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Abstract

Existing deep hierarchical topic models are able to extract semantically meaningful
topics from a text corpus in an unsupervised manner and automatically organize
them into a topic hierarchy. However, it is unclear how to incorporate prior belief
such as knowledge graph to guide the learning of the topic hierarchy. To address
this issue, we introduce TopicNet as a deep hierarchical topic model that can inject
prior structural knowledge as an inductive bias to influence the learning. TopicNet
represents each topic as a Gaussian-distributed embedding vector, projects the
topics of all layers into a shared embedding space, and explores both the symmetric
and asymmetric similarities between Gaussian embedding vectors to incorporate
prior semantic hierarchies. With an auto-encoding variational inference network,
the model parameters are optimized by minimizing the evidence lower bound and
a regularization term via stochastic gradient descent. Experiments on widely used
benchmarks show that TopicNet outperforms related deep topic models on discov-
ering deeper interpretable topics and mining better document representations.

1 Introduction

Topic models, which have the ability to uncover the hidden semantic structure in a text corpus,
have been widely applied to text analysis. Generally, a topic model is designed to discover a set
of semantically-meaningful latent topics from a collection of documents, each of which captures
word co-occurrence patterns commonly observed in a document. While vanilla topic models, such as
latent Dirichlet allocation (LDA) [1]] and Poisson factor analysis (PFA) [2], are able to achieve this
goal, a series of their hierarchical extensions [3H12]] have been developed in the hope of exploring
multi-layer document representations and mining meaningful topic taxonomies. Commonly, these
hierarchical topic models aim to learn a hierarchy, in which the latent topics exhibit an increasing
level of abstraction when moving towards a deeper hidden layer, as shown in Fig. [I(a). Consequently,
it provides users with an intuitive and interpretable way to better understand textual data.

Despite their attractive performance, many existing hierarchical topic models are purely data-driven
and incorporate no prior domain knowledge, which may result in some learned topics failing to
describe a semantically coherent concept [13]], especially for those at a deeper hidden layer [[14].
Furthermore, the inflexibility of adding prior knowledge also somewhat limits the applicability of
hierarchical topic models, since it is common that a user is interested in a specific topic structure and
only focused on information related to it [15]. To address this issue, we assume a structured prior in
the form of a predefined topic hierarchy, where each topic is described by a semantic concept, with
the concepts at adjacent layers following the hypernym relations, as illustrated in Fig.[T[b). Such a
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Figure 1: Mlustration of (a) topics discovered by a hierarchical topic model, (b) semantic graph constructed by
prior knowledge, and (c) topics learned by TopicNet, the proposed knowledge-based hierarchical topic model.

hierarchy can be easily constructed, either by some generic knowledge graph like WordNet [16]] or
according to the user’s customization. However, there are two main challenges: one is how to model
this semantic hierarchy, and the other is how to combine it with topic models.

For the first challenge, a general and powerful approach [[17] is to learn a distance-preserving mapping,
which maps semantically similar topics to nearby points in the embedding space, with a symmetric
distance measure (e.g., Euclidean or cosine distance) typically being used. However, the embeddings
learned by such a scheme can not perfectly reflect the entailment between concepts. To mitigate this
issue, Vendrov et al. [[18]] exploit the partial order structure of the semantic hierarchy to learn order
embeddings that respect this partial order structure. On the other hand, considering that probability
distributions are better at capturing uncertainties of concepts than point vectors, Athiwaratkun and
Wilson [19] introduce density order embeddings as an improvement to order embeddings. Density
order embeddings allows the entailment relationship to be expressed naturally, with general words
such as “entity” corresponding to broad distributions that encompass more specific words such as
“animal.” Through encapsulation of probability densities, it can intuitively reflect the hierarchical
structure of semantic concepts, thus offering us an effective way to model the topic hierarchy.

