performing observations. We are interested in finding diverse configurations inside this region.
Notice the two functions are highly correlated, except for the rightmost region of the input space.

Figure 2 shows the sample pattern of four methodologies. We ran each method 100 times with a total
cost budget of 15. We compare to random search, expected improvement (EI), and the original ECI;
these three methods only have access to the full-fidelity function.

For EI, we observe that it focuses on finding the center of the satisfactory regions, i.e., the likely local
optima of the function. For ECI, we can see that the sample pattern is denser around the satisfactory
region; instead of concentrating in the middle as Expected Improvement, it spreads points inside and
around the satisfactory region.

Cost-Aware ECI, on the other hand, had the same total budget of 15, but it can sample points from
the low fidelity objective with 1/10 the cost; as a result, this method can be very selective about
sampling the more costly full-fidelity function. On average, Cost-Aware ECI select only uses 80% of
the budget on sampling the full-fidelity function. However, we see that the full-fidelity observations
are more densely spread within the satisfactory regions. Note that the third yellow region (on the right
side) was not sampled by Cost-Aware ECI due to the mismatch between the low and high fidelity
functions.

In Figure 3, we show the best full-fidelity function value found and the coverage recall for the
methodologies described above. With the restricted budget of 15, both ECI methods seem to perform
well for finding the best function value (dashed grey line), but this is not the goal of these methods.
We expected optimization methods to find the optimal value, while ECI methods do not have this
goal. Nevertheless, we can see that all methods find high-performing observations, i.e., values below
the threshold 10, fairly quickly. When considering the volume covered inside the satisfactory region,
we can see that both ECI methods perform well in this metric, with CA-ECI being the most efficient.
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Figure 2: Sample pattern of the full-fidelity observations for different methodologies across 100
experiments, each with a total cost of 15.
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Figure 3: Quantitative results for the Augmented Branin over 100 experiments. We show the median
of the best value found and the coverage recall computed per iteration, the total cost is 15, and the
results are computed for the full-fidelity function. The shaded region represents the interquartile
range of each metric.

4 Discussion and future work

In this work-in-progress we introduce multi-information source constraint active search for experi-
mental design, which is an experimentation formulation that seeks to automatically find diverse and
high-performing configurations using different sources. We extend ECI to this setting by proposing
the Cost-Aware ECI. Crucially, our method is very selective about querying full-fidelity source.

In future work, we would like to investigate the effectiveness of our approach in real-world problems,
contrasting it with other multi-fidelity methods. There are a few topics that we would like to
investigate further. First, we want to generalize this methodology to more than two information
sources; this is occurs of accessing a simulator with different mesh sizes or Monte-Carlo sample
sizes. In particular, we want to study the relationship between efficacy of our proposed algorithm (the
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ability to identify high performing regions in the full-fidelity model) and the number of information
sources (and perhaps more importantly, the relative costs of each).

Next, we want to quantify the impact of the correlation between the different information sources on
the final performance of the algorithms. We believe that this can provide us with intuition on how to
set up the multiple costs/fidelities setting. This is still an open question in the community.

Lastly, we want to consider multiple objectives along with multiple information sources.
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