As for the second challenge of combining the constructed topic hierarchy with topic models, there are
two major difficulties. For one thing, the structured prior requires modeling the relationship between
topics across different layers directly, while hierarchical topic models often assume that the topics
at different layers are independently drawn in the prior [6]], which makes the fusion of the two a
bit far-fetched. For another, since the constructed topic hierarchy can be very deep for large-scale
text corpora, an equally deep topic model with multiple latent layers is needed to incorporate with
it. However, most existing deep neural topic models are hard to go very deep due to the problem of
posterior collapse [14,20425]]. Fortunately, SawETM [[14]], a recently proposed neural topic model,
not only builds the dependency between topics at different layers in a shared embedding space, but
also alleviates the issue of posterior collapse to some extent through a novel network module referred
to as Sawtooth Connection (SC), and hence overcoming both difficulties.

In this paper, a novel knowledge-based hierarchical topic model has been proposed, the core idea of
which is to represent each topic as a Gaussian embedding, and then project the topics of all layers
into a shared embedding space to facilitate the injection of structured prior knowledge into the model.
In particular, we first introduce the Gaussian-distributed embeddings to the SawETM, resulting in a
variant of SawETM with a stochastic decoder called Gaussian SawETM. To incorporate prior belief
into Gaussian SawETM, we then constrain the topics at adjacent layers to encourage them to capture
the concepts satisfying the predefined hypernym relations. With auto-encoding variational inference,
the entire model is learned in an end-to-end manner by minimizing the evidence lower bound and a
regularization term. Extensive experiments demonstrate our model has competitive performance and
better interpretability in comparison to most existing hierarchical topic models.

The main contributions of the paper can be summarized as follows:
* To capture semantic uncertainties of words and topics, we propose a novel probabilistic

generative model with a stochastic decoder, referred to as Sawtooth Factorial Gaussian Topic
Embeddings guided gamma belief network (Gaussian SawETM).

* To incorporate the structured prior knowledge from the real world, we propose TopicNet, a
novel knowledge-based hierarchical topic model based on Gaussian SawETM.

* In addition to detailed theoretical analysis, we conduct extensive experiments to verify the
effectiveness of the above two models. One of the most appealing properties of TopicNet is



its interpretability. We conduct extensive qualitative evaluation on the quality of the topics
discovered by TopicNet, including word embedding, topic embedding, and topic hierarchies.

2 Gaussian SawETM

In this section, we elaborate on the construction and inference of Gaussian SawETM, a deep hierar-
chical topic model that represents words and topics as Gaussian-distributed embeddings [26].

2.1 Symmetric similarity: expected likelihood kernel

The distance measure plays a key role in quantifying the similarities between embeddings. A simple
choice is taking the inner product between the means of two Gaussians, which, however, does not
take the advantage of the semantic uncertainties brought by Gaussian-distributed embeddings. Here
we employ the expected likelihood kernel [19, 26, [2'7] as our similarity measure, which is defined as

TER™

where o; is a Gaussian distribution with mean p; and diagonal covariance matrix 3J;. As a symmetric
similarity function, this kernel considers the impact of semantic uncertainties brought by covariances.

2.2 Document decoder with sawtooth factorization and Gaussian embeddings

The generative network (also known as decoder) is one of the core components of topic models. As
discussed in Section|l} to build dependency between topics at two adjacent layers and learn a deep
topic hierarchy, we draw experience from the Sawtooth Connection (SC) in SawETM. We develop a
stochastic decoder by introducing Gaussian-distributed embeddings to better represent the topics in
SawETM. Formally, the generative model with 7" latent layers can be expressed as
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In the above formula, z; € Z" denotes the word count vector of the j** document, which is
factorized as the product of the factor loading matrix (1) € RKXK ' and gamma distributed factor

T

t=1

score 0;1) under the Poisson likelihood; and to obtain a multi-layer document representation, the
hidden units 0§t) € Rf ¢ of the t* layer are further factorized into the product of the factor loading

B+ ¢ Rf‘ *Kt+1 and hidden units of the next layer. The top-layer hidden units 0§T) are sampled
from a prior distribution. In addition, the k*" topic oz,(:)

with mean /Lg) and covariance Zg), where the mean vector describes a semantic concept and the

covariance matrix reflects its level of abstraction. Note that in the bottom layer () represents the

at layer ¢ follows a Gaussian distribution

distributed embeddings of words. And <I’§:), used to capture the relationships between topics at
two adjacent layers, is calculated based on the topic representations in the shared embedding space,
instead of being sampled from a Dirichlet distribution. In particular, in the equation E®(-) refers to
the symmetric similarity function defined in Eq. (I)).

2.3 Document encoder: Weibull upward and downward encoder networks

As presented in Section [2.2] instead of using Gaussian latent variables like most of neural topic
models [28], our generative model employs the gamma distributed latent variables that are more
suitable for modeling sparse and non-negative document representations. While in sampling based
inference, the gamma distribution is commonly used to represent the conditional posterior of these
latent variables, the difficulty of reparameterizing a gamma distributed random variable makes it
difficult to apply it to an inference network [29, 30]. For this reason, we utilize a Weibull upward-
downward variational encoder inspired by the work in Zhang et al. [25,131]. We let
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Figure 2: Overviews of (a) generative model of Gaussian SawETM, (b) TopicTree constructed by WordNet,
and (c) Density order embeddings where specific entities correspond to concentrated distributions encapsulated
in broader distributions of general entities.

() )\(f) € R%¢ are deterministically transformed from both the observed

(t+1). In detail, the

where, the parameters k;

document features and the information from the stochastic up-down path 6
inference network can be expressed as
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concatenation in feature dimension, ReLU( ) = max(0, ) is the nonhnear activation function, and
Softplus(-) applies In[1 + exp(-)] to each element to ensure positive shape and scale parameters of the
Weibull distribution. To reduce the risk of posterior collapse a skip-connected deterministic upward

path [14] is used to obtain the hidden representations {h t)} j=1,1=1 of the input & ;.
2.4 Inference and estimation

Similar to variational auto-encoders (VAEs) [32,|33]], the training objective of Gaussian SawETM is
to maximize the Evidence Lower Bound (ELBO):
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where q(0§t) |—) is the variational Weibull distribution in Eq. (3], and p(O( )) is the prior gamma
distribution in Eq. (2). The first term is the expected log-likelihood or reconstruction error, while the

second term is the Kullback—Leibler (KL) divergence that constrains q(0§» )) to be close to its prior
p(0](-l)) in the generative model. The analytic KL expression and simple reparameterization of the
Weibull distribution make it simple to estimate the gradient of the ELBO, with respect to { /,L,(f) M,
and {E;Ct) ., of Gaussian embeddings and other parameters in the inference network.

3 TopicNet: Semantic graph-guided topic discovery
In Section [2] a novel hierarchical topic model called Gaussian SawETM is proposed to discover

meaningful topics organized into a hierarchy. Below we describe our solution to incorporate prior
belief, e.g., knowledge graph, into Gaussian SawETM to guide the learning of the topic hierarchy.

3.1 TopicTree: Semantic graph constructed by prior knowledge

Finding an appropriate way to encode prior knowledge is especially important for realizing the
incorporation of prior belief into topic models. Due to the hierarchical structure of deep topic models,



correspondingly, we represent prior knowledge in the form of a hierarchical semantic graph and we
call it TopicTree. Particularly, in the TopicTree each node is described by a semantic concept and the
concepts of nodes at two adjacent layers follow the entailment relations, which results in a bottom-up
process of gradual abstraction, as shown in Fig. 2(b)] Besides, it is worth mentioning that some
generic knowledge graphs such as WordNet [16] provide us a convenient way to build the TopicTree,
since the hypernyms or hyponyms of any given word can be easily found in them.

3.2 Partial order: Asymmetric entailment relationship

As described in Section[3.1] we organize prior knowledge into a hierarchical semantic graph so that it
can be incorporated into our Gaussian SawETM naturally. Specifically, for a constructed TopicTree
with depth T', we build a Gaussian SawETM with 7" latent layers corresponding to it, then we match
the topics of each layer in the Gaussian SawETM with the semantic concepts of the corresponding
layer in the TopicTree, ¢.e., each topic has a corresponding semantic concept to describe it. Most
significantly, the relationships between semantic concepts in the TopicTree should also be injected
to guide the learning of the topic hierarchy. Since the Gaussian SawETM projects the topics of all
layers to a shared embedding space, such a goal can be achieved by imposing constraints on the topic
representations in the shared embedding space.

Inspired by Vendrov et al. [18]], the semantic hierarchy (akin to the hypernym relation between words)
of the TopicTree can be seen as a special case of the partial order structure. In detail, a partial order
over a set of points X is a binary relation < such that for a, b, ¢ € X, the following properties hold:
1) a < a (reflexively); 2) if a < band b = a then a = b (anti-symmetry); 3) if « =< band b < c then
a = c (transitivity). Vendrov et al. [[18] propose learning such asymmetric relationships with order
embeddings: they represent semantic concepts as vectors of non-negative coordinates, and stipulate
that smaller coordinates imply higher position in the partial order and correspond to a more general
concept. For example, the following expression defines an ordered pair (z,y) of vectors in Rﬁ' :

N
x = y if and only if/\ T >y, 6)
=1
Since the order embedding condition defined by Eq. (6) is too restrictive to satisfy by imposing a hard
constraint, Vendrov et al. [18]] relax the condition and turn to seek an approximate order-embedding.
In particular, for an ordered pair of points, they apply a penalty that is formulated as:

E(z,y) = | max(0,y — z)|*. (7)

Note that this imposes a strong prior on the embeddings, which could encourage the learned relations
to satisfy the partial order properties of transitivity and antisymmetry.

Although Gaussian-distributed embeddings are used to represent topics in our Gaussian SawETM,
we find that they are also natural at capturing the partial order structure (or the semantic hierarchy of
the TopicTree) [[19]. For instance, for two topics following the hypernym relation, their Gaussian-
distributed embeddings «; and a; form an ordered pair. Assuming that o; represents the specific
topic and «; represents the general one, then we have o; < o, meanwhile we expect that o
corresponds to a broad distribution that encompasses ;. To meet this expectation, the KL divergence
between «; and ar; provides us a ready-made tool:

E® (ai,a;) = Dir (N | Nj) 2/ N (; i, Xi) log (N (25 i, i) /N (x5 pj, X)) dee
xER™
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However, using E® (o;, o ;) directly as a penalty for violating the partial order is undesirable. Since
the KL divergence has a property that E® (o, a;) = 0 if and only if o;; = or;, which means the
penalty is zero only if o;; = a5, but we expect the penalty should also be zero when o; # o; and
a; = o For this reason, following Athiwaratkun and Wilson [[19]], we consider using a thresholded
divergence as our penalty for order violation:

dy (o, aj) = max (O,E(“)(ai,aj) —7> . (8)

So this penalty can be zero if «; is properly encapsulated in «;. Nevertheless, note that we no longer
have the strict partial order with such a penalty. In other words, the transitivity and anti-symmetry are
not guaranteed. Therefore, actually our learned relations also respect an approximate order structure.



3.3 Objective: ELBO with a prior regularity

Essentially, TopicNet is a topic model, so the ELBO still plays a leading role in the training objective.
At the same time, a regularization term is also necessary for injecting hierarchical prior knowledge to
guide the topic discovery. Therefore, the final objective of TopicNet can be written as:

LTopicNel = LELBO + 6Lpri0r7 9

where [ is a hyper-parameter used to balance the impact of these two terms. Particularly, for the
ELBO term Lg o, it is the same as defined by Eq. @ As for the regularization term Lpyior, We
cannot only constrain topics that follow the hypernym relation between two adjacent layers, but the
topics that do not follow the hypernym relation should also be considered. This is consistent with
the notion of positive and negative sample pairs in contrastive learning. Based on this idea, we use
a max-margin loss to encourage the largest penalty between positive sample pairs to be below the
smallest penalty between negative sample pairs, which is defined as:

LY = max(0,m — max {d, (i, )}, p + min {dy (i,5)},p)- (10)
This represents the penalty for the 5" topic at (¢ + 1)*" layer, and D is the set of hyponym topics
of topic j. For i € D, (i, j) forms a positive pair, for i ¢ D, (4, j) forms a negative pair. Parameter
m is the margin that determines the degree to which the positive and negative pairs are separated.
Considering the penalties for all topics in each layer, we obtain the prior regularization term.

K@+

-1 t+1
LPrior = tho ijo L; )- (11)

With the final objective, TopicNet learns the topics influenced by both the word co-occurrence
information and prior semantic knowledge, thus discovering more interpretable topics. Note that, in
our experiments, the hyper-parameters are set as m = 10.0 and 5 = 1.0.

3.4 Model Properties

In this part, we recap several good properties of TopicNet: Uncertainty, Interpretability, and Flexibility.

Effectiveness of Gaussian-distributed embeddings: Mapping a topic to a distribution instead
of a vector brings many advantages, including: on one hand, better capturing uncertainty about a
representation, where the mean indicates the semantics of a topic and the covariance matrix reflects its
level of abstraction; on the other hand, expressing asymmetric relationships more naturally than point
vectors, which is beneficial to modeling the partial order structure of semantic hierarchy [[19} 26].

Hierarchical interpretable topics: In conventional hierarchical topic models, the semantics of a
topic is reflected by its distributed words, and we have to summarize a semantically coherent concept
manually by post-hoc visualization. In some cases, the topic is too abstract to get a semantically
coherent concept, which makes it hard to interpret. Such cases are common in deeper hidden layers.
While in TopicNet, we know in advance what semantic concept a certain topic corresponds to, since
it is encoded from prior knowledge and used to guide the topic discovery process of the model as a
kind of supervision information. Therefore, once the model is trained, the words distributed under
each topic are semantically related to the concept that describes it, as shown in Fig.[6] From this
perspective, our TopicNet has better interpretability.

Flexibility to incorporate prior belief: Traditional topic models learn topics only by capturing
word co-occurrence information from data, which do not consider the possible prior domain knowl-
edge (e.g., Knowledge Graph like WordNet [34]). However, TopicNet provides a flexible framework
to incorporate the structured prior knowledge into hierarchical topic models.

4 Experiments

We conducted extensive experiments to verify the effectiveness of Gaussian SawETM and TopicNet.
Our code is available at https://github. com/BoChenGroup/TopicNet|


https://github.com/BoChenGroup/TopicNet

Table 1: Comparison of per-heldout-word perplexity on three different datasets.

Method | Depth | 20NG | RCV1 | Wiki | Method | Depth | 20NG | RCV1 | Wiki
LDA [1] 1 735 | 942 | 1553 | DNTM-WHAI [25] 1 762 | 952 | 1657
AVITM [38] 1 784 | 968 | 1703 | DNTM-WHAI [25] 5 726 | 906 | 1595
ETM [35] 1 742 951 1581 DNTM-WHALI [25] 15 724 902 1592
DLDA-Gibbs [36] 1 702 - - | DNTM-SawETM [14] | 1 718 | 908 | 1536
DLDA-Gibbs [36] 5 678 - - | DNTM-SawETM [[4] | 5 688 | 873 | 1503
DLDA-Gibbs [36] | 15 | 670 - - | DNTM-SawETM [T4] | 15 | 684 | 864 | 1492
DLDA-TLASGR [7] | 1 714 | 912 | 1455 | DNTM-GaussSawETM | 1 714 | 904 | 1529
DLDA-TLASGR [7] | 5 684 | 877 | 1432 | DNTM-GaussSawETM | 5 685 | 866 | 1477
DLDA-TLASGR [7) | 15 | 673 | 842 | 1421 | DNTM-GaussSawETM | 15 | 678 | 857 | 1452

Baseline methods and their settings: We compare Gaussian SawETM with the state-of-the-art
topic models: 1. LDA Group, including: latent Dirichlet allocation(LDA) [[1], which is a basic
probabilistic topic model; LDA with Products of Experts (AVITM) [28]], which replaces the mixture
model in LDA with a product of experts and uses the AVI for training; Embedding Topic Model
(ETM) [35], a generative model that incorporates word embeddings into traditional topic model.
2. DLDA Group, including: Deep LDA inferred by Gibbs sampling (DLDA-Gibbs) [36] and by
TLASGR-MCMC (DLDA-TLASGR) [[7]. 3. Deep Neural Topic Model (DNTM) Group, including
Weibull Hybrid Autoencoding Inference model (WHAI) [25], which employs a deep variational
encoder to infer hierarchical document representations, and Sawtooth Factorial Embedded Topic
Model (SawETM) [14]], where topics are modeled as learnable deterministic vectors. For all baselines,
we use their official default parameters with best reported settings.

Datasets Our experiments are conducted on four widely-used benchmark datasets, including
20Newsgroups (20NG), Reuters Corpus Volume I (RCV1), Wikipedia (Wiki), and a subset of the
Reuters-21578 dataset (R8), varying in scale and document length. 20NG, with a vocabulary of 2,000
words, has 20 classes and was split into 11,314 training and 7,532 test documents. RCV1 consists of
804,414 documents with a vocabulary size of 8,000. Wiki, with a vocabulary size of 10,000, consists
of 3 million documents randomly downloaded from Wikipedia using the script provided by Hoffman
et al. [37]]. R8, with a vocabulary size of 10,000, has 8 classes and was split into 5,485 training and
2,189 test documents. The summary statistics of these datasets and other implementation details
(such as dataset preprocessing and length statistics) are described in the Appendix.

4.1 Unsupervised learning for document representation

Per-heldout-word perplexity: To measure predictive quality of the proposed model, we calculate
the per-heldout-word perplexity (PPL) [7], on three regular document datasets, e.g., 20NG, RCV1,
and Wiki. For deep topic models in the DLDA and DNTM groups, we report the PPL with 3 different
stochastic layers T' € {1,5,15}. Specifically, for a 15-layer model, the topic size from bottom
to top is set as K = [256, 224,192,160, 128, 112,96, 80, 64, 56, 48, 40, 32, 16, 8], and the detailed
description can be found in the Appendix. For each corpus, we randomly select 80% of the word
tokens from each document to form a training matrix X, holding out the remaining 20% to form a
testing matrix Y. We use X to train the model and calculate the per-held-word perplexity as

V. N s K1 (Dsy(1)s
1 25:1 Zk:l Poe Okn
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where S is the total number of collected samples and y.. = Z:}/:l 22[21 Yon- As shown in Tab.
overall, DLDA-Gibbs perform best in terms of PPL, which is not surprising as they can sample from
the true posteriors given a sufficiently large number of Gibbs sampling iterations. DLDA-TLASGR is
a mini-batch based algorithm that is much more scalable in training than DLDA-Gibbs, at the expense
of slightly degraded performance in out-of-sample prediction. Apart from these deep probabilistic
topic models, Gaussian SawETM outperforms other neural topic models in all datasets. In particular,
compared with Gaussian based single layer neural topic model, WHALI performs better, which can
be attributed to two aspects, the first is the effectiveness of Weibull distribution in modeling sparse
and non-negative document latent representations, and the second is aggregating the information in
both the higher (prior) layer and that upward propagated to the current layer via inference network.
Benefiting from the embedding decoder and the Sawtooth Connection that builds the dependency



Table 2: Comparison of document classification and clustering performance.

Methods Depth Classification Clustering
20NG R8 20NG R8
ACC NMI | ACC NMI

LDA [1] 1 72.6+0.3 88.440.5 | 46.5+0.2 45.1£04 | 51.4+04 40.5+0.3
NVITM [38] 1 71.5£04 87.3+0.2 | 48.3+£0.5 46.4+0.3 | 52.5£0.2 41.2+0.4
ETM [35] 1 71.9+£0.2 87.94+0.4 | 49.840.6 48.4+0.5 | 553+£0.4 42.3+0.2
PGBN (6] 1 742405 90.84+0.5 | 46.6+0.5 454+0.6 | 51.7£0.4 40.7+0.4
PGBN [6] 4 76.0+£0.3 91.6+0.4 | 48.24+0.2 46.5£0.5 | 54.4+£04 41.24+0.3
WHAI [25] 1 72.8+0.3 85.3+0.2 | 49.44+0.5 46.5+£04 | 57.9+0.5 42.3+0.4
WHALI [25] 4 73.7+£0.5 88.440.3 | 49.5+04 47.0+£0.3 | 60.4+£04 44.1+0.2
SawETM [14] 1 70.5+£0.3 88.6+0.2 | 50.24+0.2 48.7+£0.3 | 61.2+0.4 43.44+0.4
SawETM [14] 4 71.1+£0.2  90.5+0.3 | 51.240.3 50.7£0.2 | 63.8£0.3 45.940.5
Gaussian SawETM 1 72.8+0.3 89.8+0.4 | 51.3+£04 50.6£0.2 | 61.5£0.3 44.1+0.2
Gaussian SawETM 4 752404 91.04£0.3 | 53.0+£0.3 51.3+0.2 | 65.2+04 47.0+0.3
TopicNet 1 71.6+0.2 88.6+0.3 | 49.5+0.3 46.3+04 | 61.0+£0.2 43.2+0.3
TopicNet 4 743+0.5 89.5+0.4 | 50.8£0.3 47.84£04 | 64.2+03 46.5+0.2

of hierarchical topics, SawETM performs better than WHAI, especially at deeper layers. However,
modeling topics with point vectors, SawETM cannot capture the uncertainties of topics. Gaussian
SawETM represents the topics with Gaussian-distributed embeddings to capture the uncertainties,
and achieves promising improvements over SawETM, especially for modeling complex and big
corpora such as Wiki. Note that although the methods in DLDA group get better performance, they
require iteratively sampling to infer latent document representations in the test stage, which limits
their application [25]. By contrast, Gaussian SawETM can infer latent representations via direct
projection, which makes it both scalable to large corpora and fast in out-of-sample prediction.

Document Classification & Clustering Document-topic distributions can be viewed as unsuper-
vised document representations, to evaluate their quality, we perform document classification and
clustering tasks. In detail, we first use the trained topic models to extract the latent representations of
the testing documents and then use logistic regression to predict the label and use k-means to predict
the clusters. we measure the classification performance by classification accuracy, and clustering
performance by accuracy (ACC) and normalized mutual information (NMI), both of which are the
higher the better. we test the model performance on 20NG and R8, where the document labels are
considered. Different from the perplexity experiments, a larger vocabulary of 20,000 words is used
for 20News to achieve better performance. The network structure is defined by TopicTree, which
is introduced in Section 3.1} with the details deferred to the Appendix. The comparison results are
summarized in Tab. 2] Benefiting from the use of Gaussian distributions on topics, Gaussian SawETM
outperforms the other neural topic models on not only document classification but also clustering,
demonstrating its effectiveness of extracting document latent representations. Note that Gaussian
SawETM acquires promising improvements compared to SawETM in the 20NG dataset, showing the
potential for modeling more complex data. With the predefined knowledge prior, TopicNet does not
perform better, possibly because the introduced prior information does not well align with the end
task. We leave the refinement of prior information for specific tasks to future study.

4.2 Interpretable topic discovery

Apart from excelling at document representation learning, another appealing characteristic of Top-
icNet is that it can discover interpretable hierarchical topics. In this section, we perform the topic
discovery experiment with a 7-layer TopicNet trained on 20NG. The network structure is constructed
corresponding to the structure of TopicTree, which is set as [411, 316, 231, 130, 46, 11, 2].

Prior knowledge and corresponding learned topic: We show six example topics and their corre-
sponding children nodes in Tab. [3] which illustrates how a particular concept is being represented
in the 20 newsgroups. For example, the “military_action” concept, which has “assault”, “defense”,
and “war” as its children nodes, has become tightly connected to the Waco Siege heavily discussed
in this dataset; the “macromolecule” concept, which has “oil” as its single child node, has been
represented by a topic related to vehicle, which is interesting as the 20newsgroups dataset has the



Table 3: Semantic graph and corresponding learned topic on the bottom layer.

Topic | Concept | Children word nodes | Topic words

gun fbi guns koresh batf

11 military_action assault defense war .
waco assault children compound weapons
. address shareware windows dos driver microsoft
131 coding_system Lo . . o A
software unix windows | drivers running applications unix using network

. car bike cars engine
178 | macromolecule oil . . e .
oil saturn ford riding miles road

government law rights state
police right federal shall crime court laws

186 ‘ polity ‘ government

¢ S space launch nasa gov
296 ‘ atmosphere ‘ sky satellite earth mission shuttle hst orbit sky
208 ‘ color ‘ black blue color green blue red

brown color green red black brown led subject showed lines

following two newsgropus— “rec.autos’ and “rec.motorcycles”—but not a newsgroup clearly related
to biology and chemistry; and the “Atmosphere” concept, which has “Sky” as its single child node,
has been represented by a topic related to NASA, reflecting the fact that “sci.space” is one of the 20
news groups.

Topic quality: Two metrics are considered here to evaluate the topic quality. The first metric is
topic coherence, which is computed by taking the average Normalized Pointwise Mutual Information
(NPMI) of the top 10 words of each topic [39]]. It provides a quantitative measure of the semantic
coherence of a topic. The second metric is topic diversity [35]], which suggests the percentage of
unique words in the top 25 words of all topics. Diversity close to 1 means more sundry topics.
Following Dieng et al. [35], we define topic quality as the product of topic coherence and topic
diversity. Note that topic quality is affected by the topic size, so it makes sense to compare different
models on the same layer. As shown in Fig.[3] Gaussian SawETM performs better compared to
SawETM, which can be attributed to the Gaussian-distributed embeddings that capture the semantic
uncertainties of topics. Incorporating the hierarchical prior knowledge, TopicNet further achieves a
higher score than Gaussian SawETM. However, it gets a lower score compared to DLDA-Gibbs in
the first two layers, as the layer goes deeper, TopicNet performs better. This is easy to understand
since information from data reduces slightly in the shallow layers but severely in the deep layers.

0.6 : : :
Visualisation of embedding space: First of At

all, we use a 3-layer Gaussian SawETM with 0.5] |~=WHAI

2-dim embedding trained on 20NG for the I WETM
Gaussian-distribution embedding visualization. 0.4] [=e=TopicNet

The top 4 words from the 16*® topic at 1*® = |
layer are visualized in Fig. Aswecan  Z

see, the words under the same topic are closer 2

in the embedding space, which demonstrates e

the learned embeddings are semantically sim- 02f

ilar. Apart from the semantics of words and

topics, the shadow range describes the uncertain- O1r

ties and reflects the abstraction levels. Secondly, \;.. =

we visualize the means of Gaussian-distributed 0 s s 4 s o 4 s
embeddings learned by TopicNet with T-SNE Number of Layer

[40]. As shown in Fig.[4.2} in the shared embed-
ding space, the words with similar semantics are
close to each other, meanwhile they all locate
near the topic that has similar semantics to them,
which means the TopicNet effectively captures
the prior semantic information and discovers
more interpretable topics.

Figure 3: Topic quality as measured by normalized
product of topic coherence and topic diversity (the
higher the better) with the varied number of layers.
Each layer’s topic quality is influenced by its layer
size, whichis setas [411, 316, 231, 130, 46, 11, 2]
from the bottom layer to the top layer.
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Figure 4: (a) 2-dim Gaussian embedding in Gaussian SawETM, which we choose the top four words
for the topic and (b) T-SNE visualisation of the mean of Gaussian distribution embedding in TopicNet.
(The Topic: t-j : xx denotes the j** topic at t*® layer and xx represent the concept about the topic.)
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Figure 5: An example of hierarchical topics learned by a 7-layer TopicNet, we only show example
topics at the top two layers and bottom two layers. Boldface indicates the concept of each topic.

Hierarchical structure of TopicNet: Distinct from many existing topic models that rely on post-
hoc visualization to understand topics, we can easily understand the semantic of the whole stochastic
network via the predefined TopicTree. Specially, the hierarchical structure of TopicNet is shown
in Fig.[6] The semantic of each topic can be represented by the concept in the TopicTree, which is
more interpretable compared to traditional topic models. This result further confirms our motivation
described in Fig. [T]

5 Conclusion

To equip topic models with the flexibility of incorporating prior knowledge, this paper makes a
meaningful attempt and proposes a knowledge-based hierarchical topic model — TopicNet. This
model first explores the use of Gaussian-distributed embeddings to represent topics, and then develops
a regularization term that guides the model to discover topics by a predefined semantic graph.
Compared with other neural topic models, TopicNet achieves competitive results on standard text
analysis benchmark tasks, which illustrate a promising direction for the future development of text
analysis models toward better interpretability and practicability.
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